forked from brain-research/hol-light
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsets.ml
3809 lines (3239 loc) · 148 KB
/
sets.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* ========================================================================= *)
(* Very basic set theory (using predicates as sets). *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* (c) Copyright, Marco Maggesi 2012-2015 *)
(* ========================================================================= *)
set_jrh_lexer;;
open Lib;;
open Fusion;;
open Basics;;
open Printer;;
open Parser;;
open Equal;;
open Bool;;
open Drule;;
open Tactics;;
open Simp;;
open Theorems;;
open Ind_defs;;
open Class;;
open Trivia;;
open Meson;;
open Pair;;
open Nums;;
open Recursion;;
open Arith;;
open Wf;;
open Calc_num;;
open Ind_types;;
open Lists;;
open Realax;;
open Calc_int;;
open Realarith;;
open Reals;;
open Calc_rat;;
open Ints;;
(* ------------------------------------------------------------------------- *)
(* Infix symbols for set operations. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("IN",(11,"right"));;
parse_as_infix("SUBSET",(12,"right"));;
parse_as_infix("PSUBSET",(12,"right"));;
parse_as_infix("INTER",(20,"right"));;
parse_as_infix("UNION",(16,"right"));;
parse_as_infix("DIFF",(18,"left"));;
parse_as_infix("INSERT",(21,"right"));;
parse_as_infix("DELETE",(21,"left"));;
parse_as_infix("HAS_SIZE",(12,"right"));;
parse_as_infix("<=_c",(12,"right"));;
parse_as_infix("<_c",(12,"right"));;
parse_as_infix(">=_c",(12,"right"));;
parse_as_infix(">_c",(12,"right"));;
parse_as_infix("=_c",(12,"right"));;
(* ------------------------------------------------------------------------- *)
(* Set membership. *)
(* ------------------------------------------------------------------------- *)
let IN = new_definition
`!P:A->bool. !x. x IN P <=> P x`;;
(* ------------------------------------------------------------------------- *)
(* Axiom of extensionality in this framework. *)
(* ------------------------------------------------------------------------- *)
let EXTENSION = prove
(`!s t. (s = t) <=> !x:A. x IN s <=> x IN t`,
REWRITE_TAC[IN; FUN_EQ_THM]);;
(* ------------------------------------------------------------------------- *)
(* General specification. *)
(* ------------------------------------------------------------------------- *)
let GSPEC = new_definition
`GSPEC (p:A->bool) = p`;;
let SETSPEC = new_definition
`SETSPEC v P t <=> P /\ (v = t)`;;
(* ------------------------------------------------------------------------- *)
(* Rewrite rule for eliminating set-comprehension membership assertions. *)
(* ------------------------------------------------------------------------- *)
let IN_ELIM_THM = prove
(`(!P x. x IN GSPEC (\v. P (SETSPEC v)) <=> P (\p t. p /\ (x = t))) /\
(!p x. x IN GSPEC (\v. ?y. SETSPEC v (p y) y) <=> p x) /\
(!P x. GSPEC (\v. P (SETSPEC v)) x <=> P (\p t. p /\ (x = t))) /\
(!p x. GSPEC (\v. ?y. SETSPEC v (p y) y) x <=> p x) /\
(!p x. x IN (\y. p y) <=> p x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[IN; GSPEC] THEN
TRY(AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM]) THEN
REWRITE_TAC[SETSPEC] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* These two definitions are needed first, for the parsing of enumerations. *)
(* ------------------------------------------------------------------------- *)
let EMPTY = new_definition
`EMPTY = (\x:A. F)`;;
let INSERT_DEF = new_definition
`x INSERT s = \y:A. y IN s \/ (y = x)`;;
(* ------------------------------------------------------------------------- *)
(* The other basic operations. *)
(* ------------------------------------------------------------------------- *)
let UNIV = new_definition
`UNIV = (\x:A. T)`;;
let UNION = new_definition
`s UNION t = {x:A | x IN s \/ x IN t}`;;
let UNIONS = new_definition
`UNIONS s = {x:A | ?u. u IN s /\ x IN u}`;;
let INTER = new_definition
`s INTER t = {x:A | x IN s /\ x IN t}`;;
let INTERS = new_definition
