-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathquota_align.py
executable file
·273 lines (214 loc) · 9.4 KB
/
quota_align.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
"""
This python program does the following:
1. merge 2D-overlapping blocks
2. build constraints that represent 1D-overlap among blocks
3. feed the data into the linear programming solver
"""
import os
import sys
import cStringIO
import itertools
from cluster_utils import read_clusters, write_clusters, \
make_range, calc_coverage
from box_utils import get_1D_overlap, get_2D_overlap
from lp_solvers import GLPKSolver, SCIPSolver
def merge_clusters(chain, clusters, Dmax=0, min_size=0):
"""
Due to the problem of chaining, some chains might overlap each other
these need to be merged
"""
eclusters = make_range(clusters, extend=Dmax)
mergeables = get_2D_overlap(chain, eclusters)
merged_chain = []
for mergeable in mergeables:
merged_mother = min(mergeable)
g = (clusters[x] for x in mergeable)
merged_cluster = itertools.chain(*g)
merged_cluster = list(set(merged_cluster))
clusters[merged_mother] = merged_cluster
if len(merged_cluster) >= min_size:
merged_chain.append(merged_mother)
# maintain the x-sort
[cluster.sort() for cluster in clusters]
print >>sys.stderr, "merging... (%d->%d)" % (len(chain), len(merged_chain))
return merged_chain
def get_constraints(clusters, quota=(1,1), Nmax=0):
"""
Check pairwise cluster comparison, if they overlap then mark edge as conflict
"""
qa, qb = quota
eclusters = make_range(clusters, extend=-Nmax)
# (1-based index, cluster score)
nodes = [(i+1, c[-1]) for i, c in enumerate(eclusters)]
eclusters_x, eclusters_y, scores = zip(*eclusters)
# represents the contraints over x-axis and y-axis
constraints_x = get_1D_overlap(eclusters_x, qa)
constraints_y = get_1D_overlap(eclusters_y, qb)
return nodes, constraints_x, constraints_y
def format_lp(nodes, constraints_x, qa, constraints_y, qb):
"""
Maximize
4 x1 + 2 x2 + 3 x3 + x4
Subject To
x1 + x2 <= 1
End
"""
lp_handle = cStringIO.StringIO()
lp_handle.write("Maximize\n ")
records = 0
for i, score in nodes:
lp_handle.write("+ %d x%d " % (score, i))
# SCIP does not like really long string per row
records += 1
if records%10==0: lp_handle.write("\n")
lp_handle.write("\n")
num_of_constraints = 0
lp_handle.write("Subject To\n")
for c in constraints_x:
additions = " + ".join("x%d" % (x+1) for x in c)
lp_handle.write(" %s <= %d\n" % (additions, qa))
num_of_constraints += len(constraints_x)
# non-self
if not (constraints_x is constraints_y):
for c in constraints_y:
additions = " + ".join("x%d" % (x+1) for x in c)
lp_handle.write(" %s <= %d\n" % (additions, qb))
num_of_constraints += len(constraints_y)
print >>sys.stderr, "number of variables (%d), number of constraints (%d)" % \
(len(nodes), num_of_constraints)
lp_handle.write("Binary\n")
for i, score in nodes:
lp_handle.write(" x%d\n" %i )
lp_handle.write("End\n")
lp_data = lp_handle.getvalue()
lp_handle.close()
return lp_data
def solve_lp(clusters, quota, work_dir="work", Nmax=0,
self_match=False, solver="SCIP", verbose=False):
"""
Solve the formatted LP instance
"""
qb, qa = quota # flip it
nodes, constraints_x, constraints_y = get_constraints(clusters, (qa, qb), Nmax=Nmax)
if self_match:
constraints_x = constraints_y = constraints_x | constraints_y
lp_data = format_lp(nodes, constraints_x, qa, constraints_y, qb)
if solver=="SCIP":
filtered_list = SCIPSolver(lp_data, work_dir, verbose=verbose).results
if not filtered_list:
print >>sys.stderr, "SCIP fails... trying GLPK"
filtered_list = GLPKSolver(lp_data, work_dir, verbose=verbose).results
elif solver=="GLPK":
filtered_list = GLPKSolver(lp_data, work_dir, verbose=verbose).results
if not filtered_list:
print >>sys.stderr, "GLPK fails... trying SCIP"
filtered_list = SCIPSolver(lp_data, work_dir, verbose=verbose).results
# non-overlapping set on both axis
filtered_clusters = [clusters[x] for x in filtered_list]
return filtered_clusters
if __name__ == '__main__':
from optparse import OptionParser, OptionGroup
usage = "Quota synteny alignment \n" \
"%prog [options] qa_file "
