diff --git a/dev/404.html b/dev/404.html index a81b8dc7cb..7ba1f6b566 100644 --- a/dev/404.html +++ b/dev/404.html @@ -9,17 +9,17 @@ - + - +
- + \ No newline at end of file diff --git a/dev/assets/app.BnAdoIKy.js b/dev/assets/app.DLAaHVCC.js similarity index 95% rename from dev/assets/app.BnAdoIKy.js rename to dev/assets/app.DLAaHVCC.js index a5b15bf67f..489b701f28 100644 --- a/dev/assets/app.BnAdoIKy.js +++ b/dev/assets/app.DLAaHVCC.js @@ -1 +1 @@ -import{R as p}from"./chunks/theme.DD6X4sQ1.js";import{R as o,a5 as u,a6 as c,a7 as l,a8 as f,a9 as d,aa as m,ab as h,ac as g,ad as A,ae as v,d as P,u as R,v as w,s as y,af as C,ag as b,ah as E,ai as S}from"./chunks/framework.aA4m3-Wc.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=R();return w(()=>{y(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&C(),b(),E(),s.setup&&s.setup(),()=>S(s.Layout)}});async function D(){globalThis.__VITEPRESS__=!0;const e=j(),a=_();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function _(){return g(T)}function j(){let e=o,a;return A(t=>{let n=v(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&D().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{D as createApp}; +import{R as p}from"./chunks/theme.BzTVG02o.js";import{R as o,a5 as u,a6 as c,a7 as l,a8 as f,a9 as d,aa as m,ab as h,ac as g,ad as A,ae as v,d as P,u as R,v as w,s as y,af as C,ag as b,ah as E,ai as S}from"./chunks/framework.aA4m3-Wc.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=R();return w(()=>{y(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&C(),b(),E(),s.setup&&s.setup(),()=>S(s.Layout)}});async function D(){globalThis.__VITEPRESS__=!0;const e=j(),a=_();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function _(){return g(T)}function j(){let e=o,a;return A(t=>{let n=v(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&D().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{D as createApp}; diff --git a/dev/assets/chunks/@localSearchIndexroot.BZvKEvJ0.js b/dev/assets/chunks/@localSearchIndexroot.BZvKEvJ0.js new file mode 100644 index 0000000000..3f4bd766f8 --- /dev/null +++ b/dev/assets/chunks/@localSearchIndexroot.BZvKEvJ0.js @@ -0,0 +1 @@ +const e='{"documentCount":303,"nextId":303,"documentIds":{"0":"/dev/examples#Examples-and-sample-code","1":"/dev/howto/#How-to-guides","2":"/dev/howto/reduction#Reduction-of-polynomials-over-number-fields-modulo-a-prime-ideal","3":"/dev/#features","4":"/dev/#Citing-Hecke","5":"/dev/#acknowledgement","6":"/dev/manual/abelian/elements#elements","7":"/dev/manual/abelian/elements#creation","8":"/dev/manual/abelian/elements#access","9":"/dev/manual/abelian/elements#predicates","10":"/dev/manual/abelian/elements#invariants","11":"/dev/manual/abelian/elements#iterator","12":"/dev/manual/abelian/introduction#AbelianGroupLink2","13":"/dev/manual/abelian/introduction#Basic-Creation","14":"/dev/manual/abelian/introduction#invariants","15":"/dev/manual/abelian/maps#maps","16":"/dev/manual/abelian/structural#Structural-Computations","17":"/dev/manual/abelian/structural#Subgroups-and-Quotients","18":"/dev/manual/abelian/structural#Direct-Products","19":"/dev/manual/abelian/structural#Tensor-Producs","20":"/dev/manual/abelian/structural#hom-group","21":"/dev/manual/algebras/basics#basics","22":"/dev/manual/algebras/basics#Creation-of-algebras","23":"/dev/manual/algebras/basics#Basic-properties","24":"/dev/manual/algebras/basics#predicates","25":"/dev/manual/algebras/basics#generators","26":"/dev/manual/algebras/basics#center","27":"/dev/manual/algebras/groupalgebras#Group-algebras","28":"/dev/manual/algebras/groupalgebras#creation","29":"/dev/manual/algebras/groupalgebras#elements","30":"/dev/manual/algebras/intro#Algebras","31":"/dev/manual/algebras/structureconstant#SCA","32":"/dev/manual/algebras/structureconstant#creation","33":"/dev/manual/algebras/structureconstant#Structure-constant-table","34":"/dev/manual/developer/documentation#documentation","35":"/dev/manual/developer/documentation#Adding-files-to-the-documentation","36":"/dev/manual/developer/documentation#Building-the-documentation","37":"/dev/manual/developer/test#testing","38":"/dev/manual/developer/test#structure","39":"/dev/manual/developer/test#Adding-tests","40":"/dev/manual/developer/test#Adding-long-tests","41":"/dev/manual/developer/test#Running-the-tests","42":"/dev/manual/developer/test#Running-all-tests","43":"/dev/manual/developer/test#Running-a-subset-of-tests","44":"/dev/manual/elliptic_curves/basics#basics","45":"/dev/manual/elliptic_curves/basics#creation","46":"/dev/manual/elliptic_curves/basics#Basic-properties","47":"/dev/manual/elliptic_curves/basics#points","48":"/dev/manual/elliptic_curves/basics#examples","49":"/dev/manual/elliptic_curves/finite_fields#Elliptic-curves-over-finite-fields","50":"/dev/manual/elliptic_curves/finite_fields#Random-points","51":"/dev/manual/elliptic_curves/finite_fields#Cardinality-and-orders","52":"/dev/manual/elliptic_curves/finite_fields#frobenius","53":"/dev/manual/elliptic_curves/finite_fields#Group-structure-of-rational-points","54":"/dev/manual/elliptic_curves/finite_fields#Discrete-logarithm","55":"/dev/manual/elliptic_curves/intro#introduction","56":"/dev/manual/elliptic_curves/number_fields#Elliptic-curves-over-rationals-and-number-fields","57":"/dev/manual/#manual","58":"/dev/manual/misc/FacElem#Factored-Elements","59":"/dev/manual/misc/FacElem#construction","60":"/dev/manual/misc/FacElem#conversion","61":"/dev/manual/misc/FacElem#Special-functions","62":"/dev/manual/misc/FacElem#Positivity-and-Signs","63":"/dev/manual/misc/FacElem#miscellaneous","64":"/dev/manual/misc/conjugacy#Conjugacy-of-integral-matrices","65":"/dev/manual/misc/mset#Multi-sets-and-sub-set-iterators","66":"/dev/manual/misc/mset#multi-sets","67":"/dev/manual/misc/mset#Type-and-constructors","68":"/dev/manual/misc/mset#functions","69":"/dev/manual/misc/mset#Sub-set-iterators","70":"/dev/manual/misc/mset#sub-multi-sets","71":"/dev/manual/misc/mset#sub-sets","72":"/dev/manual/misc/mset#Sub-sets-of-a-given-size","73":"/dev/manual/misc/pmat#PMatLink","74":"/dev/manual/misc/pmat#creation","75":"/dev/manual/misc/pmat#operations","76":"/dev/manual/misc/pmat#examples","77":"/dev/manual/misc/sparse#Sparse-linear-algebra","78":"/dev/manual/misc/sparse#introduction","79":"/dev/manual/misc/sparse#Sparse-rows","80":"/dev/manual/misc/sparse#creation","81":"/dev/manual/misc/sparse#Basic-operations","82":"/dev/manual/misc/sparse#Change-of-base-ring","83":"/dev/manual/misc/sparse#Maximum,-minimum-and-2-norm","84":"/dev/manual/misc/sparse#Functionality-for-integral-sparse-rows","85":"/dev/manual/misc/sparse#Conversion-to/from-julia-and-AbstractAlgebra-types","86":"/dev/manual/misc/sparse#Sparse-matrices","87":"/dev/manual/misc/sparse#construction","88":"/dev/manual/misc/sparse#Elementary-Properties","89":"/dev/manual/misc/sparse#Manipulation/-Access","90":"/dev/manual/misc/sparse#arithmetic","91":"/dev/manual/number_fields/class_fields#Class-Field-Theory","92":"/dev/manual/number_fields/class_fields#introduction","93":"/dev/manual/number_fields/class_fields#Ray-Class-Groups","94":"/dev/manual/number_fields/class_fields#Ray-Class-Fields","95":"/dev/manual/number_fields/class_fields#example","96":"/dev/manual/number_fields/class_fields#conversions","97":"/dev/manual/number_fields/class_fields#invariants","98":"/dev/manual/number_fields/class_fields#operations","99":"/dev/manual/number_fields/complex_embeddings#Complex-embedding","100":"/dev/manual/number_fields/complex_embeddings#Construction-of-complex-embeddings","101":"/dev/manual/number_fields/complex_embeddings#properties","102":"/dev/manual/number_fields/complex_embeddings#Conjugated-embedding","103":"/dev/manual/number_fields/complex_embeddings#Evaluating-elements-at-complex-embeddings","104":"/dev/manual/number_fields/complex_embeddings#Logarithmic-embedding","105":"/dev/manual/number_fields/complex_embeddings#restriction","106":"/dev/manual/number_fields/complex_embeddings#extension","107":"/dev/manual/number_fields/complex_embeddings#positivity_and_signs2","108":"/dev/manual/number_fields/complex_embeddings#example","109":"/dev/manual/number_fields/conventions#conventions","110":"/dev/manual/number_fields/elements#Element-operations","111":"/dev/manual/number_fields/elements#creation","112":"/dev/manual/number_fields/elements#conjugates","113":"/dev/manual/number_fields/elements#predicates","114":"/dev/manual/number_fields/elements#invariants","115":"/dev/manual/number_fields/fields#Number-field-operations","116":"/dev/manual/number_fields/fields#Creation-of-number-fields","117":"/dev/manual/number_fields/fields#Basic-properties","118":"/dev/manual/number_fields/fields#invariants","119":"/dev/manual/number_fields/fields#predicates","120":"/dev/manual/number_fields/fields#subfields","121":"/dev/manual/number_fields/fields#conversion","122":"/dev/manual/number_fields/fields#morphisms","123":"/dev/manual/number_fields/fields#Galois-theory","124":"/dev/manual/number_fields/fields#Infinite-places","125":"/dev/manual/number_fields/fields#miscellaneous","126":"/dev/manual/number_fields/intro#NumberFieldsLink","127":"/dev/manual/orders/elements#elements","128":"/dev/manual/orders/elements#creation","129":"/dev/manual/orders/elements#Basic-properties","130":"/dev/manual/orders/elements#arithmetic","131":"/dev/manual/orders/elements#miscellaneous","132":"/dev/manual/number_fields/internal#internals","133":"/dev/manual/number_fields/internal#Types-of-number-fields","134":"/dev/manual/number_fields/internal#Absolute-simple-fields","135":"/dev/manual/orders/frac_ideals#Fractional-ideals","136":"/dev/manual/orders/frac_ideals#creation","137":"/dev/manual/orders/frac_ideals#arithmetic","138":"/dev/manual/orders/frac_ideals#miscaellenous","139":"/dev/manual/orders/introduction#introduction","140":"/dev/manual/orders/introduction#Orders-of-absolute-number-fields","141":"/dev/manual/orders/introduction#Orders-of-relative-number-fields","142":"/dev/manual/orders/introduction#examples","143":"/dev/manual/orders/ideals#NfOrdIdlLink2","144":"/dev/manual/orders/ideals#creation","145":"/dev/manual/orders/ideals#arithmetic","146":"/dev/manual/orders/ideals#Class-Group","147":"/dev/manual/orders/ideals#miscaellenous","148":"/dev/manual/orders/ideals#Quotient-Rings","149":"/dev/manual/quad_forms/Zgenera#Genera-of-Integer-Lattices","150":"/dev/manual/quad_forms/Zgenera#Creation-of-Genera","151":"/dev/manual/quad_forms/Zgenera#From-an-integral-Lattice","152":"/dev/manual/quad_forms/Zgenera#From-a-gram-matrix","153":"/dev/manual/quad_forms/Zgenera#Enumeration-of-genus-symbols","154":"/dev/manual/quad_forms/Zgenera#From-other-genus-symbols","155":"/dev/manual/quad_forms/Zgenera#Attributes-of-the-genus","156":"/dev/manual/quad_forms/Zgenera#Discriminant-group","157":"/dev/manual/quad_forms/Zgenera#Primary-genera","158":"/dev/manual/quad_forms/Zgenera#local-Symbol","159":"/dev/manual/quad_forms/Zgenera#representative-s","160":"/dev/manual/quad_forms/Zgenera#Embeddings-and-Representations","161":"/dev/manual/quad_forms/Zgenera#Local-genus-Symbols","162":"/dev/manual/quad_forms/Zgenera#creation","163":"/dev/manual/quad_forms/Zgenera#attributes","164":"/dev/manual/quad_forms/Zgenera#representative","165":"/dev/manual/quad_forms/Zgenera#Direct-sums","166":"/dev/manual/quad_forms/Zgenera#embeddings-representations","167":"/dev/manual/orders/orders#orders","168":"/dev/manual/orders/orders#Creation-and-basic-properties","169":"/dev/manual/orders/orders#example","170":"/dev/manual/orders/orders#invariants","171":"/dev/manual/orders/orders#arithmetic","172":"/dev/manual/orders/orders#predicates","173":"/dev/manual/quad_forms/basics#Spaces2","174":"/dev/manual/quad_forms/basics#Creation-of-spaces","175":"/dev/manual/quad_forms/basics#examples","176":"/dev/manual/quad_forms/basics#attributes","177":"/dev/manual/quad_forms/basics#Examples-2