-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathplot_benchmark.py
69 lines (53 loc) · 2.01 KB
/
plot_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import matplotlib.pyplot as plt
import sys
import os
from src.taichi.benchmark import benchmark as benchmark_taichi
from src.cuda.benchmark import benchmark as benchmark_cuda
from misc import taichi_sample_results
from misc import cuda_sample_results
def run_benchmarks():
return benchmark_taichi(), benchmark_cuda()
def extract_perf(results):
perf = []
for record in results:
perf.append(record["time_ms"])
return perf
def extract_particles(results):
particles = []
for record in results:
particles.append(record["n_particles"])
return particles
def plot_bar(cuda_results, taichi_results, plot_series="3d"):
fig, ax = plt.subplots(figsize=(6, 4))
x_cuda = extract_particles(cuda_results["cuda_" + plot_series])
y_cuda = extract_perf(cuda_results["cuda_" + plot_series])
x_taichi = extract_particles(taichi_results["taichi_" + plot_series])
y_taichi = extract_perf(taichi_results["taichi_" + plot_series])
bar_pos = [i * 3 for i in range(len(x_taichi))]
ax.bar(bar_pos, y_taichi)
bar_pos = [i * 3 + 1 for i in range(len(x_cuda))]
ax.bar(bar_pos, y_cuda)
bar_pos_ticks = [i * 3 + 0.5 for i in range(len(x_cuda))]
labels = ["{}".format(i) for i in x_cuda]
ax.set_xticks(bar_pos_ticks, labels)
if plot_series == "3d":
plt.yscale("log")
plt.xticks(fontsize=8)
plt.yticks(fontsize=8)
plt.grid('minor', axis='y')
plt.xlabel("Number of particles")
plt.ylabel("Time per Frame (ms)")
plt.legend(["Taichi", "CUDA"], loc='upper left')
plt.title("Material Point Method (" + plot_series.upper() + ")")
plt.savefig("fig/bench_" + plot_series + ".png", dpi=150)
if __name__ == '__main__':
try:
os.makedirs('fig')
except FileExistsError:
pass
if len(sys.argv) >= 2 and sys.argv[1] == "sample":
cuda_results = cuda_sample_results
taichi_results = taichi_sample_results
else:
taichi_results, cuda_results = run_benchmarks()
plot_bar(cuda_results, taichi_results, "2d")