`INTERS s = {x:A | !u. u IN s ==> x IN u}`;;
let DIFF = new_definition
`s DIFF t = {x:A | x IN s /\ ~(x IN t)}`;;
let INSERT = prove
(`x INSERT s = {y:A | y IN s \/ (y = x)}`,
REWRITE_TAC[EXTENSION; INSERT_DEF; IN_ELIM_THM]);;
let DELETE = new_definition
`s DELETE x = {y:A | y IN s /\ ~(y = x)}`;;
(* ------------------------------------------------------------------------- *)
(* Other basic predicates. *)
(* ------------------------------------------------------------------------- *)
let SUBSET = new_definition
`s SUBSET t <=> !x:A. x IN s ==> x IN t`;;
let PSUBSET = new_definition
`(s:A->bool) PSUBSET t <=> s SUBSET t /\ ~(s = t)`;;
let DISJOINT = new_definition
`DISJOINT (s:A->bool) t <=> (s INTER t = EMPTY)`;;
let SING = new_definition
`SING s = ?x:A. s = {x}`;;
(* ------------------------------------------------------------------------- *)
(* Finiteness. *)
(* ------------------------------------------------------------------------- *)
let FINITE_RULES,FINITE_INDUCT,FINITE_CASES =
new_inductive_definition
`FINITE (EMPTY:A->bool) /\
!(x:A) s. FINITE s ==> FINITE (x INSERT s)`;;
let INFINITE = new_definition
`INFINITE (s:A->bool) <=> ~(FINITE s)`;;
(* ------------------------------------------------------------------------- *)
(* Stuff concerned with functions. *)
(* ------------------------------------------------------------------------- *)
let IMAGE = new_definition
`IMAGE (f:A->B) s = { y | ?x. x IN s /\ (y = f x)}`;;
let INJ = new_definition
`INJ (f:A->B) s t <=>
(!x. x IN s ==> (f x) IN t) /\
(!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y))`;;
let SURJ = new_definition
`SURJ (f:A->B) s t <=>
(!x. x IN s ==> (f x) IN t) /\
(!x. (x IN t) ==> ?y. y IN s /\ (f y = x))`;;
let BIJ = new_definition
`BIJ (f:A->B) s t <=> INJ f s t /\ SURJ f s t`;;
(* ------------------------------------------------------------------------- *)
(* Another funny thing. *)
(* ------------------------------------------------------------------------- *)
let CHOICE = new_definition
`CHOICE s = @x:A. x IN s`;;
let REST = new_definition
`REST (s:A->bool) = s DELETE (CHOICE s)`;;
(* ------------------------------------------------------------------------- *)
(* Basic membership properties. *)
(* ------------------------------------------------------------------------- *)
let NOT_IN_EMPTY = prove
(`!x:A. ~(x IN EMPTY)`,
REWRITE_TAC[IN; EMPTY]);;
let IN_UNIV = prove
(`!x:A. x IN UNIV`,
REWRITE_TAC[UNIV; IN]);;
let IN_UNION = prove
(`!s t (x:A). x IN (s UNION t) <=> x IN s \/ x IN t`,
REWRITE_TAC[IN_ELIM_THM; UNION]);;
let IN_UNIONS = prove
(`!s (x:A). x IN (UNIONS s) <=> ?t. t IN s /\ x IN t`,
REWRITE_TAC[IN_ELIM_THM; UNIONS]);;
let IN_INTER = prove
(`!s t (x:A). x IN (s INTER t) <=> x IN s /\ x IN t`,
REWRITE_TAC[IN_ELIM_THM; INTER]);;
let IN_INTERS = prove
(`!s (x:A). x IN (INTERS s) <=> !t. t IN s ==> x IN t`,
REWRITE_TAC[IN_ELIM_THM; INTERS]);;
let IN_DIFF = prove
(`!(s:A->bool) t x. x IN (s DIFF t) <=> x IN s /\ ~(x IN t)`,
REWRITE_TAC[IN_ELIM_THM; DIFF]);;
let IN_INSERT = prove
(`!x:A. !y s. x IN (y INSERT s) <=> (x = y) \/ x IN s`,
ONCE_REWRITE_TAC[DISJ_SYM] THEN REWRITE_TAC[IN_ELIM_THM; INSERT]);;
let IN_DELETE = prove
(`!s. !x:A. !y. x IN (s DELETE y) <=> x IN s /\ ~(x = y)`,
REWRITE_TAC[IN_ELIM_THM; DELETE]);;
let IN_SING = prove
(`!x y. x IN {y:A} <=> (x = y)`,
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY]);;
let IN_IMAGE = prove
(`!y:B. !s f. (y IN (IMAGE f s)) <=> ?x:A. (y = f x) /\ x IN s`,
ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[IN_ELIM_THM; IMAGE]);;
let IN_REST = prove
(`!x:A. !s. x IN (REST s) <=> x IN s /\ ~(x = CHOICE s)`,
REWRITE_TAC[REST; IN_DELETE]);;
let FORALL_IN_INSERT = prove
(`!P a s. (!x. x IN (a INSERT s) ==> P x) <=> P a /\ (!x. x IN s ==> P x)`,
REWRITE_TAC[IN_INSERT] THEN MESON_TAC[]);;
let EXISTS_IN_INSERT = prove
(`!P a s. (?x. x IN (a INSERT s) /\ P x) <=> P a \/ ?x. x IN s /\ P x`,
REWRITE_TAC[IN_INSERT] THEN MESON_TAC[]);;
let FORALL_IN_UNION = prove
(`!P s t:A->bool.
