forked from croningp/BZ1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpumps_firmware.c
215 lines (178 loc) · 5.26 KB
/
pumps_firmware.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*
* commands are like P_ M_ C_ D_ S_ E_
* Each argument starts with a capital letter, followed by numbers (value of arg), no space
* Each argument is separated by 1 space
* P means pump, identifies the pump. At the moment it goes from 0 to 6
* M means motor, identifies motor inside the P declared before. it is 0 or 1, for valve or plunger
* C means code that identifies the task. Once the task is finished, this code will be send to the Serial
* D means direction, up or down. 0 or 1
* S means speed, which is actually the ms per pulse. We usually use values between 20 to 2000
* E means steps, number of steps. Needs to be bigger than 0. With triconts 100k is full plunger
* This firmware DOESNT CHECK ANYTHING, make the checks in the code that sends the commands here
* For example, if you are rotating motor P0 M0, and while its rotating, you sends a new command to the same motor
* this firmware is likely to fuck itself.
* An example of command would be: P0 M1 D0 C123 S50 E50000
*
* Juan M Parrilla, Cronin group
*/
#define MOTORS_PER_PUMP 2
#define BUFFER_SIZE 200
struct Motor
{
/* INPUTS */
long pin_en;
long pin_step;
long pin_dir;
/* STATE */
long msec_per_pulse;
long remaining_steps;
long next_state; /* controls pin_step, so it will be high or low */
long remaining_step_ms;
long task_code;
};
struct Pump
{
Motor motors[2]; /* 0 is plunger, 1 is valve */
};
Pump pumps[] = {
// PX_ENABLE, PX_STEP, PX_DIR -- VX_ENABLE, VX_STEP, VX_DIR
{ { {4, 3, 2}, {7, 6, 5} } }, // pump 1
{ { {54, 55, 56}, {57, 58, 59} } }, // pump 2
{ { {60, 61, 62}, {63, 64, 65} } }, // pump 3
{ { {66, 67, 68}, {69, 53, 52} } }, // pump 4
{ { {18, 17, 16}, {26, 24, 22} } }, // pump 5
{ { {13, 12, 11}, {10, 9, 8} } }, // pump 6
{ { {32, 30, 28}, {38, 36, 34} } }, // pump 7
{ { {14, 15, 19}, {20, 21, 23} } } // pump 8
};
int n_pumps = sizeof(pumps)/sizeof(pumps[0]);
int read_command(char *buffer) {
static int pos = 0;
int rpos;
if (Serial.available() > 0) {
char readch = Serial.read();
switch (readch) {
case '\n':
rpos = pos;
pos = 0; // Reset position index ready for next time
return rpos;
default:
if (pos < BUFFER_SIZE -1) {
buffer[pos++] = readch;
buffer[pos] = '\0';
} else {
Serial.println("666"); //buffer overflow
}
}
}
// no end line or char found, return -1
return -1;
}
void parse_command(char* command)
{
char* parameter;
parameter = strtok(command, " ");
while (parameter != NULL) {
Pump *pump;
Motor *motor;
long pumpid, motorid, code, dir, sp, steps;
switch(parameter[0]) {
case 'P':
pumpid = strtol(parameter+1, NULL, 10);
pump = &pumps[pumpid];
break;
case 'M':
motorid = strtol(parameter+1, NULL, 10);
motor = &pump->motors[motorid];
digitalWrite( motor->pin_en, LOW ); //enable motor
break;
case 'C':
code = strtol(parameter+1, NULL, 10);
motor->task_code = code;
break;
case 'D':
dir = strtol(parameter+1, NULL, 10);
if (dir == 0) {
digitalWrite( motor->pin_dir, LOW );
} else {
digitalWrite( motor->pin_dir, HIGH );
}
break;
case 'S':
sp = strtol(parameter+1, NULL, 10);
motor->msec_per_pulse = sp;
motor->remaining_step_ms = sp;
break;
case 'E':
steps = strtol(parameter+1, NULL, 10);
motor->remaining_steps = steps;
if (steps <= 0) {
Serial.println(motor->task_code);
}
break;
}
parameter = strtok(NULL, " ");
}
for (int x=0; x < BUFFER_SIZE; x++)
command[x] = '\0';
}
void setup()
{
Serial.begin(115200);
Serial.flush();
for (int pumpi = 0; pumpi < n_pumps; pumpi++) {
Pump *pump = &pumps[pumpi];
for (int motori = 0; motori < MOTORS_PER_PUMP; motori++) {
Motor *motor = &pump->motors[motori];
motor->remaining_step_ms = 0;
motor->remaining_steps = 0;
motor->next_state = 1;
pinMode(motor->pin_en, OUTPUT);
pinMode(motor->pin_dir, OUTPUT);
pinMode(motor->pin_step, OUTPUT);
digitalWrite(motor->pin_en, HIGH); // HIGH is disabled
}
}
}
void loop()
{
static char buffer[BUFFER_SIZE];
if (read_command(buffer) > 0) {
parse_command(buffer);
}
long msec = 2147483647; // max long
for (int pumpi = 0; pumpi < n_pumps; pumpi++) {
Pump *pump = &pumps[pumpi];
for (int motori = 0; motori < MOTORS_PER_PUMP; motori++) {
Motor *motor = &pump->motors[motori];
if (motor->remaining_steps > 0) {
msec = min(msec, motor->remaining_step_ms);
}
}
}
if (msec < 2147483647)
delayMicroseconds(msec);
for (int pumpi = 0; pumpi < n_pumps; pumpi++) {
Pump *pump = &pumps[pumpi];
for (int motori = 0; motori < MOTORS_PER_PUMP; motori++) {
Motor *motor = &pump->motors[motori];
if (motor->remaining_steps > 0) {
motor->remaining_step_ms -= msec;
if ( (motor->remaining_step_ms <= 0) ) {
/* This motor is ready for the next step */
digitalWrite(motor->pin_step, motor->next_state);
motor->next_state = !motor->next_state;
motor->remaining_step_ms = motor->msec_per_pulse;
motor->remaining_steps--;
if (motor->remaining_steps <= 0) { // motor finished task
digitalWrite( motor->pin_en, HIGH); // disable motor
motor->remaining_step_ms = 0;
motor->remaining_steps = 0;
motor->msec_per_pulse = 0;
Serial.println(motor->task_code);
}
}
}
}
}
}