-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_expanded_input_model.m
280 lines (235 loc) · 13 KB
/
compute_expanded_input_model.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
function[expanded_input_model]=compute_expanded_input_model(model,expanded_input_model,internal_mets,internal_rxns,intercluster_transport,mets_connected_to_ext_metabolite,umets,exmets,exRxns,number_of_cluster,fields)
% (c) Maria Pires Pacheco 2020 -University of Luxembourg
%Reconstruction of the S matrix for internal internal_rxns and internal
%metabolites of every cluster: internal_S_matrix (size (internal mets*
%numbers of clusters x internal_rxns* number of clusters)
%The script starts computing the S internal matrix for 1 cluster: internal_S_matrix_for_1_cluster
% and places at the right places in the internal_S_matrix
% reconstructs the matrix for the internal metabolites moving between to the u compartment and the clusters : intercluster_trans_Smat
%(size (internal mets* numbers of clusters x intercluster_transport * numbers of clusters)
% reconstructs the matrix for the u metabolite moving between to the u compartment and the clusters: intercluster_trans_Smat2
%(size (umets *numbers of clusters x intercluster_transport* numbers of clusters)
% initializes an empty sparse matrix that has the correct size
internal_S_matrix=sparse(numel(internal_mets)*number_of_cluster,numel(internal_rxns)*number_of_cluster);
intercluster_trans_Smat=sparse(numel(internal_mets)*number_of_cluster,numel(intercluster_transport)*number_of_cluster);
intercluster_trans_Smat2=sparse(numel(umets),numel(intercluster_transport)*number_of_cluster);
% finds the indices of the internal metabolites and reactions
[~,internal_mets_index, ~]=intersect(model.mets,internal_mets);
[~,internal_rxns_index, ~]=intersect(model.rxns,internal_rxns);
[~,intercluster_transportID, ~]=intersect(model.rxns,intercluster_transport);
% builds a matrix with the internal reactions and metabolites of a sub-model
internal_S_matrix_for_1_cluster=model.S(internal_mets_index,internal_rxns_index);
internal_rxns_array=cell(numel(internal_rxns)*number_of_cluster,numel(fields)+1);
intercluster_trans_array=cell(numel(intercluster_transport)*number_of_cluster,numel(fields)+1);
internal_rxns_array_n=sparse(numel(internal_rxns)*number_of_cluster,numel(fields)+1);
intercluster_trans_array_n=sparse(numel(intercluster_transport)*number_of_cluster,numel(fields)+1);
[~, IB, IA]=intersect(model.mets,mets_connected_to_ext_metabolite);
[~, IC, ID]=intersect(model.rxns,intercluster_transport);
tmp(IA,ID)=model.S(IB,IC);
[~, IB, IA]=intersect(internal_mets,mets_connected_to_ext_metabolite);
intercluster_trans_Smat_4_1_cluster=sparse(numel(internal_mets),numel(intercluster_transport));
intercluster_trans_Smat_4_1_cluster(IB,:)=tmp(IA,:);
[~, IB, ~]=intersect(model.mets,exmets);
[~, IC, ~]=intersect(model.rxns,intercluster_transport);
intercluster_trans_Smat_4_1_cluster2=model.S(IB,IC);
missing_ex_mets= setdiff(model.mets(find(contains(model.mets,'[e]'))),exmets);
match=ismember(internal_mets,missing_ex_mets);
internal_mets(match)=strrep(internal_mets(match),'[e]','[u]');
% begin indices in the respective matrix
ind=1; %internal_S_matrix begin_dim1
ind2=size(internal_S_matrix_for_1_cluster,1);%internal_S_matrix end dim1
ind3=1;%internal_S_matrix begin dim2
ind4=size(internal_S_matrix_for_1_cluster,2);%internal_S_matrix end dim2
ind5=1; %intercluster_trans_Smat_4_1_cluster begin dim1 (ind6 == end)
ind7=1; %intercluster_trans_Smat_4_1_cluster begin dim2 (ind8 == end)
ind9=1;%intercluster_trans_Smat_4_1_cluster2 begin dim1 (ind10 == end)
%dim2 == ind7 and ind8
for i=1:number_of_cluster
expanded_input_model.genes=[expanded_input_model.genes;strcat(model.genes,'_', num2str(i))];
if i>1
ind=ind2+1;
ind3=ind4+1;
ind5=ind6+1;
ind7=ind8+1;
end
