Skip to content

Latest commit

 

History

History
78 lines (64 loc) · 3.53 KB

README.md

File metadata and controls

78 lines (64 loc) · 3.53 KB

rankingQ: Design-Based Methods for Improving Ranking Questions

rankingQ implements design-based methods for correcting measurement errors in ranking questions due to random responses. rankingQ allows users to estimate various ranking-based quantities of interest both non-parametrically and parametrically. rankingQ also offers practical tools for detecting the bias and assessing the anchor-ranking question.

For the underlying methodology, see Atsusaka and Kim (2024). Addressing Measurement Errors in Ranking Questions for the Social Sciences. Political Analysis (conditionally accepted). Please visit the package site for all vignettes and references.

Installation

rankingQ can be installed using the following code:

remotes::install_github(
  "sysilviakim/rankingQ",
  dependencies = TRUE
)

Example

The following is a simplified example of how this package can be used. For a full demonstration, visit https://sysilviakim.com/rankingQ/.

data("identity")

head(identity)
# # A tibble: 6 × 16
#   s_weight app_identity app_identity_1 app_identity_2 app_identity_3 app_identity_4
#      <dbl> <chr>                 <dbl>          <dbl>          <dbl>          <dbl>
# 1    0.844 1423                      1              4              2              3
# 2    0.886 1423                      1              4              2              3
# 3    2.96  3412                      3              4              1              2
# 4    0.987 1423                      1              4              2              3
# 5    1.76  4132                      4              1              3              2
# 6    0.469 3124                      3              1              2              4


# Perform bias correction via plug-in estimator
out_direct <- imprr_direct(
  data = identity,
  J = 4, 
  main_q = "app_identity", 
  anc_correct = "anc_correct_identity"
)

out_direct$results
# # A tibble: 44 × 6
# # Groups:   item, qoi [16]
#    item           qoi            outcome   mean  lower  upper
#    <chr>          <chr>          <chr>    <dbl>  <dbl>  <dbl>
#  1 app_identity_1 average rank   Avg: a… 3.27   3.24   3.33  
#  2 app_identity_1 marginal rank… Ranked… 0.0407 0.0232 0.0496
#  3 app_identity_1 marginal rank… Ranked… 0.150  0.137  0.163 
#  4 app_identity_1 marginal rank… Ranked… 0.305  0.275  0.336 
#  5 app_identity_1 marginal rank… Ranked… 0.504  0.475  0.541 
#  6 app_identity_1 pairwise rank… v. app… 0.357  0.333  0.374 
#  7 app_identity_1 pairwise rank… v. app… 0.108  0.0739 0.136 
#  8 app_identity_1 pairwise rank… v. app… 0.262  0.238  0.284 
#  9 app_identity_1 top-k ranking  Top-1   0.0407 0.0232 0.0496
# 10 app_identity_1 top-k ranking  Top-2   0.306  0.291  0.339


# Perform bias correction via IPW
out_weights <- imprr_weights(
  data = identity,
  J = 4,
  main_q = "app_identity",
  anc_correct = "anc_correct_identity"
)

head(out_weights$rankings)
#   ranking  n    prop_obs     prop_bc   weights   prop_bc_raw prop_bc_adj
# 1    1234 14 0.012939002 0.000000000 0.0000000 -0.0003526508 0.000000000
# 2    1243 11 0.010166359 0.000000000 0.0000000 -0.0044081345 0.000000000
# 3    1324 14 0.012939002 0.000000000 0.0000000 -0.0003526508 0.000000000
# 4    1342  7 0.006469501 0.000000000 0.0000000 -0.0098154461 0.000000000
# 5    1423 50 0.046210721 0.046944603 1.0158812  0.0483131539 0.048313154
# 6    1432 20 0.018484288 0.007538549 0.4078355  0.0077583167 0.007758317