This repository has been archived by the owner on Sep 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-comp-calc.py
250 lines (185 loc) · 6.53 KB
/
test-comp-calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import json
import pickle
import os
from re import A
from tabnanny import check
import numpy as np
test_set = [0, 3, 4, 13, 20, 24, 25, 27, 33, 38, 40, 44, 52, 55, 57, 69, 71, 72, 73, 77, 80, 85, 88, 101, 108, 113, 114, 116, 119, 120, 130, 131, 135, 143, 150, 151, 153, 154, 161, 163, 173, 174, 177, 178, 179, 184, 188, 191, 193, 199]
def distance(A, B):
x = (A[0] - B[0])**2
y = (A[1] - B[1])**2
z = (A[2] - B[2])**2
d = x + y + z
return np.sqrt(d)
def check_sphere_intersection(sphereA, sphereB):
dist = distance(sphereA, sphereB)
return dist < sphereB[3]
#counts = []
fnr = []
tpr = []
def compareTrees(referenceTree, outputTree):
TPM, TPR, FN, FP = 0,0,0,0
for outnode in outputTree:
match = False
for refnode in referenceTree:
if check_sphere_intersection(outnode, refnode):
match = True
break
if match:
TPM += 1
else:
FP += 1
for refnode in referenceTree:
match = False
c = 0
for outnode in outputTree:
if check_sphere_intersection(outnode, refnode):
match = True
#break
c += 1
if match:
TPR += 1
tpr.append(refnode[3])
else:
fnr.append(refnode[3])
FN += 1
return TPM, TPR, FN, FP
"""def compareTrees(referenceTree, outputTree):
TPM, TPR, FN, FP = 0,0,0,0
#a = np.array(referenceTree)
#print(np.max(a[:,3]))
to_find = set(x for x in range(len(referenceTree)))
for outnode in outputTree:
match = False
for idx, refnode in enumerate(referenceTree):
if check_sphere_intersection(outnode, refnode):
if idx in to_find:
to_find.remove(idx)
TPR += 1
match = True
if match:
TPM += 1
else:
FP += 1
#TPR = len(referenceTree) - len(to_find)
FN = len(to_find)
#print(FP)
return TPM, TPR, FN, FP"""
#ofname = "good-outputTrees.npy"
ofname = "outputTrees.npy"
outputTrees = np.load(file=ofname, allow_pickle=True)
referenceTrees = np.load(file="referenceTrees.npy", allow_pickle=True)
TPM, TPR, FN, FP = 0,0,0,0
for i in range(len(outputTrees)):
print("Doing Tree ", i)
#print(np.max(outputTrees[i]))
# print(np.max(referenceTrees[i]))
a,b,c, d = compareTrees(referenceTrees[i], outputTrees[i])
TPM += a
TPR += b
FN += c
FP += d
p = TPM / (TPM + FP) #Precision
r = TPR / (TPR + FN) #Sensitiviy
#OT = (TPM + TPR) / (TPM + TPR + FN + FP) #Doesnt work
f1 = 2*p*r / (p+r)
fnov = (TPR + TPM) / (TPM + TPR + FN +FP)
print("\n\n")
#print("OT: ", OT)
print("Sensitivity / Recall: ", r)
print("Precision: ", p)
#print("Precision: ", p, "Recall: ", r)
print("F1 / Overlap: ", f1)
print("fnov: ", fnov)
import matplotlib.pyplot as plt
plt.boxplot([tpr, fnr])
plt.xlabel("True positives radius versus false negative radius")
plt.ylabel("Radius size")
plt.show()
"""if False:
os.chdir(r"H:\Data\GraphFiles\graphs\referenceTrees")
files = [x for x in os.listdir() if x.endswith(".json")]
referenceTrees = []
for e in test_set:
fname = files[e]
nodesList = []
with open(fname) as f:
dict = json.load(f)
nodes = dict["nodeDictDict"]
for n in nodes:
coords, radius = nodes[n]["coords"], nodes[n]["radius"]
coords.append(radius)
#if coords is None or radius is None:
# print("errrroooor")
nodesList.append(coords)
print(fname, len(nodesList))
referenceTrees.append(nodesList)
#print(referenceTrees)
referenceTrees = np.array(referenceTrees)
os.chdir(r"H:\Data\GraphFiles")
input()
np.save(arr=referenceTrees, file="referenceTrees.npy")
#outputTrees = np.load(file="outputTrees.npy", allow_pickle=True)
#referenceTrees = np.load(file="referenceTrees.npy", allow_pickle=True)
os.chdir(r"H:\Data\GraphFiles\results")
save_name = "Graph UNET2- ClusterPool-18-06-2022 17-27-02.pkl"
labels = []
with open(save_name, 'rb') as f:
loaded_dict = pickle.load(f)
loaded_dict = loaded_dict["Graph UNET2- ClusterPool"]
test_vals = loaded_dict["test_data"]
for folds in test_vals:
if len(labels) == 0:
labels = np.array(folds[0])
else:
labels += np.array(folds[0])
labels = np.round(labels / 10)
os.chdir(r"H:\Data\GraphFiles\graphs\rough\high-res")
files = [x for x in os.listdir() if x.endswith(".json")]
outputTrees = []
node_index = 0
for e in test_set:
fname = files[e]
nodesList = []
#print(fname)
with open(fname) as f:
dict = json.load(f)
nodeDict = dict["nodeDictDict"]
#Remove the undirected nodes
del_nodes = []
for node in nodeDict.keys():
if nodeDict[node]["incEdgeKey"] is None and len(nodeDict[node]["outEdgeKeyList"]) == 0: #No unconnected nodes
del_nodes.append(node)
for dn in del_nodes:
del nodeDict[dn]
for index, nodeID in enumerate(nodeDict.keys()):
if labels[node_index] == 1:
vals = nodeDict[nodeID]['coords']
vals.append(nodeDict[nodeID]['radius'])
nodesList.append(vals)
node_index += 1
print(fname, len(nodesList))
outputTrees.append(nodesList)
outputTrees = np.array(outputTrees)
os.chdir(r"H:\Data\GraphFiles")
np.save(arr=outputTrees, file="outputTrees.npy")
#print(node_index, len(labels))
exit()
print("-------------------------------")
os.chdir(r"H:\Data\GraphFiles\graphs\referenceTrees")
files = [x for x in os.listdir() if x.endswith(".json")]
referenceTrees = []
for e in test_set:
fname = files[e]
nodesList = []
with open(fname) as f:
dict = json.load(f)
nodes = dict["nodeDictDict"]
for n in nodes:
coords, radius = nodes[n]["coords"], nodes[n]["radius"]
nodesList.append(coords.append(radius))
print(fname, len(nodesList))
referenceTrees.append(nodesList)
referenceTrees = np.array(referenceTrees)
os.chdir(r"H:\Data\GraphFiles")
np.save(arr=referenceTrees, file="referenceTrees.npy")"""