1) Download the S3DIS dataset
2) Put the Stanford3dDataset_v1.2.zip
to SoftGroup/dataset/s3dis/
folder and unzip
3) Preprocess data
cd SoftGroup/dataset/s3dis
bash prepare_data.sh
After running the script the folder structure should look like below
SoftGroup
├── dataset
│ ├── s3dis
│ │ ├── Stanford3dDataset_v1.2
│ │ ├── preprocess
│ │ ├── preprocess_sample
│ │ ├── val_gt
1) Download the ScanNet v2 dataset.
2) Put the downloaded scans
and scans_test
folder as follows.
SoftGroup
├── dataset
│ ├── scannetv2
│ │ ├── scans
│ │ ├── scans_test
3) Split and preprocess data
cd SoftGroup/dataset/scannetv2
bash prepare_data.sh
The script data into train/val/test folder and preprocess the data. After running the script the scannet dataset structure should look like below.
SoftGroup
├── dataset
│ ├── scannetv2
│ │ ├── scans
│ │ ├── scans_test
│ │ ├── train
│ │ ├── val
│ │ ├── test
│ │ ├── val_gt
1) Download the STPLS3D dataset
2) Put Synthetic_v3_InstanceSegmentation.zip
to dataset/stpls3d
and unzip
3) Preprocess data
cd SoftGroup/dataset/stpls3d
bash prepare_data.sh
1) Download the SemanticKITTI dataset
2) Unzip the downloaded data and put the sequences
to dataset/kitti
3) The data structure should be as follows:
SoftGroup
├── dataset
│ ├── kitti
│ │ ├── sequences
│ │ | |── 00
│ │ | | ├── calib.txt
│ │ | | ├── labels
│ │ | | ├── poses.txt
│ │ | | ├── times.txt
│ │ | | ├── velodyne
│ │ | |── ...
│ │ | |── 21