-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_seg.py
132 lines (110 loc) · 4.81 KB
/
train_seg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from torch.utils.data import Dataset
from tensorboardX import SummaryWriter
from tqdm import tqdm
from models.model_seg import *
from loader.viah_loader import *
from loader.bing_loader import *
from utils.utils_args import *
from utils.loss import *
from utils.utils_eval import get_dice_ji
from utils.utils_lr import *
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
def train(ds, model, optimizer, criterion, criterion2, scheduler, args):
loss_list = []
for ix, (_x, _y) in tqdm(enumerate(ds)):
_x = _x.float().cuda()
_y = _y.float().cuda().unsqueeze(dim=1)
optimizer.zero_grad()
mask = model(_x)
loss = 0.1*criterion(mask, _y) + 1*criterion2(mask, _y)
loss_list.append(loss.item())
loss.backward()
optimizer.step()
if args['opt'] == 'sgd':
scheduler.step()
return loss_list
def eval_ds(ds, model, writer, epoch, PATH1, best, label, args):
model.eval()
TestDice_list = []
TestIoU_list = []
for ix, (_x, _y) in enumerate(ds):
_x = _x.float().cuda()
_y = _y.float().cuda()
Mask = model(_x)
Mask[Mask >= 0.5] = 1
Mask[Mask < 0.5] = 0
(cDice, cIoU) = get_dice_ji(Mask, _y)
TestDice_list.append(cDice)
TestIoU_list.append(cIoU)
Dice = np.mean(TestDice_list)
IoU = np.mean(TestIoU_list)
print((epoch, Dice, IoU))
if IoU > best and label=='test':
torch.save(model, PATH1 + '/SEG_best.pt')
print('best IOU results: ' + str(IoU))
writer.add_scalar('Dice_' + label, Dice, global_step=epoch)
writer.add_scalar('IoU_' + label, IoU, global_step=epoch)
model.train()
return best, IoU
def main(args, writer):
PATH = r'results/' + args['task']
model = Segmentation(args)
model.train().to(device)
criterion = nn.BCELoss()
criterion2 = SoftDiceLoss()
if args['opt'] == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=float(args['learning_rate']),
weight_decay=float(args['WD']))
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, int(args['D_rate']), gamma=0.3)
elif args['opt'] == 'sgd':
wd_params, non_wd_params = [], []
for name, param in model.named_parameters():
if param.dim() == 1:
non_wd_params.append(param)
elif param.dim() == 2 or param.dim() == 4:
wd_params.append(param)
params_list = [
{'params': wd_params, },
{'params': non_wd_params, 'weight_decay': 0},
]
warmup_iters = 12
optimizer = torch.optim.SGD(params_list,
lr=float(args['learning_rate']),
weight_decay=float(args['WD']),
momentum=0.9)
max_iter = int(args['D_rate'])
scheduler = WarmupPolyLrScheduler(optimizer,
power=0.9,
max_iter=max_iter,
warmup_iter=warmup_iters,
warmup_ratio=0.001,
warmup='exp',
last_epoch=-1)
if args['task'] == 'viah':
trainset = viah_segmentation(ann='training', args=args)
testset = viah_segmentation(ann='test', args=args)
elif args['task'] == 'bing':
trainset = bing_segmentation(ann='training', args=args)
testset = bing_segmentation(ann='test', args=args)
ds = torch.utils.data.DataLoader(trainset, batch_size=int(args['Batch_size']), shuffle=True,
num_workers=int(args['nW']), drop_last=True)
ds_val = torch.utils.data.DataLoader(testset, batch_size=1, shuffle=False,
num_workers=0, drop_last=False)
best = 0
for epoch in range(1, int(args['epochs'])):
loss_list = train(ds, model, optimizer, criterion, criterion2, scheduler, args)
print('************************************************************************')
print('Epoch: ' + str(epoch) + ' Mask mean loss: ' + str(np.mean(loss_list)) + ' Mask max loss: ' + str(
np.max(loss_list)) + ' Mask min loss: ' + str(np.min(loss_list)))
writer.add_scalar('MaskLoss', np.mean(loss_list), global_step=epoch)
print('************************************************************************')
if args['opt'] == 'adam':
scheduler.step()
if epoch % 3 == 1:
best, _ = eval_ds(ds_val, model, writer, epoch, PATH, best, 'test', args)
if __name__ == '__main__':
args = get_args()
save_args(args)
writer = SummaryWriter()
main(args, writer)