diff --git a/README.md b/README.md index bab2a70e..cf44fbac 100644 --- a/README.md +++ b/README.md @@ -63,19 +63,21 @@ There is documentation on [transformer operators](https://pyterrier.readthedocs. # Neural Reranking and Dense Retrieval -PyTerrier has additional plugins for BERT (through OpenNIR), T5, ColBERT, ANCE, DeepCT and doc2query. - - - OpenNIR: [[Github](https://github.com/Georgetown-IR-Lab/OpenNIR)] [[Documentation](https://opennir.net/)] - - PyTerrier_ANCE: [[Github](https://github.com/terrierteam/pyterrier_ance)] - dense retrieval - - PyTerrier_ColBERT: [[Github](https://github.com/terrierteam/pyterrier_colbert)] - dense retrieval and/or neural reranking +PyTerrier has additional plugins for BERT (through OpenNIR), T5, ColBERT, doc2query and many more... + - Pyterrier_DR: [[Github](https://github.com/terrierteam/pyterrier_colbert)] - single-representation dense retrieval + - PyTerrier_ColBERT: [[Github](https://github.com/terrierteam/pyterrier_colbert)] - mulitple-representation dense retrieval and/or neural reranking - PyTerrier_PISA: [[Github](https://github.com/terrierteam/pyterrier_pisa)] - fast in-memory indexing and retrieval using [PISA](https://github.com/pisa-engine/pisa) - PyTerrier_T5: [[Github](https://github.com/terrierteam/pyterrier_t5)] - neural reranking: monoT5, duoT5 - PyTerrier_GenRank [[Github](https://github.com/emory-irlab/pyterrier_genrank)] - generative listwise reranking: RankVicuna, RankZephyr - PyTerrier_doc2query: [[Github](https://github.com/terrierteam/pyterrier_doc2query)] - neural augmented indexing - PyTerrier_SPLADE: [[Github](https://github.com/cmacdonald/pyt_splade)] - neural augmented indexing + +Older plugins include: + - PyTerrier_ANCE: [[Github](https://github.com/terrierteam/pyterrier_ance)] - dense retrieval - PyTerrier_DeepCT: [[Github](https://github.com/terrierteam/pyterrier_deepct)] - neural augmented indexing + - OpenNIR: [[Github](https://github.com/Georgetown-IR-Lab/OpenNIR)] [[Documentation](https://opennir.net/)] -You can see examples of how to use these, including notebooks that run on Google Colab, in the contents of our [ECIR 2021 tutorial](https://github.com/terrier-org/ecir2021tutorial). +You can see examples of how to use these, including notebooks that run on Google Colab, in the contents of our [Search Solutions 2022 tutorial](https://github.com/terrier-org/searchsolutions2022-tutorial). # Learning to Rank