-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodels.py
440 lines (401 loc) · 20.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import dgl
import torch
import math
import time
import numpy as np
import dgl.nn.pytorch as dglnn
import torch.nn as nn
from utils import *
from metrics import *
class Perceptron(torch.nn.Module):
def __init__(self, in_dim, out_dim, dropout=0, norm=False, act=True):
super(Perceptron, self).__init__()
self.weight = torch.nn.Parameter(torch.empty(in_dim, out_dim))
torch.nn.init.xavier_uniform_(self.weight.data)
self.bias = torch.nn.Parameter(torch.empty(out_dim))
torch.nn.init.zeros_(self.bias.data)
self.norm = norm
if norm:
self.norm = torch.nn.BatchNorm1d(out_dim, eps=1e-9, track_running_stats=True)
self.dropout = torch.nn.Dropout(dropout)
self.act = act
def forward(self, f_in):
f_in = self.dropout(f_in)
f_in = torch.mm(f_in, self.weight) + self.bias
if self.act:
f_in = torch.nn.functional.relu(f_in)
if self.norm:
f_in = self.norm(f_in)
return f_in
def reset_parameters():
torch.nn.init.xavier_uniform_(self.weight.data)
torch.nn.init.zeros_(self.bias.data)
class TimeEnc(nn.Module):
# generate time encoding (TGAT, ICLR'21) from node number (nid)
def __init__(self, dim_t, nume):
super(TimeEnc, self).__init__()
self.dim_t = dim_t
self.nume = nume
self.basis_freq = torch.nn.Parameter((torch.from_numpy(1 / 10 ** np.linspace(0, 9, self.dim_t))).float())
self.phase = torch.nn.Parameter(torch.zeros(self.dim_t).float())
def forward(self, nid, ts):
t = ts - (nid // self.nume)
t = t.view(-1, 1) * self.basis_freq + self.phase
return torch.cos(t)
class EmbModule(nn.Module):
def __init__(self, dim_in, dim_out, dim_t, numr, nume, g, dropout=0, deepth=2, sampling=None, granularity=1, r_limit=None):
super(EmbModule, self).__init__()
self.dim_in = dim_in
self.dim_out = dim_out
self.dim_t = dim_t
self.numr = numr
self.nume = nume
self.deepth = deepth
self.g = g
self.granularity = granularity
mods = dict()
mods['time_enc'] = TimeEnc(dim_t, nume)
mods['entity_emb'] = nn.Embedding(nume, dim_in)
if r_limit is None:
r_limit = numr
for l in range(self.deepth):
mods['norm' + str(l)] = nn.LayerNorm(dim_in + dim_t)
# mods['dropout' + str(l)] = nn.Dropout(dropout)
conv_dict = dict()
for r in range(r_limit):
conv_dict['r' + str(r)] = dglnn.GATConv(dim_in + dim_t, dim_out // 4, 4, feat_drop=dropout, attn_drop=dropout, residual=False)
conv_dict['-r' + str(r)] = dglnn.GATConv(dim_in + dim_t, dim_out // 4, 4, feat_drop=dropout, attn_drop=dropout, residual=False)
conv_dict['self'] = dglnn.GATConv(dim_in + dim_t, dim_out // 4, 4, feat_drop=dropout, attn_drop=dropout, residual=False)
# conv_dict['r' + str(r)] = dglnn.GraphConv(dim_in + dim_t, dim_out)
# conv_dict['-r' + str(r)] = dglnn.GraphConv(dim_in + dim_t, dim_out)
# conv_dict['self'] = dglnn.GraphConv(dim_in + dim_t, dim_out)
mods['conv' + str(l)] = dglnn.HeteroGraphConv(conv_dict, aggregate='mean')
mods['act' + str(l)] = nn.ReLU()
dim_in = dim_out
self.mods = nn.ModuleDict(mods)
if sampling is not None:
fanouts = [int(d) for d in sampling.split('/')]
self.sampler = dgl.dataloading.MultiLayerNeighborSampler(fanouts = fanouts)
else:
self.sampler = dgl.dataloading.MultiLayerFullNeighborSampler(self.deepth)
def forward(self, ent, hist_ts, ts, log=True, phi_offset=0):
tss = time.time()
