-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_model.py
253 lines (223 loc) · 11.7 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#Fine-Tune ClinicalBERT on TCGA Pathology Reports across All Tissues. Binary Cancer-Type Classification.
#Expects GPU-training and external command line inputs (tissue, random seed)
#Example usasge: CUDA_VISIBLE_DEVICES=3 python3 train_model.py BRCA 0
import numpy as np
import pandas as pd
import torch
import random
from transformers import AutoTokenizer, AutoModel, BertForSequenceClassification
from transformers import TrainingArguments, Trainer
import time, os, pickle, glob, shutil, sys
from datetime import datetime
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score, average_precision_score, f1_score
from scipy.special import softmax
from eval_metrics import get_metrics
#Track Run-time
start = time.time()
curr_datetime = datetime.now().strftime('%m-%d-%Y_%Hh-%Mm')
#Set Random Seed
seed=int(sys.argv[2]) #Input - Random Seed
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
#Establish Directories
tissue=sys.argv[1] #Input - Tissue Name
input_dir = 'Target_Selection/final_data_proto_full/' #Input Directory
pickle_path = input_dir + 'Target_Data'+'_'+tissue+'.p'
input_data = pickle.load(open(pickle_path,'rb'))
root_dir = "model_output/all_subtypes_10_randomseeds_10e/" #Output Directory
model_output_dir = root_dir +tissue +'_rs'+str(seed)+'_'+curr_datetime+ '/'
val_best_model_evaluate_dir = model_output_dir + 'val_best_model_evaluate_tmp/'
for directory in [root_dir, model_output_dir, val_best_model_evaluate_dir]:
os.makedirs(directory, exist_ok=True)
#Training Parameters
eval_metric = 'eval_roc_auc'
training_args_dict = {'save_strategy':'steps',
'save_steps':32,
'save_total_limit':2,
'num_train_epochs':10,
'logging_steps':128,
'per_device_train_batch_size':16,
'per_device_eval_batch_size':16,
'evaluation_strategy':'steps',
'eval_steps':32,
'load_best_model_at_end':True,
'metric_for_best_model':eval_metric}
#Define Dataset
class Dataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels=None):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
if self.labels:
item["labels"] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.encodings["input_ids"])
#Define Performance Metrics
def compute_metrics(eval_pred):
raw_pred, labels = eval_pred
score_pred = softmax(raw_pred, axis=1)[:,1]
binary_pred = np.argmax(raw_pred, axis=1)
accuracy = accuracy_score(labels, binary_pred)
roc = roc_auc_score(labels, score_pred)
prc = average_precision_score(labels, score_pred)
f1 = f1_score(labels, binary_pred)
return {"accuracy": accuracy, "roc_auc": roc, "prc_auc": prc, "f1": f1}
#Track Model Performance
output_file = tissue+'_output_rs'+str(seed)+'.txt'
meta_df = pd.DataFrame({'tissue':[tissue]})
#Model and Tokenizer - ClinicalBERT with Binary Classification
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
model = BertForSequenceClassification.from_pretrained("emilyalsentzer/Bio_ClinicalBERT", num_labels=2)
#Load and Shuffle Data
data=input_data.sample(frac=1, random_state=seed)
X = list(data["text"])
y = list(data["label"])
X_train, X_val, y_train, y_val = train_test_split(X, y, stratify=y, test_size=0.1765, random_state=seed)
X_train_tokenized = tokenizer(X_train, padding=True, truncation=True, max_length=512)
X_val_tokenized = tokenizer(X_val, padding=True, truncation=True, max_length=512)
train_dataset = Dataset(X_train_tokenized, y_train)
val_dataset = Dataset(X_val_tokenized, y_val)
#Print Imbalance of Validation Set
print('Tissue:', tissue)
pos_prop_train = round(sum(y_train)/len(y_train),4)
