forked from brain-research/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoly_ext.ml
772 lines (642 loc) · 26.2 KB
/
poly_ext.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
let poly_tm = `poly`;;
let dest_poly tm =
let poly,[l;var] = strip_ncomb 2 tm in
if not (poly = poly_tm) then failwith "dest_poly: not a poly"
else l,var;;
let is_poly tm = fst (strip_comb tm) = `poly`;;
(* ------------------------------------------------------------------------- *)
(* Get the lead variable in polynomial; &1 if a constant. *)
(* ------------------------------------------------------------------------- *)
let polyvar =
let dummy_tm = `&1` in
fun tm -> if is_ratconst tm then dummy_tm else lhand(rand tm);;
(*
let k00 = `&3 * x * y pow 2 + &2 * x pow 2 * y * z + z * x + &3 * y * z`
let k0 = `(&0 + y * (&0 + z * &3)) + x * (((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))`;;
# polyvar k0;;
val it : Term.term = `x`
*)
(* ---------------------------------------------------------------------- *)
(* Is a constant polynomial (wrt variable ordering) *)
(* ---------------------------------------------------------------------- *)
let is_constant vars p =
assert (not (vars = []));
try
let l,r = dest_plus p in
let x,r2 = dest_mult r in
if x = hd vars then false else true
with _ ->
if p = hd vars then false else true;;
(* ------------------------------------------------------------------------- *)
(* We only use this as a handy way to do derivatives. *)
(* ------------------------------------------------------------------------- *)
let POLY = prove
(`(poly [] x = &0) /\
(poly [__c__] x = __c__) /\
(poly (CONS __h__ __t__) x = __h__ + x * poly __t__ x)`,
REWRITE_TAC[poly] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Convert in and out of list representations. *)
(* ------------------------------------------------------------------------- *)
(* THIS IS BAD CODE!!! It depends on the names of the variables in POLY *)
let POLY_ENLIST_CONV vars =
let lem = GEN rx POLY in
let [cnv_0; cnv_1; cnv_2] =
map (fun th -> GEN_REWRITE_CONV I [GSYM th]) (CONJUNCTS (ISPEC (hd vars) lem))
and zero_tm = rzero in
let rec conv tm =
if polyvar tm = hd vars then
(funpow 2 RAND_CONV conv THENC cnv_2) tm
else if tm = zero_tm then cnv_0 tm
else cnv_1 tm in
conv;;
(*
map GSYM (CONJUNCTS (ISPEC (hd vars) lem))
POLY_ENLIST_CONV vars p in
let tm = `&0 + c * &1`
POLY_ENLIST_CONV vars tm
#trace conv
POLY_ENLIST_CONV vars tm
let vars = [ry;rx]
let tm = `&0 + y * (&0 + x * &1)`
let k1 = rhs(concl (POLY_ENLIST_CONV [`x:real`;`y:real`;`z:real`] k0));;
POLY_ENLIST_CONV [`x:real`;`y:real`;`z:real`] k0;;
val it : Hol.thm =
|- k0 =
poly [&0 + y * (&0 + z * &3);
&0 * z * &1 + y * (&0 + y * &3);
&0 + y * (&0 + z * &2)] x
*)
let POLY_DELIST_CONV =
let [cnv_0; cnv_1; cnv_2] =
map (fun th -> GEN_REWRITE_CONV I [th]) (CONJUNCTS POLY) in
let rec conv tm =
(cnv_0 ORELSEC cnv_1 ORELSEC (cnv_2 THENC funpow 2 RAND_CONV conv)) tm in
conv;;
(*
# POLY_DELIST_CONV `poly [&5; &6; &7] x`;;
val it : Hol.thm = |- poly [&5; &6; &7] x = &5 + x * (&6 + x * &7)