(!x. x IN s UNION t ==> P x) <=>
(!x. x IN s ==> P x) /\ (!x. x IN t ==> P x)`,
REWRITE_TAC[IN_UNION] THEN MESON_TAC[]);;
let EXISTS_IN_UNION = prove
(`!P s t:A->bool.
(?x. x IN s UNION t /\ P x) <=>
(?x. x IN s /\ P x) \/ (?x. x IN t /\ P x)`,
REWRITE_TAC[IN_UNION] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Basic property of the choice function. *)
(* ------------------------------------------------------------------------- *)
let CHOICE_DEF = prove
(`!s:A->bool. ~(s = EMPTY) ==> (CHOICE s) IN s`,
REWRITE_TAC[CHOICE; EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM; EXISTS_THM]);;
(* ------------------------------------------------------------------------- *)
(* Tactic to automate some routine set theory by reduction to FOL. *)
(* ------------------------------------------------------------------------- *)
let SET_TAC =
let PRESET_TAC =
POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT COND_CASES_TAC THEN
REWRITE_TAC[EXTENSION; SUBSET; PSUBSET; DISJOINT; SING] THEN
REWRITE_TAC[NOT_IN_EMPTY; IN_UNIV; IN_UNION; IN_INTER; IN_DIFF; IN_INSERT;
IN_DELETE; IN_REST; IN_INTERS; IN_UNIONS; IN_IMAGE;
IN_ELIM_THM; IN] in
fun ths ->
(if ths = [] then ALL_TAC else MP_TAC(end_itlist CONJ ths)) THEN
PRESET_TAC THEN
MESON_TAC[];;
let SET_RULE tm = prove(tm,SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Misc. theorems. *)
(* ------------------------------------------------------------------------- *)
let NOT_EQUAL_SETS = prove
(`!s:A->bool. !t. ~(s = t) <=> ?x. x IN t <=> ~(x IN s)`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The empty set. *)
(* ------------------------------------------------------------------------- *)
let MEMBER_NOT_EMPTY = prove
(`!s:A->bool. (?x. x IN s) <=> ~(s = EMPTY)`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The universal set. *)
(* ------------------------------------------------------------------------- *)
let UNIV_NOT_EMPTY = prove
(`~(UNIV:A->bool = EMPTY)`,
SET_TAC[]);;
let EMPTY_NOT_UNIV = prove
(`~(EMPTY:A->bool = UNIV)`,
SET_TAC[]);;
let EQ_UNIV = prove
(`(!x:A. x IN s) <=> (s = UNIV)`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Set inclusion. *)
(* ------------------------------------------------------------------------- *)
let SUBSET_TRANS = prove
(`!(s:A->bool) t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u`,
SET_TAC[]);;
let SUBSET_REFL = prove
(`!s:A->bool. s SUBSET s`,
SET_TAC[]);;
let SUBSET_ANTISYM = prove
(`!(s:A->bool) t. s SUBSET t /\ t SUBSET s ==> s = t`,
SET_TAC[]);;
let SUBSET_ANTISYM_EQ = prove
(`!(s:A->bool) t. s SUBSET t /\ t SUBSET s <=> s = t`,
SET_TAC[]);;
let EMPTY_SUBSET = prove
(`!s:A->bool. EMPTY SUBSET s`,
SET_TAC[]);;
let SUBSET_EMPTY = prove
(`!s:A->bool. s SUBSET EMPTY <=> (s = EMPTY)`,
SET_TAC[]);;
let SUBSET_UNIV = prove
(`!s:A->bool. s SUBSET UNIV`,
SET_TAC[]);;
let UNIV_SUBSET = prove
(`!s:A->bool. UNIV SUBSET s <=> (s = UNIV)`,
SET_TAC[]);;
let SING_SUBSET = prove
(`!s x. {x} SUBSET s <=> x IN s`,
SET_TAC[]);;
let SUBSET_RESTRICT = prove
(`!s P. {x | x IN s /\ P x} SUBSET s`,
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
(* ------------------------------------------------------------------------- *)
