-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_qnet.py
138 lines (108 loc) · 4.22 KB
/
train_qnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
from tqdm import tqdm
from einops import repeat
import wandb
# torch imports
import torch
import torch.nn as nn
from torch.optim import AdamW, SGD
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
# custom imports
from util.hyper_para import HyperParametersQNet
from util.dist import setup, cleanup, seed_everything, create_data_loaders, move_to_cuda
from models.qnet import QualityNet
def train(local_rank, world_size, args):
"""Dataloaders"""
train_loader, val_loader = create_data_loaders(local_rank, world_size, args['batch_size'], args['num_workers'])
"""QNet"""
model = QualityNet(arch=args['arch'], n_labels=20, merge_strategy='cat').to(local_rank)
model = DDP(model, device_ids=[local_rank], output_device=local_rank, broadcast_buffers=False)
"""Optimizer and Loss"""
if args['optim'] == 'Adam':
optimizer = AdamW(model.parameters(), lr=args['lr'])
elif args['optim'] == 'SGD' :
optimizer = SGD(model.parameters(), lr=args['lr'], momentum=0.9)
else :
raise NotImplementedError('No implementation for this optimizer')
loss_fn = nn.CrossEntropyLoss()
activation_fn = nn.Softmax(dim=-1)
if local_rank == 0:
os.makedirs('model_weights/qnet', exist_ok=True)
logger = wandb.init(
project="qnet",
config={
'Optim': args['optim'],
'lr': args['lr'],
'batch_size': args['batch_size'],
'arch': args['arch'],
'merge': 'cat'
}
)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"[INFO] Architecture: {args['arch']}")
print(f'[INFO] Merge strategy: cat')
print(f'[INFO] Trainable parameters: {total_params/1_000_000:.2f}M')
print(f'[INFO] Available GPUs: {world_size}')
for e in range(args['epochs']):
# crucial for randomness!
train_loader.sampler.set_epoch(e)
model.train()
train_acc = 0.0
train_loss = 0.0
for data in tqdm(train_loader, total=len(train_loader), desc=f"Epoch: {e+1}/{args['epochs']}"):
data = move_to_cuda(data)
imgs = data['img']
masks = data['mask']
masks = repeat(masks, 'b h w -> b c h w', c=3)
optimizer.zero_grad(set_to_none=True)
y = model(imgs, masks)
batch_loss = loss_fn(y, data['label'])
batch_loss.backward()
optimizer.step()
train_loss += batch_loss
y = activation_fn(y)
predicted = y.argmax(dim=-1)
train_acc += (predicted == data['label']).sum().item()/data['label'].shape[0]
train_loss /= len(train_loader)
train_acc /= len(train_loader)
val_acc = 0
for data in tqdm(val_loader, desc='Validation'):
data = move_to_cuda(data)
imgs = data['img']
masks = data['mask']
masks = repeat(masks, 'b h w -> b c h w', c=3)
with torch.no_grad():
y = model(imgs, masks)
batch_loss = loss_fn(y, data['label'])
y = activation_fn(y)
predicted = y.argmax(dim=-1)
val_acc += (predicted == data['label']).sum().item()/data['label'].shape[0]
val_acc /= len(val_loader)
if local_rank == 0:
logger.log({
'Train loss': train_loss,
'Train acc': train_acc,
'Val acc': val_acc
})
if local_rank == 0 :
torch.save(model.module.state_dict(),f'model_weights/qnet/qnet.pth')
def main(local_rank, world_size):
args = HyperParametersQNet()
args.parse()
setup(local_rank, world_size, args['port'])
print(f'I am rank {local_rank} in the world of {world_size}!')
torch.cuda.set_device(local_rank)
seed_everything()
try:
train(local_rank, world_size, args)
finally:
cleanup()
if __name__ == '__main__':
world_size = torch.cuda.device_count()
# rank is automatically passed for each procces
mp.spawn(
main,
args=[world_size],
nprocs=world_size
)