ind2=ind+size(internal_S_matrix_for_1_cluster,1)-1;
ind4= ind3+ size(internal_S_matrix_for_1_cluster,2)-1;
ind6=ind5+size(intercluster_trans_Smat_4_1_cluster,1)-1;
ind8=ind7+size(intercluster_trans_Smat_4_1_cluster,2)-1;
ind10=ind9+size(intercluster_trans_Smat_4_1_cluster2,1)-1;
internal_S_matrix(ind: ind2,ind3:ind4)=internal_S_matrix_for_1_cluster;
intercluster_trans_Smat(ind5:ind6,ind7:ind8)=intercluster_trans_Smat_4_1_cluster;
intercluster_trans_Smat2(ind9:ind10,ind7:ind8)=intercluster_trans_Smat_4_1_cluster2;
internal_rxns_array(ind3:ind4,1)=strcat(internal_rxns,'_', num2str(i));
mets(ind: ind2)=strcat(internal_mets,'_', num2str(i));
intercluster_trans_array(ind7:ind8,1)=(strcat(intercluster_transport,'_', num2str(i)));
% do first metabolites
for ii=1:numel(fields)
if size( model.(fields{ii}),1)==size( model.mets,1)&& size( model.(fields{ii}),2)~=size( model.rxns,1)
temp=model.(fields{ii});
expanded_input_model.(fields{ii})= [expanded_input_model.(fields{ii});temp(internal_mets_index)];
elseif size( model.(fields{ii}),1)==size( model.rxns,1) && size( model.(fields{ii}),1)~=size( model.mets,1)
temp=model.(fields{ii});
if strcmp(fields{ii},'rules') && i>1
%Update the indices of the genes in the rules. The number of total genes is added to the indices for
%each cluster (i.e 22 + numel(model.genes) * number of
%clusters. This is done in two steps, the expression is
%changed. Plus (+) appear in the expressions then it is
%evaluated to remove the (+)
temp=strrep(temp, 'x(', strcat( 'x(' ,num2str(numel(model.genes)*(i-1)),'+'));
for counter1=1:numel(temp)
temp2=temp{counter1};
plus_pos=strfind(temp2,'+');
if ~isempty(plus_pos)
bracket1_pos=strfind(temp2,'(');
bracket2_pos=strfind(temp2,')');
if numel(plus_pos)==1 && numel(bracket2_pos)==1 && numel(bracket1_pos)==1
temp3=temp2(bracket1_pos+1: bracket2_pos-1);
temp4=eval(temp3);
temp{counter1}=strrep(temp2,temp3, num2str(temp4));
else
while ~isempty(plus_pos)
u22= plus_pos(1)-bracket1_pos;
u22=bracket1_pos(u22== min(u22(u22>0)));
u33= bracket2_pos-plus_pos(1);
u33=bracket2_pos(u33== min(u33(u33>0)));
temp3=temp2(u22+1: u33-1);
temp4=eval(temp3);
temp3a=strcat('(',temp3,')');
temp4a=strcat('(',num2str(temp4),')');
temp2=strrep(temp2,temp3a,temp4a);
plus_pos=strfind(temp2,'+');
bracket1_pos=strfind(temp2,'(');
bracket2_pos=strfind(temp2,')');
end
temp{counter1}=temp2;
end
end
end
else
end
if iscell(temp)
internal_rxns_array(ind3:ind4,ii+1)=temp(internal_rxns_index);
intercluster_trans_array(ind7:ind8,ii+1)=temp(intercluster_transportID);
else
internal_rxns_array_n(ind3:ind4,ii+1)=temp(internal_rxns_index);
if strcmp(fields{ii}, 'lb')
intercluster_trans_array_n(ind7:ind8,ii+1)=temp(intercluster_transportID);
else
intercluster_trans_array_n(ind7:ind8,ii+1)=temp(intercluster_transportID);
end
end
expanded_input_model.(fields{ii})= [expanded_input_model.(fields{ii});temp(internal_rxns_index)];
end
end
end
varname = regexp(exmets, '\[(.*?)\]', 'match', 'once');
expanded_input_model.mets=[mets';sort(strrep(exmets,varname,'[u]'));sort(strrep(exmets,varname,'[e]'))];
umets=strrep(exmets,varname,'[u]');
S=[internal_S_matrix,intercluster_trans_Smat];
S2=[sparse(size(umets,1),size(internal_S_matrix,2)),intercluster_trans_Smat2];
S=[S;S2];
S7=sparse(size(intercluster_trans_Smat,1), numel(exRxns));
S8=[S7;eye(size(intercluster_trans_Smat2,1))*-1];
S2=[S;sparse(size(intercluster_trans_Smat2,1),size(S,2))];
S=[S2, [S8;eye(size(intercluster_trans_Smat2,1))]];
S7=sparse(size(S,1), numel(exRxns));
S7(end+1-size(eye(size(intercluster_trans_Smat2,1)),1):end,:)=eye(size(intercluster_trans_Smat2,1));
S=[S, S7];
expanded_input_model.S=S;
trans=strcat('Trans_',sort(exmets));
Ex=strcat('Ex_',exmets);
dico_EX=cell(numel(Ex),2);
dico_EX(:,1)=Ex;
for i=1:numel(exmets)
r=find(model.S(ismember(model.mets,exmets(i)),:));
r=intersect(model.rxns(r),exRxns);
dico_EX(i,2)=r;
end
