-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathextract.py
38 lines (28 loc) · 1.25 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import cv2
import h5py
import numpy as np
from skimage.transform import resize
if __name__ == '__main__':
if not os.path.exists('A'):
os.mkdir('A')
if not os.path.exists('B'):
os.mkdir('B')
with h5py.File('data.mat', 'r') as f:
images = np.array(f['images'])
depths = np.array(f['depths'])
images = images.transpose(0, 1, 3, 2)
depths = depths.transpose(2, 1, 0)
depths = (depths - np.min(depths, axis = (0, 1))) / np.max(depths, axis = (0, 1))
depths = ((1 - depths) * np.random.uniform(0.2, 0.4, size = (1449, ))).transpose(2, 0, 1)
for i in range(len(images)):
fog = (images[i] * depths[i]) + (1 - depths[i]) * np.ones_like(depths[i]) * 255
fog = resize(fog.transpose(1, 2, 0), (256, 256, 3), mode = 'reflect')
img = resize(images[i].transpose(1, 2, 0), (256, 256, 3), mode = 'reflect')
img = (img * 255).astype(np.uint8)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
fog = cv2.cvtColor(fog.astype(np.uint8), cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join('A', str(i).zfill(4) + '.png'), fog)
cv2.imwrite(os.path.join('B', str(i).zfill(4) + '.png'), img)
print('Extracting image:', i, end = '\r')
print('Done.')