","178":"/dev/manual/quad_forms/basics#predicates","179":"/dev/manual/quad_forms/basics#Examples-3","180":"/dev/manual/quad_forms/basics#Inner-products-and-diagonalization","181":"/dev/manual/quad_forms/basics#Examples-4","182":"/dev/manual/quad_forms/basics#equivalence","183":"/dev/manual/quad_forms/basics#Examples-5","184":"/dev/manual/quad_forms/basics#embeddings","185":"/dev/manual/quad_forms/basics#Examples-6","186":"/dev/manual/quad_forms/basics#Categorical-constructions","187":"/dev/manual/quad_forms/basics#example","188":"/dev/manual/quad_forms/basics#Orthogonality-operations","189":"/dev/manual/quad_forms/basics#Example-2","190":"/dev/manual/quad_forms/basics#Isotropic-spaces","191":"/dev/manual/quad_forms/basics#Example-3","192":"/dev/manual/quad_forms/basics#Hyperbolic-spaces","193":"/dev/manual/quad_forms/basics#Example-4","194":"/dev/manual/quad_forms/discriminant_group#Discriminant-Groups","195":"/dev/manual/quad_forms/discriminant_group#Torsion-Quadratic-Modules","196":"/dev/manual/quad_forms/discriminant_group#The-underlying-Type","197":"/dev/manual/quad_forms/discriminant_group#attributes","198":"/dev/manual/quad_forms/discriminant_group#elements","199":"/dev/manual/quad_forms/discriminant_group#Lift-to-the-cover","200":"/dev/manual/quad_forms/discriminant_group#Orthogonal-submodules","201":"/dev/manual/quad_forms/discriminant_group#isometry","202":"/dev/manual/quad_forms/discriminant_group#Primary-and-elementary-modules","203":"/dev/manual/quad_forms/discriminant_group#Smith-normal-form","204":"/dev/manual/quad_forms/discriminant_group#Discriminant-Groups-2","205":"/dev/manual/quad_forms/discriminant_group#From-a-lattice","206":"/dev/manual/quad_forms/discriminant_group#From-a-matrix","207":"/dev/manual/quad_forms/discriminant_group#Rescaling-the-form","208":"/dev/manual/quad_forms/discriminant_group#invariants","209":"/dev/manual/quad_forms/discriminant_group#genus","210":"/dev/manual/quad_forms/discriminant_group#Categorical-constructions","211":"/dev/manual/quad_forms/discriminant_group#submodules","212":"/dev/manual/quad_forms/genusherm#Genera-for-hermitian-lattices","213":"/dev/manual/quad_forms/genusherm#Local-genus-symbols","214":"/dev/manual/quad_forms/genusherm#Creation-of-local-genus-symbols","215":"/dev/manual/quad_forms/genusherm#examples","216":"/dev/manual/quad_forms/genusherm#attributes","217":"/dev/manual/quad_forms/genusherm#Examples-2","218":"/dev/manual/quad_forms/genusherm#invariants","219":"/dev/manual/quad_forms/genusherm#Examples-3","220":"/dev/manual/quad_forms/genusherm#predicates","221":"/dev/manual/quad_forms/genusherm#Examples-4","222":"/dev/manual/quad_forms/genusherm#Local-uniformizer","223":"/dev/manual/quad_forms/genusherm#example","224":"/dev/manual/quad_forms/genusherm#Determinant-representatives","225":"/dev/manual/quad_forms/genusherm#Examples-5","226":"/dev/manual/quad_forms/genusherm#Gram-matrices","227":"/dev/manual/quad_forms/genusherm#Examples-6","228":"/dev/manual/quad_forms/genusherm#Global-genus-symbols","229":"/dev/manual/quad_forms/genusherm#Creation-of-global-genus-symbols","230":"/dev/manual/quad_forms/genusherm#Examples-7","231":"/dev/manual/quad_forms/genusherm#Attributes-2","232":"/dev/manual/quad_forms/genusherm#Examples-8","233":"/dev/manual/quad_forms/genusherm#mass","234":"/dev/manual/quad_forms/genusherm#Example-2","235":"/dev/manual/quad_forms/genusherm#Representatives-of-a-genus","236":"/dev/manual/quad_forms/genusherm#Examples-9","237":"/dev/manual/quad_forms/genusherm#Sum-of-genera","238":"/dev/manual/quad_forms/genusherm#Examples-10","239":"/dev/manual/quad_forms/genusherm#Enumeration-of-genera","240":"/dev/manual/quad_forms/genusherm#Examples-11","241":"/dev/manual/quad_forms/genusherm#rescaling","242":"/dev/manual/quad_forms/integer_lattices#Integer-Lattices","243":"/dev/manual/quad_forms/integer_lattices#Creation-of-integer-lattices","244":"/dev/manual/quad_forms/integer_lattices#From-a-gram-matrix","245":"/dev/manual/quad_forms/integer_lattices#In-a-quadratic-space","246":"/dev/manual/quad_forms/integer_lattices#Special-lattices","247":"/dev/manual/quad_forms/integer_lattices#From-a-genus","248":"/dev/manual/quad_forms/integer_lattices#Rescaling-the-Quadratic-Form","249":"/dev/manual/quad_forms/integer_lattices#attributes","250":"/dev/manual/quad_forms/integer_lattices#invariants","251":"/dev/manual/quad_forms/integer_lattices#The-Genus","252":"/dev/manual/quad_forms/integer_lattices#Real-invariants","253":"/dev/manual/quad_forms/integer_lattices#isometries","254":"/dev/manual/quad_forms/integer_lattices#Root-lattices","255":"/dev/manual/quad_forms/integer_lattices#Module-operations","256":"/dev/manual/quad_forms/integer_lattices#embeddings","257":"/dev/manual/quad_forms/integer_lattices#Categorical-constructions","258":"/dev/manual/quad_forms/integer_lattices#Orthogonal-sublattices","259":"/dev/manual/quad_forms/integer_lattices#Dual-lattice","260":"/dev/manual/quad_forms/integer_lattices#Discriminant-group","261":"/dev/manual/quad_forms/integer_lattices#overlattices","262":"/dev/manual/quad_forms/integer_lattices#Sublattices-defined-by-endomorphisms","263":"/dev/manual/quad_forms/integer_lattices#Computing-embeddings","264":"/dev/manual/quad_forms/integer_lattices#LLL,-Short-and-Close-Vectors","265":"/dev/manual/quad_forms/integer_lattices#LLL-and-indefinite-LLL","266":"/dev/manual/quad_forms/integer_lattices#Short-Vectors","267":"/dev/manual/quad_forms/integer_lattices#Close-Vectors","268":"/dev/manual/quad_forms/introduction#introduction","269":"/dev/manual/quad_forms/introduction#Definitions-and-vocabulary","270":"/dev/manual/quad_forms/introduction#Quadratic-and-hermitian-spaces","271":"/dev/manual/quad_forms/introduction#Quadratic-and-hermitian-lattices","272":"/dev/manual/quad_forms/introduction#references","273":"/dev/references#bibliography","274":"/dev/start/#Getting-started","275":"/dev/tutorials/#tutorials","276":"/dev/manual/quad_forms/lattices#lattices","277":"/dev/manual/quad_forms/lattices#Creation-of-lattices","278":"/dev/manual/quad_forms/lattices#Inside-a-given-ambient-space","279":"/dev/manual/quad_forms/lattices#Quadratic-lattice-over-a-number-field","280":"/dev/manual/quad_forms/lattices#Hermitian-lattice-over-a-degree-2-extension","281":"/dev/manual/quad_forms/lattices#examples","282":"/dev/manual/quad_forms/lattices#Ambient-space-and-rational-span","283":"/dev/manual/quad_forms/lattices#Examples-2","284":"/dev/manual/quad_forms/lattices#Rational-equivalence","285":"/dev/manual/quad_forms/lattices#Examples-3","286":"/dev/manual/quad_forms/lattices#attributes","287":"/dev/manual/quad_forms/lattices#Examples-4","288":"/dev/manual/quad_forms/lattices#Module-operations","289":"/dev/manual/quad_forms/lattices#Examples-5","290":"/dev/manual/quad_forms/lattices#Categorical-constructions","291":"/dev/manual/quad_forms/lattices#invariants","292":"/dev/manual/quad_forms/lattices#Examples-6","293":"/dev/manual/quad_forms/lattices#predicates","294":"/dev/manual/quad_forms/lattices#Examples-7","295":"/dev/manual/quad_forms/lattices#Local-properties","296":"/dev/manual/quad_forms/lattices#Examples-8","297":"/dev/manual/quad_forms/lattices#Automorphisms-for-definite-lattices","298":"/dev/manual/quad_forms/lattices#Examples-9","299":"/dev/manual/quad_forms/lattices#isometry","300":"/dev/manual/quad_forms/lattices#Examples-10","301":"/dev/manual/quad_forms/lattices#Maximal-integral-lattices","302":"/dev/manual/quad_forms/lattices#Examples-11"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[4,1,1],"1":[3,1,1],"2":[10,1,139],"3":[1,1,40],"4":[2,1,78],"5":[1,1,21],"6":[1,1,29],"7":[1,1,93],"8":[1,1,39],"9":[1,1,18],"10":[1,1,16],"11":[1,1,36],"12":[1,1,38],"13":[2,1,100],"14":[1,1,79],"15":[1,1,97],"16":[2,1,75],"17":[3,2,225],"18":[2,2,85],"19":[2,2,52],"20":[2,2,46],"21":[1,1,1],"22":[3,1,46],"23":[2,1,29],"24":[1,1,27],"25":[1,1,88],"26":[1,1,43],"27":[2,1,20],"28":[1,2,41],"29":[1,2,58],"30":[1,1,67],"31":[3,1,1],"32":[1,3,86],"33":[3,3,36],"34":[1,1,13],"35":[5,1,15],"36":[3,1,51],"37":[1,1,1],"38":[1,1,47],"39":[2,2,45],"40":[3,2,41],"41":[3,1,1],"42":[3,4,54],"43":[5,4,44],"44":[1,1,1],"45":[1,1,72],"46":[2,1,110],"47":[1,1,42],"48":[1,2,84],"49":[5,1,1],"50":[2,5,35],"51":[3,5,52],"52":[1,5,47],"53":[5,5,70],"54":[2,5,60],"55":[1,1,55],"56":[7,1,1],"57":[1,1,5],"58":[2,1,140],"59":[1,2,62],"60":[1,2,68],"61":[2,2,202],"62":[3,2,24],"63":[1,2,22],"64":[4,1,49],"65":[6,1,1],"66":[2,6,1],"67":[3,6,120],"68":[1,6,151],"69":[3,6,1],"70":[3,7,33],"71":[2,7,33],"72":[6,7,20],"73":[2,1,140],"74":[1,2,50],"75":[1,2,83],"76":[1,2,1],"77":[3,1,1],"78":[1,3,44],"79":[2,3,60],"80":[1,4,37],"81":[2,4,54],"82":[4,4,22],"83":[5,4,33],"84":[5,4,41],"85":[7,4,38],"86":[2,3,67],"87":[1,4,121],"88":[2,4,251],"89":[2,4,148],"90":[1,4,75],"91":[3,1,1],"92":[1,3,74],"93":[3,3,159],"94":[3,3,128],"95":[1,5,46],"96":[1,3,154],"97":[1,3,94],"98":[1,3,131],"99":[2,1,32],"100":[4,2,49],"101":[1,2,41],"102":[2,2,28],"103":[5,2,88],"104":[2,2,51],"105":[1,2,80],"106":[1,2,65],"107":[3,2,84],"108":[1,2,59],"109":[1,1,146],"110":[2,1,1],"111":[1,2,186],"112":[1,3,95],"113":[1,3,106],"114":[1,3,45],"115":[3,1,1],"116":[4,3,222],"117":[2,3,111],"118":[1,3,77],"119":[1,3,105],"120":[1,4,104],"121":[1,3,98],"122":[1,3,91],"123":[2,3,52],"124":[2,3,57],"125":[1,3,90],"126":[1,1,70],"127":[1,1,46],"128":[1,1,73],"129":[2,1,69],"130":[1,1,18],"131":[1,1,190],"132":[1,1,1],"133":[4,1,94],"134":[3,1,29],"135":[2,1,44],"136":[1,2,62],"137":[1,2,56],"138":[1,2,60],"139":[1,1,61],"140":[5,1,52],"141":[5,1,98],"142":[1,1,97],"143":[1,1,90],"144":[1,1,92],"145":[1,1,93],"146":[2,1,338],"147":[1,1,161],"148":[2,1,123],"149":[4,1,69],"150":[3,4,1],"151":[4,5,12],"152":[4,5,17],"153":[4,5,63],"154":[4,5,19],"155":[4,4,88],"156":[2,7,4],"157":[2,7,61],"158":[2,7,13],"159":[3,4,63],"160":[3,4,19],"161":[3,4,73],"162":[1,7,25],"163":[1,7,117],"164":[1,7,37],"165":[2,7,16],"166":[2,7,46],"167":[1,1,96],"168":[4,1,145],"169":[1,5,232],"170":[1,1,102],"171":[1,1,93],"172":[1,1,22],"173":[1,1,1],"174":[3,1,52],"175":[1,4,67],"176":[1,1,87],"177":[1,2,65],"178":[1,1,71],"179":[1,2,32],"180":[4,1,110],"181":[1,5,35],"182":[1,1,134],"183":[1,2,60],"184":[1,1,94],"185":[1,2,56],"186":[2,1,116],"187":[1,3,43],"188":[2,1,35],"189":[1,3,21],"190":[2,1,54],"191":[1,3,32],"192":[2,1,61],"193":[1,3,33],"194":[2,1,1],"195":[3,2,91],"196":[3,5,146],"197":[1,5,51],"198":[1,5,29],"199":[4,5,27],"200":[2,5,13],"201":[1,5,114],"202":[4,5,58],"203":[3,5,41],"204":[2,2,23],"205":[3,2,42],"206":[3,2,54],"207":[3,2,33],"208":[1,2,63],"209":[1,2,117],"210":[2,2,59],"211":[1,2,39],"212":[4,1,1],"213":[3,4,152],"214":[5,7,60],"215":[1,10,86],"216":[1,7,38],"217":[1,8,48],"218":[1,7,86],"219":[1,8,54],"220":[1,7,33],"221":[1,8,38],"222":[2,7,38],"223":[1,8,32],"224":[2,7,58],"225":[1,9,34],"226":[2,7,48],"227":[1,9,45],"228":[3,4,78],"229":[5,7,66],"230":[1,10,119],"231":[1,7,90],"232":[1,8,80],"233":[1,7,75],"234":[1,8,63],"235":[4,4,93],"236":[1,8,64],"237":[3,4,43],"238":[1,7,96],"239":[3,4,82],"240":[1,7,78],"241":[1,4,41],"242":[2,1,63],"243":[4,2,1],"244":[4,6,39],"245":[4,6,48],"246":[2,6,227],"247":[3,6,15],"248":[4,6,51],"249":[1,2,59],"250":[1,2,100],"251":[2,3,29],"252":[2,3,27],"253":[1,2,78],"254":[2,1,116],"255":[2,2,147],"256":[1,2,1],"257":[2,3,63],"258":[2,3,29],"259":[2,3,11],"260":[2,3,6],"261":[1,3,117],"262":[4,3,60],"263":[2,3,80],"264":[5,2,1],"265":[3,7,55],"266":[2,7,88],"267":[2,7,80],"268":[1,1,45],"269":[3,1,15],"270":[4,4,120],"271":[4,4,70],"272":[1,1,57],"273":[1,1,89],"274":[2,1,73],"275":[1,1,1],"276":[1,1,1],"277":[3,1,1],"278":[5,4,62],"279":[6,4,83],"280":[7,4,77],"281":[1,11,137],"282":[5,1,34],"283":[1,6,60],"284":[2,1,44],"285":[1,3,88],"286":[1,1,127],"287":[1,2,81],"288":[2,1,113],"289":[1,3,67],"290":[2,1,114],"291":[1,1,53],"292":[1,2,57],"293":[1,1,84],"294":[1,2,51],"295":[2,1,100],"296":[1,3,40],"297":[4,1,106],"298":[1,5,45],"299":[1,1,83],"300":[1,2,44],"301":[3,1,69],"302":[1,4,66]},"averageFieldLength":[2.072607260726073,3.006600660066005,64.41914191419136],"storedFields":{"0":{"title":"Examples