parser = OptionParser(usage)
merge_group = OptionGroup(parser, "Merge function")
merge_group.add_option("--merge", dest="merge",
action="store_true", default=False,
help="`block merging` procedure -- merge blocks that are close to "\
"each other, merged clusters are stored in qa_file.merged "\
"[default: %default]")
merge_group.add_option("--Dm", dest="Dmax",
type="int", default=0,
help="merge blocks that are close to each other within distance cutoff "\
"(cutoff for `block merging`) "\
"[default: %default units (gene or bp dist)] ")
merge_group.add_option("--min_size", dest="min_size",
type="int", default=1,
help="keep blocks that contain more than certain number of anchors "\
"[default: %default anchor points] ")
parser.add_option_group(merge_group)
quota_group = OptionGroup(parser, "Quota mapping function")
quota_group.add_option("--quota", dest="quota",
type="string", default=None,
help="`quota mapping` procedure -- screen blocks to constrain mapping"\
" (useful for orthology), "\
"put in the format like (#subgenomes expected for genome X):"\
"(#subgenomes expected for genome Y) "\
"[default: %default]")
quota_group.add_option("--Nm", dest="Nmax",
type="int", default=40,
help="distance cutoff to tolerate two blocks that are "\
"slightly overlapping (cutoff for `quota mapping`) "\
"[default: %default units (gene or bp dist)]")
parser.add_option_group(quota_group)
supported_solvers = ("SCIP", "GLPK")
other_group = OptionGroup(parser, "Other options")
other_group.add_option("--format", dest="format", default="qa",
help="one of ('qa', 'raw'). if 'raw' each line is treated as a cluster and should"
" be used with --merge .\n[default: %default]")
other_group.add_option("--self", dest="self_match",
action="store_true", default=False,
help="you might turn this on when screening paralogous blocks, "\
"esp. if you have reduced mirrored blocks into non-redundant set")
other_group.add_option("--solver", dest="solver",
default="SCIP", choices=supported_solvers,
help="use MIP solver, must be one of %s " % (supported_solvers,) +\
"[default: %default]")
other_group.add_option("--verbose", dest="verbose", action="store_true",
default=False, help="show verbose solver output")
parser.add_option_group(other_group)
(options, args) = parser.parse_args()
try:
qa_file = args[0]
except:
sys.exit(parser.print_help())
# sanity check for the quota
if options.quota:
try:
qa, qb = options.quota.split(":")
qa, qb = int(qa), int(qb)
except:
print >>sys.stderr, "quota string should be the form x:x (2:4, 1:3, etc.)"
sys.exit(1)
if options.self_match and qa!=qb:
raise Exception, "when comparing genome to itself, " \
"quota must be the same number " \
"(like 1:1, 2:2) you have %s" % options.quota
if qa > 12 or qb > 12:
raise Exception, "quota %s too loose, make it <=12 each" % options.quota
quota = (qa, qb)
self_match = options.self_match
clusters = read_clusters(qa_file, fmt=options.format)
for cluster in clusters:
assert len(cluster) > 0
# below runs `block merging`
if options.merge:
chain = range(len(clusters))
chain = merge_clusters(chain, clusters, Dmax=options.Dmax, min_size=options.min_size)
merged_qa_file = qa_file + ".merged"
fw = file(merged_qa_file, "w")
clusters = [clusters[c] for c in chain]
write_clusters(fw, clusters)
total_len_x, total_len_y = calc_coverage(clusters, self_match=self_match)
if not options.quota:
sys.exit(0)
# below runs `quota mapping`
op = os.path
work_dir = op.join(op.dirname(op.abspath(qa_file)), "work")
clusters = solve_lp(clusters, quota, work_dir=work_dir, \
Nmax=options.Nmax, self_match=self_match, \
solver=options.solver, verbose=options.verbose)
filtered_qa_file = qa_file + ".filtered"
fw = file(filtered_qa_file, "w")
write_clusters(fw, sorted(clusters))
filtered_len_x, filtered_len_y = calc_coverage(clusters, self_match=self_match)
if self_match:
print >>sys.stderr, "coverage: %.1f%% (self-match)" % \
(filtered_len_x*100./total_len_x)
else:
print >>sys.stderr, "genome X coverage: %.1f%%" % \
(filtered_len_x*100./total_len_x)
print >>sys.stderr, "genome Y coverage: %.1f%%" % \
(filtered_len_y*100./total_len_y)