(* Proper subset. *)
(* ------------------------------------------------------------------------- *)
let PSUBSET_TRANS = prove
(`!(s:A->bool) t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u`,
SET_TAC[]);;
let PSUBSET_SUBSET_TRANS = prove
(`!(s:A->bool) t u. s PSUBSET t /\ t SUBSET u ==> s PSUBSET u`,
SET_TAC[]);;
let SUBSET_PSUBSET_TRANS = prove
(`!(s:A->bool) t u. s SUBSET t /\ t PSUBSET u ==> s PSUBSET u`,
SET_TAC[]);;
let PSUBSET_IRREFL = prove
(`!s:A->bool. ~(s PSUBSET s)`,
SET_TAC[]);;
let NOT_PSUBSET_EMPTY = prove
(`!s:A->bool. ~(s PSUBSET EMPTY)`,
SET_TAC[]);;
let NOT_UNIV_PSUBSET = prove
(`!s:A->bool. ~(UNIV PSUBSET s)`,
SET_TAC[]);;
let PSUBSET_UNIV = prove
(`!s:A->bool. s PSUBSET UNIV <=> ?x. ~(x IN s)`,
SET_TAC[]);;
let PSUBSET_ALT = prove
(`!s t:A->bool. s PSUBSET t <=> s SUBSET t /\ (?a. a IN t /\ ~(a IN s))`,
REWRITE_TAC[PSUBSET] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Union. *)
(* ------------------------------------------------------------------------- *)
let UNION_ASSOC = prove
(`!(s:A->bool) t u. (s UNION t) UNION u = s UNION (t UNION u)`,
SET_TAC[]);;
let UNION_IDEMPOT = prove
(`!s:A->bool. s UNION s = s`,
SET_TAC[]);;
let UNION_COMM = prove
(`!(s:A->bool) t. s UNION t = t UNION s`,
SET_TAC[]);;
let SUBSET_UNION = prove
(`(!s:A->bool. !t. s SUBSET (s UNION t)) /\
(!s:A->bool. !t. s SUBSET (t UNION s))`,
SET_TAC[]);;
let SUBSET_UNION_ABSORPTION = prove
(`!s:A->bool. !t. s SUBSET t <=> (s UNION t = t)`,
SET_TAC[]);;
let UNION_EMPTY = prove
(`(!s:A->bool. EMPTY UNION s = s) /\
(!s:A->bool. s UNION EMPTY = s)`,
SET_TAC[]);;
let UNION_UNIV = prove
(`(!s:A->bool. UNIV UNION s = UNIV) /\
(!s:A->bool. s UNION UNIV = UNIV)`,
SET_TAC[]);;
let EMPTY_UNION = prove
(`!s:A->bool. !t. (s UNION t = EMPTY) <=> (s = EMPTY) /\ (t = EMPTY)`,
SET_TAC[]);;
let UNION_SUBSET = prove
(`!s t u. (s UNION t) SUBSET u <=> s SUBSET u /\ t SUBSET u`,
SET_TAC[]);;
let FORALL_SUBSET_UNION = prove
(`!t u:A->bool.
(!s. s SUBSET t UNION u ==> P s) <=>
(!t' u'. t' SUBSET t /\ u' SUBSET u ==> P(t' UNION u'))`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[];
DISCH_TAC THEN X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPECL [`s INTER t:A->bool`; `s INTER u:A->bool`]) THEN
ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC] THEN
ASM SET_TAC[]]);;
let EXISTS_SUBSET_UNION = prove
(`!t u:A->bool.
(?s. s SUBSET t UNION u /\ P s) <=>
(?t' u'. t' SUBSET t /\ u' SUBSET u /\ P(t' UNION u'))`,
REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN
REWRITE_TAC[FORALL_SUBSET_UNION] THEN MESON_TAC[]);;
let FORALL_SUBSET_INSERT = prove
(`!a:A t. (!s. s SUBSET a INSERT t ==> P s) <=>
(!s. s SUBSET t ==> P s /\ P (a INSERT s))`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN
REWRITE_TAC[FORALL_SUBSET_UNION; SET_RULE
`s SUBSET {a} <=> s = {} \/ s = {a}`] THEN
MESON_TAC[UNION_EMPTY]);;
let EXISTS_SUBSET_INSERT = prove
(`!a:A t. (?s. s SUBSET a INSERT t /\ P s) <=>
(?s. s SUBSET t /\ (P s \/ P (a INSERT s)))`,
REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN
REWRITE_TAC[FORALL_SUBSET_INSERT] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Intersection. *)
