-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
client.js
175 lines (150 loc) · 5.2 KB
/
client.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* This file holds the browser based viewer for the VAE trained in node.
*/
import * as tf from '@tensorflow/tfjs';
import * as tfvis from '@tensorflow/tfjs-vis';
import {select as d3Select} from 'd3-selection';
// Make sure that you are serving the model file at this location.
// You should be able to paste this url into your browser and see
// the json file.
const decoderUrl = './models/decoder/model.json';
let decoder;
const IMAGE_HEIGHT = 28;
const IMAGE_WIDTH = 28;
const IMAGE_CHANNELS = 1;
const LATENT_DIMS = 2;
async function loadModel(modelUrl) {
const decoder = await tf.loadLayersModel(modelUrl);
const queryString = window.location.search.substring(1);
if (queryString.match('debug')) {
tfvis.show.modelSummary({name: 'decoder'}, decoder);
tfvis.show.layer({name: 'dense2'}, decoder.getLayer('dense_Dense2'));
tfvis.show.layer({name: 'dense3'}, decoder.getLayer('dense_Dense3'));
}
return decoder;
}
/**
* Generates a representation of a latent space.
*
* Returns an array of tensors representing each dimension. Currently
* each dimension is evenly spaced in the same way.
*
* @param {number} dimensions number of dimensions
* @param {number} pointsPerDim number of points in each dimension
* @param {number} start start value
* @param {number} end end value
* @returns {Tensor1d[]}
*/
function generateLatentSpace(dimensions, pointsPerDim, start, end) {
const result = [];
for (let i = 0; i < dimensions; i++) {
const values = tf.linspace(start, end, pointsPerDim);
result.push(values);
}
return result;
}
/**
* Decode a (batch of) z vector into an image tensor. Z is the vector in latent
* space that we want to generate an image for.
*
* Returns an image tensor of the shape [batch, IMAGE_HEIGHT, IMAGE_WIDTH,
* IMAGE_CHANNELS]
*
* @param {Tensor2D} inputTensor of shape [batch, LATENT_DIMS]
*/
function decodeZ(inputTensor) {
return tf.tidy(() => {
const res = decoder.predict(inputTensor).mul(255).cast('int32');
const reshaped = res.reshape(
[inputTensor.shape[0], IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS]);
return reshaped;
});
}
/**
* Render the latent space by z vectors through the VAE and rendering
* the result.
*
* Handles only 2D latent spaces
*/
async function renderLatentSpace(latentSpace) {
document.getElementById('plot-area').innerText = '';
const [xAxis, yAxis] = latentSpace;
// Create the canvases that we will draw to.
const xPlaceholder = Array(xAxis.shape[0]).fill(0);
const yPlaceholder = Array(yAxis.shape[0]).fill(0);
const rows = d3Select('.plot-area').selectAll('div.row').data(xPlaceholder);
const rEnter = rows.enter().append('div').attr('class', 'row');
rows.exit().remove();
const cols = rEnter.selectAll('div.col').data(yPlaceholder);
cols.enter()
.append('div')
.attr('class', 'col')
.append('canvas')
.attr('width', 50)
.attr('height', 50);
// Generate images and render them to each canvas element
rows.merge(rEnter).each(async function(rowZ, rowIndex) {
// Generate a batch of zVectors for each row.
const zX = xAxis.slice(rowIndex, 1).tile(yAxis.shape);
const zBatch = zX.stack(yAxis).transpose();
const batchImageTensor = decodeZ(zBatch);
const imageTensors = batchImageTensor.unstack();
tf.dispose([zX, zBatch, batchImageTensor]);
const cols = d3Select(this).selectAll('.col');
cols.each(async function(colZ, colIndex) {
const canvas = d3Select(this).select('canvas').node();
const imageTensor = imageTensors[colIndex];
// Render the results to the canvas
tf.browser.toPixels(imageTensor, canvas).then(() => {
tf.dispose([imageTensor]);
});
});
});
}
function getParams() {
const ppd = document.getElementById('pointsPerDim');
const start = document.getElementById('start');
const end = document.getElementById('end');
return {
pointsPerDim: parseInt(ppd.value), start: parseFloat(start.value),
end: parseFloat(end.value),
}
}
/**
* Generate an evenly spaced 2d latent space.
*/
function draw() {
const params = getParams();
console.log('params', params);
const latentSpace = generateLatentSpace(
LATENT_DIMS, params.pointsPerDim, params.start, params.end);
renderLatentSpace(latentSpace);
tf.dispose(latentSpace);
}
function setupListeners() {
document.getElementById('update').addEventListener('click', () => {
draw();
})
}
// Render images generated byt the VAE.
(async function run() {
setupListeners();
decoder = await loadModel(decoderUrl);
draw();
})();