@@ -5,7 +5,7 @@ use boolean_network_sketches::utils::{
5
5
} ;
6
6
7
7
use biodivine_hctl_model_checker:: mc_utils:: get_extended_symbolic_graph;
8
- use biodivine_hctl_model_checker:: model_checking:: model_check_formula ;
8
+ use biodivine_hctl_model_checker:: model_checking:: model_check_formula_dirty ;
9
9
10
10
use biodivine_lib_param_bn:: biodivine_std:: traits:: Set ;
11
11
use biodivine_lib_param_bn:: BooleanNetwork ;
@@ -81,7 +81,7 @@ fn case_study_part_1() {
81
81
println ! ( "Analysing candidate set..." ) ;
82
82
83
83
// compute attractors symbolically
84
- let attrs_all_candidates = model_check_formula ( "!{x}: AG EF {x}" . to_string ( ) , & graph) . unwrap ( ) ;
84
+ let attrs_all_candidates = model_check_formula_dirty ( "!{x}: AG EF {x}" . to_string ( ) , & graph) . unwrap ( ) ;
85
85
println ! ( "Attractors for all candidates computed" ) ;
86
86
println ! (
87
87
"Elapsed time from the start of this computation: {}ms" ,
@@ -91,7 +91,7 @@ fn case_study_part_1() {
91
91
92
92
// check for candidates without attractor for programmed cell death
93
93
let programmed_cell_death_formula = "Apoptosis_ & ~S1P & ~sFas & ~Fas & ~Ceramide_ & ~Caspase & ~MCL1 & ~BID_ & ~DISC_ & ~FLIP_ & ~CTLA4_ & ~TCR & ~IFNG_ & ~CREB & ~P2 & ~SMAD_ & ~GPCR_ & ~IAP_" ;
94
- let pcd = model_check_formula ( programmed_cell_death_formula. to_string ( ) , & graph) . unwrap ( ) ;
94
+ let pcd = model_check_formula_dirty ( programmed_cell_death_formula. to_string ( ) , & graph) . unwrap ( ) ;
95
95
let colors_not_pcd = graph
96
96
. mk_unit_colors ( )
97
97
. minus ( & attrs_all_candidates. intersect ( & pcd) . colors ( ) ) ;
@@ -107,7 +107,7 @@ fn case_study_part_1() {
107
107
108
108
// check for candidates with unwanted attractor states
109
109
let unwanted_state_formula = "Apoptosis_ & (S1P | sFas | Fas | Ceramide_ | Caspase | MCL1 | BID_ | DISC_ | FLIP_ | CTLA4_ | TCR | IFNG_ | CREB | P2 | SMAD_ | GPCR_ | IAP_)" ;
110
- let unwanted_states = model_check_formula ( unwanted_state_formula. to_string ( ) , & graph) . unwrap ( ) ;
110
+ let unwanted_states = model_check_formula_dirty ( unwanted_state_formula. to_string ( ) , & graph) . unwrap ( ) ;
111
111
let colors_with_unwanted_states = attrs_all_candidates. intersect ( & unwanted_states) . colors ( ) ;
112
112
println ! (
113
113
"{} candidates have unwanted states in attractors, such as:\n " ,
@@ -141,6 +141,7 @@ fn case_study_part_2(summarize_candidates: bool) {
141
141
// create the partially specified BN object
142
142
let bn = BooleanNetwork :: try_from ( aeon_string. as_str ( ) ) . unwrap ( ) ;
143
143
println ! ( "Loaded BN model with {} components." , bn. num_vars( ) ) ;
144
+ // create the STG object
144
145
let mut graph = get_extended_symbolic_graph ( & bn, 2 ) . unwrap ( ) ;
145
146
println ! (
146
147
"Model has {} symbolic parameters." ,
@@ -176,7 +177,7 @@ fn case_study_part_2(summarize_candidates: bool) {
176
177
diseased_attractor. to_string( ) ,
177
178
] ;
178
179
let formula = mk_formula_forbid_other_attractors ( attr_set) ;
179
- let inferred_colors = model_check_formula ( formula, & graph) . unwrap ( ) . colors ( ) ;
180
+ let inferred_colors = model_check_formula_dirty ( formula, & graph) . unwrap ( ) . colors ( ) ;
180
181
println ! (
181
182
"{} consistent candidate networks found in total" ,
182
183
inferred_colors. approx_cardinality( )
0 commit comments