expanded_input_model.rxns=[internal_rxns_array(:,1);intercluster_trans_array(:,1);trans;Ex];
for ii=1:numel(fields)
if size( model.(fields{ii}),1)==size( model.rxns,1) && size( model.(fields{ii}),1)~=size( model.mets,1)
if iscell(expanded_input_model.(fields{ii}))
rul=[internal_rxns_array(:,ii+1);intercluster_trans_array(:,ii+1);cell(numel(trans),1);cell(numel(Ex),1)];
rul(cellfun('isempty',rul))=cellstr('');
expanded_input_model.(fields{ii})=rul;
else
if strcmp(fields{ii}, 'lb')
%% lower bounds set -1000 by defaut for trans and Ex
expanded_input_model.(fields{ii})=[internal_rxns_array_n(:,ii+1);intercluster_trans_array_n(:,ii+1);ones(numel(trans),1)*-1000; ones(numel(Ex),1)*-1000];
else
expanded_input_model.(fields{ii})=[internal_rxns_array_n(:,ii+1);intercluster_trans_array_n(:,ii+1);ones(numel(trans),1)*median(internal_rxns_array_n(:,ii+1)); ones(numel(Ex),1)*median(internal_rxns_array_n(:,ii+1))];
end
end
else
if iscell(expanded_input_model.(fields{ii}))
[~,index]=ismember(exmets,model.mets);
temp2=cell(numel(exmets),1);
temp=model.(fields{ii});
temp2(index>0)=temp(index(index>0));
expanded_input_model.(fields{ii})=[expanded_input_model.(fields{ii});temp2;temp2];
else
expanded_input_model.(fields{ii})=[expanded_input_model.(fields{ii});ones(numel(umets),1)*mean(expanded_input_model.(fields{ii}));ones(numel(umets),1)*mean(expanded_input_model.(fields{ii}))];
end
end
end
'Hell0';
%% correct reversibility
lb=zeros(numel(exmets),1);
ub=zeros(numel(exmets),1);
grRules=cell(numel(exmets),1);
R_ex=cell(numel(exmets),1);
for i=1:numel(exmets)
[~,r]=find(model.S(ismember(model.mets,exmets(i)),:));
r=intersect(model.rxns(r),exRxns);
R_ex(i,1)=r;
sign=model.S(ismember(model.mets,exmets(i)),ismember(model.rxns,r));
if full(sign) >0
% then flip
model.S(ismember(model.mets,exmets(i)),ismember(model.rxns,r))=-sign;
tmp=model.ub(ismember(model.rxns,r));
model.ub(ismember(model.rxns,r))=-model.lb(ismember(model.rxns,r));
model.lb(ismember(model.rxns,r))=-tmp;
end
end
[~,index]=ismember(R_ex,model.rxns);
lb(index>0)=model.lb(index(index>0));
ub(index>0)=model.ub(index(index>0));
Table_bound=table(R_ex,lb, ub, exmets,strcat('Ex_',exmets));
[~,index]=ismember(expanded_input_model.rxns,table2array(Table_bound(:,5)));
expanded_input_model.lb(index>0)=Table_bound.lb(index(index>0));
expanded_input_model.ub(index>0)=Table_bound.ub(index(index>0));
%%
expanded_input_model.rev= sparse(numel(expanded_input_model.rxns),1);
expanded_input_model.rev(expanded_input_model.lb<0)=1;
expanded_input_model = buildRxnGeneMat(expanded_input_model);
expanded_input_model = creategrRulesField(expanded_input_model);
expanded_input_model=fixIrr_rFASTCORMICS(expanded_input_model);
%% correct rules for exchanges
[~,index]=ismember(R_ex,model.rxns);
grRules(index>0)=model.grRules(index(index>0));
Table_bound=[Table_bound,table(grRules)];
rules_keep=cell(size(Table_bound,1),1);
for counter2=1:size(Table_bound,1)
if ~cellfun('isempty',table2array(Table_bound(counter2,6)))
for counter=1:number_of_cluster
if counter==1
rules=strcat(table2array(Table_bound(counter2,6)),'_', num2str(counter));
else
tmp= strcat(table2array(Table_bound(counter2,6)),'_',num2str(counter));
rules=strcat(string(rules), ' or ','$ ', string(tmp));
end
end
rules=strrep(rules,'$',' ');
rules_keep(counter2,1)=cellstr(rules);
end
[~,index]=ismember(expanded_input_model.rxns,table2array(Table_bound(:,5)));
expanded_input_model.grRules(index>0)=rules_keep(index(index>0),1);
end
expanded_input_model.grRules(cellfun('isempty',expanded_input_model.grRules))=cellstr('');
for i=1:numel(expanded_input_model.grRules)
expanded_input_model.grRules(i)=strrep(expanded_input_model.grRules(i),'or',' or ');
expanded_input_model.grRules(i)=strrep(expanded_input_model.grRules(i),'and',' and ');
end
expanded_input_model = generateRules(expanded_input_model);
end