*)
(* ------------------------------------------------------------------------- *)
(* Differentiation within list representation. *)
(* ------------------------------------------------------------------------- *)
(* let poly_diff_aux = new_recursive_definition list_RECURSION *)
(* `(poly_diff_aux n [] = []) /\ *)
(* (poly_diff_aux n (CONS h t) = CONS (&n * h) (poly_diff_aux (SUC n) t))`;; *)
(* let poly_diff = new_definition *)
(* `poly_diff l = if l = [] then [] else poly_diff_aux 1 (TL l)`;; *)
let POLY_DIFF_CLAUSES = prove
(`(poly_diff [] = []) /\
(poly_diff [c] = []) /\
(poly_diff (CONS h t) = poly_diff_aux 1 t)`,
REWRITE_TAC[poly_diff; NOT_CONS_NIL; HD; TL; poly_diff_aux]);;
let POLY_DIFF_LEMMA = prove
(`!l n x. ((\x. (x pow (SUC n)) * poly l x) diffl
((x pow n) * poly (poly_diff_aux (SUC n) l) x))(x)`,
(* {{{ Proof *)
LIST_INDUCT_TAC THEN
REWRITE_TAC[poly; poly_diff_aux; REAL_MUL_RZERO; DIFF_CONST] THEN
MAP_EVERY X_GEN_TAC [`n:num`; `x:real`] THEN
REWRITE_TAC[REAL_LDISTRIB; REAL_MUL_ASSOC] THEN
ONCE_REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] (CONJUNCT2 pow))] THEN
POP_ASSUM(MP_TAC o SPECL [`SUC n`; `x:real`]) THEN
SUBGOAL_THEN `(((\x. (x pow (SUC n)) * h)) diffl
((x pow n) * &(SUC n) * h))(x)`
(fun th -> DISCH_THEN(MP_TAC o CONJ th)) THENL
[REWRITE_TAC[REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
MP_TAC(SPEC `\x. x pow (SUC n)` DIFF_CMUL) THEN BETA_TAC THEN
DISCH_THEN MATCH_MP_TAC THEN
MP_TAC(SPEC `SUC n` DIFF_POW) THEN REWRITE_TAC[SUC_SUB1] THEN
DISCH_THEN(MATCH_ACCEPT_TAC o ONCE_REWRITE_RULE[REAL_MUL_SYM]);
DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN
REWRITE_TAC[REAL_MUL_ASSOC]]);;
(* }}} *)
let POLY_DIFF = prove
(`!l x. ((\x. poly l x) diffl (poly (poly_diff l) x))(x)`,
(* {{{ Proof *)
LIST_INDUCT_TAC THEN REWRITE_TAC[POLY_DIFF_CLAUSES] THEN
ONCE_REWRITE_TAC[SYM(ETA_CONV `\x. poly l x`)] THEN
REWRITE_TAC[poly; DIFF_CONST] THEN
MAP_EVERY X_GEN_TAC [`x:real`] THEN
MP_TAC(SPECL [`t:(real)list`; `0`; `x:real`] POLY_DIFF_LEMMA) THEN
REWRITE_TAC[SYM(num_CONV `1`)] THEN REWRITE_TAC[pow; REAL_MUL_LID] THEN
REWRITE_TAC[POW_1] THEN
DISCH_THEN(MP_TAC o CONJ (SPECL [`h:real`; `x:real`] DIFF_CONST)) THEN
DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN
REWRITE_TAC[REAL_ADD_LID]);;
(* }}} *)
let CANON_POLY_DIFF_CONV =
let aux_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_diff_aux]
and aux_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_diff_aux]
and diff_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_DIFF_CLAUSES))
and diff_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_DIFF_CLAUSES)] in
let rec POLY_DIFF_AUX_CONV tm =
(aux_conv0 ORELSEC
(aux_conv1 THENC
RAND_CONV (LAND_CONV NUM_SUC_CONV THENC POLY_DIFF_AUX_CONV))) tm in
diff_conv0 ORELSEC
(diff_conv1 THENC POLY_DIFF_AUX_CONV);;
(*
# POLY_DIFF_CONV (mk_comb(`poly_diff`,k2));;
val it : Hol.thm =
|- poly_diff k2 =
[&1 * (&0 * z * &1 + y * (&0 + y * &3)); &2 * (&0 + y * (&0 + z * &2))]
*)
