-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
model_test.js
85 lines (75 loc) · 3.16 KB
/
model_test.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '@tensorflow/tfjs';
import * as tmp from 'tmp';
import {expectArraysClose} from '../test_util';
import * as dateFormat from './date_format';
import {createModel, runSeq2SeqInference} from './model';
require('@tensorflow/tfjs-node');
describe('Model', () => {
it('Created model can train', async () => {
const inputVocabSize = 16;
const outputVocabSize = 8;
const inputLength = 6;
const outputLength = 5;
const model =
createModel(inputVocabSize, outputVocabSize, inputLength, outputLength);
expect(model.inputs.length).toEqual(2);
expect(model.inputs[0].shape).toEqual([null, inputLength]);
expect(model.inputs[1].shape).toEqual([null, outputLength]);
expect(model.outputs.length).toEqual(1);
expect(model.outputs[0].shape).toEqual([
null, outputLength, outputVocabSize
]);
const numExamples = 3;
const encoderInputs = tf.ones([numExamples, inputLength]);
const decoderInputs = tf.ones([numExamples, outputLength]);
const decoderOutputs =
tf.randomUniform([numExamples, outputLength, outputVocabSize]);
const history = await model.fit(
[encoderInputs, decoderInputs], decoderOutputs, {epochs: 2});
expect(history.history.loss.length).toEqual(2);
});
it('Model save-load roundtrip', async () => {
const inputVocabSize = 16;
const outputVocabSize = 8;
const inputLength = 6;
const outputLength = 5;
const model =
createModel(inputVocabSize, outputVocabSize, inputLength, outputLength);
const numExamples = 3;
const encoderInputs = tf.ones([numExamples, inputLength]);
const decoderInputs = tf.ones([numExamples, outputLength]);
const y = model.predict([encoderInputs, decoderInputs]);
const saveDir = tmp.dirSync();
await model.save(`file://${saveDir.name}`);
const modelPrime =
await tf.loadLayersModel(`file://${saveDir.name}/model.json`);
const yPrime = modelPrime.predict([encoderInputs, decoderInputs]);
expectArraysClose(yPrime, y);
});
it('seq2seq inference', async () => {
const model = createModel(
dateFormat.INPUT_VOCAB.length, dateFormat.OUTPUT_VOCAB.length,
dateFormat.INPUT_LENGTH, dateFormat.OUTPUT_LENGTH);
const numTensors0 = tf.memory().numTensors;
const {outputStr} = await runSeq2SeqInference(model, '2019/01/18');
// Assert no memory leak.
expect(tf.memory().numTensors).toEqual(numTensors0);
expect(outputStr.length).toEqual(dateFormat.OUTPUT_LENGTH);
});
});