-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathLSTM.py
216 lines (158 loc) · 7.65 KB
/
LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Sun May 27 01:29:17 2018
@author: imlab
"""
import numpy as np
import tensorflow as tf
#from tensorflow.contrib import rnn
import sklearn.cross_validation as sk
import scipy.io as sio
import time
DatabaseLabel[773,1]=1
X_train, X_S, Y_train, Y_S = sk.train_test_split(TotalFeatures,DatabaseLabel,test_size=0.20,random_state = 50 ) #, shuffle=False
X_train, X_Validation, Y_train, Y_Validation = sk.train_test_split(X_train,Y_train,test_size=0.20,random_state = 50 ) #, shuffle=False
X_train=X_train
Y_train=Y_train
X_Validation=X_Validation
Y_Validation=Y_Validation
hm_epochs = 500
n_classes = 2
batch_size = 99
batch_size_val=124
chunk_size =1000
n_chunks =15
rnn_size = 256
trainSamples,FeaturesLength=Y_train.shape
ValidationSamples,FeaturesLength=Y_Validation.shape
loss=[];
Val_Accuracy=[];
with tf.name_scope('Inputs'):
x = tf.placeholder('float', [None, n_chunks,chunk_size],name="Features")
y = tf.placeholder('float',name="Lables")
def recurrent_neural_network(x):
#####################################################################
W = {
'hidden': tf.Variable(tf.random_normal([chunk_size, rnn_size])),
'output': tf.Variable(tf.random_normal([rnn_size, n_classes]))
}
biases = {
'hidden': tf.Variable(tf.random_normal([rnn_size], mean=1.0)),
'output': tf.Variable(tf.random_normal([n_classes]))
}
x = tf.transpose(x, [1,0,2])
x = tf.reshape(x, [-1,chunk_size])
x = tf.nn.relu(tf.matmul(x, W['hidden']) + biases['hidden'])
x = tf.split (x,n_chunks, 0)
# new shape: n_steps * (batch_size, n_hidden)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
# Get LSTM cell output
outputs, final_states = tf.contrib.rnn.static_rnn(lstm_cells, x, dtype=tf.float32)
# Get last time step's output feature for a "many to one" style classifier,
# as in the image describing RNNs at the top of this page
# lstm_last_output=tf.transpose(outputs, [1,0,2])
# Linear activation
return tf.matmul(outputs[-1], W['output']) + biases['output']
#####################################################################
#################################################################
# x = tf.unstack(x, n_chunks, 1)
#
#
# lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
# lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
# lstm_fw_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
#
#
# lstm_cell_3 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
# lstm_cell_4 = tf.contrib.rnn.BasicLSTMCell(rnn_size, forget_bias=1.0, state_is_tuple=True)
# lstm_bw_cell = tf.contrib.rnn.MultiRNNCell([lstm_cell_3, lstm_cell_4], state_is_tuple=True)
#
#
# # Define lstm cells with tensorflow
# # Forward direction cell
## lstm_fw_cell = rnn.BasicLSTMCell(rnn_size, forget_bias=1.0)
## # Backward direction cell
## lstm_bw_cell = rnn.BasicLSTMCell(rnn_size, forget_bias=1.0)
#
# # Get lstm cell output
# try:
# outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
# dtype=tf.float32)
# except Exception: # Old TensorFlow version only returns outputs not states
# outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
# dtype=tf.float32)
#
#
# # Hidden layer weights => 2*n_hidden because of forward + backward cells
# weights = tf.Variable(tf.random_normal([2*rnn_size, n_classes]),name="weights1")
#
# biases = tf.Variable(tf.random_normal([n_classes]),name="biases1")
#
# # Linear activation, using rnn inner loop last output
# return tf.matmul(outputs[-1], weights) + biases
def train_recurrnet_neural_network(x):
t = time.time()
prediction= recurrent_neural_network(x)
# OLD VERSION:
#cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
# NEW:
best_accuracy = 0.0
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits
(logits=prediction, labels=y) )
optimizer = tf.train.AdamOptimizer(0.001).minimize(cost)
with tf.Session() as sess:
# OLD:
#sess.run(tf.initialize_all_variables())
# NEW:
tf.device('/gpu:0')
sess.run(tf.global_variables_initializer())
# print(sess.run(weights))
kk=0
for epoch in range(hm_epochs):
epoch_loss = 0
valdd=[]
k=0;
for _ in range(int(trainSamples/batch_size)):
epoch_x = X_train[k:k+batch_size,:]
epoch_y = Y_train[k:k+batch_size,:]
epoch_x= epoch_x.reshape((batch_size, n_chunks, chunk_size ))
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
k=k+batch_size
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss)
loss.append(epoch_loss)
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
kk=0
for _ in range(int(ValidationSamples/batch_size_val)):
valdd.append(accuracy.eval({x:X_Validation[kk:kk+batch_size_val,:].reshape((-1,n_chunks, chunk_size)), y:Y_Validation[kk:kk+batch_size_val,:]}))
kk = kk+batch_size_val
if kk > ValidationSamples:
kk=0
accuracy_out=np.mean(valdd)
Val_Accuracy.append(accuracy_out)
print('Validation Accuracy : ',accuracy_out,' ||| Best Accuracy :',best_accuracy)
if accuracy_out > best_accuracy:
best_accuracy=accuracy_out
saver = tf.train.Saver()
save_path = saver.save(sess, "Trained Model/model.chk")
print("Model saved in file: %s" % save_path)
PreLabels=sess.run(tf.argmax(prediction,1), feed_dict={x: X_S.reshape((-1,n_chunks, chunk_size))})
Labels = Y_S.argmax(axis=1)
confusion = tf.confusion_matrix(Labels, PreLabels).eval()
elapsed = time.time() - t
print('elapsed Time : ', elapsed)
return PreLabels, Labels, confusion
#Save the variables to disk.
# save_path = saver.save(sess, "D:\\Speech Project\\Dataset\\BerlinImages\\BerlinImages\\1_Singleimages\\RNN Model For 257x45 double data spects\\model.ckpt")
# print("Best Accuracy == " ,best_accuracy)
# merged = tf.summary.merge_all()
# writer=tf.summary.FileWriter("C:\\Users\\AMIN\\Anaconda2\\envs\\py35\\Lib\\site-packages\\tensorflow\\tensorboard\\otherLogs",sess.graph)
PreLabels, Labels, confusion = train_recurrnet_neural_network(x)
#sio.savemat('./YouTube model/PreLabels.mat', mdict={'PreLabels': PreLabels})
#sio.savemat('./YouTube model/Labels.mat', mdict={'Labels': Labels})
#sio.savemat('./YouTube model/confusion.mat', mdict={'confusion': confusion})