(* ------------------------------------------------------------------------- *)
let INTER_ASSOC = prove
(`!(s:A->bool) t u. (s INTER t) INTER u = s INTER (t INTER u)`,
SET_TAC[]);;
let INTER_IDEMPOT = prove
(`!s:A->bool. s INTER s = s`,
SET_TAC[]);;
let INTER_COMM = prove
(`!(s:A->bool) t. s INTER t = t INTER s`,
SET_TAC[]);;
let INTER_SUBSET = prove
(`(!s:A->bool. !t. (s INTER t) SUBSET s) /\
(!s:A->bool. !t. (t INTER s) SUBSET s)`,
SET_TAC[]);;
let SUBSET_INTER_ABSORPTION = prove
(`!s:A->bool. !t. s SUBSET t <=> (s INTER t = s)`,
SET_TAC[]);;
let INTER_EMPTY = prove
(`(!s:A->bool. EMPTY INTER s = EMPTY) /\
(!s:A->bool. s INTER EMPTY = EMPTY)`,
SET_TAC[]);;
let INTER_UNIV = prove
(`(!s:A->bool. UNIV INTER s = s) /\
(!s:A->bool. s INTER UNIV = s)`,
SET_TAC[]);;
let SUBSET_INTER = prove
(`!s t u. s SUBSET (t INTER u) <=> s SUBSET t /\ s SUBSET u`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Distributivity. *)
(* ------------------------------------------------------------------------- *)
let UNION_OVER_INTER = prove
(`!s:A->bool. !t u. s INTER (t UNION u) = (s INTER t) UNION (s INTER u)`,
SET_TAC[]);;
let INTER_OVER_UNION = prove
(`!s:A->bool. !t u. s UNION (t INTER u) = (s UNION t) INTER (s UNION u)`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Disjoint sets. *)
(* ------------------------------------------------------------------------- *)
let IN_DISJOINT = prove
(`!s:A->bool. !t. DISJOINT s t <=> ~(?x. x IN s /\ x IN t)`,
SET_TAC[]);;
let DISJOINT_SYM = prove
(`!s:A->bool. !t. DISJOINT s t <=> DISJOINT t s`,
SET_TAC[]);;
let DISJOINT_EMPTY = prove
(`!s:A->bool. DISJOINT EMPTY s /\ DISJOINT s EMPTY`,
SET_TAC[]);;
let DISJOINT_EMPTY_REFL = prove
(`!s:A->bool. (s = EMPTY) <=> (DISJOINT s s)`,
SET_TAC[]);;
let DISJOINT_UNION = prove
(`!s:A->bool. !t u. DISJOINT (s UNION t) u <=> DISJOINT s u /\ DISJOINT t u`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Set difference. *)
(* ------------------------------------------------------------------------- *)
let DIFF_EMPTY = prove
(`!s:A->bool. s DIFF EMPTY = s`,
SET_TAC[]);;
let EMPTY_DIFF = prove
(`!s:A->bool. EMPTY DIFF s = EMPTY`,
SET_TAC[]);;
let DIFF_UNIV = prove
(`!s:A->bool. s DIFF UNIV = EMPTY`,
SET_TAC[]);;
let DIFF_DIFF = prove
(`!s:A->bool. !t. (s DIFF t) DIFF t = s DIFF t`,
SET_TAC[]);;
let DIFF_EQ_EMPTY = prove
(`!s:A->bool. s DIFF s = EMPTY`,
SET_TAC[]);;
let SUBSET_DIFF = prove
(`!s t. (s DIFF t) SUBSET s`,
SET_TAC[]);;
let COMPL_COMPL = prove
(`!s. (:A) DIFF ((:A) DIFF s) = s`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Insertion and deletion. *)
(* ------------------------------------------------------------------------- *)
let COMPONENT = prove
(`!x:A. !s. x IN (x INSERT s)`,
SET_TAC[]);;
let DECOMPOSITION = prove
(`!s:A->bool. !x. x IN s <=> ?t. (s = x INSERT t) /\ ~(x IN t)`,
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[IN_INSERT] THEN EXISTS_TAC `s DELETE x:A` THEN
POP_ASSUM MP_TAC THEN SET_TAC[]);;
let SET_CASES = prove
(`!s:A->bool. (s = EMPTY) \/ ?x:A. ?t. (s = x INSERT t) /\ ~(x IN t)`,
MESON_TAC[MEMBER_NOT_EMPTY; DECOMPOSITION]);;
let ABSORPTION = prove
(`!x:A. !s. x IN s <=> (x INSERT s = s)`,
