-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcompute_anchors.py
179 lines (138 loc) · 5.3 KB
/
compute_anchors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
'''
Created on Feb 20, 2017
@author: jumabek
'''
from os import listdir
from os.path import isfile, join
import argparse
# import cv2
import numpy as np
import sys
import os
from scipy.cluster.vq import kmeans, whiten
import shutil
import random
import math
width_in_cfg_file = 416.
height_in_cfg_file = 416.
def IOU(x, centroids):
similarities = []
k = len(centroids)
for centroid in centroids:
c_w, c_h = centroid
w, h = x
if c_w >= w and c_h >= h:
similarity = w * h / (c_w * c_h)
elif c_w >= w and c_h <= h:
similarity = w * c_h / (w * h + (c_w - w) * c_h)
elif c_w <= w and c_h >= h:
similarity = c_w * h / (w * h + c_w * (c_h - h))
else: # means both w,h are bigger than c_w and c_h respectively
similarity = (c_w * c_h) / (w * h)
similarities.append(similarity) # will become (k,) shape
return np.array(similarities)
def avg_IOU(X, centroids):
n, d = X.shape
sum = 0.
for i in range(X.shape[0]):
# note IOU() will return array which contains IoU for each centroid and X[i] // slightly ineffective, but I am too lazy
sum += max(IOU(X[i], centroids))
return sum / n
def write_anchors_to_file(centroids, X, anchor_file):
f = open(anchor_file, 'w')
anchors = centroids.copy()
print(anchors.shape)
for i in range(anchors.shape[0]):
anchors[i][0] = round(anchors[i][0]*512)
anchors[i][1] = round(anchors[i][1]*384)
print('Anchors = ', anchors)
for i in range(anchors.shape[0]-1):
f.write('%0.2f,%0.2f, ' % (anchors[i, 0], anchors[i, 1]))
# there should not be comma after last anchor, that's why
f.write('%0.2f,%0.2f\n' % (anchors[-1, 0], anchors[-1, 1]))
if X is not None:
f.write('%f\n' % (avg_IOU(X, centroids)))
print()
def kmeans2(X, centroids, eps, anchor_file):
N = X.shape[0]
iterations = 0
k, dim = centroids.shape
prev_assignments = np.ones(N) * (-1)
iter = 0
old_D = np.zeros((N, k))
while True:
D = []
iter += 1
for i in range(N):
d = 1 - IOU(X[i], centroids)
D.append(d)
D = np.array(D) # D.shape = (N,k)
print("iter {}: dists = {}".format(iter, np.sum(np.abs(old_D - D))))
# assign samples to centroids
assignments = np.argmin(D, axis=1)
if (assignments == prev_assignments).all():
print("Centroids = ", centroids)
write_anchors_to_file(centroids, X, anchor_file)
return
# calculate new centroids
centroid_sums = np.zeros((k, dim), np.float)
for i in range(N):
centroid_sums[assignments[i]] += X[i]
for j in range(k):
centroids[j] = centroid_sums[j] / (np.sum(assignments == j))
prev_assignments = assignments.copy()
old_D = D.copy()
def main(argv):
parser = argparse.ArgumentParser()
parser.add_argument('-filelist', default='./data/RoboCup/FinetuneTrain.txt',
help='path to filelist\n')
parser.add_argument('-output_dir', default='./data/RoboCup/anchors', type=str,
help='Output anchor directory\n')
parser.add_argument('-num_clusters', default=3, type=int,
help='number of clusters\n')
args = parser.parse_args()
nclass = 4
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
f = open(args.filelist)
lines = [line.rstrip('\n') for line in f.readlines()]
annotation_dims = []
for i in range(nclass):
annotation_dims.append([])
size = np.zeros((1, 1, 3))
for line in lines:
# line = line.replace('images','labels')
# line = line.replace('img1','labels')
line = line.replace('JPEGImages', 'labels')
line = line.replace('.jpg', '.txt')
line = line.replace('.png', '.txt')
print(line)
f2 = open(line)
for line in f2.readlines():
line = line.rstrip('\n')
c, _, _, w, h = line.split(' ')
# print(w,h)
annotation_dims[int(c)].append(tuple(map(float, (w, h))))
anchors = np.zeros([nclass,2])
for i in range(nclass):
dims = np.array(annotation_dims[i])
anchors[i] = np.mean(dims,0)
anchor_file = join(args.output_dir, 'anchorsFinetune%d.txt' % (args.num_clusters))
write_anchors_to_file(anchors,None,anchor_file)
'''annotation_dims = np.array(annotation_dims)
eps = 0.005
if args.num_clusters == 0:
for num_clusters in range(1, 11): # we make 1 through 10 clusters
anchor_file = join(args.output_dir, 'anchors%d.txt' % (num_clusters))
indices = [random.randrange(annotation_dims.shape[0]) for i in range(num_clusters)]
centroids = annotation_dims[indices]
kmeans(annotation_dims, centroids, eps, anchor_file)
print('centroids.shape', centroids.shape)
else:
anchor_file = join(args.output_dir, 'anchors%d.txt' % (args.num_clusters))
indices = [random.randrange(annotation_dims.shape[0]) for i in range(args.num_clusters)]
centroids = annotation_dims[indices]
kmeans(annotation_dims, centroids, eps, anchor_file)
print('centroids.shape', centroids.shape)'''
if __name__ == "__main__":
main(sys.argv)