forked from amazon-science/tgl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
165 lines (155 loc) · 6.41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import torch
import os
import yaml
import dgl
import time
import pandas as pd
import numpy as np
def load_feat(d, rand_de=0, rand_dn=0):
node_feats = None
if os.path.exists('DATA/{}/node_features.pt'.format(d)):
node_feats = torch.load('DATA/{}/node_features.pt'.format(d))
if node_feats.dtype == torch.bool:
node_feats = node_feats.type(torch.float32)
edge_feats = None
if os.path.exists('DATA/{}/edge_features.pt'.format(d)):
edge_feats = torch.load('DATA/{}/edge_features.pt'.format(d))
if edge_feats.dtype == torch.bool:
edge_feats = edge_feats.type(torch.float32)
if rand_de > 0:
if d == 'LASTFM':
edge_feats = torch.randn(1293103, rand_de)
elif d == 'MOOC':
edge_feats = torch.randn(411749, rand_de)
if rand_dn > 0:
if d == 'LASTFM':
node_feats = torch.randn(1980, rand_dn)
elif d == 'MOOC':
edge_feats = torch.randn(7144, rand_dn)
return node_feats, edge_feats
def load_graph(d):
df = pd.read_csv('DATA/{}/edges.csv'.format(d))
g = np.load('DATA/{}/ext_full.npz'.format(d))
return g, df
def parse_config(f):
conf = yaml.safe_load(open(f, 'r'))
sample_param = conf['sampling'][0]
memory_param = conf['memory'][0]
gnn_param = conf['gnn'][0]
train_param = conf['train'][0]
return sample_param, memory_param, gnn_param, train_param
def to_dgl_blocks(ret, hist, reverse=False, cuda=True):
mfgs = list()
for r in ret:
if not reverse:
b = dgl.create_block((r.col(), r.row()), num_src_nodes=r.dim_in(), num_dst_nodes=r.dim_out())
b.srcdata['ID'] = torch.from_numpy(r.nodes())
b.edata['dt'] = torch.from_numpy(r.dts())[b.num_dst_nodes():]
b.srcdata['ts'] = torch.from_numpy(r.ts())
else:
b = dgl.create_block((r.row(), r.col()), num_src_nodes=r.dim_out(), num_dst_nodes=r.dim_in())
b.dstdata['ID'] = torch.from_numpy(r.nodes())
b.edata['dt'] = torch.from_numpy(r.dts())[b.num_src_nodes():]
b.dstdata['ts'] = torch.from_numpy(r.ts())
b.edata['ID'] = torch.from_numpy(r.eid())
if cuda:
mfgs.append(b.to('cuda:0'))
else:
mfgs.append(b)
mfgs = list(map(list, zip(*[iter(mfgs)] * hist)))
mfgs.reverse()
return mfgs
def node_to_dgl_blocks(root_nodes, ts, cuda=True):
mfgs = list()
b = dgl.create_block(([],[]), num_src_nodes=root_nodes.shape[0], num_dst_nodes=root_nodes.shape[0])
b.srcdata['ID'] = torch.from_numpy(root_nodes)
b.srcdata['ts'] = torch.from_numpy(ts)
if cuda:
mfgs.insert(0, [b.to('cuda:0')])
else:
mfgs.insert(0, [b])
return mfgs
def mfgs_to_cuda(mfgs):
for mfg in mfgs:
for i in range(len(mfg)):
mfg[i] = mfg[i].to('cuda:0')
return mfgs
def prepare_input(mfgs, node_feats, edge_feats, combine_first=False, pinned=False, nfeat_buffs=None, efeat_buffs=None, nids=None, eids=None):
if combine_first:
for i in range(len(mfgs[0])):
if mfgs[0][i].num_src_nodes() > mfgs[0][i].num_dst_nodes():
num_dst = mfgs[0][i].num_dst_nodes()
ts = mfgs[0][i].srcdata['ts'][num_dst:]
nid = mfgs[0][i].srcdata['ID'][num_dst:].float()
nts = torch.stack([ts, nid], dim=1)
unts, idx = torch.unique(nts, dim=0, return_inverse=True)
uts = unts[:, 0]
unid = unts[:, 1]
# import pdb; pdb.set_trace()
b = dgl.create_block((idx + num_dst, mfgs[0][i].edges()[1]), num_src_nodes=unts.shape[0] + num_dst, num_dst_nodes=num_dst, device=torch.device('cuda:0'))
b.srcdata['ts'] = torch.cat([mfgs[0][i].srcdata['ts'][:num_dst], uts], dim=0)
b.srcdata['ID'] = torch.cat([mfgs[0][i].srcdata['ID'][:num_dst], unid], dim=0)
b.edata['dt'] = mfgs[0][i].edata['dt']
b.edata['ID'] = mfgs[0][i].edata['ID']
mfgs[0][i] = b
t_idx = 0
t_cuda = 0
i = 0
if node_feats is not None:
for b in mfgs[0]:
if pinned:
if nids is not None:
idx = nids[i]
else:
idx = b.srcdata['ID'].cpu().long()
torch.index_select(node_feats, 0, idx, out=nfeat_buffs[i][:idx.shape[0]])
b.srcdata['h'] = nfeat_buffs[i][:idx.shape[0]].cuda(non_blocking=True)
i += 1
else:
srch = node_feats[b.srcdata['ID'].long()].float()
b.srcdata['h'] = srch.cuda()
i = 0
if edge_feats is not None:
for mfg in mfgs:
for b in mfg:
if b.num_src_nodes() > b.num_dst_nodes():
if pinned:
if eids is not None:
idx = eids[i]
else:
idx = b.edata['ID'].cpu().long()
torch.index_select(edge_feats, 0, idx, out=efeat_buffs[i][:idx.shape[0]])
b.edata['f'] = efeat_buffs[i][:idx.shape[0]].cuda(non_blocking=True)
i += 1
else:
srch = edge_feats[b.edata['ID'].long()].float()
b.edata['f'] = srch.cuda()
return mfgs
def get_ids(mfgs, node_feats, edge_feats):
nids = list()
eids = list()
if node_feats is not None:
for b in mfgs[0]:
nids.append(b.srcdata['ID'].long())
if 'ID' in mfgs[0][0].edata:
if edge_feats is not None:
for mfg in mfgs:
for b in mfg:
eids.append(b.edata['ID'].long())
else:
eids = None
return nids, eids
def get_pinned_buffers(sample_param, batch_size, node_feats, edge_feats):
pinned_nfeat_buffs = list()
pinned_efeat_buffs = list()
limit = int(batch_size * 3.3)
if 'neighbor' in sample_param:
for i in sample_param['neighbor']:
limit *= i + 1
if edge_feats is not None:
for _ in range(sample_param['history']):
pinned_efeat_buffs.insert(0, torch.zeros((limit, edge_feats.shape[1]), pin_memory=True))
if node_feats is not None:
for _ in range(sample_param['history']):
pinned_nfeat_buffs.insert(0, torch.zeros((limit, node_feats.shape[1]), pin_memory=True))
return pinned_nfeat_buffs, pinned_efeat_buffs