offset = (hist_ts // self.granularity) * self.nume
ent = ent.repeat_interleave(offset.shape[0]).view(ent.shape[0], -1).cpu()
root = torch.flatten(ent + offset)
# return self.mods['entity_emb'](torch.remainder(root.cuda(), self.nume))
# dgl sampler need input to be unique
root, root_idx = torch.unique(root, sorted=True, return_inverse=True)
blocks = self.sampler.sample_blocks(self.g, root)
blk = [blk.to('cuda:0') for blk in blocks]
if log:
get_writer().add_scalar('time_sampling', time.time() - tss, get_global_step('time_sampling'))
tss = time.time()
# print(root.shape[0], blk[0].srcdata['_ID'].shape[0])
h = self.mods['entity_emb'](torch.remainder(blk[0].srcdata['_ID'], self.nume))
for l in range(self.deepth):
phi = self.mods['time_enc'](blk[l].srcdata['_ID'], ts + phi_offset)
h = torch.cat([h, phi], dim=1)
h = self.mods['norm' + str(l)](h)
# h = self.mods['dropout' + str(l)](h)
h = self.mods['conv' + str(l)](blk[l], {'entity': h})['entity']
h = h.view(h.shape[0], -1)
h = self.mods['act' + str(l)](h)
h = h[root_idx].view(-1, offset.shape[0], h.shape[-1])
if log:
get_writer().add_scalar('time_emb', time.time() - tss, get_global_step('time_emb'))
return h.view(h.shape[0], -1)
class AttentionLayer(torch.nn.Module):
def __init__(self, in_dim, out_dim, dropout=0, h_att=8):
super(AttentionLayer, self).__init__()
self.h_att = h_att
mods = dict()
for h in range(h_att):
mods['dropout' + str(h)] = nn.Dropout(p=dropout)
mods['w_v_' + str(h)] = nn.Linear(in_dim, out_dim // h_att)
self.mods = nn.ModuleDict(mods)
def forward(self, hid, adj):
out = list()
for h in range(self.h_att):
hidd = self.mods['dropout' + str(h)](hid)
v = self.mods['w_v_' + str(h)](hidd)
out.append(torch.matmul(adj[h], v))
out = torch.cat(out, dim=1)
return torch.nn.functional.relu(out)
class Copy(torch.nn.Module):
# copy module used in AAAI'21 CyGNet
def __init__(self, in_dim, dim_r, nume, numr, dropout=0):
super(Copy, self).__init__()
mods = dict()
mods['subject_relation_emb'] = nn.Embedding(numr, dim_r)
mods['object_relation_emb'] = nn.Embedding(numr, dim_r)
mods['object_classifier'] = Perceptron(in_dim + dim_r, nume, act=False, dropout=dropout)
mods['subject_classifier'] = Perceptron(in_dim + dim_r, nume, act=False, dropout=dropout)
self.mods = nn.ModuleDict(mods)
def forward(self, sub_emb, obj_emb, rel, copy_mask):
sub_rel_emb = self.mods['subject_relation_emb'](rel)
obj_rel_emb = self.mods['object_relation_emb'](rel)
raw_sub_predict = self.mods['subject_classifier'](torch.cat([obj_emb, obj_rel_emb], 1))
raw_obj_predict = self.mods['object_classifier'](torch.cat([sub_emb, sub_rel_emb], 1))
masked_predict = torch.tensor([-100.0]).cuda().repeat(raw_sub_predict.shape[0] * 2, raw_sub_predict.shape[1])
raw_predict = torch.cat([raw_sub_predict, raw_obj_predict], dim=0)
masked_predict[copy_mask] = raw_predict[copy_mask]
return masked_predict[:masked_predict.shape[0] // 2], masked_predict[masked_predict.shape[0] // 2:]
class Attention(torch.nn.Module):
def __init__(self, in_dim, out_dim, h_att=8):
super(Attention, self).__init__()
self.h_att = h_att
mods = dict()
for h in range(h_att):
mods['w_q_' + str(h)] = nn.Linear(in_dim, out_dim // h_att)
mods['w_k_' + str(h)] = nn.Linear(in_dim, out_dim // h_att)
mods['softmax' + str(h)] = nn.Softmax(dim=1)
self.mods = nn.ModuleDict(mods)
def forward(self, hid):
out = list()