and sample code","titles":[]},"1":{"title":"How-to guides","titles":[]},"2":{"title":"Reduction of polynomials over number fields modulo a prime ideal","titles":[]},"3":{"title":"Features","titles":[]},"4":{"title":"Citing Hecke","titles":[]},"5":{"title":"Acknowledgement","titles":[]},"6":{"title":"Elements","titles":[]},"7":{"title":"Creation","titles":["Elements"]},"8":{"title":"Access","titles":["Elements"]},"9":{"title":"Predicates","titles":["Elements"]},"10":{"title":"Invariants","titles":["Elements"]},"11":{"title":"Iterator","titles":["Elements"]},"12":{"title":"Introduction","titles":[]},"13":{"title":"Basic Creation","titles":["Introduction"]},"14":{"title":"Invariants","titles":["Introduction"]},"15":{"title":"Maps","titles":[]},"16":{"title":"Structural Computations","titles":[]},"17":{"title":"Subgroups and Quotients","titles":["Structural Computations"]},"18":{"title":"Direct Products","titles":["Structural Computations"]},"19":{"title":"Tensor Producs","titles":["Structural Computations"]},"20":{"title":"Hom-Group","titles":["Structural Computations"]},"21":{"title":"Basics","titles":[]},"22":{"title":"Creation of algebras","titles":["Basics"]},"23":{"title":"Basic properties","titles":["Basics"]},"24":{"title":"Predicates","titles":["Basics"]},"25":{"title":"Generators","titles":["Basics"]},"26":{"title":"Center","titles":["Basics"]},"27":{"title":"Group algebras","titles":[]},"28":{"title":"Creation","titles":["Group algebras"]},"29":{"title":"Elements","titles":["Group algebras"]},"30":{"title":"Introduction","titles":[]},"31":{"title":"Structure constant algebras","titles":[]},"32":{"title":"Creation","titles":["Structure constant algebras"]},"33":{"title":"Structure constant table","titles":["Structure constant algebras"]},"34":{"title":"Documentation","titles":[]},"35":{"title":"Adding files to the documentation","titles":["Documentation"]},"36":{"title":"Building the documentation","titles":["Documentation"]},"37":{"title":"Testing","titles":[]},"38":{"title":"Structure","titles":["Testing"]},"39":{"title":"Adding tests","titles":["Testing","Structure"]},"40":{"title":"Adding long tests","titles":["Testing","Structure"]},"41":{"title":"Running the tests","titles":["Testing"]},"42":{"title":"Running all tests","titles":["Testing","Running the tests"]},"43":{"title":"Running a subset of tests","titles":["Testing","Running the tests"]},"44":{"title":"Basics","titles":[]},"45":{"title":"Creation","titles":["Basics"]},"46":{"title":"Basic properties","titles":["Basics"]},"47":{"title":"Points","titles":["Basics"]},"48":{"title":"Examples","titles":["Basics","Points"]},"49":{"title":"Elliptic curves over finite fields","titles":[]},"50":{"title":"Random points","titles":["Elliptic curves over finite fields"]},"51":{"title":"Cardinality and orders","titles":["Elliptic curves over finite fields"]},"52":{"title":"Frobenius","titles":["Elliptic curves over finite fields"]},"53":{"title":"Group structure of rational points","titles":["Elliptic curves over finite fields"]},"54":{"title":"Discrete logarithm","titles":["Elliptic curves over finite fields"]},"55":{"title":"Introduction","titles":[]},"56":{"title":"Elliptic curves over rationals and number fields","titles":[]},"57":{"title":"Manual","titles":[]},"58":{"title":"Factored Elements","titles":[]},"59":{"title":"Construction","titles":["Factored Elements"]},"60":{"title":"Conversion","titles":["Factored Elements"]},"61":{"title":"Special functions","titles":["Factored Elements"]},"62":{"title":"Positivity & Signs","titles":["Factored Elements"]},"63":{"title":"Miscellaneous","titles":["Factored Elements"]},"64":{"title":"Conjugacy of integral matrices","titles":[]},"65":{"title":"Multi-sets and sub-set iterators","titles":[]},"66":{"title":"Multi-sets","titles":["Multi-sets and sub-set iterators"]},"67":{"title":"Type and constructors","titles":["Multi-sets and sub-set iterators","Multi-sets"]},"68":{"title":"Functions","titles":["Multi-sets and sub-set iterators","Multi-sets"]},"69":{"title":"Sub-set iterators","titles":["Multi-sets and sub-set iterators"]},"70":{"title":"Sub-multi-sets","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"71":{"title":"Sub-sets","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"72":{"title":"Sub-sets of a given size","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"73":{"title":"Pseudo-matrices","titles":[]},"74":{"title":"Creation","titles":["Pseudo-matrices"]},"75":{"title":"Operations","titles":["Pseudo-matrices"]},"76":{"title":"Examples","titles":["Pseudo-matrices"]},"77":{"title":"Sparse linear algebra","titles":[]},"78":{"title":"Introduction","titles":["Sparse linear algebra"]},"79":{"title":"Sparse rows","titles":["Sparse linear algebra"]},"80":{"title":"Creation","titles":["Sparse linear algebra","Sparse rows"]},"81":{"title":"Basic operations","titles":["Sparse linear algebra","Sparse rows"]},"82":{"title":"Change of base ring","titles":["Sparse linear algebra","Sparse rows"]},"83":{"title":"Maximum, minimum and 2-norm","titles":["Sparse linear algebra","Sparse rows"]},"84":{"title":"Functionality for integral sparse rows","titles":["Sparse linear algebra","Sparse rows"]},"85":{"title":"Conversion to/from julia and AbstractAlgebra types","titles":["Sparse linear algebra","Sparse rows"]},"86":{"title":"Sparse matrices","titles":["Sparse linear algebra"]},"87":{"title":"Construction","titles":["Sparse linear algebra","Sparse matrices"]},"88":{"title":"Elementary Properties","titles":["Sparse linear algebra","Sparse matrices"]},"89":{"title":"Manipulation/ Access","titles":["Sparse linear algebra","Sparse matrices"]},"90":{"title":"Arithmetic","titles":["Sparse linear algebra","Sparse matrices"]},"91":{"title":"Class Field Theory","titles":[]},"92":{"title":"Introduction","titles":["Class Field Theory"]},"93":{"title":"Ray Class Groups","titles":["Class Field Theory"]},"94":{"title":"Ray Class Fields","titles":["Class Field Theory"]},"95":{"title":"Example","titles":["Class Field Theory","Ray Class Fields"]},"96":{"title":"Conversions","titles":["Class Field Theory"]},"97":{"title":"Invariants","titles":["Class Field Theory"]},"98":{"title":"Operations","titles":["Class Field Theory"]},"99":{"title":"Complex embedding","titles":[]},"100":{"title":"Construction of complex embeddings","titles":["Complex embedding"]},"101":{"title":"Properties","titles":["Complex embedding"]},"102":{"title":"Conjugated embedding","titles":["Complex embedding"]},"103":{"title":"Evaluating elements at complex embeddings","titles":["Complex embedding"]},"104":{"title":"Logarithmic embedding","titles":["Complex embedding"]},"105":{"title":"Restriction","titles":["Complex embedding"]},"106":{"title":"Extension","titles":["Complex embedding"]},"107":{"title":"Positivity & Signs","titles":["Complex embedding"]},"108":{"title":"Example","titles":["Complex embedding"]},"109":{"title":"Conventions","titles":[]},"110":{"title":"Element operations","titles":[]},"111":{"title":"Creation","titles":["Element operations"]},"112":{"title":"Conjugates","titles":["Element operations","Creation"]},"113":{"title":"Predicates","titles":["Element operations","Creation"]},"114":{"title":"Invariants","titles":["Element operations","Creation"]},"115":{"title":"Number field operations","titles":[]},"116":{"title":"Creation of number fields","titles":["Number field operations"]},"117":{"title":"Basic properties","titles":["Number field operations"]},"118":{"title":"Invariants","titles":["Number field operations"]},"119":{"title":"Predicates","titles":["Number field operations"]},"120":{"title":"Subfields","titles":["Number field operations","Predicates"]},"121":{"title":"Conversion","titles":["Number field operations"]},"122":{"title":"Morphisms","titles":["Number field operations"]},"123":{"title":"Galois theory","titles":["Number field operations"]},"124":{"title":"Infinite places","titles":["Number field operations"]},"125":{"title":"Miscellaneous","titles":["Number field operations"]},"126":{"title":"Introduction","titles":[]},"127":{"title":"Elements","titles":[]},"128":{"title":"Creation","titles":["Elements"]},"129":{"title":"Basic properties","titles":["Elements"]},"130":{"title":"Arithmetic","titles":["Elements"]},"131":{"title":"Miscellaneous","titles":["Elements"]},"132":{"title":"Internals","titles":[]},"133":{"title":"Types of number fields","titles":["Internals"]},"134":{"title":"Absolute simple fields","titles":["Internals"]},"135":{"title":"Fractional ideals","titles":[]},"136":{"title":"Creation","titles":["Fractional ideals"]},"137":{"title":"Arithmetic","titles":["Fractional ideals"]},"138":{"title":"Miscaellenous","titles":["Fractional ideals"]},"139":{"title":"Introduction","titles":[]},"140":{"title":"Orders of absolute number fields","titles":["Introduction"]},"141":{"title":"Orders of relative number fields","titles":["Introduction"]},"142":{"title":"Examples","titles":["Introduction"]},"143":{"title":"Ideals","titles":[]},"144":{"title":"Creation","titles":["Ideals"]},"145":{"title":"Arithmetic","titles":["Ideals"]},"146":{"title":"Class Group","titles":["Ideals"]},"147":{"title":"Miscaellenous","titles":["Ideals"]},"148":{"title":"Quotient Rings","titles":["Ideals"]},"149":{"title":"Genera of Integer Lattices","titles":[]},"150":{"title":"Creation of Genera","titles":["Genera of Integer Lattices"]},"151":{"title":"From an integral Lattice","titles":["Genera of Integer Lattices","Creation of Genera"]},"152":{"title":"From a gram matrix","titles":["Genera of Integer Lattices","Creation of Genera"]},"153":{"title":"Enumeration of genus symbols","titles":["Genera of Integer Lattices","Creation of Genera"]},"154":{"title":"From other genus symbols","titles":["Genera of Integer Lattices","Creation of Genera"]},"155":{"title":"Attributes of the genus","titles":["Genera of Integer Lattices"]},"156":{"title":"Discriminant group","titles":["Genera of Integer Lattices","Attributes of the genus"]},"157":{"title":"Primary genera","titles":["Genera of Integer Lattices","Attributes of the genus"]},"158":{"title":"local Symbol","titles":["Genera of Integer Lattices","Attributes of the genus"]},"159":{"title":"Representative(s)","titles":["Genera of Integer Lattices"]},"160":{"title":"Embeddings and Representations","titles":["Genera of Integer Lattices"]},"161":{"title":"Local genus Symbols","titles":["Genera of Integer Lattices"]},"162":{"title":"Creation","titles":["Genera of Integer Lattices","Local genus Symbols"]},"163":{"title":"Attributes","titles":["Genera of Integer Lattices","Local genus Symbols"]},"164":{"title":"Representative","titles":["Genera of Integer Lattices","Local genus Symbols"]},"165":{"title":"Direct sums","titles":["Genera of Integer Lattices","Local genus Symbols"]},"166":{"title":"Embeddings/Representations","titles":["Genera of Integer Lattices","Local genus Symbols"]},"167":{"title":"Orders","titles":[]},"168":{"title":"Creation and basic properties","titles":["Orders"]},"169":{"title":"Example","titles":["Orders","Creation and basic properties"]},"170":{"title":"Invariants","titles":["Orders"]},"171":{"title":"Arithmetic","titles":["Orders"]},"172":{"title":"Predicates","titles":["Orders"]},"173":{"title":"Spaces","titles":[]},"174":{"title":"Creation of spaces","titles":["Spaces"]},"175":{"title":"Examples","titles":["Spaces","Creation of spaces"]},"176":{"title":"Attributes","titles":["Spaces"]},"177":{"title":"Examples","titles":["Spaces","Attributes"]},"178":{"title":"Predicates","titles":["Spaces"]},"179":{"title":"Examples","titles":["Spaces","Predicates"]},"180":{"title":"Inner products and