diff --git a/tensorflow_privacy/privacy/keras_models/dp_keras_model.py b/tensorflow_privacy/privacy/keras_models/dp_keras_model.py index 0879880a..481f4a93 100644 --- a/tensorflow_privacy/privacy/keras_models/dp_keras_model.py +++ b/tensorflow_privacy/privacy/keras_models/dp_keras_model.py @@ -32,9 +32,8 @@ class SparsityPreservingDPSGDConfig: """Config for adding sparsity preserving noise to the gradients.""" - # The ratio of how the noise is split between partition selection and gradient - # noise. - sparse_selection_ratio: float = 0.0 + # The fraction of the privacy budget to use for partition selection. + sparse_selection_privacy_budget_fraction: float = 0.0 # The threshold to use for private partition selection. sparse_selection_threshold: int = 100 # A `LayerRegistry` instance containing functions that help compute @@ -364,7 +363,7 @@ def train_step(self, data): noise_multiplier_sparse, noise_multiplier = ( sparse_noise_utils.split_noise_multiplier( noise_multiplier, - self._sparsity_preserving_dpsgd_config.sparse_selection_ratio, + self._sparsity_preserving_dpsgd_config.sparse_selection_privacy_budget_fraction, contribution_counts, ) ) diff --git a/tensorflow_privacy/privacy/sparsity_preserving_noise/sparse_noise_utils.py b/tensorflow_privacy/privacy/sparsity_preserving_noise/sparse_noise_utils.py index 2915f436..b2f32d63 100644 --- a/tensorflow_privacy/privacy/sparsity_preserving_noise/sparse_noise_utils.py +++ b/tensorflow_privacy/privacy/sparsity_preserving_noise/sparse_noise_utils.py @@ -28,7 +28,7 @@ def split_noise_multiplier( noise_multiplier: float, - sparse_selection_ratio: float, + sparse_selection_privacy_budget_fraction: float, sparse_selection_contribution_counts: Sequence[Optional[tf.SparseTensor]], ) -> tuple[float, float]: """Splits noise multiplier between partition selection and gradient noise. @@ -40,8 +40,8 @@ def split_noise_multiplier( Args: noise_multiplier: The original noise multiplier. - sparse_selection_ratio: The ratio of partition selection noise and gradient - noise. + sparse_selection_privacy_budget_fraction: The fraction of privacy budget to + use for partition selection. sparse_selection_contribution_counts: The contribution counts for each sparse selection variable. If a sparse selection count is None, it will be ignored. @@ -54,14 +54,22 @@ def split_noise_multiplier( sparse selection contribution counts is None, or if there are no sparse selection contribution counts. """ - if sparse_selection_ratio <= 0.0 or sparse_selection_ratio >= 1.0: - raise ValueError('Sparse selection ratio must be between 0 and 1.') + if ( + sparse_selection_privacy_budget_fraction <= 0.0 + or sparse_selection_privacy_budget_fraction >= 1.0 + ): + raise ValueError( + 'Sparse selection privacy budget fraction must be between 0 and 1.' + ) num_sparse_selections = sum( 1 for c in sparse_selection_contribution_counts if c is not None ) if num_sparse_selections == 0: raise ValueError('No sparse selections contribution counts found.') + sparse_selection_ratio = sparse_selection_privacy_budget_fraction / ( + 1.0 - sparse_selection_privacy_budget_fraction + ) ratio = (1.0 + sparse_selection_ratio**2.0) ** 0.5 total_noise_multiplier_sparse = noise_multiplier * ratio noise_multiplier_partition_selection = ( diff --git a/tensorflow_privacy/privacy/sparsity_preserving_noise/sparse_noise_utils_test.py b/tensorflow_privacy/privacy/sparsity_preserving_noise/sparse_noise_utils_test.py index b9a02290..ec506686 100644 --- a/tensorflow_privacy/privacy/sparsity_preserving_noise/sparse_noise_utils_test.py +++ b/tensorflow_privacy/privacy/sparsity_preserving_noise/sparse_noise_utils_test.py @@ -27,7 +27,7 @@ class