-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_tokenizers.py
176 lines (154 loc) · 6.09 KB
/
create_tokenizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from tokenizers import (
models,
normalizers,
pre_tokenizers,
trainers,
Tokenizer,
)
from tokenizers.models import (
BPE,
WordPiece
)
from tokenizers.normalizers import (
Sequence,
NFD,
Lowercase,
StripAccents
)
from tokenizers.trainers import (
BpeTrainer,
WordPieceTrainer
)
from tokenizers.pre_tokenizers import (
ByteLevel
)
from transformers import (
HfArgumentParser,
RobertaTokenizerFast,
AutoTokenizer
)
from dataclasses import (
dataclass,
field
)
import sys
import os
@dataclass
class TokenizerArguments:
do_train: bool=field(
default=True,
metadata={"help": "whether to train the specific toeknizer."}
)
data_file: str=field(
default="pubmed_base.txt",
metadata={"help": "file or files used to train the tokenizer."}
)
tok_type: str=field(
default="wordpiece",
metadata={"help": "the type of tokenizer."}
)
specific_tokenizer_output: str=field(
default=None,
metadata={"help": "the json file path to save the trained specific toeknizer, used by 'tokenizer.save'. The basename without extension will be used as a directory to save the wrapped tokenizer by 'tokenizer.save_pretrained'."}
)
specific_tokenizer_input: str=field(
default=None,
metadata={"help": "the json file to load the trained specific toeknizer."}
)
vocab_size: int=field(
default=30000,
metadata={"help": "the size of the vocab."}
)
do_merge: bool=field(
default=True,
metadata={"help": "whether to merge the specific toeknizer with default roberta tokenizer."}
)
max_added_words: int=field(
default=500,
metadata={"help": "if merge, the maximum number of specific words added into the default roberta vocabulary."}
)
merged_tokenizer_output: str=field(
default=None,
metadata={"help": "the directory path to save the merged toeknizer."}
)
wrap: bool=field(
default=False,
metadata={"help":"whether to save the wrapped specific tokenizer."}
)
def train_tokenizer(file, tok_type, vocab_size=30000):
files = []
files.append(file)
Models = {
"wordpiece": WordPiece,
"bpe": BPE
}
Trainers = {
"wordpiece": WordPieceTrainer,
"bpe": BpeTrainer
}
tokenizer = Tokenizer(Models[tok_type](unk_token="<unk"))
tokenizer.normalizer = Sequence([NFD(), Lowercase(), StripAccents()])
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
special_tokens = ["<unk>","<pad>","<mask>","<s>","</s>"]
trainer = Trainers[tok_type](vocab_size=vocab_size, special_tokens=special_tokens, continuing_subword_prefix='Ġ')
tokenizer.model = Models[tok_type](unk_token="<unk>")
tokenizer.train(files, trainer=trainer)
return tokenizer
def merge_tokenizer(general_tokenizer, specific_tokenizer, max_added_words):
specific_vocab = [k for k, v in specific_tokenizer.get_vocab().items()]
specific_size = len(specific_vocab)
general_vocab = [k for k, v in general_tokenizer.get_vocab().items()]
general_size = len(general_vocab)
same_tokens_list = []
diff_tokens_list = []
# loop over each word in specific_vocab
for idx_new, w in enumerate(specific_vocab):
try:
idx_old = general_vocab.index(w)
except:
idx_old = -1
if idx_old >= 0:
same_tokens_list.append((w, idx_new))
else:
diff_tokens_list.append((w, idx_new))
new_tokens = [k for k, v in diff_tokens_list]
print(f"[ SAME ] The specific tokenizer introduce {len(same_tokens_list)} same words.")
print(f"[ DIFF ] The specific tokenizer introduce {len(new_tokens)} new words.")
if len(new_tokens) > max_added_words:
new_tokens = new_tokens[:max_added_words]
added_tokens = general_tokenizer.add_tokens(new_tokens)
print("[ BEFORE ] tokenizer vocab size:", general_size)
print("[ AFTER ] tokenizer vocab size: {}+{}={}".format(general_size,added_tokens, general_size+added_tokens))
return general_tokenizer, added_tokens
def main():
parser = HfArgumentParser([TokenizerArguments])
tok_args = parser.parse_args_into_dataclasses()[0]
'''
train a new tokenizer on specific corpus
'''
if tok_args.do_train:
print(f"------Train a specific tokenizer with vocabulary size {tok_args.vocab_size}------")
tokenizer = train_tokenizer(tok_args.data_file, tok_args.tok_type, tok_args.vocab_size)
if tok_args.specific_tokenizer_output != None:
print(f"------Save specific tokenizer to {tok_args.specific_tokenizer_output}------")
tokenizer.save(tok_args.specific_tokenizer_output) # in json format
if tok_args.wrap:
print(f"------Save the wrapped specific tokenizer to {tok_args.specific_tokenizer_output.split('.')[0]} for future loading from pretrained------")
wrapped_tokenizer = RobertaTokenizerFast(tokenizer_object=tokenizer)
wrapped_tokenizer.save_pretrained(tok_args.specific_tokenizer_output.split('.')[0]) # a directory
else:
print(f"------Load specific tokenizer from {tok_args.specific_tokenizer_input}------")
tokenizer = Tokenizer.from_file(tok_args.specific_tokenizer_input)
'''
merge a specific tokenizer with the default roberta-base tokenizer
'''
if tok_args.do_merge:
roberta_tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
print(f"------Merge the default Roberta tokenizer with the specific tokenizer------")
print(f"Max Added Words: {tok_args.max_added_words}")
tokenizer, add_tokens = merge_tokenizer(roberta_tokenizer, tokenizer, tok_args.max_added_words)
if tok_args.merged_tokenizer_output != None:
print("Save merged tokenizer to {}".format(tok_args.merged_tokenizer_output))
tokenizer.save_pretrained(tok_args.merged_tokenizer_output)
if __name__ == "__main__":
main()