diagonalization","titles":["Spaces"]},"181":{"title":"Examples","titles":["Spaces","Inner products and diagonalization"]},"182":{"title":"Equivalence","titles":["Spaces"]},"183":{"title":"Examples","titles":["Spaces","Equivalence"]},"184":{"title":"Embeddings","titles":["Spaces"]},"185":{"title":"Examples","titles":["Spaces","Embeddings"]},"186":{"title":"Categorical constructions","titles":["Spaces"]},"187":{"title":"Example","titles":["Spaces","Categorical constructions"]},"188":{"title":"Orthogonality operations","titles":["Spaces"]},"189":{"title":"Example","titles":["Spaces","Orthogonality operations"]},"190":{"title":"Isotropic spaces","titles":["Spaces"]},"191":{"title":"Example","titles":["Spaces","Isotropic spaces"]},"192":{"title":"Hyperbolic spaces","titles":["Spaces"]},"193":{"title":"Example","titles":["Spaces","Hyperbolic spaces"]},"194":{"title":"Discriminant Groups","titles":[]},"195":{"title":"Torsion Quadratic Modules","titles":["Discriminant Groups"]},"196":{"title":"The underlying Type","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"197":{"title":"Attributes","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"198":{"title":"Elements","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"199":{"title":"Lift to the cover","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"200":{"title":"Orthogonal submodules","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"201":{"title":"Isometry","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"202":{"title":"Primary and elementary modules","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"203":{"title":"Smith normal form","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"204":{"title":"Discriminant Groups","titles":["Discriminant Groups"]},"205":{"title":"From a lattice","titles":["Discriminant Groups","Discriminant Groups"]},"206":{"title":"From a matrix","titles":["Discriminant Groups","Discriminant Groups"]},"207":{"title":"Rescaling the form","titles":["Discriminant Groups","Discriminant Groups"]},"208":{"title":"Invariants","titles":["Discriminant Groups","Discriminant Groups"]},"209":{"title":"Genus","titles":["Discriminant Groups","Discriminant Groups"]},"210":{"title":"Categorical constructions","titles":["Discriminant Groups","Discriminant Groups"]},"211":{"title":"Submodules","titles":["Discriminant Groups","Discriminant Groups"]},"212":{"title":"Genera for hermitian lattices","titles":[]},"213":{"title":"Local genus symbols","titles":["Genera for hermitian lattices"]},"214":{"title":"Creation of local genus symbols","titles":["Genera for hermitian lattices","Local genus symbols"]},"215":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Creation of local genus symbols"]},"216":{"title":"Attributes","titles":["Genera for hermitian lattices","Local genus symbols"]},"217":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Attributes"]},"218":{"title":"Invariants","titles":["Genera for hermitian lattices","Local genus symbols"]},"219":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Invariants"]},"220":{"title":"Predicates","titles":["Genera for hermitian lattices","Local genus symbols"]},"221":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Predicates"]},"222":{"title":"Local uniformizer","titles":["Genera for hermitian lattices","Local genus symbols"]},"223":{"title":"Example","titles":["Genera for hermitian lattices","Local genus symbols","Local uniformizer"]},"224":{"title":"Determinant representatives","titles":["Genera for hermitian lattices","Local genus symbols"]},"225":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Determinant representatives"]},"226":{"title":"Gram matrices","titles":["Genera for hermitian lattices","Local genus symbols"]},"227":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Gram matrices"]},"228":{"title":"Global genus symbols","titles":["Genera for hermitian lattices"]},"229":{"title":"Creation of global genus symbols","titles":["Genera for hermitian lattices","Global genus symbols"]},"230":{"title":"Examples","titles":["Genera for hermitian lattices","Global genus symbols","Creation of global genus symbols"]},"231":{"title":"Attributes","titles":["Genera for hermitian lattices","Global genus symbols"]},"232":{"title":"Examples","titles":["Genera for hermitian lattices","Global genus symbols","Attributes"]},"233":{"title":"Mass","titles":["Genera for hermitian lattices","Global genus symbols"]},"234":{"title":"Example","titles":["Genera for hermitian lattices","Global genus symbols","Mass"]},"235":{"title":"Representatives of a genus","titles":["Genera for hermitian lattices"]},"236":{"title":"Examples","titles":["Genera for hermitian lattices","Representatives of a genus"]},"237":{"title":"Sum of genera","titles":["Genera for hermitian lattices"]},"238":{"title":"Examples","titles":["Genera for hermitian lattices","Sum of genera"]},"239":{"title":"Enumeration of genera","titles":["Genera for hermitian lattices"]},"240":{"title":"Examples","titles":["Genera for hermitian lattices","Enumeration of genera"]},"241":{"title":"Rescaling","titles":["Genera for hermitian lattices"]},"242":{"title":"Integer Lattices","titles":[]},"243":{"title":"Creation of integer lattices","titles":["Integer Lattices"]},"244":{"title":"From a gram matrix","titles":["Integer Lattices","Creation of integer lattices"]},"245":{"title":"In a quadratic space","titles":["Integer Lattices","Creation of integer lattices"]},"246":{"title":"Special lattices","titles":["Integer Lattices","Creation of integer lattices"]},"247":{"title":"From a genus","titles":["Integer Lattices","Creation of integer lattices"]},"248":{"title":"Rescaling the Quadratic Form","titles":["Integer Lattices","Creation of integer lattices"]},"249":{"title":"Attributes","titles":["Integer Lattices"]},"250":{"title":"Invariants","titles":["Integer Lattices"]},"251":{"title":"The Genus","titles":["Integer Lattices","Invariants"]},"252":{"title":"Real invariants","titles":["Integer Lattices","Invariants"]},"253":{"title":"Isometries","titles":["Integer Lattices"]},"254":{"title":"Root lattices","titles":[]},"255":{"title":"Module operations","titles":["Root lattices"]},"256":{"title":"Embeddings","titles":["Root lattices"]},"257":{"title":"Categorical constructions","titles":["Root lattices","Embeddings"]},"258":{"title":"Orthogonal sublattices","titles":["Root lattices","Embeddings"]},"259":{"title":"Dual lattice","titles":["Root lattices","Embeddings"]},"260":{"title":"Discriminant group","titles":["Root lattices","Embeddings"]},"261":{"title":"Overlattices","titles":["Root lattices","Embeddings"]},"262":{"title":"Sublattices defined by endomorphisms","titles":["Root lattices","Embeddings"]},"263":{"title":"Computing embeddings","titles":["Root lattices","Embeddings"]},"264":{"title":"LLL, Short and Close Vectors","titles":["Root lattices"]},"265":{"title":"LLL and indefinite LLL","titles":["Root lattices","LLL, Short and Close Vectors"]},"266":{"title":"Short Vectors","titles":["Root lattices","LLL, Short and Close Vectors"]},"267":{"title":"Close Vectors","titles":["Root lattices","LLL, Short and Close Vectors"]},"268":{"title":"Introduction","titles":[]},"269":{"title":"Definitions and vocabulary","titles":["Introduction"]},"270":{"title":"Quadratic and hermitian spaces","titles":["Introduction","Definitions and vocabulary"]},"271":{"title":"Quadratic and hermitian lattices","titles":["Introduction","Definitions and vocabulary"]},"272":{"title":"References","titles":["Introduction"]},"273":{"title":"Bibliography","titles":[]},"274":{"title":"Getting started","titles":[]},"275":{"title":"Tutorials","titles":[]},"276":{"title":"Lattices","titles":[]},"277":{"title":"Creation of lattices","titles":["Lattices"]},"278":{"title":"Inside a given ambient space","titles":["Lattices","Creation of lattices"]},"279":{"title":"Quadratic lattice over a number field","titles":["Lattices","Creation of lattices"]},"280":{"title":"Hermitian lattice over a degree 2 extension","titles":["Lattices","Creation of lattices"]},"281":{"title":"Examples","titles":["Lattices","Creation of lattices","Hermitian lattice over a degree 2 extension"]},"282":{"title":"Ambient space and rational span","titles":["Lattices"]},"283":{"title":"Examples","titles":["Lattices","Ambient space and rational span"]},"284":{"title":"Rational equivalence","titles":["Lattices"]},"285":{"title":"Examples","titles":["Lattices","Rational equivalence"]},"286":{"title":"Attributes","titles":["Lattices"]},"287":{"title":"Examples","titles":["Lattices","Attributes"]},"288":{"title":"Module operations","titles":["Lattices"]},"289":{"title":"Examples","titles":["Lattices","Module operations"]},"290":{"title":"Categorical constructions","titles":["Lattices"]},"291":{"title":"Invariants","titles":["Lattices"]},"292":{"title":"Examples","titles":["Lattices","Invariants"]},"293":{"title":"Predicates","titles":["Lattices"]},"294":{"title":"Examples","titles":["Lattices","Predicates"]},"295":{"title":"Local properties","titles":["Lattices"]},"296":{"title":"Examples","titles":["Lattices","Local properties"]},"297":{"title":"Automorphisms for definite lattices","titles":["Lattices"]},"298":{"title":"Examples","titles":["Lattices","Automorphisms for definite lattices"]},"299":{"title":"Isometry","titles":["Lattices"]},"300":{"title":"Examples","titles":["Lattices","Isometry"]},"301":{"title":"Maximal integral lattices","titles":["Lattices"]},"302":{"title":"Examples","titles":["Lattices","Maximal integral lattices"]}},"dirtCount":0,"index":[["∣x",{"2":{"291":1}}],["∣x∈l",{"2":{"291":1}}],["~markus",{"2":{"281":2}}],["\\t\\t\\t",{"2":{"280":2}}],["ℤ",{"2":{"246":2}}],["≅",{"2":{"246":1}}],["∩",{"2":{"246":1}}],["∩z",{"2":{"168":1}}],["±1",{"2":{"224":1}}],["×ln",{"2":{"257":1,"290":1}}],["×tn",{"2":{"210":1}}],["×vn",{"2":{"186":1}}],["↦φ",{"2":{"205":1}}],["ψ",{"2":{"192":3}}],["`h`",{"2":{"246":1}}],["`v`",{"2":{"246":1}}],["`sek`",{"2":{"230":2}}],["`cyclotomix",{"2":{"187":1}}],["`facelemzzringelem",{"2":{"58":1}}],["⊕ln",{"2":{"257":2,"290":2}}],["⊕tn",{"2":{"210":2}}],["⊕vn",{"2":{"186":2}}],["⊕c",{"2":{"18":1}}],["φp",{"2":{"190":2}}],["φ",{"2":{"176":7,"178":3,"180":1,"182":3,"184":3,"190":2,"192":1,"195":1,"198":1,"250":4,"255":2,"270":8,"288":3,"291":4,"297":3}}],["≤c1⋅∑idxi2",{"2":{"169":1}}],["∈2z",{"2":{"250":1}}],["∈r",{"2":{"169":1}}],["∈matd×d",{"2":{"109":1}}],["∏i",{"2":{"163":1}}],["∏aiei",{"2":{"146":1}}],["∏bd",{"2":{"59":2}}],["∏biei",{"2":{"59":2}}],["−n",{"2":{"131":1}}],["−1",{"2":{"109":1,"116":1,"131":1,"176":1,"213":1,"218":5}}],["∗b",{"2":{"129":1,"131":1}}],["∗a",{"2":{"88":1}}],["γ",{"2":{"117":1,"261":2}}],["γ∈k",{"2":{"117":1}}],["γ↦βγ",{"2":{"109":1}}],["⋮⋱⋮⋮⋮⋱⋮σ1",{"2":{"109":1}}],["⊆oe",{"2":{"288":1}}],["⊆o",{"2":{"109":1}}],["⊆r",{"2":{"99":1}}],["σ∣σ∈homoe",{"2":{"291":1}}],["σ",{"2":{"122":2,"184":5}}],["σr+2s",{"2":{"112":3,"131":1}}],["σr+2",{"2":{"109":1}}],["σr+s",{"2":{"109":5}}],["σr+1",{"2":{"109":7,"112":3,"131":1}}],["σr",{"2":{"109":4}}],["σ1",{"2":{"109":3}}],["σi=σi+s",{"2":{"109":1}}],["σi",{"2":{"109":2,"112":3,"131":1}}],["β⋅",{"2":{"109":1}}],["β",{"2":{"109":2}}],["|r|",{"2":{"254":1}}],["|x∈l",{"2":{"155":1,"163":1}}],["|−1",{"2":{"112":1}}],["|σr+s",{"2":{"112":1,"131":1}}],["|σr+1",{"2":{"112":1,"131":1}}],["|σr",{"2":{"112":1,"131":1}}],["|σ1",{"2":{"112":1,"131":1}}],["|",{"2":{"104":1,"112":5,"131":4,"159":1,"208":2}}],["|ι",{"2":{"104":1}}],["≥vp",{"2":{"93":1}}],["→li+1",{"2":{"166":1}}],["→",{"2":{"89":1}}],["∑idxi2≤c2⋅t2",{"2":{"169":1}}],["∑i=1n1|o",{"2":{"159":1}}],["∑i=1nmi",{"2":{"13":1}}],["∑aiωi",{"2":{"141":1}}],["∑zkmi",{"2":{"74":1}}],["∑cimi",{"2":{"74":2}}],["ω2",{"2":{"109":5}}],["ωd",{"2":{"109":6,"140":1}}],["ω1⋮ωd",{"2":{"140":1}}],["ω1",{"2":{"109":6,"140":1}}],["ωi∈o",{"2":{"141":1}}],["ωi∈l",{"2":{"141":1}}],["ωi∈v",{"2":{"73":1}}