SET_TAC[]);;
let INSERT_INSERT = prove
(`!x:A. !s. x INSERT (x INSERT s) = x INSERT s`,
SET_TAC[]);;
let INSERT_COMM = prove
(`!x:A. !y s. x INSERT (y INSERT s) = y INSERT (x INSERT s)`,
SET_TAC[]);;
let INSERT_UNIV = prove
(`!x:A. x INSERT UNIV = UNIV`,
SET_TAC[]);;
let NOT_INSERT_EMPTY = prove
(`!x:A. !s. ~(x INSERT s = EMPTY)`,
SET_TAC[]);;
let NOT_EMPTY_INSERT = prove
(`!x:A. !s. ~(EMPTY = x INSERT s)`,
SET_TAC[]);;
let INSERT_UNION = prove
(`!x:A. !s t. (x INSERT s) UNION t =
if x IN t then s UNION t else x INSERT (s UNION t)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
POP_ASSUM MP_TAC THEN SET_TAC[]);;
let INSERT_UNION_EQ = prove
(`!x:A. !s t. (x INSERT s) UNION t = x INSERT (s UNION t)`,
SET_TAC[]);;
let INSERT_INTER = prove
(`!x:A. !s t. (x INSERT s) INTER t =
if x IN t then x INSERT (s INTER t) else s INTER t`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
POP_ASSUM MP_TAC THEN SET_TAC[]);;
let DISJOINT_INSERT = prove
(`!(x:A) s t. DISJOINT (x INSERT s) t <=> (DISJOINT s t) /\ ~(x IN t)`,
SET_TAC[]);;
let INSERT_SUBSET = prove
(`!x:A. !s t. (x INSERT s) SUBSET t <=> (x IN t /\ s SUBSET t)`,
SET_TAC[]);;
let SUBSET_INSERT = prove
(`!x:A. !s. ~(x IN s) ==> !t. s SUBSET (x INSERT t) <=> s SUBSET t`,
SET_TAC[]);;
let INSERT_DIFF = prove
(`!s t. !x:A. (x INSERT s) DIFF t =
if x IN t then s DIFF t else x INSERT (s DIFF t)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
POP_ASSUM MP_TAC THEN SET_TAC[]);;
let INSERT_AC = prove
(`(x INSERT (y INSERT s) = y INSERT (x INSERT s)) /\
(x INSERT (x INSERT s) = x INSERT s)`,
REWRITE_TAC[INSERT_COMM; INSERT_INSERT]);;
let INTER_ACI = prove
(`(p INTER q = q INTER p) /\
((p INTER q) INTER r = p INTER q INTER r) /\
(p INTER q INTER r = q INTER p INTER r) /\
(p INTER p = p) /\
(p INTER p INTER q = p INTER q)`,
SET_TAC[]);;
let UNION_ACI = prove
(`(p UNION q = q UNION p) /\
((p UNION q) UNION r = p UNION q UNION r) /\
(p UNION q UNION r = q UNION p UNION r) /\
(p UNION p = p) /\
(p UNION p UNION q = p UNION q)`,
SET_TAC[]);;
let DELETE_NON_ELEMENT = prove
(`!x:A. !s. ~(x IN s) <=> (s DELETE x = s)`,
SET_TAC[]);;
let IN_DELETE_EQ = prove
(`!s x. !x':A.
(x IN s <=> x' IN s) <=> (x IN (s DELETE x') <=> x' IN (s DELETE x))`,
SET_TAC[]);;
let EMPTY_DELETE = prove
(`!x:A. EMPTY DELETE x = EMPTY`,
SET_TAC[]);;
let DELETE_DELETE = prove
(`!x:A. !s. (s DELETE x) DELETE x = s DELETE x`,
SET_TAC[]);;
let DELETE_COMM = prove
(`!x:A. !y. !s. (s DELETE x) DELETE y = (s DELETE y) DELETE x`,
SET_TAC[]);;
let DELETE_SUBSET = prove
(`!x:A. !s. (s DELETE x) SUBSET s`,
SET_TAC[]);;
let SUBSET_DELETE = prove
(`!x:A. !s t. s SUBSET (t DELETE x) <=> ~(x IN s) /\ (s SUBSET t)`,
SET_TAC[]);;
let SUBSET_INSERT_DELETE = prove
(`!x:A. !s t. s SUBSET (x INSERT t) <=> ((s DELETE x) SUBSET t)`,
SET_TAC[]);;
let DIFF_INSERT = prove
(`!s t. !x:A. s DIFF (x INSERT t) = (s DELETE x) DIFF t`,
SET_TAC[]);;
let PSUBSET_INSERT_SUBSET = prove
(`!s t. s PSUBSET t <=> ?x:A. ~(x IN s) /\ (x INSERT s) SUBSET t`,
SET_TAC[]);;
let PSUBSET_MEMBER = prove
(`!s:A->bool. !t. s PSUBSET t <=> (s SUBSET t /\ ?y. y IN t /\ ~(y IN s))`,
SET_TAC[]);;
let DELETE_INSERT = prove
(`!x:A. !y s.
