-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexecute_few_shot_new_align_newscls2.py
464 lines (379 loc) · 16.6 KB
/
execute_few_shot_new_align_newscls2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# -*- coding: utf-8 -*-
import torch
import torch.optim as optim
from process_utils import data_generator, tools
from models import HetGNN
from torch.utils.data import DataLoader, RandomSampler
import random
torch.set_num_threads(2)
from evaluate_utils.my_application import *
from tqdm import tqdm
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from process_utils.Iterator import MINDIterator
from config import hparams
import pickle
import wandb
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch.nn as nn
from process_utils.MLMIter import AlignDatset
wandb.init(project="NewsRec", name="newsrec2")
class model_class(object):
def __init__(self, args, args_mind):
super(model_class, self).__init__()
self.args = args
self.gpu = args.cuda
input_data = data_generator.input_data(self.args, args_mind)
self.input_data = input_data
if args.db == 'mind':
self.train_behaviors_file = self.args.data_path + "behaviors.tsv"
else:
self.train_behaviors_file = self.args.data_path + "behaviors.tsv"
self.save_root = self.args.data_path
# CTR prediction
self.train_iterator = MINDIterator(
batch_size = self.args.mini_batch_s,
npratio=self.args.npratio,
col_spliter="\t",
)
if args.db == 'mind':
feature_list = [input_data.p_title_embed, input_data.p_abstract_embed,
input_data.p_v_for_embed, input_data.p_category_embed,
input_data.p_body_embed, input_data.p_title_embedmulti]
else:
feature_list = [input_data.p_title_embed, input_data.p_abstract_embed,
input_data.p_v_for_embed, input_data.p_category_embed,
np.zeros((1,1)), input_data.p_title_embedmulti]
if self.args.db == 'mind':
feature_list[5] = torch.from_numpy(np.array(feature_list[5]))
if self.gpu:
feature_list[5] = feature_list[5].cuda()
self.p_title_embedmulti = feature_list[5]
if self.args.db == 'adressa':
# get train behaviors + get train clicks + dict
df = pd.read_csv(self.train_behaviors_file, sep='\t', header=None)
df.columns = ['impre_id', 'user', 'time', 'his', 'impr']
uid2union_id = self.load_obj("uid2union_id")
news2union_id = self.load_obj("news2union_id")
u_n_train = {}
for idx, row in tqdm(df.iterrows()):
user = uid2union_id[row['user']]
impr = [i.split("-")[0] for i in row['impr'].split(" ") if i.split("-")[1] == '1']
impr = [news2union_id[i] for i in impr]
# append
u_n_train[user] = u_n_train.get(user, []) + impr
self.model = HetGNN.RecModel(args, feature_list,
input_data.a_neigh_list_train,
u_n_train)
else:
self.model = HetGNN.RecModel(args, feature_list,
input_data.a_neigh_list_train)
if self.gpu:
self.model.cuda()
# self.model.init_weights()
def save_obj(self, obj, name):
with open(self.save_root + name + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(self, name):
with open(self.save_root + name + '.pkl', 'rb') as f:
return pickle.load(f)
def convert_data_for_hetGNN(self, batch_data_input):
"""
Data to HetGNN
Args:
batch_data_input:
Returns:
"""
ctr_samples = []
candidate_raw = batch_data_input['candidate_raw']
user_raw = batch_data_input['user_raw']
uid2union_id = self.load_obj("uid2union_id")
news2union_id = self.load_obj("news2union_id")
news2union_id[-1] = -1 # padding
for idx, uid in enumerate(user_raw):
raw_news = candidate_raw[idx]
ctr_samples.append((uid2union_id[uid], [news2union_id[i] for i in raw_news]))
return ctr_samples
def save_train_samples(self, ctr_samples):
"""
Save train samples for train evaluation
Args:
ctr_samples:
Returns: None
"""
all_df = []
labels = []
impr = 0
for sample in ctr_samples:
uid = sample[0]
news = [i for i in sample[1] if i != -1]
all_df.append((uid, impr, news))
labels.append((impr, [1] + [0] * (len(news)-1)))
impr += 1
pd.DataFrame(all_df, columns=['user_id', 'impression_id', 'impressions_candidate'])\
.to_csv(self.args.data_path + "train_samples.txt", index=False)
labels_df = pd.DataFrame(labels, columns=['impression_id', 'impressions_label'])
label_file = open(self.args.data_path + "train_labels.txt", 'w')
k = 0
for idx, row in labels_df.iterrows():
if k == len(labels_df) - 1:
label_file.write(str(row['impression_id']) + " " + str(row['impressions_label']).replace(" ", ""))
else:
label_file.write(
str(row['impression_id']) + " " + str(row['impressions_label']).replace(" ", "") + "\n")
k += 1
label_file.close()
def eval_rec(self):
"""
eval rec task
Returns:
"""
pass
def load_feature_list(self, input_data):
if self.args.db == 'mind':
feature_list = [input_data.p_title_embed, input_data.p_abstract_embed,
input_data.p_v_for_embed, input_data.p_category_embed,
input_data.p_body_embed, input_data.p_title_embedmulti]
else:
feature_list = [input_data.p_title_embed, input_data.p_abstract_embed,
input_data.p_v_for_embed, input_data.p_category_embed,
np.zeros((1,1)), input_data.p_title_embedmulti]
if self.args.db == 'mind':
feature_list[5] = torch.from_numpy(np.array(feature_list[5]))
if self.gpu:
feature_list[5] = feature_list[5].cuda()
return feature_list
def change_config(self, args, args_mind=None):
self.args = args
input_data = data_generator.input_data(self.args, args_mind)
self.input_data = input_data
self.train_behaviors_file = self.args.data_path + "behaviors.tsv"
self.save_root = self.args.data_path
feature_list = self.load_feature_list(input_data)
self.model.change_config(args, feature_list, input_data.a_neigh_list_train, None)
self.p_title_embedmulti = feature_list[5]
self.train_iterator = MINDIterator(
batch_size = self.args.mini_batch_s,
npratio=self.args.npratio,
col_spliter="\t",
)
def get_bilingual_dict(self):
no2en = pd.read_csv("../../muse/no-en.txt", sep='\t', header=None)
no2endict = {}
for idx, row in no2en.iterrows():
no2endict[row[0]] = no2endict.get(row[0], []) + [row[1]]
return no2endict
def cross(self, x, disable=False):
if not disable and (self.token_rate >= random.random()):
if x in self.no2endict:
return self.no2endict[x][random.randint(0, len(self.no2endict[x]) - 1)]
else:
return x
else:
return x
def cross_str(self, x, disable=False):
raw = x.lower().split(" ")
out = ""
for xx in raw:
out += self.cross(xx, disable)
out += " "
return out
def re_encode_text(self, df):
from bpemb import BPEmb
import numpy as np
bpemb_no = BPEmb(lang="multi", dim=300, vs=320000)
max_title_token = 30
p_title_embed = np.zeros((len(df) + 1, max_title_token), dtype=np.int)
def bpe_encode_text(x, bpemb_en, max_title_size):
if isinstance(x, str):
tokens = bpemb_en.encode_ids(x)
else:
tokens = []
return tokens[:max_title_size] + [0] * (max_title_size - len(tokens))
for idx, row in df.iterrows():
title = row['title']
encode = bpe_encode_text(title, bpemb_no, max_title_token)
embeds = np.asarray(encode, dtype='int32')
p_title_embed[row['nid']] = embeds
return p_title_embed
def add_code_switch(self, sen_rate, token_rate):
"""
all news titles -> replace -> encode -> update
Args:
sen_rate:
token_rate:
Returns:
"""
self.sen_rate = sen_rate
self.token_rate = token_rate
self.no2endict = self.get_bilingual_dict()
ad_news2id = self.load_obj('news2union_id')
ad_newsid2title = pd.read_csv(self.args.data_path + "newsid2title.csv")
docid2title = {}
for idx, row in ad_newsid2title.iterrows():
docid2title[row['doc_id']] = row['title']
nid2title = {}
for docid, nid in ad_news2id.items():
nid2title[nid] = docid2title[docid]
nid2titledf = pd.DataFrame(nid2title.items())
nid2titledf.columns = ['nid', 'title']
nid2titledf['title_cross'] = nid2titledf['title'].apply(
lambda x: self.cross_str(x, not (sen_rate >= random.random())))
p_title_embed = self.re_encode_text(nid2titledf)
p_title_embed = torch.from_numpy(np.array(p_title_embed))
if self.gpu:
p_title_embed = p_title_embed.cuda()
self.model.update_token_cs(p_title_embed)
def add_code_switchbynews(self, news_rate, news2token):
"""
replace news with new token
Args:
sen_rate:
token_rate:
Returns:
"""
# read adressa news id -> same subcategory english news id
adid2mind = self.load_obj('adid2mind')
for i in range(self.args.P_n):
if i in adid2mind:
# judge
if news_rate > random.random():
# search and replace
mind_news_id = random.choice(adid2mind[i])
token = news2token[mind_news_id]
# print(type(news2token))
# print(type(token))
self.p_title_embedmulti[i] = token
self.model.update_token_cs(self.p_title_embedmulti)
if __name__ == '__main__':
best_valid_auc = 0
# lr depends on transfer setting
args_mind = read_args(db='mind', lr=3e-4)
args_ad = read_args(db='adressa', lr=3e-4)
if args_mind.range != 'Model/engTonor':
print("set lr")
args_mind.lr = 1e-4
args_ad.lr = 1e-4
print("few shot method is {}".format(args_mind.few_shot_method))
print("------arguments-------")
for k, v in vars(args_mind).items():
print(k + ': ' + str(v))
for k, v in vars(args_ad).items():
print(k + ': ' + str(v))
# fix random seed
random.seed(args_mind.random_seed)
np.random.seed(args_mind.random_seed)
torch.manual_seed(args_mind.random_seed)