(* ------------------------------------------------------------------------- *)
(* Whether the first of two items comes earlier in the list. *)
(* ------------------------------------------------------------------------- *)
let rec earlier l x y =
match l with
h::t -> if h = y then false
else if h = x then true
else earlier t x y
| [] -> false;;
(* ------------------------------------------------------------------------- *)
(* Add polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLY_ADD_CONV =
let [cnv_r; cnv_l; cnv_2; cnv_0] = (map REWR_CONV o CONJUNCTS o REAL_ARITH)
`(pol1 + (d + y * q) = (pol1 + d) + y * q) /\
((c + x * p) + pol2 = (c + pol2) + x * p) /\
((c + x * p) + (d + x * q) = (c + d) + x * (p + q)) /\
(c + x * &0 = c)`
and dest_add = dest_binop `(+)` in
let rec POLY_ADD_CONV vars tm =
let pol1,pol2 = dest_add tm in
let x = polyvar pol1 and y = polyvar pol2 in
if not(is_var x) && not(is_var y) then REAL_RAT_REDUCE_CONV tm else
if not(is_var y) || earlier vars x y then
(cnv_l THENC LAND_CONV (POLY_ADD_CONV vars)) tm
else if not(is_var x) || earlier vars y x then
(cnv_r THENC LAND_CONV (POLY_ADD_CONV vars)) tm
else
(cnv_2 THENC COMB_CONV(RAND_CONV(POLY_ADD_CONV vars)) THENC
TRY_CONV cnv_0) tm in
POLY_ADD_CONV;;
(*
# POLY_ADD_CONV [`x:real`;`y:real`;`z:real`] (mk_binop `(+)` k0 k0) ;;
val it : Hol.thm =
|- ((&0 + y * (&0 + z * &3)) +
x *
(((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))) +
(&0 + y * (&0 + z * &3)) +
x * (((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2))) =
(&0 + y * (&0 + z * &6)) +
x * (((&0 + z * &2) + y * (&0 + y * &6)) + x * (&0 + y * (&0 + z * &4)))
*)
(* ------------------------------------------------------------------------- *)
(* Negate polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLY_NEG_CONV =
let cnv = REWR_CONV(REAL_ARITH `--(c + x * p) = --c + x * --p`) in
let rec POLY_NEG_CONV tm =
if is_ratconst(rand tm) then REAL_RAT_NEG_CONV tm else
(cnv THENC COMB_CONV(RAND_CONV POLY_NEG_CONV)) tm in
POLY_NEG_CONV;;
(* ------------------------------------------------------------------------- *)
(* Subtract polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLY_SUB_CONV =
let cnv = REWR_CONV real_sub in
fun vars -> cnv THENC RAND_CONV POLY_NEG_CONV THENC POLY_ADD_CONV vars;;
(* ------------------------------------------------------------------------- *)
(* Multiply polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLY_MUL_CONV =
let [cnv_l1; cnv_r1; cnv_2; cnv_l0; cnv_r0] =
(map REWR_CONV o CONJUNCTS o REAL_ARITH)
`(pol1 * (d + y * q) = (pol1 * d) + y * (pol1 * q)) /\
((c + x * p) * pol2 = (c * pol2) + x * (p * pol2)) /\
(pol1 * (d + x * q) = pol1 * d + (&0 + x * pol1 * q)) /\
(&0 * pol2 = &0) /\
(pol1 * &0 = &0)`
and dest_mul = dest_binop `( * )`
and zero_tm = `&0` in
let rec POLY_MUL_CONV vars tm =
let pol1,pol2 = dest_mul tm in
if pol1 = zero_tm then cnv_l0 tm
else if pol2 = zero_tm then cnv_r0 tm
else if is_ratconst pol1 && is_ratconst pol2 then REAL_RAT_MUL_CONV tm else
let x = polyvar pol1 and y = polyvar pol2 in