(x INSERT s) DELETE y =
if x = y then s DELETE y else x INSERT (s DELETE y)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
POP_ASSUM MP_TAC THEN SET_TAC[]);;
let INSERT_DELETE = prove
(`!x:A. !s. x IN s ==> (x INSERT (s DELETE x) = s)`,
SET_TAC[]);;
let DELETE_INTER = prove
(`!s t. !x:A. (s DELETE x) INTER t = (s INTER t) DELETE x`,
SET_TAC[]);;
let DISJOINT_DELETE_SYM = prove
(`!s t. !x:A. DISJOINT (s DELETE x) t = DISJOINT (t DELETE x) s`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Multiple union. *)
(* ------------------------------------------------------------------------- *)
let UNIONS_0 = prove
(`UNIONS {} = {}`,
SET_TAC[]);;
let UNIONS_1 = prove
(`UNIONS {s} = s`,
SET_TAC[]);;
let UNIONS_2 = prove
(`UNIONS {s,t} = s UNION t`,
SET_TAC[]);;
let UNIONS_INSERT = prove
(`UNIONS (s INSERT u) = s UNION (UNIONS u)`,
SET_TAC[]);;
let FORALL_IN_UNIONS = prove
(`!P s. (!x. x IN UNIONS s ==> P x) <=> !t x. t IN s /\ x IN t ==> P x`,
SET_TAC[]);;
let EXISTS_IN_UNIONS = prove
(`!P s. (?x. x IN UNIONS s /\ P x) <=> (?t x. t IN s /\ x IN t /\ P x)`,
SET_TAC[]);;
let EMPTY_UNIONS = prove
(`!s. (UNIONS s = {}) <=> !t. t IN s ==> t = {}`,
SET_TAC[]);;
let INTER_UNIONS = prove
(`(!s t. UNIONS s INTER t = UNIONS {x INTER t | x IN s}) /\
(!s t. t INTER UNIONS s = UNIONS {t INTER x | x IN s})`,
ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INTER] THEN
MESON_TAC[IN_INTER]);;
let UNIONS_SUBSET = prove
(`!f t. UNIONS f SUBSET t <=> !s. s IN f ==> s SUBSET t`,
SET_TAC[]);;
let SUBSET_UNIONS = prove
(`!f g. f SUBSET g ==> UNIONS f SUBSET UNIONS g`,
SET_TAC[]);;
let UNIONS_UNION = prove
(`!s t. UNIONS(s UNION t) = (UNIONS s) UNION (UNIONS t)`,
SET_TAC[]);;
let INTERS_UNION = prove
(`!s t. INTERS (s UNION t) = INTERS s INTER INTERS t`,
SET_TAC[]);;
let UNIONS_MONO = prove
(`(!x. x IN s ==> ?y. y IN t /\ x SUBSET y) ==> UNIONS s SUBSET UNIONS t`,
SET_TAC[]);;
let UNIONS_MONO_IMAGE = prove
(`(!x. x IN s ==> f x SUBSET g x)
==> UNIONS(IMAGE f s) SUBSET UNIONS(IMAGE g s)`,
SET_TAC[]);;
let UNIONS_UNIV = prove
(`UNIONS (:A->bool) = (:A)`,
REWRITE_TAC[EXTENSION; IN_UNIONS; IN_UNIV] THEN
MESON_TAC[IN_SING]);;
let UNIONS_INSERT_EMPTY = prove
(`!s. UNIONS({} INSERT s) = UNIONS s`,
ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; IN_INSERT] THEN MESON_TAC[NOT_IN_EMPTY]);;
let UNIONS_DELETE_EMPTY = prove
(`!s. UNIONS(s DELETE {}) = UNIONS s`,
ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; IN_DELETE] THEN MESON_TAC[NOT_IN_EMPTY]);;
let INTERS_EQ_UNIV = prove
(`!f. INTERS f = (:A) <=> !s. s IN f ==> s = (:A)`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Multiple intersection. *)
(* ------------------------------------------------------------------------- *)
let INTERS_0 = prove
(`INTERS {} = (:A)`,
SET_TAC[]);;
let INTERS_1 = prove
(`INTERS {s} = s`,
SET_TAC[]);;
let INTERS_2 = prove
(`INTERS {s,t} = s INTER t`,
SET_TAC[]);;
let INTERS_INSERT = prove
(`INTERS (s INSERT u) = s INTER (INTERS u)`,
SET_TAC[]);;
let SUBSET_INTERS = prove
(`!s f. s SUBSET INTERS f <=> (!t. t IN f ==> s SUBSET t)`,
SET_TAC[]);;
let INTERS_SUBSET = prove
(`!u s:A->bool.
~(u = {}) /\ (!t. t IN u ==> t SUBSET s) ==> INTERS u SUBSET s`,
SET_TAC[]);;
let INTERS_SUBSET_STRONG = prove
(`!u s:A->bool. (?t. t IN u /\ t SUBSET s) ==> INTERS u SUBSET s`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Image. *)
(* ------------------------------------------------------------------------- *)
let IMAGE_CLAUSES = prove
(`(IMAGE f {} = {}) /\
(IMAGE f (x INSERT s) = (f x) INSERT (IMAGE f s))`,
REWRITE_TAC[IMAGE; IN_ELIM_THM; NOT_IN_EMPTY; IN_INSERT; EXTENSION] THEN
MESON_TAC[]);;
let IMAGE_UNION = prove
(`!f s t. IMAGE f (s UNION t) = (IMAGE f s) UNION (IMAGE f t)`,
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNION] THEN MESON_TAC[]);;
let IMAGE_ID = prove
(`!s. IMAGE (\x. x) s = s`,
REWRITE_TAC[EXTENSION; IN_IMAGE; UNWIND_THM1]);;
let IMAGE_I = prove
(`!s. IMAGE I s = s`,
REWRITE_TAC[I_DEF; IMAGE_ID]);;
let IMAGE_o = prove
(`!f g s. IMAGE (f o g) s = IMAGE f (IMAGE g s)`,
REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN MESON_TAC[]);;
let IMAGE_SUBSET = prove
(`!f s t. s SUBSET t ==> (IMAGE f s) SUBSET (IMAGE f t)`,
REWRITE_TAC[SUBSET; IN_IMAGE] THEN MESON_TAC[]);;
let IMAGE_INTER_INJ = prove
(`!f s t. (!x y. (f(x) = f(y)) ==> (x = y))
==> (IMAGE f (s INTER t) = (IMAGE f s) INTER (IMAGE f t))`,
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_INTER] THEN MESON_TAC[]);;
let IMAGE_DIFF_INJ = prove
(`!f:A->B s t.