],["ωi",{"2":{"73":2,"169":1}}],["ω∈v",{"2":{"73":1}}],["αφ",{"2":{"180":1}}],["αi",{"2":{"146":1}}],["αd",{"2":{"140":1}}],["αd−1",{"2":{"109":3}}],["α1⋮αd",{"2":{"140":1}}],["α1",{"2":{"140":1}}],["α2",{"2":{"109":1}}],["αb=ae",{"2":{"146":1}}],["αb=a",{"2":{"61":1}}],["α",{"2":{"61":1,"109":14,"140":2,"146":6,"168":2,"170":1,"180":1}}],["$^3",{"2":{"175":1,"177":2}}],["$^2",{"2":{"146":19,"175":1,"177":2}}],["$n",{"2":{"116":1}}],["$1",{"2":{"96":1}}],["$",{"2":{"58":2,"116":3,"146":21,"175":1,"177":2,"240":6}}],["$e",{"2":{"46":1}}],["915",{"2":{"234":1}}],["998259",{"2":{"234":1}}],["99e",{"2":{"103":1,"104":1}}],["9",{"2":{"67":4,"68":1,"125":1,"146":3,"209":1,"254":18}}],["94",{"2":{"53":1}}],["97",{"2":{"53":1}}],["└──",{"2":{"38":3}}],["│",{"2":{"38":72}}],["├──",{"2":{"38":28}}],["570",{"2":{"281":1}}],["5313",{"2":{"234":1}}],["5>",{"2":{"146":2,"289":1}}],["52",{"2":{"146":1}}],["5200",{"2":{"53":1}}],["5^1",{"2":{"146":1}}],["5^2",{"2":{"51":1}}],["512",{"2":{"146":2}}],["5917",{"2":{"234":1}}],["59",{"2":{"106":2}}],["50",{"2":{"67":2}}],["58",{"2":{"53":1}}],["5",{"2":{"25":1,"28":1,"45":3,"46":4,"67":3,"68":10,"103":1,"105":1,"106":3,"107":6,"116":6,"124":3,"146":8,"149":1,"161":2,"163":1,"201":7,"215":1,"219":1,"227":1,"230":1,"232":1,"234":1,"238":1,"246":4,"249":2,"254":24,"261":2,"263":1,"274":1,"283":3,"285":2,"287":9,"289":4,"300":2,"302":2}}],["55",{"2":{"2":1,"104":1}}],["55ζ^5",{"2":{"2":1}}],["ϕi",{"2":{"19":1}}],["ϕ",{"2":{"19":1,"20":1}}],["⊗",{"2":{"18":1}}],["⊂",{"2":{"17":1}}],["ιk→k",{"2":{"120":1}}],["ι",{"2":{"17":5,"99":2,"104":1,"105":2,"106":1,"120":1}}],["^5",{"2":{"201":2}}],["^1",{"2":{"146":1}}],["^4",{"2":{"146":1}}],["^int",{"2":{"146":1}}],["^",{"2":{"130":1,"146":6}}],["^j",{"2":{"25":1}}],["^k",{"2":{"25":1}}],["^3",{"2":{"13":1,"17":1}}],["^2",{"2":{"13":1,"146":2,"196":5,"201":2,"274":1}}],["61",{"2":{"146":1}}],["63",{"2":{"108":4}}],["62",{"2":{"105":1}}],["62e",{"2":{"104":1}}],["64",{"2":{"103":1,"169":1}}],["6559103588818597",{"2":{"146":2}}],["65",{"2":{"51":1}}],["6",{"2":{"13":2,"17":8,"54":2,"67":3,"68":2,"108":1,"146":3,"187":1,"201":6,"204":1,"206":3,"209":1,"225":2,"240":1,"246":3,"254":32,"255":3,"261":5,"287":4,"289":3,"298":1,"302":6}}],["vm",{"2":{"299":1}}],["vl",{"2":{"299":1}}],["vj",{"2":{"270":1}}],["v×v→e",{"2":{"270":1}}],["vol",{"2":{"273":4}}],["volume",{"2":{"228":1,"291":3,"292":1}}],["vocabulary",{"0":{"269":1},"1":{"270":1,"271":1},"2":{"269":1,"271":1}}],["vg",{"2":{"246":2}}],["vn",{"2":{"186":3,"270":1}}],["v1",{"2":{"186":3,"270":1}}],["v→vi",{"2":{"186":6}}],["v→v",{"2":{"182":1,"184":1}}],["v∈m∞",{"2":{"93":1}}],["vp×vp",{"2":{"190":1}}],["vp",{"2":{"93":1,"169":2,"184":1,"192":1}}],["vcat",{"2":{"87":2,"246":1}}],["v=dw",{"2":{"255":1}}],["v=qn",{"2":{"242":1}}],["v=",{"2":{"80":1}}],["vararg",{"2":{"186":3,"210":3,"257":3,"290":3}}],["varname=",{"2":{"116":1}}],["varname",{"2":{"116":2}}],["various",{"2":{"78":1,"88":3,"90":1}}],["variable=n",{"2":{"42":1}}],["variable",{"2":{"42":1,"116":1}}],["variety",{"2":{"15":1}}],["valence",{"2":{"88":6}}],["val",{"2":{"88":2,"239":2}}],["valuations",{"2":{"218":1,"239":2}}],["valuation",{"2":{"61":5,"111":3,"144":1,"147":16,"161":2,"218":5,"295":1}}],["valued",{"2":{"88":2}}],["valueiterator",{"2":{"68":2}}],["value",{"2":{"60":4,"63":1,"75":1,"84":1,"88":2,"103":1,"131":1,"157":2,"196":2,"197":6,"201":8,"202":2,"206":10,"218":4,"231":1,"246":1,"250":2,"253":6,"255":1,"266":1,"293":3,"295":1,"297":4,"299":5}}],["values",{"2":{"30":1,"67":2,"68":2,"195":1,"196":1,"209":1,"218":1,"229":1}}],["verlag",{"2":{"273":3}}],["verbose",{"2":{"96":1,"171":1}}],["vertically",{"2":{"87":2}}],["very",{"2":{"60":1,"68":2,"86":1,"116":1,"171":1}}],["version",{"2":{"60":1,"61":3,"148":1,"266":1,"274":3,"281":2}}],["versions",{"2":{"30":1,"121":1,"146":1}}],["versa",{"2":{"29":1}}],["vectors",{"0":{"264":1,"266":1,"267":1},"1":{"265":1,"266":1,"267":1},"2":{"60":2,"70":1,"71":1,"246":1,"248":1,"254":1,"266":13,"267":4,"279":1,"280":1}}],["vectorspace",{"2":{"14":1,"73":1}}],["vector",{"2":{"7":2,"8":2,"13":2,"14":1,"17":7,"18":1,"19":1,"23":1,"25":7,"32":2,"45":1,"47":1,"48":2,"53":3,"59":4,"61":1,"67":2,"68":1,"70":2,"71":2,"73":1,"74":3,"75":1,"80":4,"85":3,"87":1,"88":3,"90":2,"93":1,"94":1,"97":3,"98":2,"100":5,"106":1,"107":3,"108":1,"111":8,"112":8,"113":1,"116":2,"117":8,"120":2,"122":1,"124":6,"128":4,"129":3,"131":5,"138":1,"142":2,"144":4,"146":8,"147":3,"148":2,"153":2,"155":1,"159":1,"163":1,"168":5,"169":8,"170":1,"171":4,"176":1,"180":8,"182":1,"186":16,"195":2,"196":3,"199":2,"210":11,"211":4,"214":1,"215":1,"218":4,"219":5,"227":1,"229":1,"230":2,"231":2,"232":2,"234":1,"235":2,"238":1,"239":2,"240":2,"242":1,"248":2,"251":1,"253":2,"254":1,"255":7,"257":11,"258":1,"262":2,"266":4,"267":7,"270":1,"278":1,"279":1,"280":1,"281":4,"282":1,"283":3,"285":2,"286":6,"287":8,"289":2,"290":16,"292":1,"294":1,"295":3,"296":1,"297":1,"298":2,"300":2,"302":7}}],["vi",{"2":{"270":1}}],["view",{"2":{"270":1}}],["viewed",{"2":{"127":1}}],["vi→v",{"2":{"186":6}}],["vitepress",{"2":{"35":1}}],["vice",{"2":{"29":1}}],["via",{"2":{"13":1,"15":2,"68":1,"88":1,"128":1,"143":1,"146":2,"154":1,"171":1,"196":1}}],["v",{"2":{"8":1,"17":1,"68":4,"70":2,"71":2,"73":2,"80":1,"93":1,"111":3,"166":2,"176":23,"178":18,"180":22,"182":12,"184":15,"186":9,"188":7,"190":6,"192":5,"195":1,"196":2,"201":3,"242":2,"245":4,"246":10,"250":1,"255":13,"266":10,"267":3,"270":11,"271":4,"273":2,"278":16,"288":4,"291":2,"293":2,"297":2,"301":4}}],["02",{"2":{"169":1}}],["02e",{"2":{"107":2}}],["0≤bi",{"2":{"148":1}}],["0≤ij≤dj−1",{"2":{"117":1}}],["0≤n≤3",{"2":{"96":1}}],["09",{"2":{"108":4}}],["00",{"2":{"100":3,"108":8,"124":1,"230":1}}],["0",{"2":{"7":4,"11":3,"15":3,"17":10,"22":1,"25":40,"29":4,"32":4,"33":8,"48":6,"50":1,"64":22,"67":1,"68":3,"88":2,"93":1,"94":2,"100":3,"104":2,"105":2,"106":4,"107":1,"108":4,"118":1,"120":2,"122":1,"124":1,"131":1,"135":1,"142":3,"146":23,"161":3,"175":10,"177":6,"179":2,"181":23,"183":6,"185":10,"187":6,"189":4,"195":2,"196":9,"201":130,"208":2,"209":6,"215":32,"217":4,"219":28,"221":2,"223":2,"225":2,"227":32,"230":32,"232":31,"234":7,"236":2,"238":35,"240":1,"244":4,"246":554,"248":6,"249":2,"253":6,"254":84,"255":14,"261":92,"263":278,"266":2,"267":5,"274":1,"281":80,"283":60,"285":17,"287":114,"289":39,"292":26,"294":23,"296":27,"297":4,"298":46,"299":4,"300":17,"302":64}}],[">=",{"2":{"281":2}}],[">zmodh",{"2":{"246":1}}],[">",{"2":{"7":7,"8":2,"10":1,"13":5,"14":12,"15":2,"16":2,"17":22,"18":4,"19":2,"20":1,"22":1,"23":2,"24":2,"25":2,"26":3,"28":1,"32":2,"33":1,"45":2,"46":13,"48":5,"51":2,"52":2,"53":2,"54":1,"59":6,"60":5,"61":17,"64":1,"67":4,"68":4,"70":3,"71":3,"72":1,"74":3,"80":3,"81":3,"82":1,"83":7,"84":5,"85":1,"87":10,"88":21,"89":8,"90":10,"93":6,"94":7,"96":6,"97":5,"98":9,"100":2,"101":3,"102":1,"103":2,"107":7,"111":15,"112":6,"113":4,"114":7,"116":6,"117":8,"118":7,"119":12,"120":8,"121":4,"122":6,"123":4,"124":4,"125":3,"128":3,"129":6,"131":16,"136":9,"137":4,"138":9,"142":1,"144":17,"145":9,"146":24,"147":42,"148":10,"151":1,"152":1,"153":1,"154":1,"155":11,"157":4,"158":1,"159":6,"160":1,"162":2,"163":13,"164":3,"165":1,"166":1,"168":12,"169":29,"170":11,"172":2,"174":4,"176":8,"178":6,"180":7,"182":5,"184":2,"186":9,"187":4,"188":2,"190":1,"192":1,"195":1,"196":1,"197":9,"198":2,"199":2,"200":1,"201":10,"202":4,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":6,"214":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"229":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":5,"248":1,"249":4,"250":10,"251":2,"252":4,"253":5,"254":3,"255":11,"257":6,"258":2,"259":1,"261":6,"262":5,"263":2,"265":1,"266":5,"267":1,"278":4,"279":4,"280":4,"282":5,"284":4,"286":15,"288":9,"290":9,"291":3,"293":7,"295":3,"297":2,"299":3,"301":6}}],["80",{"2":{"183":1}}],["8z",{"2":{"161":1,"209":1}}],["81",{"2":{"106":2}}],["85",{"2":{"53":1,"54":2}}],["88",{"2":{"53":2}}],["8",{"2":{"4":1,"13":2,"17":3,"28":2,"67":1,"120":1,"146":1,"213":1,"215":1,"219":1,"225":2,"227":2,"230":1,"232":1,"238":1,"240":1,"246":3,"254":38,"261":10,"263":1,"287":1}}],["yield",{"2":{"295":1}}],["yields",{"2":{"258":1}}],["y∈l",{"2":{"250":1,"291":1,"297":1}}],["y∈v",{"2":{"182":1}}],["y2=x3+a4x+a6which",{"2":{"55":1}}],["y2+h∗y=f",{"2":{"46":1}}],["y2+a1xy+a3y=x3+a2x2+a4x+a6specified",{"2":{"55":1}}],["y2+a1xy+a3y=x3+a2x2+a4x+a6",{"2":{"46":1}}],["yes",{"2":{"201":2}}],["yet",{"2":{"53":1}}],["year",{"2":{"4":1}}],["y",{"2":{"45":3,"46":2,"68":4,"90":6,"112":11,"129":2,"131":3,"144":6,"145":5,"147":4,"148":2,"182":2,"205":2,"250":1,"291":1,"297":2}}],["y^2",{"2":{"45":3,"46":2,"48":5,"50":1,"53":3,"54":2}}],["york",{"2":{"4":2,"273":2}}],["your",{"2":{"4":1,"36":1,"274":1}}],["j≤n∈en×n",{"2":{"270":1}}],["j≤d",{"2":{"169":1}}],["j2",{"2":{"246":1}}],["j=",{"2":{"80":3}}],["j$",{"2":{"42":1}}],["jordan",{"2":{"161":2,"163":2,"213":4,"214":1,"215":2,"216":1,"218":11,"224":2,"226":2,"238":1,"295":3,"296":1}}],["joins",{"2":{"87":2}}],["job",{"2":{"40":1}}],["johansson",{"2":{"4":2}}],["jl",{"2":{"38":23,"39":6,"43":1}}],["just",{"2":{"30":1,"43":1,"126":1,"133":1,"168":1,"169":2,"196":1,"262":2}}],["juliakissing",{"2":{"266":1}}],["juliakernel",{"2":{"262":1}}],["juliak3",{"2":{"246":1}}],["juliakummer",{"2":{"125":1}}],["juliauniformizer",{"2":{"222":1}}],["juliaunit",{"2":{"118":1,"146":2}}],["juliawitt",{"2":{"182":1,"284":1}}],["juliawildanger",{"2":{"116":1}}],["juliaoverlattice",{"2":{"261":1}}],["juliaorthogonal",{"2":{"180":1,"188":2,"200":1,"258":1,"288":1}}],["juliaorder",{"2":{"10":1,"14":1,"51":2,"138":1,"147":4,"168":5}}],["juliaoddity",{"2":{"163":1}}],["juliaquadratic",{"2":{"111":1,"116":1,"159":1,"174":2,"198":1,"279":4}}],["juliaquo",{"2":{"17":5,"148":1}}],["julia==",{"2":{"98":1,"129":1}}],["juliazeta",{"2":{"170":1}}],["juliazero",{"2":{"22":1,"87":2}}],["juliazzlocalgenus",{"2":{"161":1}}],["juliazzgenus",{"2":{"149":1}}],["juliazzmatrix",{"2":{"90":2}}],["juliadual",{"2":{"259":1,"288":1}}],["juliadot",{"2":{"90":3}}],["juliadenominator",{"2":{"131":1,"137":1}}],["juliadensity",{"2":{"88":1}}],["juliadense",{"2":{"85":1}}],["juliadecomposition",{"2":{"123":1}}],["juliadefining",{"2":{"97":1,"117":2}}],["juliadegree",{"2":{"97":1,"118":1,"147":1,"170":1,"286":1}}],["juliadets",{"2":{"218":1}}],["juliadet",{"2":{"88":2,"155":1,"163":1,"176":1,"218":2,"224":2,"250":1}}],["juliadivisibility",{"2":{"255":1}}],["juliadivision",{"2":{"48":1}}],["juliadifferent",{"2":{"170":1}}],["juliadim",{"2":{"155":1,"163":1,"176":1}}],["juliadimension",{"2":{"26":2}}],["juliadiagonal",{"2":{"88":1,"89":1,"180":2,"282":1}}],["juliadisc",{"2":{"54":1}}],["juliadiscriminant",{"2":{"46":3,"97":1,"118":1,"129":4,"131":4,"170":1,"176":1,"205":1,"218":2,"286":1}}],["juliadirect",{"2":{"18":1,"154":1,"165":1,"186":4,"210":2,"237":2,"257":2,"290":4}}],["juliavolume",{"2":{"291":1}}],["juliavalue",{"2":{"197":2}}],["juliavaluation",{"2":{"61":2,"111":1,"147":6}}],["juliavalence",{"2":{"88":1}}],["juliavcat",{"2":{"87":2}}],["juliavector",{"2":{"85":1}}],["julialang",{"2":{"274":1}}],["julialattice",{"2":{"245":1,"278":4}}],["julialocal",{"2":{"158":1,"231":1,"261":1,"295":1}}],["julialorenz",{"2":{"125":1}}],["julialeech",{"2":{"246":2}}],["julialevel",{"2":{"155":1,"163":1}}],["julialength",{"2":{"81":1,"216":1}}],["julialll",{"2":{"147":1,"168":1,"169":1,"265":1}}],["julialift",{"2":{"84":1,"199":1}}],["julianf",{"2":{"147":1,"169":1}}],["julianarrow",{"2":{"146":1}}],["julianumerator",{"2":{"137":1}}],["julianumber",{"2":{"14":2,"88":2,"96":1,"101":1,"116":2}}],["julianorms",{"2":{"218":1}}],["julianormal",{"2":{"98":1,"120":1,"123":1,"208":1}}],["julianorm",{"2":{"93":2,"114":2,"125":1,"131":1,"138":5,"147":5,"155":1,"163":1,"169":1,"218":2,"231":1,"250":1,"291":1}}],["julianorm2",{"2":{"83":1}}],["juliannz",{"2":{"88":1}}],["juliamukai",{"2":{"246":1}}],["juliamultiplicative",{"2":{"148":2}}],["juliamultiplicity",{"2":{"68":1}}],["juliamultiplicities",{"2":{"68":1}}],["juliamultiset",{"2":{"67":2}}],["juliamodulus",{"2":{"197":2}}],["juliamodular",{"2":{"61":1}}],["juliamod",{"2":{"84":3,"89":1,"148":1}}],["juliamass",{"2":{"159":1,"233":1,"251":1}}],["juliamap",{"2":{"89":1}}],["juliamatrix",{"2":{"75":1,"90":1}}],["juliamaximalorder",{"2":{"168":4}}],["juliamaximal",{"2":{"96":2,"261":1,"301":3}}],["juliamaximum",{"2":{"83":2,"84":1,"88":2}}],["juliamaxabs",{"2":{"63":1}}],["juliamax",{"2":{"63":1}}],["juliamset",{"2":{"67":1}}],["juliaminpoly",{"2":{"114":1,"131":1}}],["juliaminkowski",{"2":{"112":1,"131":1,"169":1}}],["juliaminimum",{"2":{"83":2,"88":1,"147":2,"266":1}}],["juliamin",{"2":{"63":1}}],["julia+",{"2":{"48":1,"169":1,"255":1,"288":1}}],["juliajordan",{"2":{"295":1}}],["juliaj",{"2":{"46":1}}],["juliajulia>",{"2":{"2":4,"17":4,"22":1,"24":1,"25":2,"26":3,"28":1,"29":3,"32":2,"33":1,"36":1,"43":2,"45":2,"46":2,"48":5,"50":1,"51":2,"52":2,"53":2,"54":1,"64":1,"67":3,"68":4,"100":2,"101":3,"102":1,"103":1,"104":1,"105":2,"106":1,"107":6,"108":1,"111":1,"116":6,"117":2,"118":2,"120":1,"124":3,"142":2,"146":2,"168":1,"196":2,"201":2,"206":1,"209":1,"244":1,"246":6,"248":1,"249":2,"254":5,"255":2,"261":2,"263":2,"267":1,"274":2}}],["juliabrown",{"2":{"209":1}}],["juliabiproduct",{"2":{"186":1,"210":1,"257":1,"290":1}}],["juliablock",{"2":{"87":1}}],["juliab",{"2":{"46":1}}],["juliabasis",{"2":{"23":1,"111":1,"117":2,"138":3,"147":4,"169":5,"249":1,"282":1}}],["juliabase",{"2":{"23":1,"46":4,"75":1,"97":2,"117":1,"176":1,"216":1,"231":1,"255":2,"286":2}}],["juliaade",{"2":{"254":1}}],["juliaadd",{"2":{"81":2,"89":2}}],["juliaambient",{"2":{"249":1,"282":1}}],["juliaany",{"2":{"168":1}}],["juliaautomorphism",{"2":{"122":2,"253":3,"297":2}}],["juliaalgebraic",{"2":{"111":1}}],["juliaabsolute",{"2":{"111":2,"114":3,"117":2,"118":2,"121":1,"131":2,"286":2}}],["juliaabelian",{"2":{"13":5,"53":1,"197":1}}],["juliaarray",{"2":{"90":1}}],["juliaa",{"2":{"46":1}}],["juliaglue",{"2":{"261":1}}],["juliagram",{"2":{"164":1,"176":1,"180":2,"197":2,"226":2,"249":1,"282":1,"286":1}}],["juliagroup",{"2":{"28":1}}],["juliagenerators",{"2":{"286":1}}],["juliagen",{"2":{"111":1,"169":1}}],["juliagenus",{"2":{"96":1,"151":1,"152":1,"162":2,"209":1,"235":1,"251":1}}],["juliagens",{"2":{"7":1,"25":2,"53":1,"111":1}}],["juliagetindex",{"2":{"7":1,"8":2,"81":1,"89":2}}],["juliacan",{"2":{"293":1}}],["juliacanonical",{"2":{"18":2}}],["juliaclose",{"2":{"267":1}}],["juliaclass",{"2":{"93":1,"118":1,"146":2}}],["juliacrt",{"2":{"148":1}}],["juliacyclotomic",{"2":{"116":1}}],["juliacharpoly",{"2":{"114":1,"131":1}}],["juliachange",{"2":{"82":1,"89":1}}],["juliacoinvariant",{"2":{"262":1}}],["juliacoxeter",{"2":{"254":1}}],["juliacover",{"2":{"197":1}}],["juliacodifferent",{"2":{"170":1}}],["juliacolon",{"2":{"145":1}}],["juliacoprime",{"2":{"144":1}}],["juliacoeff",{"2":{"111":1}}],["juliacoefficient",{"2":{"75":1,"286":1}}],["juliacoefficients",{"2":{"46":1,"111":1}}],["juliacoordinates",{"2":{"111":1,"129":1}}],["juliaconjugates",{"2":{"112":6,"131":2}}],["juliaconj",{"2":{"102":1}}],["juliaconductor",{"2":{"97":1}}],["juliacomponent",{"2":{"117":1}}],["juliacompositum",{"2":{"98":1,"120":1}}],["juliacomplex",{"2":{"100":1,"122":1,"124":1}}],["juliacompact",{"2":{"61":1}}],["juliac",{"2":{"46":1}}],["juliacenter",{"2":{"26":1}}],["juliatorquadmodule",{"2":{"196":1}}],["juliatorsion",{"2":{"14":1,"17":1,"111":1,"146":4,"195":1,"206":1}}],["juliat2",{"2":{"131":1}}],["juliatr",{"2":{"111":1,"131":1}}],["juliatranspose",{"2":{"87":1}}],["juliatransform",{"2":{"81":1,"89":1}}],["juliatrace",{"2":{"52":2,"169":1}}],["juliatensor",{"2":{"19":1}}],["juliairreducible",{"2":{"258":1}}],["juliaidempotents",{"2":{"147":2}}],["juliaideal",{"2":{"144":7}}],["juliaidentity",{"2":{"87":1}}],["juliainner",{"2":{"180":1,"198":1}}],["juliaindex",{"2":{"170":1}}],["juliain",{"2":{"145":1,"169":1,"235":2}}],["juliainteger",{"2":{"153":1,"244":1,"246":1}}],["juliaintegral",{"2":{"137":1}}],["juliaintersect",{"2":{"17":1,"98":1,"145":1,"255":1,"288":1}}],["juliainvariant",{"2":{"262":1}}],["juliainvariants",{"2":{"182":1}}],["juliainvolution",{"2":{"176":1,"286":1}}],["juliainv",{"2":{"136":1,"137":1}}],["juliainfinite",{"2":{"124":1}}],["juliainfinity",{"2":{"48":1}}],["juliainertia",{"2":{"123":1}}],["juliaiseven",{"2":{"155":1,"163":1,"250":1}}],["juliaisreal",{"2":{"124":1}}],["juliaiszero",{"2":{"88":1}}],["juliaisone",{"2":{"61":1,"88":1,"145":1}}],["juliaisfinite",{"2":{"14":1}}],["juliais",{"2":{"14":4,"15":1,"17":2,"24":3,"48":1,"64":1,"88":2,"97":4,"98":3,"101":2,"107":5,"113":5,"119":12,"120":1,"122":3,"124":1,"125":1,"145":3,"146":3,"147":3,"155":2,"157":4,"169":1,"170":3,"171":1,"172":2,"178":6,"182":2,"184":2,"190":1,"192":1,"201":2,"202":4,"203":1,"208":2,"209":1,"220":4,"231":1,"250":5,"252":3,"253":2,"255":4,"284":2,"293":6,"295":1,"299":3,"301":3}}],["juliapradical",{"2":{"169":1}}],["juliaprimitive",{"2":{"255":1,"288":1}}],["juliaprimes",{"2":{"155":1,"231":1}}],["juliaprime",{"2":{"98":1,"146":2,"163":1,"216":1}}],["juliaprincipal",{"2":{"120":1,"147":2}}],["juliapmaximal",{"2":{"169":1}}],["juliapoverorders",{"2":{"169":1}}],["juliapoverorder",{"2":{"169":1}}],["juliapower",{"2":{"146":3}}],["juliapicard",{"2":{"146":1}}],["juliapush",{"2":{"87":1}}],["juliapseudo",{"2":{"74":3,"75":2,"286":2}}],["juliapsubgroups",{"2":{"17":1}}],["juliaparent",{"2":{"7":1,"48":1,"129":1,"169":1}}],["juliahighest",{"2":{"254":1}}],["juliahilbert",{"2":{"94":1,"111":1}}],["juliahyperkaehler",{"2":{"246":1}}],["juliahyperbolic",{"2":{"246":1}}],["juliahyperelliptic",{"2":{"46":1}}],["juliahermitian",{"2":{"174":2,"239":2,"280":4}}],["juliahnf",{"2":{"88":4}}],["juliahadamard",{"2":{"88":1}}],["juliahasse",{"2":{"163":1,"182":1,"284":1}}],["juliahas",{"2":{"17":2,"147":3}}],["juliahcat",{"2":{"87":2}}],["juliahom",{"2":{"15":1,"19":1,"20":1}}],["juliashortest",{"2":{"266":1}}],["juliashort",{"2":{"266":2}}],["juliastable",{"2":{"211":1}}],["juliastructure",{"2":{"32":2,"33":1}}],["juliasymbol",{"2":{"163":1}}],["juliasylow",{"2":{"17":1}}],["juliasunit",{"2":{"146":3}}],["juliasubmodules",{"2":{"211":1}}],["juliasubfields",{"2":{"98":1,"120":1}}],["juliasubsets",{"2":{"70":4,"71":4,"72":1}}],["juliasubgroups",{"2":{"17":1}}],["juliasub",{"2":{"17":6,"87":1}}],["juliasimplified",{"2":{"121":1}}],["juliasimplify",{"2":{"61":2,"121":1}}],["juliasimple",{"2":{"121":1}}],["juliasignatures",{"2":{"231":1}}],["juliasignature",{"2":{"118":1,"155":1,"163":1,"169":1,"252":1}}],["juliasigns",{"2":{"107":1}}],["juliasign",{"2":{"107":1}}],["juliascales",{"2":{"218":1}}],["juliascale",{"2":{"89":1,"155":1,"163":1,"218":2,"231":1,"250":1,"291":1}}],["juliaswap",{"2":{"89":2}}],["juliasetindex",{"2":{"89":1}}],["juliasolve",{"2":{"88":1}}],["juliasparsity",{"2":{"88":1}}],["juliasparse",{"2":{"80":3,"85":1,"87":5,"90":1}}],["juliasaturate",{"2":{"17":1,"88":1}}],["juliasnf",{"2":{"16":1,"88":1,"203":1}}],["juliafractional",{"2":{"136":8}}],["juliafree",{"2":{"13":1}}],["juliafixed",{"2":{"122":1,"176":1,"286":2}}],["juliafind",{"2":{"16":1,"89":1}}],["juliafactor",{"2":{"61":5,"131":1,"144":2,"146":2}}],["juliafacelem",{"2":{"59":5}}],["juliaflat",{"2":{"18":1}}],["juliaembed",{"2":{"263":2}}],["juliaembedding",{"2":{"120":1}}],["juliaeuler",{"2":{"148":1}}],["juliaexcess",{"2":{"163":1}}],["juliaextend",{"2":{"106":1}}],["juliaexponent",{"2":{"14":1}}],["juliaevaluation",{"2":{"103":1}}],["juliaevaluate",{"2":{"60":4,"61":1}}],["juliaechelon",{"2":{"88":1}}],["juliaequationorder",{"2":{"168":1}}],["juliaequation",{"2":{"46":1}}],["juliaelem",{"2":{"129":1}}],["juliaelementary",{"2":{"14":1,"88":1}}],["juliaelliptic",{"2":{"45":2}}],["juliaroot",{"2":{"246":1,"254":2}}],["juliaring",{"2":{"94":1,"146":1,"169":1}}],["juliaramified",{"2":{"170":1}}],["juliaramification",{"2":{"123":1,"147":1}}],["juliarational",{"2":{"159":1,"249":1,"282":1}}],["juliarationals",{"2":{"116":1}}],["juliaranks",{"2":{"218":1}}],["juliarank",{"2":{"155":1,"163":1,"176":1,"218":2,"231":1,"250":1,"286":1}}],["juliarand",{"2":{"7":2,"89":1,"131":1}}],["juliaradical",{"2":{"116":1,"208":2}}],["juliaray",{"2":{"93":1,"94":4,"96":1}}],["juliarepresents",{"2":{"160":1,"166":1}}],["juliarepresentatives",{"2":{"159":1,"235":1}}],["juliarepresentative",{"2":{"159":1,"164":1,"199":1,"235":2}}],["juliarepresentation",{"2":{"111":1,"131":2}}],["juliarescale",{"2":{"159":1,"164":1,"207":1,"241":2,"248":1,"288":1}}],["juliaresidue",{"2":{"148":2}}],["juliarestrict",{"2":{"105":2,"180":1}}],["juliaregulator",{"2":{"118":1}}],["juliarelations",{"2":{"197":1}}],["juliarelative",{"2":{"118":1,"120":1}}],["juliarels",{"2":{"14":1}}],["juliareal",{"2":{"100":1,"124":1}}],["juliareverse",{"2":{"89":1}}],["juliareduced",{"2":{"170":1}}],["juliareduce",{"2":{"61":1,"88":1,"89":3}}],["julia>",{"2":{"2":10,"11":2,"13":2,"15":7,"17":16,"24":1,"25":3,"26":4,"29":3,"32":1,"33":1,"36":1,"45":2,"46":2,"48":9,"50":1,"51":5,"52":2,"53":5,"54":3,"64":3,"67":6,"68":9,"95":4,"96":7,"100":3,"101":3,"102":1,"103":3,"104":3,"105":6,"106":3,"107":13,"108":6,"111":4,"116":3,"117":4,"118":4,"120":2,"124":3,"142":11,"146":22,"168":2,"169":3,"175":5,"177":10,"179":8,"181":10,"183":9,"185":13,"187":6,"189":4,"191":7,"193":7,"196":7,"201":20,"206":3,"209":2,"215":11,"217":10,"219":15,"221":8,"223":8,"225":9,"227":12,"230":15,"232":14,"234":10,"236":15,"238":16,"240":7,"244":3,"246":30,"248":1,"249":2,"254":5,"255":14,"261":10,"263":5,"267":2,"274":7,"281":22,"283":15,"285":12,"287":21,"289":14,"292":10,"294":14,"296":9,"298":10,"300":11,"302":15}}],["julia",{"0":{"85":1},"2":{"2":1,"4":2,"7":2,"11":1,"13":2,"15":2,"17":1,"36":3,"42":2,"47":1,"59":1,"61":1,"68":2,"83":1,"85":1,"87":2,"90":7,"95":1,"96":1,"98":1,"103":1,"111":1,"120":1,"128":5,"142":1,"144":1,"146":1,"147":2,"169":6,"175":1,"177":1,"179":1,"181":1,"183":1,"185":1,"187":1,"189":1,"191":1,"193":1,"214":2,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"229":2,"230":1,"232":1,"234":1,"236":1,"238":1,"240":1,"255":1,"274":5,"281":3,"283":1,"285":1,"287":1,"288":3,"289":1,"292":1,"294":1,"296":1,"298":1,"300":1,"302":1}}],["jej=0",{"2":{"13":1}}],["j",{"2":{"13":1,"15":1,"17":1,"25":3,"32":2,"45":5,"46":2,"80":7,"81":3,"89":12,"129":2,"131":2,"163":1,"182":1,"273":2}}],["ub",{"2":{"266":4,"267":2}}],["u2",{"2":{"201":2}}],["u→o×",{"2":{"146":2}}],["u∈kr×n",{"2":{"73":1}}],["upperright",{"2":{"75":2}}],["upper",{"2":{"73":1,"75":2,"88":7,"89":4}}],["up",{"2":{"36":2,"112":1,"146":6,"184":1,"246":1,"266":3,"268":1,"281":1}}],["unvariate",{"2":{"134":1}}],["unsuccessful",{"2":{"125":1}}],["unspecified",{"2":{"64":1}}],["undefvarerror",{"2":{"187":1,"230":2}}],["undefined",{"2":{"116":1}}],["under",{"2":{"103":1,"112":1,"123":1,"131":1,"146":2,"211":1,"213":1,"222":1}}],["underlying",{"0":{"196":1},"2":{"68":1,"163":2,"195":1,"196":1,"197":1,"202":4,"203":2,"208":1,"250":1,"255":1,"286":1,"288":1}}],["until",{"2":{"88":1}}],["unlike",{"2":{"86":1}}],["unless",{"2":{"32":1,"40":1}}],["un",{"2":{"59":4}}],["universitext",{"2":{"273":1}}],["university",{"2":{"272":1,"273":1}}],["univariate",{"2":{"46":1,"116":1,"119":1,"126":1,"133":1}}],["uniformizer",{"0":{"222":1},"1":{"223":1},"2":{"222":1,"223":1,"224":1}}],["uniformly",{"2":{"7":2,"131":1}}],["unimodular",{"2":{"88":2,"157":2,"228":1,"246":3,"250":2,"254":1,"263":4}}],["union",{"2":{"68":4,"94":1,"111":2,"119":1,"157":2,"182":3,"190":1,"195":1,"202":2,"239":3,"241":2,"250":2,"255":2,"279":3,"284":3,"295":1}}],["unique",{"2":{"6":1,"14":1,"58":1,"61":2,"67":1,"68":2,"137":1,"143":1,"148":2,"167":1,"230":1,"236":1,"238":1,"240":1,"246":1,"286":1}}],["unitgroup",{"2":{"146":2,"171":1}}],["unitary",{"2":{"141":1,"167":1}}],["unity",{"2":{"96":1,"119":1}}],["units",{"2":{"58