if not(is_var y) || earlier vars x y then
(cnv_r1 THENC COMB_CONV(RAND_CONV(POLY_MUL_CONV vars))) tm
else if not(is_var x) || earlier vars y x then
(cnv_l1 THENC COMB_CONV(RAND_CONV(POLY_MUL_CONV vars))) tm
else
(cnv_2 THENC COMB2_CONV (RAND_CONV(POLY_MUL_CONV vars))
(funpow 2 RAND_CONV (POLY_MUL_CONV vars)) THENC
POLY_ADD_CONV vars) tm in
POLY_MUL_CONV;;
(*
# POLY_MUL_CONV [`x:real`;`y:real`;`z:real`] (mk_binop `( * )` k0 k0) ;;
val it : Hol.thm =
|- ((&0 + y * (&0 + z * &3)) +
x *
(((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))) *
((&0 + y * (&0 + z * &3)) +
x *
(((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))) =
(&0 + y * (&0 + y * (&0 + z * (&0 + z * &9)))) +
x *
((&0 + y * ((&0 + z * (&0 + z * &6)) + y * (&0 + y * (&0 + z * &18)))) +
x *
(((&0 + z * (&0 + z * &1)) +
y * (&0 + y * ((&0 + z * (&6 + z * &12)) + y * (&0 + y * &9)))) +
x *
((&0 + y * ((&0 + z * (&0 + z * &4)) + y * (&0 + y * (&0 + z * &12)))) +
x * (&0 + y * (&0 + y * (&0 + z * (&0 + z * &4)))))))
*)
(* ------------------------------------------------------------------------- *)
(* Exponentiate polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLY_POW_CONV =
let [cnv_0; cnv_1] = map REWR_CONV (CONJUNCTS real_pow)
and zero_tm = `0` in
let rec POLY_POW_CONV vars tm =
if rand tm = zero_tm then cnv_0 tm else
(RAND_CONV num_CONV THENC cnv_1 THENC
RAND_CONV (POLY_POW_CONV vars) THENC
POLY_MUL_CONV vars) tm in
POLY_POW_CONV;;
(*
# POLY_POW_CONV [`x:real`;`y:real`;`z:real`] (mk_binop `(pow)` k0 `2`) ;;
val it : Hol.thm =
|- ((&0 + y * (&0 + z * &3)) +
x *
(((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))) pow
2 =
(&0 + y * (&0 + y * (&0 + z * (&0 + z * &9)))) +
x *
((&0 + y * ((&0 + z * (&0 + z * &6)) + y * (&0 + y * (&0 + z * &18)))) +
x *
(((&0 + z * (&0 + z * &1)) +
y * (&0 + y * ((&0 + z * (&6 + z * &12)) + y * (&0 + y * &9)))) +
x *
((&0 + y * ((&0 + z * (&0 + z * &4)) + y * (&0 + y * (&0 + z * &12)))) +
x * (&0 + y * (&0 + y * (&0 + z * (&0 + z * &4)))))))
*)
(* ------------------------------------------------------------------------- *)
(* Convert expression to canonical polynomials. *)
(* ------------------------------------------------------------------------- *)
let POLYNATE_CONV =
let cnv_var = REWR_CONV(REAL_ARITH `x = &0 + x * &1`)
and cnv_div = REWR_CONV real_div
and neg_tm = `(--)`
and add_tm = `(+)`
and sub_tm = `(-)`
and mul_tm = `( * )`
and pow_tm = `(pow)`
and div_tm = `(/)` in
let rec POLYNATE_CONV vars tm =
if is_var tm then cnv_var tm
else if is_ratconst tm then REFL tm else
let lop,r = dest_comb tm in
if lop = neg_tm
then (RAND_CONV(POLYNATE_CONV vars) THENC POLY_NEG_CONV) tm else
let op,l = dest_comb lop in
if op = pow_tm then
(LAND_CONV(POLYNATE_CONV vars) THENC POLY_POW_CONV vars) tm
else if op = div_tm then
(cnv_div THENC
COMB2_CONV (RAND_CONV(POLYNATE_CONV vars)) REAL_RAT_REDUCE_CONV THENC
POLY_MUL_CONV vars) tm else
let cnv = if op = add_tm then POLY_ADD_CONV
else if op = sub_tm then POLY_SUB_CONV
else if op = mul_tm then POLY_MUL_CONV