# trick from Transformer paper: to avoid gradient vanishing.
# var_norm = math.sqrt(self.mods['w_k_0'].weight.shape[-1])
for h in range(self.h_att):
q = self.mods['w_q_' + str(h)](hid)
k = self.mods['w_k_' + str(h)](hid)
a = torch.nn.functional.leaky_relu(torch.matmul(q, torch.transpose(k, -1, -2)), negative_slope=0.1)
out.append(self.mods['softmax' + str(h)](a))
# out.append(self.mods['softmax' + str(h)](torch.matmul(q, torch.transpose(k, -1, -2)) / var_norm))
return out
class SelfAttention(torch.nn.Module):
def __init__(self, in_dim, hist_l, emb_dim, h_att=8, dropout=0):
super(SelfAttention, self).__init__()
self.emb_dim = emb_dim
self.in_dim = in_dim
self.h_att = h_att
self.hist_l = hist_l
mods = dict()
mods['attention'] = Attention(in_dim // hist_l, emb_dim * h_att, h_att=h_att)
for h in range(h_att):
mods['dropout' + str(h)] = nn.Dropout(p=dropout)
mods['w_v_' + str(h)] = nn.Linear(in_dim // hist_l, emb_dim // h_att)
self.mods = nn.ModuleDict(mods)
def forward(self, hid):
hid = hid.view(hid.shape[0], self.hist_l, -1)
att = self.mods['attention'](hid)
ans = list()
for h in range(self.h_att):
hidd = self.mods['dropout' + str(h)](hid)
v = self.mods['w_v_' + str(h)](hidd)
ans.append(torch.matmul(att[h], v))
ans = torch.cat(ans, dim=-1)
# import pdb; pdb.set_trace()
return torch.nn.functional.relu(ans).view(ans.shape[0], -1)
class Conv(torch.nn.Module):
def __init__(self, in_dim, emb_dim, dropout=0):
super(Conv, self).__init__()
self.emb_dim = emb_dim
mods = dict()
mods['conv'] = torch.nn.Conv2d(1, 1, kernel_size=3, stride=1)
mods['dropout'] = torch.nn.Dropout(dropout)
self.mods = nn.ModuleDict(mods)
def forward(self, hid):
hid = hid.view(hid.shape[0], 1, -1, self.emb_dim)
hid = self.mods['dropout'](hid)
hid = self.mods['conv'](hid)
hid = hid.view(hid.shape[0], -1)
return torch.nn.functional.relu(hid)
class RNN(nn.Module):
def __init__(self, in_dim, emb_dim, out_dim, dropout=0):
super(RNN, self).__init__()
self.emb_dim = emb_dim
mods = dict()
mods['rnn'] = torch.nn.RNN(emb_dim, hidden_size=out_dim, num_layers=2, batch_first=True, dropout=dropout)
self.mods = nn.ModuleDict(mods)
def forward(self, hid):
hid = hid.view(hid.shape[0], -1, self.emb_dim)
hid = self.mods['rnn'](hid)
return hid[0][:,-1,:]
class LSTM(nn.Module):
def __init__(self, in_dim, emb_dim, out_dim, dropout=0):
super(LSTM, self).__init__()
self.emb_dim = emb_dim
mods = dict()
mods['lstm'] = torch.nn.LSTM(emb_dim, hidden_size=out_dim, num_layers=2, batch_first=True, dropout=dropout)
self.mods = nn.ModuleDict(mods)
def forward(self, hid):
hid = hid.view(hid.shape[0], -1, self.emb_dim)
hid = self.mods['lstm'](hid)
return hid[0][:,-1,:]
class GRU(nn.Module):
def __init__(self, in_dim, emb_dim, out_dim, dropout=0):
super(GRU, self).__init__()
self.emb_dim = emb_dim
mods = dict()
mods['gru'] = torch.nn.GRU(emb_dim, hidden_size=out_dim, num_layers=2, batch_first=True, dropout=dropout)
self.mods = nn.ModuleDict(mods)
def forward(self, hid):
hid = hid.view(hid.shape[0], -1, self.emb_dim)
hid = self.mods['gru'](hid)
return hid[0][:,-1,:]
class FixStepModel(torch.nn.Module):
def __init__(self, emb_conf, gen_conf, train_conf, g, nume, numr, step, s_dist=None, o_dist=None):
super(FixStepModel, self).__init__()
# self.copy = gen_conf['copy']
self.emb_dim = emb_conf['dim']
self.gen_dim = [int(d) for d in gen_conf['dim'].split('-')]
self.gen_arch = gen_conf['arch'].split('-')
self.gen_att_h = [int(h) for h in gen_conf['att_head'].split('-')]
self.gen_l = len(self.gen_dim)
self.gen_hist = torch.tensor([int(x) for x in gen_conf['history'].split()]).cpu()
self.inf_step = step
self.train_conf = train_conf
