-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
167 lines (134 loc) · 4.84 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
from datetime import datetime as dt
def process_song_file(cur, filepath):
'''
Process a song file by reading and inserting data to song and artist tables
Parameters:
cur (psycopg2.extensions.cursor): active DB cursor
filepath (str): file path pointing to a song file
Returns:
None
'''
# open song file
df = pd.DataFrame([pd.read_json(filepath, typ='series')])
# insert artist record
for artist_data in df[['artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']].values:
cur.execute(artist_table_insert, artist_data)
# insert song record
for song_data in df[['song_id', 'title', 'artist_id', 'year', 'duration']].values:
cur.execute(song_table_insert, song_data)
def process_log_file(cur, filepath):
'''
Process a log file by reading and inserting data to time, user and songplay tables
Parameters:
cur (psycopg2.extensions.cursor): active DB cursor
filepath (str): file path pointing to a log file
Returns:
None
'''
def get_lines_from_file(internal_filepath):
lines = []
with open(internal_filepath) as j_file:
lines = j_file.readlines()
return lines
# open log file
df = pd.DataFrame([
pd.read_json(line, typ='series')
for line
in get_lines_from_file(filepath)
])
# filter by NextSong action
df = df[df['page'] == 'NextSong']
# convert timestamp column to datetime
t = df['ts'].map(
lambda timestamp: dt.fromtimestamp(timestamp / 1000.0)
)
# insert time data records
time_data = zip(
df['ts'],
t.dt.hour,
t.dt.day,
t.dt.isocalendar().week,
t.dt.month,
t.dt.year,
t.dt.weekday
)
column_labels = ['start_time', 'hour', 'day', 'week', 'month', 'year', 'weekday']
time_df = pd.DataFrame(time_data, columns=column_labels)
for _, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_data = zip(
df['userId'],
df['firstName'],
df['lastName'],
df['gender'],
df['level']
)
user_column_labels = ['user_id', 'first_name', 'last_name', 'gender', 'level']
user_df = pd.DataFrame(user_data, columns=user_column_labels)
# insert user records
for _, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for _, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
song_id, artist_id = results
else:
song_id, artist_id = None, None
# insert songplay record
songplay_data = (
row['ts'],
row['userId'],
row['level'],
song_id,
artist_id,
row['sessionId'],
row['location'],
row['userAgent']
)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
'''
Process files on a target path
Parameters:
cur (psycopg2.extensions.cursor): active DB cursor
conn (psycopg2.extensions.connection): active DB connection
filepath (str): path pointing to a directory storing files to be processed
func (typing.Callable[[psycopg2.extensions.cursor, str], None]): callback to process one file
Returns:
None
'''
# get all files matching extension from directory
all_files = []
for root, _, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
'''
- Process muliple song_data files by reading and inserting data into song and artist tables
- Process muliple log_data files by reading and inserting data into time, user and songplay tables
'''
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()