This repository has been archived by the owner on Sep 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGuassianProcess.py
69 lines (61 loc) · 1.91 KB
/
GuassianProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor
from skopt import gp_minimize
from skopt.space import Integer, Categorical, Real
import time
class GaussianProcess():
def __init__(self, filename, nr_calls, group_runs=10):
dataset = pd.read_csv(filename)
dataset.shape
dataset.head()
self.X = dataset.drop('y', axis=1)
self.y = dataset['y']
self.nr_calls = nr_calls
self.group_runs=group_runs
self.SPACE = [
Categorical(['mse', 'friedman_mse', 'mae'], name='criterion'),
Categorical(['best','random'], name='splitter'),
Integer(1, dataset.size, name='max_depth'),
Integer(2, dataset.size, name='min_samples_split'),
Integer(1, dataset.size, name='min_samples_leaf'),
Real(0.0, 0.5, name='min_weight_fraction_leaf'),
Categorical(['auto','sqrt','log2',None], name='max_features'),
Integer(2, dataset.size, name='max_leaf_nodes'),
Real(0.0, 1.0, name='min_impurity_decrease'),
Real(0.0, 1.0, name='ccp_alpha')]
def f(self, params):
X_train, X_test, y_train, y_test = train_test_split(
self.X, self.y, test_size=0.2)
classifier = DecisionTreeRegressor(
**{dim.name: val for dim, val in
zip(self.SPACE, params) if dim.name != 'dummy'})
classifier.fit(X_train, y_train)
pred = classifier.predict(X_test)
s = abs(y_test - pred).sum()
return s
def run(self):
clf=gp_minimize(self.f,
self.SPACE,
acq_func="EI",
n_calls=self.nr_calls,
n_initial_points=15,
noise=0.01,
random_state=None,
n_jobs=-1)
res = []
minFx = 100000000
for i in clf.func_vals:
if i < minFx:
minFx = i
res.append(minFx)
return res
def run_groups(self):
start = time.time()
res = []
for i in range (self.group_runs):
res.append(self.run())
end = time.time()
print("finished GP runs in", end-start, "seconds")
return res