self.norm_loss = False
if 'norm_loss' in train_conf:
if train_conf['norm_loss']:
self.norm_loss = True
self.s_dist = torch.from_numpy(s_dist).cuda()
self.o_dist = torch.from_numpy(o_dist).cuda()
mods = dict()
self.time_emb = False
if 'dim_t' in gen_conf:
self.time_emb = True
self.time_emb_vec = torch.nn.Parameter(torch.Tensor(1, gen_conf['dim_t']), requires_grad=False)
torch.nn.init.xavier_uniform_(self.time_emb_vec, gain=torch.nn.init.calculate_gain('relu'))
r_limit = None if not 'r_limit' in emb_conf else emb_conf['r_limit']
mods['emb'] = EmbModule(emb_conf['dim_e'], emb_conf['dim'], emb_conf['dim_t'], numr, nume, g, train_conf['dropout'], emb_conf['layer'], sampling=emb_conf['sample'], granularity=emb_conf['granularity'], r_limit=r_limit)
# if self.copy > 0:
mods['copy'] = Copy(self.emb_dim, gen_conf['dim_r'], nume, numr, dropout=train_conf['dropout'])
mods['subject_relation_emb'] = nn.Embedding(numr, gen_conf['dim_r'])
mods['object_relation_emb'] = nn.Embedding(numr, gen_conf['dim_r'])
in_dim = emb_conf['dim'] * self.gen_hist.shape[0]
for arch, out_dim, att_h, l in zip(self.gen_arch, self.gen_dim, self.gen_att_h, list(range(self.gen_l))):
mods['norm_' + str(l)] = nn.LayerNorm(in_dim)
if arch == 'dense':
mods['layer_' + str(l)] = Perceptron(in_dim, out_dim, dropout=train_conf['dropout'])
elif arch == 'selfatt':
mods['layer_' + str(l)] = SelfAttention(in_dim, self.gen_hist.shape[0], out_dim // self.gen_hist.shape[0], att_h, dropout=train_conf['dropout'])
elif arch == 'conv':
mods['layer_' + str(l)] = Conv(in_dim, emb_conf['dim'], dropout=train_conf['dropout'])
elif arch == 'rnn':
mods['layer_' + str(l)] = RNN(in_dim, emb_conf['dim'], out_dim, dropout=train_conf['dropout'])
elif arch == 'lstm':
mods['layer_' + str(l)] = LSTM(in_dim, emb_conf['dim'], out_dim, dropout=train_conf['dropout'])
elif arch == 'gru':
mods['layer_' + str(l)] = GRU(in_dim, emb_conf['dim'], out_dim, dropout=train_conf['dropout'])
else:
raise NotImplementedError
in_dim = out_dim
rediual_dim = sum(self.gen_dim)
dim_t = 0 if not self.time_emb else gen_conf['dim_t']
mods['object_classifier'] = Perceptron(rediual_dim + gen_conf['dim_r'] + dim_t, nume, act=False, dropout=train_conf['dropout'])
mods['subject_classifier'] = Perceptron(rediual_dim + gen_conf['dim_r'] + dim_t, nume, act=False, dropout=train_conf['dropout'])
self.mods = nn.ModuleDict(mods)
self.loss_fn = nn.CrossEntropyLoss(reduction='none')
self.copy_loss_fn = nn.CrossEntropyLoss(reduction='none')
self.optimizer = torch.optim.Adam(self.parameters(), lr=train_conf['lr'], weight_decay=train_conf['weight_decay'], amsgrad=False)
self.copy_optimizer = torch.optim.Adam(self.mods['copy'].parameters(), lr=train_conf['lr'], weight_decay=train_conf['weight_decay'], amsgrad=False)
self._deb=0
def reset_gen_parameters(self):
# reset parameters for generation network and optimizers
for l in range(self.gen_l):
for m in [self.mods['norm_' + str(l)]]:
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
for m in self.mods['layer_' + str(l)].children():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
for m in self.mods['copy'].children():
if hasattr(m, 'reset_parameters'):
m.reset_parameters()
self.optimizer = torch.optim.Adam(self.parameters(), lr=self.train_conf['lr'], weight_decay=self.train_conf['weight_decay'], amsgrad=False)
self.copy_optimizer = torch.optim.Adam(self.mods['copy'].parameters(), lr=self.train_conf['lr'], weight_decay=self.train_conf['weight_decay'], amsgrad=False)
def forward(self, sub, obj, rel, ts, copy_mask=None, freeze_emb=False, log=True, phi_offset=0):
