-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
110 lines (92 loc) · 3.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import collections
import numpy as np
import torch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
from utils import prepare_device, update_lr_scheduler
# fix random seeds for reproducibility
SEED = 42
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def main(config: ConfigParser):
logger = config.get_logger("train")
config["data_loader"]["args"]["training"] = True
# setup data_loader instances
data_loader = config.init_obj("data_loader", module_data)
valid_data_loader = data_loader.split_validation()
config = update_lr_scheduler(config, len(data_loader))
# build model architecture, then print to console
model = config.init_obj("arch", module_arch)
logger.info(model)
if config["checkpoint"]:
logger.info(f'Loading checkpoint: {config["checkpoint"]} ...')
checkpoint = torch.load(config["checkpoint"])
state_dict = checkpoint["state_dict"]
if config["n_gpu"] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare for (multi-device) GPU training
device, device_ids = prepare_device(config["n_gpu"])
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# get function handles of loss and metrics
criterion = getattr(module_loss, config["loss"])
metrics = [getattr(module_metric, met) for met in config["metrics"]]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj("optimizer", torch.optim, trainable_params)
lr_scheduler = config.init_obj("lr_scheduler", torch.optim.lr_scheduler, optimizer)
trainer = Trainer(
model,
criterion,
metrics,
optimizer,
config=config,
device=device,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler,
amp=config["amp"],
)
trainer.train()
if __name__ == "__main__":
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default="train.json",
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=None,
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple("CustomArgs", "flags type target")
options = [
CustomArgs(["--lr", "--learning_rate"], type=float, target="optimizer;args;lr"),
CustomArgs(
["--bs", "--batch_size"], type=int, target="data_loader;args;batch_size"
),
]
config = ConfigParser.from_args(args, options)
main(config)