-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
encode_swe.py
226 lines (212 loc) · 10.4 KB
/
encode_swe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
import re
class SWEEncoder_ja:
def __init__(self, bpe, emoji):
self.bpe = [[b] if (b==',' or ',' not in b) else b.split(',') for b in bpe]
self.swe = {}
for idx, b in enumerate(self.bpe):
for wd in b:
self.swe[wd] = idx
self.emoji = emoji
self.maxlen = np.max([len(w) for w in self.swe.keys()])
self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)")
self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*")
self.content_repatter3 = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}')
self.content_repatter4 = re.compile(r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*")
self.content_repatter5 = re.compile(r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*")
self.content_repatter6 = re.compile(r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*')
keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
self.content_trans1 = str.maketrans({k:'<BLOCK>' for k in keisen+blocks})
def __len__(self):
return len(self.bpe)
def clean_text(self, content):
content = self.content_repatter1.sub("<URL>" ,content)
content = self.content_repatter2.sub("<EMAIL>" ,content)
content = self.content_repatter3.sub("<TEL>" ,content)
content = self.content_repatter4.sub("<DATE>" ,content)
content = self.content_repatter5.sub("<DATE>" ,content)
content = self.content_repatter6.sub("<PRICE>" ,content)
content = content.translate(self.content_trans1)
while '<BLOCK><BLOCK>' in content:
content = content.replace('<BLOCK><BLOCK>', '<BLOCK>')
return content
def encode(self, text, clean=False, bpe_dropout_rate=0.0):
"""
Inputs:
text[str]: input string
clean[bool]: cleaning string
bpe_dropout_rate[float]:
Flags to use when learning model. Whether to use BPE Dropout.
The research to divides same word with different BPEs make efficiently learn low-frequency words.
It is concluded that setting a value of 0.1 during learning is good.
https://arxiv.org/abs/1910.13267
https://ai-scholar.tech/articles/natural-language-processing/bpe-dropout
Return:
tokens[List[int]]
"""
text = text.replace(' ', '<SP>')
text = text.replace(' ', '<SP>')
text = text.replace('\r\n', '<BR>')
text = text.replace('\n', '<BR>')
text = text.replace('\r', '<BR>')
text = text.replace('\t', '<TAB>')
text = text.replace('—', 'ー')
text = text.replace('−', 'ー')
for k,v in self.emoji['emoji'].items():
if k in text:
text = text.replace(k, v)
if clean:
text = self.clean_text(text)
def checkkigou(x):
e = x.encode()
if len(x) == 1 and len(e)==2:
c = (int(e[0])<<8)+int(e[1])
if (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or \
(c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2):
return True
return False
def checku2e(x):
e = x.encode()
if len(x) == 1 and len(e)==3:
c = (int(e[0])<<16)+(int(e[1])<<8)+int(e[2])
if c >= 0xe28080 and c <= 0xe2b07f:
return True
return False
pos = 0
result = []
while pos < len(text):
end = min(len(text), pos+self.maxlen+1) if text[pos]=='<' else pos+3
kouho = []
for e in range(end, pos, -1):
wd = text[pos:e]
if wd in self.swe:
if wd[0]=='<' and len(wd) > 2:
kouho = [(self.swe[wd], e)]
break
else:
kouho.append((self.swe[wd], e))
if len(kouho) > 0:
s = sorted(kouho, key=lambda x:x[0])
wp,e = s[0]
if len(kouho) > 1 and bpe_dropout_rate > 0.0:
if np.random.random() > bpe_dropout_rate:
p = np.exp(np.arange(len(kouho)-1))[::-1]
p /= np.sum(p) # Extract tokens from candidates in order of probability
wp,e = s[np.random.choice(np.arange(len(kouho)-1)+1, p=p)]
result.append(wp)
pos = e
else:
end = pos+1