SparseNoiseUtilsTest(tf.test.TestCase, parameterized.TestCase): dict( testcase_name='one_sparse_layer', noise_multiplier=1.0, - sparse_selection_ratio=0.8, + sparse_selection_privacy_budget_fraction=0.1, sparse_selection_contribution_counts=[ tf.SparseTensor( indices=[[0]], @@ -39,7 +39,7 @@ class SparseNoiseUtilsTest(tf.test.TestCase, parameterized.TestCase): dict( testcase_name='multiple_sparse_layer', noise_multiplier=1.0, - sparse_selection_ratio=0.1, + sparse_selection_privacy_budget_fraction=0.1, sparse_selection_contribution_counts=[ tf.SparseTensor( indices=[[0]], @@ -62,29 +62,34 @@ class SparseNoiseUtilsTest(tf.test.TestCase, parameterized.TestCase): def test_split_noise_multiplier( self, noise_multiplier, - sparse_selection_ratio, + sparse_selection_privacy_budget_fraction, sparse_selection_contribution_counts, ): - noise_multiplier_sparse, noise_multiplier_dense = ( + sparse_selection_ratio = sparse_selection_privacy_budget_fraction / ( + 1.0 - sparse_selection_privacy_budget_fraction + ) + noise_multiplier_partition_selection, noise_multiplier_dense = ( sparse_noise_utils.split_noise_multiplier( noise_multiplier, - sparse_selection_ratio, + sparse_selection_privacy_budget_fraction, sparse_selection_contribution_counts, ) ) num_sparse_layers = len(sparse_selection_contribution_counts) - total_noise_multiplier_sparse = ( - noise_multiplier_sparse / num_sparse_layers**0.5 + total_noise_multiplier_partition_selection = ( + noise_multiplier_partition_selection / num_sparse_layers**0.5 ) + print('partition selection: ', total_noise_multiplier_partition_selection) + print('dense: ', noise_multiplier_dense) self.assertAlmostEqual( - total_noise_multiplier_sparse, + total_noise_multiplier_partition_selection, sparse_selection_ratio * noise_multiplier_dense, ) total_noise_multiplier = ( 1.0 / ( - 1.0 / total_noise_multiplier_sparse**2 + 1.0 / total_noise_multiplier_partition_selection**2 + 1.0 / noise_multiplier_dense**2 ) ** 0.5 @@ -95,21 +100,21 @@ def test_split_noise_multiplier( dict( testcase_name='no_sparse_layers', noise_multiplier=1.0, - sparse_selection_ratio=0.5, + sparse_selection_privacy_budget_fraction=0.5, sparse_selection_contribution_counts=[], error_message='No sparse selections contribution counts found.', ), dict( testcase_name='sparse_layers_none', noise_multiplier=1.0, - sparse_selection_ratio=0.5, + sparse_selection_privacy_budget_fraction=0.5, sparse_selection_contribution_counts=[None], error_message='No sparse selections contribution counts found.', ), dict( testcase_name='zero_ratio', noise_multiplier=1.0, - sparse_selection_ratio=0.0, + sparse_selection_privacy_budget_fraction=0.0, sparse_selection_contribution_counts=[ tf.SparseTensor( indices=[[0]], @@ -117,12 +122,15 @@ def test_split_noise_multiplier( dense_shape=[3], ) ], - error_message='Sparse selection ratio must be between 0 and 1.', + error_message=( + 'Sparse selection privacy budget fraction must be between 0' + ' and 1.' + ), ), dict( testcase_name='one_ratio', noise_multiplier=1.0, - sparse_selection_ratio=1.0, + sparse_selection_privacy_budget_fraction=1.0, sparse_selection_contribution_counts=[ tf.SparseTensor( indices=[[0]], @@ -130,20 +138,23 @@ def test_split_noise_multiplier( dense_shape=[3], ) ], - error_message='Sparse selection ratio must be between 0 and 1.', + error_message=( + 'Sparse selection privacy budget fraction must be between 0' + ' and 1.' + ), ), ) def test_split_noise_multiplier_errors( self, noise_multiplier, - sparse_selection_ratio, + sparse_selection_privacy_budget_fraction, sparse_selection_contribution_counts, error_message, ): with self.assertRaisesRegex(ValueError, error_message): sparse_noise_utils.split_noise_multiplier( noise_multiplier, - sparse_selection_ratio, + sparse_selection_privacy_budget_fraction, sparse_selection_contribution_counts, )