Skip to content

Latest commit

 

History

History
26 lines (13 loc) · 1.71 KB

README.md

File metadata and controls

26 lines (13 loc) · 1.71 KB

Water Detect Sensitivity Test

Synopsis

We developed a sensitivity analysis algorithm to test all possible combinations of inputs parameters (i.e., spectral indices, maximum clustering, and regularization) for Water Detect within a specified range and assessed accuracy, determining the most accurate inputs for each specific case, and producing a most-to-least accuracy ranking. The developed sensitivity algorithm has four main inputs: 1) the Water Detect default initialization file as per Cordeiro, Martinez, and Peña-Luque (2021); 2) the range of maximum clustering and regularization given by lowest, highest, and step values; 3) the images to be tested, and 4) the ground truth raster to be used in the accuracy assessment.

How to Cite

Tayer T.C., Douglas M.M., Cordeiro M.C.R., Tayer A.D.N., Callow J.N., Beesley L. & McFarlane D. (2023) Improving the accuracy of the Water Detect algorithm using Sentinel-2, Planetscope and sharpened imagery: a case study in an intermittent river, GIScience & Remote Sensing, 60:1, DOI: 10.1080/15481603.2023.2168676

Tutorial

Supported Formats

Dependencies



References

Tayer T.C., Douglas M.M., Cordeiro M.C.R., Tayer A.D.N., Callow J.N., Beesley L. & McFarlane D. (2023) Improving the accuracy of the Water Detect algorithm using Sentinel-2, Planetscope and sharpened imagery: a case study in an intermittent river, GIScience & Remote Sensing, 60:1, DOI: 10.1080/15481603.2023.2168676

Cordeiro, M. C. R.; Martinez, J.-M.; Peña-Luque, S. Automatic Water Detection from Multidimensional Hierarchical Clustering for Sentinel-2 Images and a Comparison with Level 2A Processors. Remote Sensing of Environment 2021, 253, 112209. https://doi.org/10.1016/j.rse.2020.112209.