-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathmodel_test.js
104 lines (95 loc) · 3.59 KB
/
model_test.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
const tf = require('@tensorflow/tfjs-node');
const {encoder, decoder, vae, vaeLoss} = require('./model');
describe('Encoder', () => {
it('Constructor and predict() call', () => {
const opts = {
originalDim: 100,
intermediateDim: 10,
latentDim: 2
};
const enc = encoder(opts);
expect(enc.inputs.length).toEqual(1);
expect(enc.inputs[0].shape).toEqual([null, 100]);
expect(enc.layers[1].outputShape).toEqual([null, 10]);
expect(enc.outputs.length).toEqual(3);
expect(enc.outputs[0].shape).toEqual([null, 2]);
expect(enc.outputs[1].shape).toEqual([null, 2]);
expect(enc.outputs[2].shape).toEqual([null, 2]);
// Run a tensor input through the predict() method.
const numExamples = 4;
xs = tf.randomUniform([numExamples, 100]);
const outs = enc.predict(xs);
expect(outs.length).toEqual(3); // zMean, zLogVar and z.
expect(outs[0].shape).toEqual([numExamples, 2]);
expect(outs[1].shape).toEqual([numExamples, 2]);
expect(outs[2].shape).toEqual([numExamples, 2]);
});
});
describe('Decoder', () => {
it('Constructor and predict() call', () => {
const opts = {
originalDim: 100,
intermediateDim: 10,
latentDim: 2
};
const dec = decoder(opts);
expect(dec.inputs.length).toEqual(1);
expect(dec.inputs[0].shape).toEqual([null, 2]);
expect(dec.outputs.length).toEqual(1);
expect(dec.outputs[0].shape).toEqual([null, 100]);
// Run a tensor input through the predict() method.
const numExamples = 4;
xs = tf.randomUniform([numExamples, 2]);
const outs = dec.predict(xs);
expect(outs.shape).toEqual([numExamples, 100]);
});
});
describe('VAE', () => {
it('Constructor, predict() call and vaeLoss', () => {
const opts = {
originalDim: 100,
intermediateDim: 10,
latentDim: 2
};
const enc = encoder(opts);
const dec = decoder(opts);
const model = vae(enc, dec);
expect(model.inputs.length).toEqual(1);
expect(model.inputs[0].shape).toEqual([null, 100]);
expect(model.outputs.length).toEqual(4);
expect(model.outputs[0].shape).toEqual([null, 100]);
expect(model.outputs[1].shape).toEqual([null, 2]);
expect(model.outputs[2].shape).toEqual([null, 2]);
expect(model.outputs[3].shape).toEqual([null, 2]);
const numExamples = 4;
const xs = tf.randomUniform([numExamples, 100]);
const ys = model.predict(xs);
expect(ys.length).toEqual(4);
expect(ys[0].shape).toEqual([numExamples, 100]);
expect(ys[1].shape).toEqual([numExamples, 2]);
expect(ys[2].shape).toEqual([numExamples, 2]);
expect(ys[3].shape).toEqual([numExamples, 2]);
const numTensors0 = tf.memory().numTensors;
const loss = vaeLoss(xs, ys);
const numTensors1 = tf.memory().numTensors;
expect(numTensors1).toEqual(numTensors0 + 1);
expect(loss.shape).toEqual([]); // loss is a scalar.
expect(loss.arraySync()).toBeGreaterThan(0);
});
});