else failwith "POLYNATE_CONV: unknown operation" in
(BINOP_CONV (POLYNATE_CONV vars) THENC cnv vars) tm in
POLYNATE_CONV;;
(*
POLYNATE_CONV [`x:real`;`y:real`] `x + y`;;
POLYNATE_CONV [`x:real`;`y:real`] `x * y + &2 * y`;;
*)
(* ------------------------------------------------------------------------- *)
(* Pure term manipulation versions; will optimize eventually. *)
(* ------------------------------------------------------------------------- *)
let poly_add_ =
let add_tm = `(+)` in
fun vars p1 p2 ->
rand(concl(POLY_ADD_CONV vars (mk_comb(mk_comb(add_tm,p1),p2))));;
let poly_sub_ =
let sub_tm = `(-)` in
fun vars p1 p2 ->
rand(concl(POLY_SUB_CONV vars (mk_comb(mk_comb(sub_tm,p1),p2))));;
let poly_mul_ =
let mul_tm = `( * )` in
fun vars p1 p2 ->
rand(concl(POLY_MUL_CONV vars (mk_comb(mk_comb(mul_tm,p1),p2))));;
let poly_neg_ =
let neg_tm = `(--)` in
fun p -> rand(concl(POLY_NEG_CONV(mk_comb(neg_tm,p))));;
let poly_pow_ =
let pow_tm = `(pow)` in
fun vars p k ->
rand(concl(POLY_POW_CONV vars
(mk_comb(mk_comb(pow_tm,p),mk_small_numeral k))));;
(* ------------------------------------------------------------------------- *)
(* Get the degree of a polynomial. *)
(* ------------------------------------------------------------------------- *)
let rec degree_ vars tm =
if polyvar tm = hd vars then 1 + degree_ vars (funpow 2 rand tm)
else 0;;
(* ------------------------------------------------------------------------- *)
(* Get the list of coefficients. *)
(* ------------------------------------------------------------------------- *)
let rec coefficients vars tm =
if polyvar tm = hd vars then (lhand tm)::coefficients vars (funpow 2 rand tm)
else [tm];;
(* ------------------------------------------------------------------------- *)
(* Get the head constant. *)
(* ------------------------------------------------------------------------- *)
let head vars p = last(coefficients vars p);;
(* ---------------------------------------------------------------------- *)
(* Remove the head coefficient *)
(* ---------------------------------------------------------------------- *)
let rec behead vars tm =
try
let c,r = dest_plus tm in
let x,p = dest_mult r in
if not (x = hd vars) then failwith "" else
let p' = behead vars p in
if p' = rzero then c
else mk_plus c (mk_mult x p')
with _ -> rzero;;
(*
behead [`x:real`] `&1 + x * (&1 + x * (&0 + y * &1))`
*)
let BEHEAD =
let lem = ARITH_RULE `a + b * &0 = a` in
fun vars zthm tm ->
let tm' = behead vars tm in
(* note: pure rewrite is ok here, as tm is in canonical form *)
let thm1 = PURE_REWRITE_CONV[zthm] tm in
let thm2 = PURE_REWRITE_CONV[lem] (rhs(concl thm1)) in
let thm3 = TRANS thm1 thm2 in
thm3;;
let BEHEAD3 =
let lem = ARITH_RULE `a + b * &0 = a` in
fun vars zthm tm ->
let tm' = behead vars tm in
(* note slight hack here:
BEHEAD was working fine if
p = a + x * b where a <> b. But
when they were equal, dropping multiple levels
broke the reconstruction. Thus, we only do conversion
on the right except when the head variable has been fully eliminated *)