(!x y. x IN s /\ y IN t /\ f x = f y ==> x = y)
==> IMAGE f (s DIFF t) = IMAGE f s DIFF IMAGE f t`,
SET_TAC[]);;
let IMAGE_DIFF_INJ_ALT = prove
(`!f:A->B s t.
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ t SUBSET s
==> IMAGE f (s DIFF t) = IMAGE f s DIFF IMAGE f t`,
SET_TAC[]);;
let IMAGE_DELETE_INJ = prove
(`!f:A->B s a.
(!x. x IN s /\ f x = f a ==> x = a)
==> IMAGE f (s DELETE a) = IMAGE f s DELETE f a`,
SET_TAC[]);;
let IMAGE_DELETE_INJ_ALT = prove
(`!f:A->B s a.
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ a IN s
==> IMAGE f (s DELETE a) = IMAGE f s DELETE f a`,
SET_TAC[]);;
let IMAGE_EQ_EMPTY = prove
(`!f s. (IMAGE f s = {}) <=> (s = {})`,
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_IMAGE] THEN MESON_TAC[]);;
let FORALL_IN_IMAGE = prove
(`!f s. (!y. y IN IMAGE f s ==> P y) <=> (!x. x IN s ==> P(f x))`,
REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]);;
let EXISTS_IN_IMAGE = prove
(`!f s. (?y. y IN IMAGE f s /\ P y) <=> ?x. x IN s /\ P(f x)`,
REWRITE_TAC[IN_IMAGE] THEN MESON_TAC[]);;
let FORALL_IN_IMAGE_2 = prove
(`!f P s. (!x y. x IN IMAGE f s /\ y IN IMAGE f s ==> P x y) <=>
(!x y. x IN s /\ y IN s ==> P (f x) (f y))`,
SET_TAC[]);;
let IMAGE_CONST = prove
(`!s c. IMAGE (\x. c) s = if s = {} then {} else {c}`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[IMAGE_CLAUSES] THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_SING] THEN
ASM_MESON_TAC[MEMBER_NOT_EMPTY]);;
let SIMPLE_IMAGE = prove
(`!f s. {f x | x IN s} = IMAGE f s`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE] THEN MESON_TAC[]);;
let SIMPLE_IMAGE_GEN = prove
(`!f P. {f x | P x} = IMAGE f {x | P x}`,
SET_TAC[]);;
let IMAGE_UNIONS = prove
(`!f s. IMAGE f (UNIONS s) = UNIONS (IMAGE (IMAGE f) s)`,
ONCE_REWRITE_TAC[EXTENSION] THEN REWRITE_TAC[IN_UNIONS; IN_IMAGE] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM2; IN_IMAGE] THEN
MESON_TAC[]);;
let FUN_IN_IMAGE = prove
(`!f s x. x IN s ==> f(x) IN IMAGE f s`,
SET_TAC[]);;
let SURJECTIVE_IMAGE_EQ = prove
(`!s t. (!y. y IN t ==> ?x. f x = y) /\ (!x. (f x) IN t <=> x IN s)
==> IMAGE f s = t`,
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Misc lemmas. *)
(* ------------------------------------------------------------------------- *)
let EMPTY_GSPEC = prove
(`{x | F} = {}`,
SET_TAC[]);;
let UNIV_GSPEC = prove
(`{x | T} = UNIV`,
SET_TAC[]);;
let SING_GSPEC = prove
(`(!a. {x | x = a} = {a}) /\
(!a. {x | a = x} = {a})`,
SET_TAC[]);;
let IN_ELIM_PAIR_THM = prove
(`!P a b. (a,b) IN {(x,y) | P x y} <=> P a b`,
REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[PAIR_EQ]);;
let SET_PAIR_THM = prove
(`!P. {p | P p} = {(a,b) | P(a,b)}`,
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_THM; IN_ELIM_PAIR_THM]);;