torch.cuda.manual_seed_all(args_mind.random_seed)
# model + different lr
model_mind = model_class(args_ad, args_mind)
embed_d = args_ad.embed_d
parameters = list(model_mind.model.parameters())
optimizer_mind = optim.Adam(parameters, lr=args_mind.lr, weight_decay=1e-8)
for iter_i in range(args_ad.train_iter_n):
model_mind.change_config(args_ad, args_mind)
model_mind.model.train()
print('epoch ' + str(iter_i) + ' ...' + "lr is {}".format(optimizer_mind.param_groups[0]['lr']))
if args_mind.few_shot_method in [2]:
# news classification
model_mind.change_config(args_ad, args_mind)
model_mind.model.train()
loss_record = 0
newsids = list(range(args_ad.P_n))
bz = 64
for i in range(args_mind.news_cls_iter):
for i in range(0, len(newsids), bz):
tem_ids = newsids[i: i+bz]
# TODO
loss = args_mind.loss_weight_align * model_mind.model.news_align_loss(tem_ids)
optimizer_mind.zero_grad()
loss.backward()
optimizer_mind.step()
loss_record += 1
if loss_record % 30 == 0:
print("news cls loss: {}".format(loss))
if args_mind.few_shot_method in [1,2]:
# adressa training samples
model_mind.change_config(args_ad, args_mind)
model_mind.model.train()
loss_record = 0
for mind_data_input in model_mind.train_iterator.load_data_from_file(model_mind.train_behaviors_file):
ctr_samples = model_mind.convert_data_for_hetGNN(mind_data_input)
c_out, p_out = model_mind.model(ctr_samples, 0)
# TODO
loss_mind = args_mind.loss_weight * tools.cross_entropy_loss(c_out, p_out, embed_d)
optimizer_mind.zero_grad()
loss_mind.backward()
optimizer_mind.step()
loss_record += 1
if loss_record % 60 == 0:
print("ad loss: {}".format(loss_mind))
wandb.log({"ad_loss": loss_mind})
if args_mind.few_shot.split("_")[-1] != '0shot':
loss_record = 0
# Few-shot setting: mind training samples
model_mind.change_config(args_mind, args_mind)
model_mind.model.train()
for mind_data_input in model_mind.train_iterator.load_data_from_file(model_mind.train_behaviors_file):
ctr_samples = model_mind.convert_data_for_hetGNN(mind_data_input)
c_out, p_out = model_mind.model(ctr_samples, 0)
loss_mind = tools.cross_entropy_loss(c_out, p_out, embed_d)
optimizer_mind.zero_grad()
loss_mind.backward()
optimizer_mind.step()
loss_record += 1
if loss_record % 1 == 0:
print("mind loss: {}".format(loss_mind))
wandb.log({"mind_loss": loss_mind})
# evaluation adressa
# model_mind.model.eval()
# a_embed, p_embed = model_mind.model([], 16)
# r = recommend_evaluator(model_mind.args, iter=iter_i)
# mind_auc = r.a_p_recommendation(a_embed, p_embed, None, model_mind)
############################ ############################
# evaluation
############################ ############################
# if iter_i % 3 == 0:
# print("Start evaluating...")
model_mind.change_config(args_mind, args_mind)
model_mind.model.eval()
a_embed, p_embed = model_mind.model([], 16)
r = recommend_evaluator(model_mind.args, iter=iter_i)
val_auc = r.a_p_recommendation(a_embed, p_embed, None, model_mind, best_valid_auc)
if val_auc >= best_valid_auc:
best_valid_auc = val_auc
if model_mind.args.save_emb:
# save mind embedding
model_mind.save_obj(a_embed, "vis_mind_user_embed2")
model_mind.save_obj(p_embed, 'vis_mind_news_embed2')
# save adressa embedding
model_mind.change_config(args_ad, args_mind)
model_mind.model.eval()
a_embed, p_embed = model_mind.model([], 16, mode='test')
model_mind.save_obj(a_embed, 'vis_ad_user_embed2')
model_mind.save_obj(p_embed, 'vis_ad_news_embed2')
############################ ############################
# evaluation
############################ ############################
# print("Start evaluating...")
# model_mind.model.eval()
# a_embed, p_embed = model_mind.model([], 16, mode='test')
# r = recommend_evaluator(model_mind.args, iter=args_ad.train_iter_n - 1)
# mind_auc = r.a_p_recommendation(a_embed, p_embed, None, model_mind)
# save adressa embedding
# if model_mind.args.save_emb:
# model_mind.save_obj(a_embed, 'vis_ad_user_embed')
# model_mind.save_obj(p_embed, 'vis_ad_news_embed')
#
# model_mind.change_config(args_mind, args_mind)
# triple_index = 16
# model_mind.model.eval()
# a_embed, p_embed = model_mind.model([], triple_index)
#
# # save mind embedding
# if model_mind.args.save_emb:
# model_mind.save_obj(a_embed, "vis_mind_user_embed")
# model_mind.save_obj(p_embed, 'vis_mind_news_embed')
#
# r = recommend_evaluator(model_mind.args, iter=args_ad.train_iter_n-1)
# mind_auc = r.a_p_recommendation(a_embed, p_embed, None, model_mind)