let conv =
let l,r = dest_binop rp tm in
let l1,r1 = dest_binop rm r in
if l1 = hd vars then RAND_CONV(PURE_ONCE_REWRITE_CONV[zthm])
else PURE_ONCE_REWRITE_CONV[zthm] in
let thm1 = conv tm in
let thm2 = PURE_REWRITE_CONV[lem] (rhs(concl thm1)) in
let thm3 = TRANS thm1 thm2 in
thm3;;
let BEHEAD = BEHEAD3;;
(*
let vars = [`z:real`;`x:real`]
let zthm = (ASSUME `&0 + x * &1 = &0`)
let tm = `(&0 + x * &1) + z * (&0 + x * &1)`
behead vars tm
BEHEAD vars zthm tm
BEHEAD2 vars zthm tm
BEHEAD3 vars zthm tm
let tm = `(&0 + x * &1)`
BEHEAD3 vars zthm tm
let vars = [`x:real`]
let tm = `&1 + x * (&1 + x * (&0 + y * &1))`
let zthm = (ASSUME `&0 + y * &1 = &0`)
BEHEAD vars zthm tm
BEHEAD2 vars zthm tm
*)
(* ------------------------------------------------------------------------- *)
(* Test whether a polynomial is a constant w.r.t. the head variable. *)
(* ------------------------------------------------------------------------- *)
let is_const_poly vars tm = polyvar tm <> hd vars;;
(* ------------------------------------------------------------------------- *)
(* Get the constant multiple of the "maximal" monomial (implicit lex order) *)
(* ------------------------------------------------------------------------- *)
let rec headconst p =
try rat_of_term p with Failure _ -> headconst(funpow 2 rand p);;
(* ------------------------------------------------------------------------- *)
(* Monicize; return |- const * pol = monic-pol *)
(* ------------------------------------------------------------------------- *)
let MONIC_CONV =
let mul_tm = `( * ):real->real->real` in
fun vars p ->
let c = Int 1 // headconst p in
POLY_MUL_CONV vars (mk_comb(mk_comb(mul_tm,term_of_rat c),p));;
(* ------------------------------------------------------------------------- *)
(* Pseudo-division of s by p; head coefficient of p assumed nonzero. *)
(* Returns |- a^k s = p q + r for some q and r with deg(r) < deg(p). *)
(* Optimized only for the trivial case of equal head coefficients; no GCDs. *)
(* ------------------------------------------------------------------------- *)
let PDIVIDE =
let zero_tm = `&0`
and add0_tm = `(+) (&0)`
and add_tm = `(+)`
and mul_tm = `( * )`
and pow_tm = `(pow)`
and one_tm = `&1` in
let mk_varpow vars k =
let mulx_tm = mk_comb(mul_tm,hd vars) in
funpow k (fun t -> mk_comb(add0_tm,mk_comb(mulx_tm,t))) one_tm in
let rec pdivide_aux vars a n p s =
if s = zero_tm then (0,zero_tm,s) else
let b = head vars s and m = degree_ vars s in
if m < n then (0,zero_tm,s) else
let xp = mk_varpow vars (m - n) in
let p' = poly_mul_ vars xp p in
if a = b then
let (k,q,r) = pdivide_aux vars a n p (poly_sub_ vars s p') in
(k,poly_add_ vars q (poly_mul_ vars xp (poly_pow_ vars a k)),r)
else
let (k,q,r) = pdivide_aux vars a n p
(poly_sub_ vars (poly_mul_ vars a s) (poly_mul_ vars b p')) in
let q' = poly_add_ vars q (poly_mul_ vars b
(poly_mul_ vars (poly_pow_ vars a k) xp)) in
(k+1,q',r) in
fun vars s p ->
let a = head vars p in
let (k,q,r) = pdivide_aux vars a (degree_ vars p) p s in