pos_prop_val = round(sum(y_val)/len(y_val),4)
print('Proportion positive: Train:', pos_prop_train, 'Validation:', pos_prop_val)
#Define Training Parameters
#Automatically keeps the best model checkpoint saved (even if other models come after it)
#Note: Save_steps must be a round multiple of eval_steps (as per docs)
training_args = TrainingArguments(model_output_dir,
report_to=None,
seed=0,
save_strategy = training_args_dict['save_strategy'],
save_steps = training_args_dict['save_steps'],
save_total_limit = training_args_dict['save_total_limit'], #Deletes all but last X checkpoints
num_train_epochs = training_args_dict['num_train_epochs'],
logging_steps = training_args_dict['logging_steps'], #Logs training_loss every X steps
per_device_train_batch_size = training_args_dict['per_device_train_batch_size'],
per_device_eval_batch_size = training_args_dict['per_device_eval_batch_size'],
evaluation_strategy = training_args_dict['evaluation_strategy'],
eval_steps = training_args_dict['eval_steps'],
load_best_model_at_end = training_args_dict['load_best_model_at_end'],
metric_for_best_model = training_args_dict['metric_for_best_model'])
#Set Model Trainer
trainer = Trainer(model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics=compute_metrics)
#Fine-Tune ClinicalBERT
print(training_args_dict)
trainer.train()
end = time.time()
runtime = round((end - start)/60,3)
print('\nElapsed Time: ', runtime, 'Minutes')
#Save Performance Data
history_list = trainer.state.log_history
pickle.dump(history_list, open(model_output_dir+'state_log_history.p','wb'))
#Training - Performance
train_info = [a for a in history_list if 'loss' in a.keys()]
train_info_dict = {'step':[a['step'] for a in train_info],
'training_loss':[a['loss'] for a in train_info],
'epoch':[a['epoch'] for a in train_info],
'learning_rate':[a['learning_rate'] for a in train_info]}
train_info_df=pd.DataFrame(train_info_dict)
#Evaluation - Performance
e_info = [a for a in history_list if 'eval_loss' in a.keys()]
e_info_dict = {key:[a[key] for a in e_info] for key in e_info[0].keys()}
e_info_df=pd.DataFrame(e_info_dict)
train_info_df.to_csv(model_output_dir+'train_history.csv',index=False)
e_info_df.to_csv(model_output_dir+'eval_history.csv',index=False)
history_df = e_info_df.merge(train_info_df, on=['step','epoch'],how='outer')
history_df.sort_values(by='step',inplace=True)
history_df.to_csv(model_output_dir+'full_history.csv',index=False)
#Performance Plots
#Training Loss Plot
train_steps = [a['step'] for a in trainer.state.log_history if 'loss' in a.keys()]
train_loss = [a['loss'] for a in trainer.state.log_history if 'loss' in a.keys()]
plt.xlabel('Step')
plt.ylabel('Loss')
plt.title('Training Loss')
plt.plot(train_steps, train_loss)
plt.savefig(model_output_dir+'training_loss.png', bbox_inches='tight', dpi=600, facecolor='w')
plt.close()
#Evalation Loss Plot
e_steps = [a['step'] for a in trainer.state.log_history if 'eval_loss' in a.keys()]
e_loss = [a['eval_loss'] for a in trainer.state.log_history if 'eval_loss' in a.keys()]
plt.xlabel('Step')
plt.ylabel('Loss')
plt.title('Loss during Training')
plt.plot(train_steps, train_loss, label='Train')
plt.plot(e_steps, e_loss, label='Validation')
plt.legend()
plt.savefig(model_output_dir+'validation_loss.png', bbox_inches='tight', dpi=600, facecolor='w')
plt.close()
#Evaluation Accuracy Plot
e_steps = [a['step'] for a in trainer.state.log_history if 'eval_loss' in a.keys()]
e_acc = [a['eval_accuracy'] for a in trainer.state.log_history if 'eval_loss' in a.keys()]
plt.xlabel('Step')
plt.ylabel('Accuracy')
plt.title('Validation Accuracy')
