-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQlearn_stock_trading.py
180 lines (122 loc) · 4.13 KB
/
Qlearn_stock_trading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import time; start_time = time.perf_counter();
import os, dotenv;
import numpy as np;
#
# Define relevant constants
#
EPISODE_COUNT = 3750;
DAYS_PER_EPISODE = 50;
ACCT_BAL_0 = 1000;
SHARES_PER_TRADE = 10; # buy/sell fixed number of shares each time for simplicity
ACTIONS = ['hold', 'buy', 'sell'];
#
# Define greek-constants: random-action-rate, learning-rate, discount-rate
#
EPSILON = .125;
ALPHA = .175;
GAMMA = .90;
#
# Initialize state space, action space, and Q-table
#
# state_count = 5000;
state_count = 750;
action_count = 3;
Q = np.zeros((state_count, action_count));
#
# Simulate daily closing price by evaluating f(theta) = 4sin(theta) + 25 for a specified theta (e.g. day)
#
def closing_price (theta):
return (12*np.sin(.3*theta)+25) + np.random.normal(0,7.25);
#
# Define epsilon-greedy policy implementation (e.g. map: states -> actions)
#
def choose_action (state):
if np.random.rand() < EPSILON:
print('!!!!!!!!!!!!!!!!!!!!!!!! RANDOM ACTION !!!!!!!!!!!!!!!!!!!!!!!!!!');
return np.random.choice(action_count);
else:
return np.argmax(Q[state,:]);
#
# Define function to determine the (next state, reward) when given (current state, action)
#
def execute_action (state, action, shares, bal):
next_day_price = closing_price(state+1);
# if action == 'buy':
if action == 1:
if bal >= next_day_price * SHARES_PER_TRADE:
shares += SHARES_PER_TRADE;
bal -= next_day_price * SHARES_PER_TRADE;
# elif action == 'sell':
elif action == 2:
if shares >= SHARES_PER_TRADE:
shares -= SHARES_PER_TRADE;
bal += next_day_price * SHARES_PER_TRADE;
next_state = (state + 1) % state_count;
next_acct_value = bal + shares*next_day_price;
reward = next_acct_value - ACCT_BAL_0;
return {'next_state':next_state, 'reward':reward, 'shares':shares, 'bal':bal};
#
# Train Agent
#
for ep in range(EPISODE_COUNT):
state = ep * DAYS_PER_EPISODE % state_count;
acct_bal = ACCT_BAL_0;
shares_held = 0;
for day in range(DAYS_PER_EPISODE):
action = choose_action(state);
action_consequences = execute_action(state, action, shares_held, acct_bal);
print('state = ', state);
print('price = ', closing_price(state));
next_state = action_consequences['next_state']; print('next state = ', next_state);
reward = action_consequences['reward']; print('reward = ', reward);
shares_held = action_consequences['shares']; print('shares held = ', shares_held);
acct_bal = action_consequences['bal']; print('account balance = ', acct_bal);
#
# Define terminal condition (e.g. ran out of money)
#
if action_consequences['bal'] <= 0:
break;
#
# Update Q-table per Q-learning update rule
#
best_q = np.max(Q[next_state,:]);
print('update entry for (state, action) = (', state, ', ', action, ') -> ', best_q);
Q[state, action] += ALPHA * (reward + GAMMA*np.max(Q[next_state,:]) - Q[state,action]);
state = next_state;
print('state is now = ', state);
print('Q\n', Q);
print('-------------');
print('\n\n');
#
# Define testing environment for learned agent
#
def test_agent (Q_table, state0, bal0, shares0, state_terminal=(state_count-1)):
state = state0;
bal = bal0;
shares = shares0;
total_reward = 0;
while True:
action = np.argmax(Q_table[state,:]);
action_consequences = execute_action(state, action, shares, bal);
next_state = action_consequences['next_state'];
bal = action_consequences['bal'];
shares = action_consequences['shares'];
reward = action_consequences['reward'];
total_reward += reward;
state = next_state;
if bal <= 0 or state == state_terminal:
break;
return {'total_reward':total_reward, 'share_held':shares, 'acct_bal':bal};
#
# Test agent
# • Iterate over states: state0,...,state_terminal
# • At each state, determine action by indexing Q-table row and identifying the column with the largest Q-value (e.g. cumulative discounted total reward)
# • Take action -> observe reward and the next state
#
Q_test = test_agent(Q_table=Q, state0=0, bal0=ACCT_BAL_0, shares0=0);
print('------');
print('TESTING\n');
print(Q_test, '\n');
end_time = time.perf_counter();
elapsed_time = end_time - start_time;
print(f"Program executed in {elapsed_time} seconds");