hid = self.mods['emb'](torch.cat([sub, obj]), ts - self.inf_step - self.gen_hist, ts, log=log, phi_offset=phi_offset)
if freeze_emb:
hid = hid.detach()
tss = time.time()
copy_sub_predict = None
copy_obj_predict = None
# if self.copy > 0:
copy_hid = hid[:, -self.emb_dim:]
# only propagate gradients within the copy module
copy_sub_predict, copy_obj_predict = self.mods['copy'](copy_hid[:sub.shape[0]].detach(), copy_hid[sub.shape[0]:].detach(), rel, copy_mask)
# if self._deb > 100:
# _emb=hid
# import pdb; pdb.set_trace()
residual_hid = list()
for l in range(self.gen_l):
hid = self.mods['norm_' + str(l)](hid)
hid = self.mods['layer_' + str(l)](hid)
residual_hid.append(hid)
hid = torch.cat(residual_hid, dim=1)
sub_emb = hid[:sub.shape[0]]
obj_emb = hid[sub.shape[0]:]
sub_rel_emb = self.mods['subject_relation_emb'](rel)
obj_rel_emb = self.mods['object_relation_emb'](rel)
if self.time_emb:
t_emb = self.time_emb_vec[0]
t_emb = (t_emb * ts).repeat(sub_emb.shape[0]).reshape(-1, t_emb.shape[0])
sub_emb = torch.cat([sub_emb, t_emb], 1)
obj_emb = torch.cat([obj_emb, t_emb], 1)
sub_predict = self.mods['subject_classifier'](torch.cat([obj_emb, obj_rel_emb], 1))
obj_predict = self.mods['object_classifier'](torch.cat([sub_emb, sub_rel_emb], 1))
if log:
get_writer().add_scalar('time_gen', time.time() - tss, get_global_step('time_gen'))
return sub_predict, obj_predict, copy_sub_predict, copy_obj_predict
def step(self, sub, obj, rel, ts, filter_mask=None, copy_mask=None, train=True, log=True, freeze_emb=False, phi_offset=0):
if train:
self.train()
self.optimizer.zero_grad()
self.copy_optimizer.zero_grad()
else:
self.eval()
if train==False:
self._deb += 1
sub_pre, obj_pre, copy_sub_predict, copy_obj_predict = self.forward(sub, obj, rel, ts, copy_mask, freeze_emb=freeze_emb, log=log, phi_offset=phi_offset)
tru = torch.cat([sub, obj])
# if train==False:
# _csp = copy_sub_predict
# _sp = sub_pre
# _pcsp = nn.functional.softmax(_csp, dim=1)
# _psp = nn.functional.softmax(_sp, dim=1)
# seperate copy and gen loss to avoid large copy ratio lead to small gradients in gen
gen_pre = torch.cat([sub_pre, obj_pre])
copy_pre = torch.cat([copy_sub_predict, copy_obj_predict])
gen_loss = self.loss_fn(gen_pre, tru)
copy_loss = self.copy_loss_fn(copy_pre, tru)
if not self.norm_loss:
gen_loss = torch.mean(gen_loss)
copy_loss = torch.mean(copy_loss)
else:
norm_fact = torch.cat([self.s_dist[sub],self.o_dist[obj]], dim=0)
# assert (norm_fact==0).nonzero().shape[0]==0
norm_fact = norm_fact / torch.sum(norm_fact)
# import pdb; pdb.set_trace()
gen_loss = torch.sum(gen_loss * norm_fact)
copy_loss = torch.sum(copy_loss * norm_fact)
if train:
gen_loss.backward()
copy_loss.backward()
self.optimizer.step()
self.copy_optimizer.step()
# sub_pre = nn.functional.softmax(sub_pre, dim=1)
# obj_pre = nn.functional.softmax(obj_pre, dim=1)
# if self.copy > 0:
# copy_sub_predict = nn.functional.softmax(copy_sub_predict, dim=1)
# copy_obj_predict = nn.functional.softmax(copy_obj_predict, dim=1)
# sub_pre = sub_pre * (1 - self.copy) + copy_sub_predict * self.copy
# obj_pre = obj_pre * (1 - self.copy) + copy_obj_predict * self.copy
with torch.no_grad():
sub_pre += copy_sub_predict
obj_pre += copy_obj_predict
pre = torch.cat([sub_pre, obj_pre])
pre = pre.clone().detach()
tru = tru.clone().detach()
pre_thres = pre.gather(1,tru.unsqueeze(1))
rank_unf = get_rank(pre, pre_thres)
rank_fil = None
if filter_mask is not None:
pre[filter_mask] = float('-inf')
pre = pre.scatter(1, tru.unsqueeze(1), pre_thres)
rank_fil = get_rank(pre, pre_thres)
# if train==False:
# if self._deb > 100:
# import pdb; pdb.set_trace()
return gen_loss, rank_unf, rank_fil