":1,"125":1,"146":16,"171":3}}],["unit",{"2":{"3":1,"58":1,"111":4,"113":4,"118":3,"131":1,"145":1,"146":11,"148":3,"171":3}}],["u⊂v",{"2":{"17":1}}],["u∩v",{"2":{"17":1}}],["u+v",{"2":{"17":1}}],["u",{"2":{"17":52,"73":2,"138":3,"146":10,"147":3,"161":2,"180":1,"184":7,"201":10,"246":1,"255":4,"263":1}}],["url",{"2":{"4":1}}],["usually",{"2":{"73":1,"97":1,"142":1}}],["usual",{"2":{"42":1,"81":1,"90":1,"130":1,"145":1}}],["users",{"2":{"268":1}}],["user",{"2":{"186":1,"290":1}}],["useful",{"2":{"61":1,"126":1,"204":1,"248":1}}],["uses",{"2":{"60":1,"61":1,"88":3,"125":1}}],["use",{"2":{"30":1,"40":1,"61":1,"97":1,"146":1,"168":1,"196":1,"230":1,"235":6,"254":1,"274":2,"288":1}}],["used",{"2":{"7":1,"14":1,"20":1,"61":1,"62":1,"75":2,"97":1,"116":7,"138":1,"139":1,"146":2,"147":1,"195":2,"253":3,"281":3,"286":1,"297":2,"299":2}}],["using",{"2":{"8":1,"18":1,"29":2,"36":1,"42":1,"46":1,"61":2,"78":1,"88":3,"94":1,"96":1,"97":1,"116":2,"121":2,"147":1,"148":1,"167":1,"169":1,"185":1,"274":3}}],["usage",{"2":{"186":1,"290":1}}],["usa",{"2":{"4":2}}],["us",{"2":{"4":1}}],["lherm",{"2":{"281":3,"283":4,"287":16,"292":4,"294":6,"302":7}}],["lquad2",{"2":{"285":4,"289":3,"300":3}}],["lquad",{"2":{"281":1,"283":3,"285":5,"289":6,"296":4,"298":4,"300":3}}],["lxxiv+703",{"2":{"273":1}}],["l⊗oee",{"2":{"271":1}}],["l⊗zp≅m⊗zp",{"2":{"253":1}}],["lb",{"2":{"266":4,"267":3}}],["lk3",{"2":{"263":3}}],["lg",{"2":{"262":3}}],["l=⨁i=1naixi",{"2":{"286":1}}],["l=⨁ili",{"2":{"258":1}}],["l=zrb",{"2":{"242":1}}],["l=k",{"2":{"111":2,"116":1,"117":3,"126":2}}],["l2",{"2":{"236":3}}],["ln",{"2":{"233":1,"246":3,"257":3,"290":3}}],["l1",{"2":{"233":1,"236":3,"257":3,"290":3}}],["lcm",{"2":{"145":1}}],["lmfdb",{"2":{"121":1}}],["lll",{"0":{"264":1,"265":2},"1":{"265":1,"266":1,"267":1},"2":{"121":2,"147":2,"168":2,"169":2,"265":2}}],["l→l",{"2":{"297":1}}],["l→li",{"2":{"257":6,"290":6}}],["l→k",{"2":{"120":1}}],["l→r",{"2":{"104":1}}],["l→c",{"2":{"99":1,"104":1,"120":1}}],["lp=⊥i=1tliwhere",{"2":{"213":1}}],["lp",{"2":{"93":2,"142":2,"144":4,"146":4,"213":1,"293":2,"295":1,"301":4}}],["lt",{"2":{"68":1,"103":1,"112":7,"131":2,"148":1,"163":1,"169":1,"182":1,"196":2,"213":2,"266":4,"267":2}}],["leech",{"2":{"246":6}}],["left",{"2":{"136":2,"144":1,"196":1,"286":1,"288":1}}],["less",{"2":{"112":2,"131":3,"169":1,"170":1}}],["let",{"2":{"73":1,"86":1,"109":1,"112":1,"141":1,"155":2,"159":1,"163":2,"176":1,"178":1,"182":1,"184":2,"190":2,"192":2,"208":1,"209":1,"213":3,"224":1,"228":3,"233":2,"270":2,"271":1,"286":1,"288":1,"291":1,"293":1,"297":1}}],["level",{"2":{"43":1,"96":1,"155":2,"163":1,"171":1}}],["least",{"2":{"40":1}}],["length",{"2":{"7":1,"45":1,"47":2,"48":1,"67":1,"68":1,"81":1,"111":1,"120":1,"216":1,"217":1,"230":1,"236":2,"254":1,"266":1,"279":1,"280":1,"295":1}}],["lower",{"2":{"136":2,"144":1}}],["lowerleft",{"2":{"75":2}}],["lorenz",{"2":{"125":2}}],["log⁡",{"2":{"112":2,"131":2}}],["log",{"2":{"54":3,"104":3,"112":5,"131":2,"170":2}}],["logarithmic",{"0":{"104":1},"2":{"104":1}}],["logarithms",{"2":{"78":1,"112":1}}],["logarithm",{"0":{"54":1},"2":{"54":1,"171":1}}],["long",{"0":{"40":1},"2":{"40":4,"42":2}}],["local",{"0":{"158":1,"161":1,"213":1,"214":1,"222":1,"295":1},"1":{"162":1,"163":1,"164":1,"165":1,"166":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":2,"224":1,"225":1,"226":1,"227":1,"296":1},"2":{"98":6,"111":1,"113":3,"149":2,"155":1,"158":2,"161":1,"162":2,"163":2,"164":4,"165":1,"166":1,"182":1,"213":3,"214":2,"215":2,"216":3,"218":22,"220":4,"222":1,"224":4,"226":4,"228":1,"229":1,"230":1,"231":3,"235":3,"237":2,"238":2,"239":3,"240":16,"241":2,"246":13,"251":1,"261":2,"263":2,"272":1,"295":1,"296":1}}],["locally",{"2":{"3":1,"169":1,"184":4,"185":3,"190":1,"192":3,"193":1,"253":2,"261":2,"293":1,"299":2,"300":1,"301":2}}],["located",{"2":{"34":1}}],["l",{"2":{"32":4,"67":3,"99":1,"105":5,"111":12,"113":3,"114":3,"116":3,"117":13,"118":13,"119":16,"120":14,"121":5,"122":12,"123":5,"126":3,"141":4,"151":2,"155":6,"159":2,"162":2,"163":6,"166":1,"182":4,"196":2,"205":6,"209":2,"213":12,"214":2,"215":2,"219":2,"227":2,"228":15,"229":2,"230":2,"232":2,"233":14,"234":2,"235":11,"238":3,"242":6,"244":4,"246":33,"247":1,"248":4,"249":14,"250":29,"251":4,"252":8,"253":15,"254":14,"255":22,"257":9,"258":5,"259":2,"260":1,"261":12,"262":19,"263":2,"265":5,"266":12,"267":7,"271":10,"281":1,"282":10,"284":8,"286":39,"288":25,"290":9,"291":20,"293":19,"295":10,"297":16,"299":12,"301":33}}],["li→l",{"2":{"257":6,"290":6}}],["li",{"2":{"159":1,"213":8,"233":2,"258":1,"295":1}}],["limit",{"2":{"146":4}}],["library",{"2":{"134":1}}],["link",{"2":{"94":1}}],["line",{"2":{"88":1}}],["linearly",{"2":{"119":2}}],["linear",{"0":{"77":1},"1":{"78":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1},"2":{"3":1,"6":1,"32":1,"73":1,"78":3,"88":1,"109":1,"119":1,"121":2,"128":1,"141":1,"182":1,"184":1,"270":1}}],["like",{"2":{"88":1,"116":1}}],["lifting",{"2":{"84":1,"88":1}}],["lift",{"0":{"199":1},"2":{"84":1,"196":3,"199":3,"246":1}}],["live",{"2":{"58":1,"255":1}}],["lies",{"2":{"47":1,"48":1,"169":1,"255":2}}],["lists",{"2":{"67":1,"161":1,"163":1,"254":1,"295":1}}],["list",{"2":{"13":1,"29":1,"48":1,"53":1,"55":2,"67":2,"68":1,"93":1,"98":1,"111":1,"116":1,"122":3,"153":1,"155":1,"159":2,"161":3,"170":1,"231":1,"262":2,"266":1,"278":1,"279":1,"280":1,"286":1}}],["la",{"2":{"288":2,"293":1}}],["lazy",{"2":{"94":1}}],["last",{"2":{"88":1}}],["lasvegas",{"2":{"88":1}}],["larger",{"2":{"87":1,"89":1,"169":1}}],["largest",{"2":{"63":2,"83":2,"84":1,"88":2,"94":2,"111":1,"147":5,"170":1,"213":1,"222":1,"258":1,"288":1}}],["large",{"2":{"58":3,"93":1,"116":1,"133":1}}],["latest",{"2":{"274":1}}],["later",{"2":{"18":1}}],["latter",{"2":{"178":1}}],["lattices",{"0":{"149":1,"212":1,"242":1,"243":1,"246":1,"254":1,"271":1,"276":1,"277":1,"297":1,"301":1},"1":{"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"157":1,"158":1,"159":1,"160":1,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"243":1,"244":2,"245":2,"246":2,"247":2,"248":2,"249":1,"250":1,"251":1,"252":1,"253":1,"255":1,"256":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1,"277":1,"278":2,"279":2,"280":2,"281":2,"282":1,"283":1,"284":1,"285":1,"286":1,"287":1,"288":1,"289":1,"290":1,"291":1,"292":1,"293":1,"294":1,"295":1,"296":1,"297":1,"298":2,"299":1,"300":1,"301":1,"302":2},"2":{"3":1,"149":3,"153":1,"155":1,"157":4,"159":1,"164":1,"176":1,"195":1,"196":2,"204":1,"209":4,"213":1,"214":1,"215":2,"216":3,"218":14,"220":4,"222":1,"224":3,"226":2,"229":1,"230":2,"231":5,"235":4,"237":2,"238":2,"239":2,"240":21,"241":2,"242":2,"246":6,"247":1,"248":1,"250":2,"253":1,"255":9,"257":3,"261":2,"263":2,"265":1,"268":4,"271":4,"272":2,"273":1,"281":5,"284":2,"288":5,"290":4,"297":3,"299":3}}],["lattice",{"0":{"151":1,"205":1,"259":1,"279":1,"280":1},"1":{"281":1},"2":{"3":1,"118":1,"149":2,"151":1,"152":1,"155":2,"162":1,"163":4,"164":1,"195":1,"196":3,"201":2,"205":1,"209":3,"213":3,"214":1,"215":1,"218":3,"219":1,"226":2,"227":1,"228":2,"229":1,"230":1,"231":4,"232":1,"233":4,"234":1,"235":5,"236":2,"238":1,"242":2,"244":5,"245":3,"246":51,"248":3,"249":5,"250":9,"251":2,"252":3,"253":2,"254":29,"255":14,"258":1,"259":2,"261":17,"262":14,"263":8,"265":2,"267":1,"271":5,"278":13,"279":19,"280":13,"281":13,"282":5,"283":2,"284":4,"285":4,"286":16,"287":1,"288":17,"289":2,"291":4,"292":1,"293":9,"294":1,"295":6,"296":1,"297":3,"298":1,"300":2,"301":15,"302":7}}],["language",{"2":{"4":2,"92":2,"270":1,"271":1}}],["lying",{"2":{"2":1,"113":1,"146":1,"218":3,"239":1,"241":2}}],["48",{"2":{"298":1}}],["488",{"2":{"234":1}}],["40",{"2":{"285":1,"289":1,"300":1}}],["4^1",{"2":{"246":1}}],["4653462",{"2":{"234":1}}],["4>",{"2":{"230":1,"232":1,"238":1}}],["4197",{"2":{"234":1}}],["41",{"2":{"104":2}}],["41e",{"2":{"103":1}}],["4331",{"2":{"234":1}}],["4348",{"2":{"234":1}}],["43",{"2":{"54":2,"273":1}}],["426",{"2":{"281":1}}],["42",{"2":{"53":1}}],["45",{"2":{"17":1,"183":1}}],["4",{"2":{"2":1,"11":2,"13":1,"15":1,"17":8,"45":2,"46":4,"48":1,"64":10,"67":11,"68":9,"96":1,"104":1,"116":1,"117":1,"139":1,"142":1,"146":3,"163":2,"196":4,"201":14,"209":2,"215":2,"219":2,"227":5,"230":2,"232":4,"233":1,"234":1,"238":5,"240":2,"244":2,"246":4,"249":2,"254":29,"255":1,"261":16,"272":1,"281":10,"283":5,"287":7,"292":2,"294":2,"302":16}}],["347",{"2":{"272":1}}],["346573590",{"2":{"104":1}}],["346573590279972654708616060729088284037750067180127627",{"2":{"104":1}}],["337",{"2":{"272":1}}],["3345554",{"2":{"234":1}}],["3780",{"2":{"234":1}}],["371",{"2":{"163":1}}],["370",{"2":{"163":1}}],["3^2",{"2":{"146":1}}],["3^1",{"2":{"146":1,"246":1}}],["3^",{"2":{"146":1}}],["32",{"2":{"103":1,"131":1,"146":4}}],["35",{"2":{"68":1,"285":1,"289":1,"300":1}}],["30250",{"2":{"281":1}}],["3088",{"2":{"234":1}}],["3087611",{"2":{"4":2}}],["3087604",{"2":{"4":2}}],["3004",{"2":{"234":1}}],["30",{"2":{"17":2,"240":1,"261":1,"273":1,"285":1,"289":1,"300":1}}],["39",{"2":{"4":1,"111":2,"117":1,"121":1,"146":2,"166":2,"180":1,"197":2,"214":1,"228":1,"233":1,"246":2,"286":3}}],["3",{"2":{"2":1,"11":2,"13":1,"15":3,"17":12,"25":2,"32":1,"33":2,"42":2,"45":5,"46":4,"47":1,"50":1,"67":5,"68":10,"100":2,"101":4,"102":1,"103":2,"105":2,"107":2,"108":1,"111":2,"116":4,"117":1,"125":1,"139":1,"146":24,"161":1,"166":1,"175":2,"177":3,"179":1,"181":1,"182":1,"185":1,"187":1,"191":1,"193":1,"196":1,"201":60,"206":5,"209":1,"213":1,"215":2,"219":3,"227":4,"230":3,"232":3,"234":6,"236":4,"238":3,"240":7,"246":6,"254":27,"255":7,"261":18,"263":2,"267":1,"274":1,"281":11,"283":8,"285":6,"287":12,"289":7,"292":1,"294":1,"296":2,"298":2,"300":4,"302":2}}],["sssr",{"2":{"273":1}}],["s+r⊆l",{"2":{"261":2}}],["s→t",{"2":{"203":1}}],["s2",{"2":{"165":1}}],["s1",{"2":{"165":1,"213":3}}],["sqrt",{"2":{"116":1}}],["squared",{"2":{"254":1,"266":1}}],["squares",{"2":{"182":1,"291":1}}],["square",{"2":{"60":2,"88":2,"174":2}}],["swap",{"2":{"89":4}}],["sloane",{"2":{"149":1,"273":1}}],["slp",{"2":{"88":1}}],["slices",{"2":{"87":1}}],["sf",{"2":{"88":3}}],["scales",{"2":{"218":2,"219":1}}],["scale",{"2":{"89":1,"153":8,"155":3,"163":6,"213":2,"215":2,"218":4,"228":1,"231":2,"238":1,"239":10,"246":1,"250":3,"291":3,"292":1,"293":3,"294":1,"295":1}}],["scaled",{"2":{"81":4,"89":4,"207":1}}],["scalars",{"2":{"81":1,"90":2,"180":5}}],["sctable",{"2":{"32":2}}],["srow",{"2":{"79":3,"80":3,"81":10,"82":2,"83":5,"84":9,"85":1,"86":1,"87":1,"88":4,"89":9,"90":4,"146":1}}],["src",{"2":{"34":1,"35":1,"38":3,"39":4}}],["sheaves",{"2":{"246":2}}],["sharing",{"2":{"98":1}}],["share",{"2":{"30":1}}],["shape",{"2":{"75":2}}],["shapes",{"2":{"17":3}}],["shortest",{"2":{"248":1,"266":2}}],["shortcut",{"2":{"93":1}}],["shortcuts",{"2":{"13":1}}],["short",{"0":{"264":1,"266":1},"1":{"265":1,"266":1,"267":1},"2":{"30":1,"55":1,"61":1,"141":1,"266":4}}],["shorthand",{"2":{"28":1}}],["should",{"2":{"18":2,"39":1,"58":1,"94":1,"116":2,"186":6,"201":2,"210":6,"257":6,"290":6}}],["show",{"2":{"17":2,"121":1}}],["springer",{"2":{"273":4}}],["spheres",{"2":{"266":1}}],["sphere",{"2":{"266":2,"273":1}}],["splitting",{"2":{"93":1,"98":1,"258":1}}],["split",{"2":{"61":2,"111":2,"137":2,"201":2,"220":3,"221":1,"228":1}}],["spans",{"2":{"284":2,"295":1}}],["spanned",{"2":{"245":1,"254":1,"278":3,"279":3,"280":3}}],["span",{"0":{"282":1},"1":{"283":1},"2":{"88":1,"180":1,"228":1,"231":1,"242":1,"249":5,"252":3,"255":1,"271":1,"282":12,"283":4,"284":2,"286":3,"293":3}}],["sparsity",{"2":{"88":2}}],["sparsematrixcsc",{"2":{"90":2}}],["sparse",{"0":{"77":1,"79":1,"84":1,"86":1},"1":{"78":1,"79":1,"80":2,"81":2,"82":2,"83":2,"84":2,"85":2,"86":1,"87":2,"88":2,"89":2,"90":2},"2":{"3":1,"78":3,"79":5,"80":6,"81":1,"82":1,"84":1,"85":2,"86":7,"87":16,"88":3,"89":11,"90":3,"133":1}}],["space",{"0":{"245":1,"278":1,"282":1},"1":{"283":1},"2":{"86":1,"117":1,"159":4,"174":12,"175":4