plt.plot(e_steps, e_acc)
plt.savefig(model_output_dir+'validation_acc.png', bbox_inches='tight', dpi=600, facecolor='w')
plt.close()
#AU-ROC, AU-PRC Plots
e_steps = [a['step'] for a in trainer.state.log_history if 'eval_loss' in a.keys()]
e_roc = [a['eval_roc_auc'] for a in trainer.state.log_history if 'eval_loss' in a.keys()]
e_prc = [a['eval_prc_auc'] for a in trainer.state.log_history if 'eval_loss' in a.keys()]
plt.xlabel('Step')
plt.ylabel('Area Under Curve')
plt.title('Validation Metrics')
plt.plot(e_steps, e_roc,label='AU-ROC')
plt.plot(e_steps, e_prc,label='AU-PRC')
plt.legend()
plt.savefig(model_output_dir+'validation_auroc_auprc.png', bbox_inches='tight', dpi=600, facecolor='w')
plt.close()
#Identify Best_model
model_checkpoints = glob.glob(model_output_dir+'checkpoint*')
checkpoint_steps = [int(a.split('-')[-1]) for a in model_checkpoints]
checkpoint_data = [a for a in history_list if ((eval_metric in a.keys()) and (a['step'] in checkpoint_steps))]
eval_full_list = [a[eval_metric] for a in checkpoint_data]
best_checkpoint_steps = [a['step'] for a in checkpoint_data if a[eval_metric] == max(eval_full_list)]
#If multiple checkpoints have the same eval_metric, choose the chronologically later one (trained on more data)
best_model_checkpoint = [a for a in model_checkpoints if str(max(best_checkpoint_steps)) == a.split('-')[-1]][0]
print(best_model_checkpoint)
#Save Best Model Metadata
info_for_test_evaluation = {'best_model_checkpoint':best_model_checkpoint,
'model_output_dir':model_output_dir}
pickle.dump(info_for_test_evaluation, open(model_output_dir+'info_for_test_evaluation.p','wb'))
#Print Best Model Metrics (Validation Set Performance)
print('Validation - Best Model Performance')
best_model = BertForSequenceClassification.from_pretrained(best_model_checkpoint, num_labels=2, local_files_only=True)
best_trainer = Trainer(model=best_model, args=TrainingArguments(output_dir = val_best_model_evaluate_dir))
y_pred, _, _ = best_trainer.predict(Dataset(X_val_tokenized))
ac, au_roc, au_prc, n_pred_pos, n_actual_pos = get_metrics(y_pred, y_val, output_dir=model_output_dir, suffix='val_best_model', plot=True)
print('\nAccuracy - ', round(ac,4), 'AU-ROC - ', round(au_roc,4), 'AU-PRC - ', round(au_prc,4))
#Update meta_df with Validation Set Performance and other Metadata
meta_df['runtime_min'] = [runtime]
meta_df['best_model_steps'] = [best_model_checkpoint.split('-')[-1]]
meta_df['best_model_dir'] = [best_model_checkpoint]
meta_df['pos_prop_train'] = [pos_prop_train]
meta_df['pos_prop_val'] = [pos_prop_val]
meta_df['save_steps'] = [training_args_dict['save_steps']]
meta_df['num_train_epochs'] = [training_args_dict['num_train_epochs']]
meta_df['logging_steps'] = [training_args_dict['logging_steps']]
meta_df['per_device_train_batch_size'] = [training_args_dict['per_device_train_batch_size']]
meta_df['per_device_eval_batch_size'] = [training_args_dict['per_device_eval_batch_size']]
meta_df['eval_steps'] = [training_args_dict['eval_steps']]
meta_df['val_accuracy_bestmodel'] = [ac]
meta_df['val_au_roc_bestmodel'] = [au_roc]
meta_df['val_au_prc_bestmodel'] = [au_prc]
meta_df['random_seed'] = [seed]
meta_df['n_pred_pos'] = [n_pred_pos]
meta_df['n_actual_pos'] = [n_actual_pos]
#Save meta_df to csv
meta_df.to_csv(model_output_dir+tissue+'_rs'+str(seed)+'_meta_df.csv',index=False)
#Delete checkpoint that is not the best model
non_best_model_checkpoint = [a for a in model_checkpoints if str(max(best_checkpoint_steps)) != a.split('-')[-1]][0]
shutil.rmtree(non_best_model_checkpoint)
print('Non-Best-Model checkpoint deleted')