let th1 = POLY_MUL_CONV vars (mk_comb(mk_comb(mul_tm,q),p)) in
let th2 = AP_THM (AP_TERM add_tm th1) r in
let th3 = CONV_RULE(RAND_CONV(POLY_ADD_CONV vars)) th2 in
let th4 = POLY_POW_CONV vars
(mk_comb(mk_comb(pow_tm,a),mk_small_numeral k)) in
let th5 = AP_THM (AP_TERM mul_tm th4) s in
let th6 = CONV_RULE(RAND_CONV(POLY_MUL_CONV vars)) th5 in
TRANS th6 (GSYM th3);;
(* ------------------------------------------------------------------------- *)
(* Produce sign theorem for rational constant. *)
(* ------------------------------------------------------------------------- *)
let SIGN_CONST =
let zero = Int 0
and zero_tm = `&0`
and eq_tm = `(=):real->real->bool`
and gt_tm = `(>):real->real->bool`
and lt_tm = `(<):real->real->bool` in
fun tm ->
let x = rat_of_term tm in
if x =/ zero then
EQT_ELIM(REAL_RAT_EQ_CONV(mk_comb(mk_comb(eq_tm,tm),zero_tm)))
else if x >/ zero then
EQT_ELIM(REAL_RAT_GT_CONV(mk_comb(mk_comb(gt_tm,tm),zero_tm)))
else
EQT_ELIM(REAL_RAT_LT_CONV(mk_comb(mk_comb(lt_tm,tm),zero_tm)));;
(*
SIGN_CONST `-- &5`;;
val it : Hol.thm = |- &5 > &0
*)
(* ------------------------------------------------------------------------- *)
(* Differentiation conversion in main representation. *)
(* ------------------------------------------------------------------------- *)
let POLY_DERIV_CONV =
let poly_diff_tm = `poly_diff`
and pth = GEN_REWRITE_RULE I [SWAP_FORALL_THM] POLY_DIFF in
fun vars tm ->
let th1 = POLY_ENLIST_CONV vars tm in
let th2 = SPECL [hd vars; lhand(rand(concl th1))] pth in
CONV_RULE(RATOR_CONV
(COMB2_CONV (RAND_CONV(ABS_CONV(POLY_DELIST_CONV)))
(LAND_CONV(CANON_POLY_DIFF_CONV THENC
LIST_CONV (POLY_MUL_CONV vars)) THENC
POLY_DELIST_CONV))) th2;;
(*
let k0 = (rhs o concl) (POLYNATE_CONV [`x:real`] `x pow 2 * y`);;
let vars = [`x:real`]
let tm = k0
let k1 = concl th2
let k2 = rator k1
let l,r = dest_comb k2
RATOR_CONV
(RAND_CONV(ABS_CONV(POLY_DELIST_CONV))) l
(LAND_CONV(POLY_DIFF_CONV THENC LIST_CONV (CANON_POLY_MUL_CONV vars)) THENC POLY_DELIST_CONV) r
(LAND_CONV(POLY_DIFF_CONV THENC LIST_CONV (CANON_POLY_MUL_CONV vars))) r
(LAND_CONV(POLY_DIFF_CONV)) r
POLY_DERIV_CONV [`x:real`] (rhs(concl((POLYNATE_CONV [`x:real`] `x pow 2 * y`))));;
val it : Hol.thm =
|- ((\x. &0 + x * (&0 + x * (&0 + y * &1))) diffl &0 + x * (&0 + y * &2)) x
*)
(* ---------------------------------------------------------------------- *)
(* POLYATOM_CONV *)
(* ---------------------------------------------------------------------- *)
(*
This is the AFN_CONV argument to the lifting function LIFT_QELIM_CONV
*)
let lt_lem = prove_by_refinement(
`!x y. x < y <=> x - y < &0`,
(* {{{ Proof *)
[
REAL_ARITH_TAC;
]);;
(* }}} *)
let le_lem = prove_by_refinement(
`!x y. x <= y <=> x - y <= &0`,
(* {{{ Proof *)
[
REAL_ARITH_TAC;
]);;
(* }}} *)
let eq_lem = prove_by_refinement(
`!x y. (x = y) <=> (x - y = &0)`,
(* {{{ Proof *)
[
REAL_ARITH_TAC;
]);;
(* }}} *)
let POLYATOM_CONV vars tm =
let thm1 = ONCE_REWRITE_CONV[real_gt;real_ge;eq_lem] tm in
let l,r = dest_eq (concl thm1) in