wd = text[pos:end]
if checkkigou(wd):
result.append(self.swe['<KIGOU>'])
elif checku2e(wd):
result.append(self.swe['<U2000U2BFF>'])
else:
for i in wd.encode('utf-8'):
result.append(self.swe['<|byte%d|>'%i])
pos = end
return result
def decode(self, tokens, breakline='\n'):
"""
Inputs:
tokens[List[int]]: input tokens
breakline[str]: string to replace "<BR>" token
Return:
decoded text[str]
"""
words = []
byte_tokens = []
for i in tokens:
word = self.bpe[i][0]
if word[:6] == '<|byte' and word[-2:] == '|>':
byte_tokens.append(int(word[6:-2]))
else:
if len(byte_tokens) > 0:
words.append(bytearray(byte_tokens).decode('utf-8', errors='replace'))
byte_tokens = []
if word[:7] == '<|emoji' and word[-2:] == '|>':
words.append(self.emoji['emoji_inv'][word])
elif word == '<SP>':
words.append(' ')
elif word == '<BR>':
words.append(breakline)
elif word == '<TAB>':
words.append('\t')
elif word == '<BLOCK>':
words.append('▀')
elif word == '<KIGOU>':
words.append('ǀ')
elif word == '<U2000U2BFF>':
words.append('‖')
else:
words.append(word)
if len(byte_tokens) > 0:
words.append(bytearray(byte_tokens).decode('utf-8', errors='replace'))
text = ''.join(words)
return text
if __name__=='__main__':
import argparse
import shutil
import os
import json
from tqdm import tqdm
import pickle
import uuid
from multiprocessing import Pool
parser = argparse.ArgumentParser()
parser.add_argument("--src_dir", help="source dir", required=True )
parser.add_argument("--dst_file", help="destnation file", required=True )
parser.add_argument("--tmp_dir", help="tempolary file", default="tmpfiles" )
parser.add_argument("--vocabulary", help="vocabulary file", default="ja-swe32k.txt" )
parser.add_argument("--num_process", help="process num", type=int, default=8 )
parser.add_argument("--combine", help="Concatenate files with <|endoftext|> separator into chunks of this minimum size", type=int, default=50000 )
parser.add_argument('--clean_text', action='store_true')
parser.add_argument("--tmpsilze", help="num chunks in tempolary file", type=int, default=5000 )
args = parser.parse_args()
if os.path.isdir(args.tmp_dir):
shutil.rmtree(args.tmp_dir)
os.mkdir(args.tmp_dir)
with open(args.vocabulary, encoding='utf-8') as f:
bpe = f.read().split('\n')
with open('emoji.json', encoding='utf-8') as f:
emoji = json.loads(f.read())
enc = SWEEncoder_ja(bpe, emoji)
array_file = []
def _proc(i):
token_chunks = []
raw_text = ''
for j, (curDir, dirs, files) in enumerate(array_file):
if not (j % args.num_process == i):
continue
print('append #',curDir)
for file in tqdm(files):
if file.endswith(".txt"):
input = os.path.join(curDir, file)
with open(input, 'r', encoding='utf-8') as fp:
raw_text += fp.read()
raw_text += '<|endoftext|>'
if len(raw_text) >= args.combine:
tokens = np.stack(enc.encode(raw_text, clean=args.clean_text))
token_chunks.append(tokens)
raw_text = ''
if raw_text and len(raw_text) > 0:
tokens = np.stack(enc.encode(raw_text))
token_chunks.append(tokens)
if len(token_chunks) > args.tmpsilze:
with open(os.path.join(args.tmp_dir, '%s.pkl'%str(uuid.uuid4())), 'wb') as f:
pickle.dump(token_chunks, f)
token_chunks = []
with open(os.path.join(args.tmp_dir, '%s.pkl'%str(uuid.uuid4())), 'wb') as f:
pickle.dump(token_chunks, f)
for curDir, dirs, files in os.walk(args.src_dir):
array_file.append((curDir, dirs, files))
with Pool(args.num_process) as p:
p.map(_proc, list(range(args.num_process)))
token_chunks = []
for s in os.listdir(args.tmp_dir):
with open(os.path.join(args.tmp_dir, s), 'rb') as f:
token_chunks.extend(pickle.load(f))
np.savez_compressed(args.dst_file, *token_chunks)
shutil.rmtree(args.tmp_dir)