-
Notifications
You must be signed in to change notification settings - Fork 0
/
distributed_system.py
225 lines (185 loc) · 7.37 KB
/
distributed_system.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# distributed_system.py
import ray
from typing import Dict, List, Any, Optional
import asyncio
import numpy as np
from dataclasses import dataclass
@dataclass
class WorkerConfig:
worker_id: str
compute_capacity: float
memory_capacity: float
specialization: Optional[str] = None
@ray.remote
class DistributedWorker:
def __init__(self, config: WorkerConfig):
self.config = config
self.current_task = None
self.state = "idle"
async def process_task(self, task: Dict) -> Dict:
self.state = "processing"
self.current_task = task
result = await self.execute_task(task)
self.state = "idle"
self.current_task = None
return result
async def execute_task(self, task: Dict) -> Dict:
"""Execute task based on type and specialization"""
if task["type"] == "nas":
return await self.execute_nas_task(task)
elif task["type"] == "progressive_learning":
return await self.execute_learning_task(task)
return await self.execute_general_task(task)
class DistributedOrchestrator:
def __init__(self, num_workers: int):
ray.init()
self.workers = [
DistributedWorker.remote(WorkerConfig(
worker_id=f"worker_{i}",
compute_capacity=1.0,
memory_capacity=1.0
)) for i in range(num_workers)
]
self.task_queue = asyncio.Queue()
self.load_balancer = LoadBalancer(self.workers)
async def submit_task(self, task: Dict):
await self.task_queue.put(task)
return await self.process_next_task()
async def process_next_task(self):
task = await self.task_queue.get()
worker = await self.load_balancer.get_next_worker()
return await worker.process_task.remote(task)
# neural_architecture_search.py
class NeuralArchitectureSearch:
def __init__(self):
self.search_space = self.define_search_space()
self.optimizer = ArchitectureOptimizer()
self.evaluator = ArchitectureEvaluator()
def define_search_space(self) -> Dict:
return {
"layer_types": ["linear", "attention", "conv1d", "conv2d"],
"activation_functions": ["relu", "gelu", "silu"],
"attention_heads": [1, 2, 4, 8],
"layer_dimensions": [64, 128, 256, 512],
"dropout_rates": [0.0, 0.1, 0.2, 0.3]
}
async def search(self, task_requirements: Dict):
"""Perform neural architecture search"""
current_architecture = self.initialize_architecture()
for iteration in range(self.max_iterations):
# Generate candidate architectures
candidates = self.generate_candidates(current_architecture)
# Evaluate candidates
scores = await self.evaluate_candidates(candidates)
# Update current architecture
current_architecture = self.update_architecture(
candidates, scores)
if self.convergence_reached(scores):
break
return current_architecture
class ArchitectureOptimizer:
def __init__(self):
self.parameter_optimizer = ParameterOptimizer()
self.structure_optimizer = StructureOptimizer()
self.meta_optimizer = MetaOptimizer()
async def optimize(self, architecture: Dict, performance_metrics: Dict):
"""Optimize architecture based on performance metrics"""
# Optimize parameters
params_opt = await self.parameter_optimizer.optimize(
architecture, performance_metrics)
# Optimize structure
struct_opt = await self.structure_optimizer.optimize(
params_opt, performance_metrics)
# Meta-optimization
return await self.meta_optimizer.optimize(
struct_opt, performance_metrics)
# progressive_learning.py
class ProgressiveLearningSystem:
def __init__(self):
self.knowledge_accumulator = KnowledgeAccumulator()
self.curriculum_manager = CurriculumManager()
self.adaptation_system = AdaptationSystem()
async def learn(self, task: Dict):
"""Progressive learning process"""
# Get current curriculum stage
current_stage = await self.curriculum_manager.get_current_stage()
# Accumulate knowledge
knowledge = await self.knowledge_accumulator.process(
task, current_stage)
# Adapt system based on performance
adaptation = await self.adaptation_system.adapt(
knowledge, current_stage)
# Progress curriculum if ready
if await self.curriculum_manager.should_progress(knowledge):
await self.curriculum_manager.progress_stage()
return adaptation
class CurriculumManager:
def __init__(self):
self.stages = self.define_curriculum_stages()
self.current_stage = 0
def define_curriculum_stages(self) -> List[Dict]:
return [
{
"name": "foundation",
"complexity": 0.2,
"required_performance": 0.7
},
{
"name": "intermediate",
"complexity": 0.5,
"required_performance": 0.75
},
{
"name": "advanced",
"complexity": 0.8,
"required_performance": 0.8
},
{
"name": "expert",
"complexity": 1.0,
"required_performance": 0.85
}
]
async def should_progress(self, knowledge: Dict) -> bool:
"""Determine if system should progress to next stage"""
current_requirements = self.stages[self.current_stage]
performance = await self.evaluate_performance(knowledge)
return performance >= current_requirements["required_performance"]
# Integration
class EnhancedDistributedSystem:
def __init__(self, num_workers: int):
self.orchestrator = DistributedOrchestrator(num_workers)
self.nas = NeuralArchitectureSearch()
self.progressive_learning = ProgressiveLearningSystem()
async def process_task(self, task: Dict):
"""Process task using distributed system"""
# Submit to distributed system
distributed_result = await self.orchestrator.submit_task(task)
# Perform NAS if needed
if task.get("require_nas"):
architecture = await self.nas.search(task)
distributed_result["optimized_architecture"] = architecture
# Apply progressive learning
learning_result = await self.progressive_learning.learn(
distributed_result)
return {
"task_result": distributed_result,
"architecture": architecture,
"learning_progress": learning_result
}
# Usage example
async def main():
system = EnhancedDistributedSystem(num_workers=3)
task = {
"type": "nas",
"require_nas": True,
"data": {"some": "data"},
"requirements": {
"performance_threshold": 0.85,
"max_complexity": 0.7
}
}
result = await system.process_task(task)
print("Processing Result:", result)
if __name__ == "__main__":
asyncio.run(main())