diff --git a/src/Data/Int/Universal.lagda.md b/src/Data/Int/Universal.lagda.md index c5526e175..6ac6c0465 100644 --- a/src/Data/Int/Universal.lagda.md +++ b/src/Data/Int/Universal.lagda.md @@ -55,11 +55,13 @@ unique among functions with these properties. → ∀ x → f x ≡ map-out p r x ``` -By a standard categorical argument, existence and uniqueness together give us an +By a [standard categorical argument], existence and uniqueness together give us an *induction principle* for the integers: to construct a section of a type family $P : \bb{Z} \to \ty$, it is enough to give an element of $P(0)$ and a family of equivalences $P(n) \simeq P(n + 1)$. +[standard categorical argument]: Data.Wellfounded.W.html#initial-algebras-are-inductive-types + ```agda ℤ-η : ∀ z → map-out point rotate z ≡ z ℤ-η z = sym (map-out-unique id refl (λ _ → refl) z)