-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
136 lines (98 loc) · 4.39 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#original script: https://github.com/fangchangma/sparse-to-dense/blob/master/utils.lua
import torch
import math
import numpy as np
from torch.autograd import Variable
import random
def lg10(x):
return torch.div(torch.log(x), math.log(10))
def maxOfTwo(x, y):
z = x.clone()
maskYLarger = torch.lt(x, y)
z[maskYLarger.detach()] = y[maskYLarger.detach()]
return z
def nValid(x):
return torch.sum(torch.eq(x, x).float())
def nNanElement(x):
return torch.sum(torch.ne(x, x).float())
def getNanMask(x):
return torch.ne(x, x)
def setNanToZero(input, target):
nanMask = getNanMask(target)
nValidElement = nValid(target)
_input = input.clone()
_target = target.clone()
_input[nanMask] = 0
_target[nanMask] = 0
return _input, _target, nanMask, nValidElement
def evaluateError(output, target):
errors = {'MSE': 0, 'RMSE': 0, 'ABS_REL': 0, 'LG10': 0,
'MAE': 0, 'DELTA1': 0, 'DELTA2': 0, 'DELTA3': 0}
_output, _target, nanMask, nValidElement = setNanToZero(output, target)
if (nValidElement.data.cpu().numpy() > 0):
diffMatrix = torch.abs(_output - _target)
errors['MSE'] = torch.sum(torch.pow(diffMatrix, 2)) / nValidElement
errors['MAE'] = torch.sum(diffMatrix) / nValidElement
realMatrix = torch.div(diffMatrix, _target)
realMatrix[nanMask] = 0
errors['ABS_REL'] = torch.sum(realMatrix) / nValidElement
LG10Matrix = torch.abs(lg10(_output) - lg10(_target))
LG10Matrix[nanMask] = 0
errors['LG10'] = torch.sum(LG10Matrix) / nValidElement
yOverZ = torch.div(_output, _target)
zOverY = torch.div(_target, _output)
maxRatio = maxOfTwo(yOverZ, zOverY)
errors['DELTA1'] = torch.sum(
torch.le(maxRatio, 1.25).float()) / nValidElement
errors['DELTA2'] = torch.sum(
torch.le(maxRatio, math.pow(1.25, 2)).float()) / nValidElement
errors['DELTA3'] = torch.sum(
torch.le(maxRatio, math.pow(1.25, 3)).float()) / nValidElement
errors['MSE'] = float(errors['MSE'].data.cpu().numpy())
errors['ABS_REL'] = float(errors['ABS_REL'].data.cpu().numpy())
errors['LG10'] = float(errors['LG10'].data.cpu().numpy())
errors['MAE'] = float(errors['MAE'].data.cpu().numpy())
errors['DELTA1'] = float(errors['DELTA1'].data.cpu().numpy())
errors['DELTA2'] = float(errors['DELTA2'].data.cpu().numpy())
errors['DELTA3'] = float(errors['DELTA3'].data.cpu().numpy())
return errors
def addErrors(errorSum, errors, batchSize):
errorSum['MSE']=errorSum['MSE'] + errors['MSE'] * batchSize
errorSum['ABS_REL']=errorSum['ABS_REL'] + errors['ABS_REL'] * batchSize
errorSum['LG10']=errorSum['LG10'] + errors['LG10'] * batchSize
errorSum['MAE']=errorSum['MAE'] + errors['MAE'] * batchSize
errorSum['DELTA1']=errorSum['DELTA1'] + errors['DELTA1'] * batchSize
errorSum['DELTA2']=errorSum['DELTA2'] + errors['DELTA2'] * batchSize
errorSum['DELTA3']=errorSum['DELTA3'] + errors['DELTA3'] * batchSize
return errorSum
def averageErrors(errorSum, N):
averageError={'MSE': 0, 'RMSE': 0, 'ABS_REL': 0, 'LG10': 0,
'MAE': 0, 'DELTA1': 0, 'DELTA2': 0, 'DELTA3': 0}
averageError['MSE'] = errorSum['MSE'] / N
averageError['ABS_REL'] = errorSum['ABS_REL'] / N
averageError['LG10'] = errorSum['LG10'] / N
averageError['MAE'] = errorSum['MAE'] / N
averageError['DELTA1'] = errorSum['DELTA1'] / N
averageError['DELTA2'] = errorSum['DELTA2'] / N
averageError['DELTA3'] = errorSum['DELTA3'] / N
return averageError
class ReplayBuffer():
def __init__(self, max_size=50):
assert (max_size > 0), 'Empty buffer or trying to create a black hole. Be careful.'
self.max_size = max_size
self.data = []
def push_and_pop(self, data):
to_return = []
for element in data.data:
element = torch.unsqueeze(element, 0)
if len(self.data) < self.max_size:
self.data.append(element)
to_return.append(element)
else:
if random.uniform(0,1) > 0.5:
i = random.randint(0, self.max_size-1)
to_return.append(self.data[i].clone())
self.data[i] = element
else:
to_return.append(element)
return Variable(torch.cat(to_return))