let thm2 = ONCE_REWRITE_CONV[lt_lem;le_lem] r in
let op,l',r' = get_binop (rhs (concl thm2)) in
let thm3a = POLYNATE_CONV vars l' in
let thm3b = AP_TERM op thm3a in
let thm3 = AP_THM thm3b rzero in
end_itlist TRANS [thm1;thm2;thm3];;
(*
let k0 = `x pow 2 + y * x - &5 > x + &10`
let k0 = `x pow 2 + y * x - &5 >= x + &10`
let k0 = `x pow 2 + y * x - &5 < x + &10`
let k0 = `x pow 2 + y * x - &5 <= x + &10`
let k0 = `x pow 2 + y * x - &5 = x + &10`
let tm = k0;;
let vars = [`x:real`;`y:real`]
POLYATOM_CONV vars k0
let vars = [`e:real`; `k:real`;`f:real`;`a:real`]
prioritize_real()
let tm = `k < e`
let liouville =
`&6 * (w pow 2 + x pow 2 + y pow 2 + z pow 2) pow 2 =
(((w + x) pow 4 + (w + y) pow 4 + (w + z) pow 4 +
(x + y) pow 4 + (x + z) pow 4 + (y + z) pow 4) +
((w - x) pow 4 + (w - y) pow 4 + (w - z) pow 4 +
(x - y) pow 4 + (x - z) pow 4 + (y - z) pow 4))`
let lvars = [`w:real`;`x:real`;`y:real`; `z:real`]
POLYATOM_CONV lvars liouville
*)
(* ---------------------------------------------------------------------- *)
(* Factoring *)
(* ---------------------------------------------------------------------- *)
let weakfactor x pol =
let rec weakfactor k x pol =
try
let ls,rs = dest_plus pol in
if not (ls = rzero) then failwith "" else
let lm,rm = dest_mult rs in
if not (lm = x) then failwith "" else
weakfactor (k + 1) x rm
with Failure _ ->
k,pol in
weakfactor 0 x pol;;
let poly_var x = mk_plus rzero (mk_mult x rone);;
(*
poly_var rx
*)
let POW_PROD_SUM = prove_by_refinement(
`!x n m. (x pow n) * x pow m = x pow (n + m)`,
(* {{{ Proof *)
[
STRIP_TAC THEN STRIP_TAC THEN INDUCT_TAC;
REWRITE_TAC[real_pow];
NUM_SIMP_TAC;
REAL_SIMP_TAC;
REWRITE_TAC[real_pow];
REWRITE_TAC[ARITH_RULE `n + SUC m = SUC (n + m)`];
REWRITE_TAC[real_pow];
POP_ASSUM (SUBST1_TAC o GSYM);
REAL_ARITH_TAC;
]);;
(* }}} *)
let lem1 = REAL_ARITH `x * x = x pow 2`;;
let lem2 = GSYM (CONJUNCT2 real_pow);;
let lem3 = REAL_ARITH `!x. x = x pow 1`;;
let SIMP_POW_CONV tm =
let thm1 = ((REWRITE_CONV [GSYM REAL_MUL_ASSOC;lem1;lem2;POW_PROD_SUM]) THENC (ARITH_SIMP_CONV[])) tm in
let _,r = dest_eq (concl thm1) in
if can dest_pow r then thm1 else
let thm2 = ISPEC r lem3 in
thm2;;
(*
SIMP_POW_CONV `x * x * x * x * x`
SIMP_POW_CONV `x * x * (x * x) * x`
SIMP_POW_CONV `x * (x * (x * x)) *(x * x)`
SIMP_POW_CONV `x:real`
*)
let WEAKFACTOR_CONV x pol =
let k,pol' = weakfactor x pol in
let thm1 = ((itlist2 (fun x y z -> ((funpow y RAND_CONV) x) THENC z)
(replicate (GEN_REWRITE_CONV I [REAL_ADD_LID]) k)
(0--(k-1)) ALL_CONV) THENC
(PURE_REWRITE_CONV[REAL_MUL_ASSOC])) pol in
let thm2 = (CONV_RULE (RAND_CONV (LAND_CONV SIMP_POW_CONV))) thm1 in
thm2;;
(*
let pol = `&0 + x * (&0 + x * (&0 + y * &1))`
let pol = `&0 + x * (&0 + x * (&0 + x * (&0 + x * (&0 + x * (&0 + x * (&0 + y * &1))))))`
let pol = `&0 + x * (&0 + x * (&0 + x * (&0 + x * (&0 + x * (&1 + x * (&0 + y * &1))))))`
let pol = `&1 + x * (&0 + x * (&0 + y * &1))`
let pol = `&0 + x * (&1 + x * (&0 + y * &1))`
WEAKFACTOR_CONV rx pol
weakfactor rx pol
*)