,"176":11,"177":2,"178":9,"179":2,"180":10,"181":2,"182":2,"183":2,"185":4,"187":11,"188":2,"189":1,"190":2,"191":1,"192":3,"193":1,"195":1,"196":1,"199":1,"201":1,"213":1,"242":3,"244":1,"245":1,"246":3,"248":1,"249":7,"250":1,"253":1,"255":9,"261":1,"262":3,"265":1,"270":6,"271":2,"278":4,"279":8,"280":8,"282":4,"283":3,"286":2,"288":9,"289":2,"291":1,"297":1,"301":4,"302":1}}],["spaces",{"0":{"173":1,"174":1,"190":1,"192":1,"270":1},"1":{"174":1,"175":2,"176":1,"177":1,"178":1,"179":1,"180":1,"181":1,"182":1,"183":1,"184":1,"185":1,"186":1,"187":1,"188":1,"189":1,"190":1,"191":2,"192":1,"193":2},"2":{"38":2,"175":1,"176":1,"182":5,"184":3,"185":2,"186":6,"257":3,"268":4,"270":6,"290":3,"297":2,"299":2}}],["special",{"0":{"61":1,"246":1},"2":{"58":1,"87":1,"147":2,"268":1}}],["specify",{"2":{"74":1}}],["specifying",{"2":{"29":1,"109":1,"111":1,"140":1}}],["specifies",{"2":{"116":2}}],["specified",{"2":{"45":1,"46":1,"47":1,"55":1,"75":2,"94":1,"146":1,"244":2}}],["specifically",{"2":{"40":1,"92":1}}],["specific",{"2":{"17":2,"30":1,"55":1,"196":1}}],["speed",{"2":{"36":2}}],["solution",{"2":{"113":1}}],["solve",{"2":{"88":2,"196":1}}],["sometimes",{"2":{"270":1,"271":1,"290":1}}],["some",{"2":{"27":1,"73":5,"75":3,"92":1,"113":1,"116":2,"119":2,"128":1,"157":2,"160":2,"164":1,"168":1,"184":1,"185":1,"202":2,"246":2,"250":2,"255":1,"263":2,"273":1,"281":1}}],["so",{"2":{"17":1,"68":1,"92":1,"112":1,"141":1,"177":1,"266":3,"293":1}}],["sophisticated",{"2":{"17":1}}],["source",{"2":{"7":7,"8":2,"10":1,"13":6,"14":12,"15":2,"16":2,"17":21,"18":4,"19":2,"20":1,"22":1,"23":2,"24":3,"25":2,"26":3,"28":1,"32":2,"33":1,"38":1,"43":1,"45":2,"46":14,"48":5,"51":2,"52":2,"53":2,"54":1,"59":6,"60":4,"61":15,"63":3,"64":1,"67":3,"68":4,"70":4,"71":4,"72":1,"74":3,"75":5,"80":3,"81":5,"82":1,"83":6,"84":5,"85":3,"87":16,"88":27,"89":19,"90":12,"93":4,"94":6,"96":5,"97":10,"98":10,"100":2,"101":3,"102":1,"103":1,"105":2,"106":1,"107":7,"111":15,"112":7,"113":5,"114":7,"116":7,"117":8,"118":9,"119":12,"120":8,"121":4,"122":7,"123":4,"124":5,"125":4,"128":5,"129":8,"131":19,"136":9,"137":4,"138":9,"144":11,"145":7,"146":24,"147":37,"148":8,"149":1,"151":1,"152":1,"153":1,"154":1,"155":11,"157":4,"158":1,"159":6,"160":1,"161":1,"162":2,"163":13,"164":3,"165":1,"166":1,"168":12,"169":26,"170":11,"171":1,"172":2,"174":4,"176":8,"178":6,"180":7,"182":5,"184":2,"186":5,"188":2,"190":1,"192":1,"195":1,"196":1,"197":9,"198":2,"199":2,"200":1,"201":2,"202":4,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":3,"211":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":8,"248":1,"249":4,"250":10,"251":2,"252":4,"253":5,"254":5,"255":12,"257":3,"258":2,"259":1,"261":4,"262":3,"263":2,"265":1,"266":5,"267":1,"278":4,"279":4,"280":4,"281":2,"282":5,"284":4,"286":15,"288":9,"290":5,"291":3,"293":7,"295":3,"297":2,"299":3,"301":6}}],["system",{"2":{"73":3,"84":3,"89":2,"254":2,"274":1}}],["syntax",{"2":{"28":1,"29":2}}],["sylow",{"2":{"17":3}}],["symmetric",{"2":{"84":2,"89":2,"163":1,"174":1,"270":1,"273":1}}],["sym",{"2":{"84":4,"89":2,"130":1}}],["symbols",{"0":{"153":1,"154":1,"161":1,"213":1,"214":1,"228":1,"229":1},"1":{"162":1,"163":1,"164":1,"165":1,"166":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"229":1,"230":2,"231":1,"232":1,"233":1,"234":1},"2":{"75":1,"149":2,"155":1,"161":1,"182":1,"228":1,"229":2,"230":2,"231":3,"237":2,"238":1,"239":2,"246":1}}],["symbol",{"0":{"158":1},"2":{"19":1,"20":1,"75":1,"111":3,"116":2,"149":2,"155":1,"158":3,"159":2,"161":5,"162":2,"163":1,"164":2,"186":2,"213":1,"214":3,"215":2,"216":3,"218":17,"220":4,"222":1,"224":3,"226":4,"228":1,"229":2,"230":1,"231":9,"235":7,"237":2,"238":2,"240":21,"241":4,"246":22,"254":3,"263":3,"290":2}}],["symbolic",{"2":{"4":1}}],["symposium",{"2":{"4":1}}],["small",{"2":{"28":1,"58":1,"61":3,"111":1,"121":1,"122":1,"146":3,"272":1}}],["smaller",{"2":{"25":2,"58":1,"121":1}}],["smallest",{"2":{"17":1,"63":1,"83":2,"88":1,"89":1,"111":1,"131":1,"137":1,"147":2,"169":1}}],["smatslp",{"2":{"88":1}}],["smat",{"2":{"17":2,"85":1,"86":2,"87":25,"88":38,"89":20,"90":12}}],["smith",{"0":{"203":1},"2":{"14":1,"16":1,"88":2,"195":1,"203":2}}],["s",{"0":{"159":1},"2":{"17":7,"59":2,"67":1,"68":15,"70":6,"71":6,"72":2,"88":2,"93":2,"96":1,"109":1,"113":1,"116":6,"117":1,"121":1,"125":2,"137":1,"138":5,"145":1,"146":6,"147":5,"161":3,"163":14,"164":2,"169":8,"172":2,"180":3,"200":2,"203":2,"213":1,"214":1,"228":2,"229":3,"233":1,"246":14,"258":2,"261":9,"263":6,"286":3,"291":1}}],["superlattice",{"2":{"295":1}}],["supermodule",{"2":{"295":1}}],["suppose",{"2":{"213":1,"233":1}}],["supports",{"2":{"149":1}}],["support",{"2":{"7":1,"16":1,"81":1,"90":1}}],["supported",{"2":{"5":1,"87":1,"105":1,"109":1,"145":1,"149":1,"153":1,"171":1}}],["supplemented",{"2":{"113":1}}],["supply",{"2":{"51":1}}],["supplied",{"2":{"32":1,"54":1,"116":2,"168":2,"279":4,"280":4}}],["surface",{"2":{"246":3}}],["surrounding",{"2":{"128":1}}],["sunits",{"2":{"146":1}}],["sunit",{"2":{"146":4,"171":3}}],["successful",{"2":{"113":1}}],["such",{"2":{"14":1,"15":1,"16":1,"25":1,"38":1,"46":3,"48":2,"61":1,"64":1,"73":1,"88":1,"89":2,"92":1,"99":1,"109":2,"111":2,"112":3,"113":1,"117":1,"123":1,"131":2,"135":1,"136":1,"137":2,"140":1,"145":1,"146":5,"147":7,"148":1,"153":1,"161":1,"169":3,"180":3,"182":1,"184":1,"190":1,"192":2,"196":1,"201":1,"203":1,"209":1,"213":1,"226":2,"255":2,"261":2,"265":1,"266":2,"267":1,"286":2,"293":4,"295":1,"297":1,"301":2}}],["suitable",{"2":{"96":1,"274":1}}],["suite",{"2":{"40":2,"42":1}}],["submodule",{"2":{"200":4,"242":1,"258":3,"271":1,"288":3,"295":1}}],["submodules",{"0":{"200":1,"211":1},"2":{"211":12}}],["submatrix",{"2":{"17":1,"87":1}}],["sublattices",{"0":{"258":1,"262":1},"2":{"254":3,"261":1,"295":1}}],["sublattice",{"2":{"195":1,"196":1,"254":4,"255":7,"262":1,"295":1}}],["subspace",{"2":{"188":2}}],["subsetitr",{"2":{"70":1,"71":1}}],["subsetsizeitr",{"2":{"70":1,"71":1,"72":1}}],["subsets",{"2":{"70":1,"71":1,"72":1}}],["subset",{"0":{"43":1},"2":{"25":2,"38":1,"43":1}}],["subrings",{"2":{"167":1}}],["subring",{"2":{"109":1,"139":1}}],["subfields",{"0":{"120":1},"2":{"96":1,"98":3,"120":6}}],["subfield",{"2":{"94":2,"96":6,"98":3,"105":2,"106":1,"114":1,"120":8,"175":2,"177":3,"179":1,"180":1,"181":1,"183":4,"185":1,"189":1,"191":1,"193":1,"240":1}}],["subtype",{"2":{"17":4,"211":2}}],["subtraction",{"2":{"15":1}}],["sub",{"0":{"65":1,"69":1,"70":1,"71":1,"72":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2},"2":{"17":8,"70":4,"71":4,"72":1,"87":1,"201":2}}],["subgroup",{"2":{"17":23,"93":2,"94":1,"123":6,"146":3}}],["subgroups",{"0":{"17":1},"2":{"16":1,"17":11}}],["sums",{"0":{"165":1},"2":{"18":1,"186":4,"209":1,"210":3,"257":3,"290":4}}],["sum",{"0":{"237":1},"1":{"238":1},"2":{"15":2,"18":2,"32":1,"68":2,"73":1,"112":1,"154":4,"165":3,"186":16,"192":1,"201":2,"210":8,"237":8,"238":2,"255":1,"257":8,"261":1,"263":1,"288":1,"290":14}}],["snf",{"2":{"14":2,"16":1,"88":3,"195":2,"203":3}}],["say",{"2":{"39":2,"178":2,"213":1,"228":1}}],["satisfied",{"2":{"131":1}}],["satisfies",{"2":{"32":1,"112":4,"131":2,"226":2,"266":2}}],["satisfying",{"2":{"301":3}}],["satisfy",{"2":{"103":2,"229":1}}],["saturation",{"2":{"88":1}}],["saturate",{"2":{"17":1,"88":1,"288":1}}],["said",{"2":{"12":1,"73":1,"149":1,"176":1,"178":1,"184":1,"190":1,"192":1,"293":2}}],["same",{"2":{"7":1,"17":2,"30":1,"36":1,"39":1,"67":1,"79":1,"87":1,"90":5,"98":1,"105":1,"116":2,"119":1,"139":1,"143":1,"144":1,"146":2,"149":1,"167":1,"168":1,"182":1,"184":3,"186":1,"213":1,"228":1,"233":1,"235":1,"237":1,"255":8,"265":3,"288":5,"295":1,"297":1,"301":1}}],["sample",{"0":{"0":1}}],["st",{"2":{"213":3}}],["store",{"2":{"196":1}}],["stored",{"2":{"8":1,"281":1}}],["stops",{"2":{"93":1}}],["style",{"2":{"88":1}}],["strictly",{"2":{"213":1}}],["strict",{"2":{"93":1,"146":1}}],["string",{"2":{"67":3,"116":4}}],["straight",{"2":{"88":1}}],["stronger",{"2":{"68":1}}],["str",{"2":{"67":2}}],["structureconstantalgebra",{"2":{"22":1,"26":1,"32":1,"33":1,"186":4,"290":4}}],["structure",{"0":{"31":1,"33":1,"38":1,"53":1},"1":{"32":1,"33":1,"39":1,"40":1},"2":{"22":2,"26":1,"30":1,"32":7,"33":4,"43":1,"58":1,"73":2,"95":1,"96":1,"98":1,"141":2,"143":1,"167":4,"196":1}}],["structural",{"0":{"16":1},"1":{"17":1,"18":1,"19":1,"20":1},"2":{"16":1}}],["still",{"2":{"61":1,"73":1,"185":1}}],["steps",{"2":{"274":1}}],["step",{"2":{"36":2}}],["stable",{"2":{"211":2,"246":2,"274":1}}],["stabilises",{"2":{"88":1}}],["statement",{"2":{"166":1}}],["started",{"0":{"274":1}}],["starts",{"2":{"94":1,"142":1}}],["starting",{"2":{"89":2}}],["stay",{"2":{"30":1}}],["standard",{"2":{"7":1,"9":1,"278":1}}],["si",{"2":{"213":1,"295":2}}],["side",{"2":{"196":1,"246":1}}],["sig",{"2":{"153":2}}],["sigma",{"2":{"122":1}}],["sign",{"2":{"62":1,"107":2,"116":1,"153":1,"266":3}}],["signs",{"0":{"62":1,"107":1},"2":{"62":2,"107":3}}],["signatures",{"2":{"209":1,"228":1,"229":5,"231":3,"232":1,"239":3,"246":6,"263":1}}],["signature",{"2":{"30":1,"109":1,"118":3,"149":1,"153":1,"155":3,"163":3,"169":2,"209":4,"230":1,"238":1,"246":1,"252":1,"263":1}}],["size",{"0":{"72":1},"2":{"70":1,"71":1,"72":1,"97":1,"146":1,"148":1,"279":3,"280":3}}],["simply",{"2":{"270":3,"271":1}}],["simplfies",{"2":{"61":1}}],["simplification",{"2":{"61":1}}],["simplified",{"2":{"60":1,"61":3,"121":1}}],["simplifies",{"2":{"55":1}}],["simplify",{"2":{"61":4,"121":1,"122":2}}],["simpler",{"2":{"121":1}}],["simplenumfieldelem",{"2":{"111":2}}],["simplenumfield",{"2":{"32":1,"111":1,"117":3,"118":2,"119":4,"120":4,"121":2,"122":5}}],["simple",{"0":{"134":1},"2":{"3":2,"26":1,"96":4,"108":7,"111":4,"113":1,"116":5,"117":6,"119":3,"120":5,"121":11,"126":2,"128":1,"133":10,"140":1,"143":1}}],["similar",{"2":{"39":1,"68":1,"73":1,"143":1,"171":1,"176":1}}],["similarly",{"2":{"17":1,"213":1,"229":1,"297":1}}],["situations",{"2":{"15":1}}],["single",{"2":{"14":1}}],["since",{"2":{"8":1,"30":1,"58":1,"73":1,"94":1,"127":1,"155":1,"186":1,"196":1,"213":1,"233":1}}],["separable",{"2":{"270":1}}],["sense",{"2":{"233":1}}],["sentence",{"2":{"67":2,"68":4}}],["sek",{"2":{"230":3,"236":2,"238":2,"240":3}}],["sesquilinear",{"2":{"213":2,"270":1}}],["session",{"2":{"36":1}}],["self",{"2":{"209":1}}],["selected",{"2":{"17":1}}],["several",{"2":{"133":3,"281":1}}],["second",{"2":{"64":2,"75":3,"88":1,"119":1,"126":1,"143":1,"157":4,"180":1,"202":4,"250":4,"254":1,"255":1,"293":3,"299":1,"301":7}}],["section",{"2":{"30":2,"148":1,"161":1,"175":1,"215":1,"230":1,"281":1,"285":1}}],["sections",{"2":{"22":1}}],["search",{"2":{"25":6}}],["ser",{"2":{"273":1}}],["server",{"2":{"171":1}}],["servers",{"2":{"40":1}}],["serving",{"2":{"17":1}}],["series",{"2":{"4":1}}],["seen",{"2":{"184":1,"249":1,"257":3,"279":3,"290":3}}],["see",{"2":{"14":1,"17":4,"22":1,"23":1,"33":1,"40":1,"62":1,"109":1,"141":1,"149":1,"157":4,"171":1,"175":1,"182":1,"201":4,"202":4,"204":1,"208":1,"242":1,"247":1,"250":4,"254":1,"260":1,"262":1,"266":3,"274":1}}],["sequence",{"2":{"7":1,"180":1,"213":1,"286":1}}],["semi",{"2":{"201":2,"208":3}}],["semisimple",{"2":{"3":1}}],["semsimple",{"2":{"3":1}}],["setindex",{"2":{"89":1}}],["setdiff",{"2":{"68":3}}],["sets",{"0":{"65":1,"66":1,"70":1,"71":1,"72":1},"1":{"66":1,"67":2,"68":2,"69":1,"70":1,"71":1,"72":1},"2":{"67":1,"68":3,"70":3,"71":3,"72":1}}],["setting",{"2":{"42":1,"45":1,"47":1,"96":1,"122":1,"195":1,"245":1,"253":3,"265":1,"267":1,"278":2,"279":2,"280":2,"297":2,"299":2}}],["set",{"0":{"65":1,"69":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2},"2":{"2":1,"19":1,"20":1,"42":1,"48":1,"67":5,"68":5,"70":2,"71":2,"72":1,"88":1,"89":1,"93":4,"94":1,"95":1,"96":2,"97":1,"98":2,"121":1,"125":1,"136":2,"143":1,"144":2,"146":6,"148":1,"153":1,"168":7,"169":2,"180":1,"195":1,"209":2,"228":2,"229":1,"233":1,"239":1,"253":6,"254":1,"286":3,"291":1,"297":5,"299":4}}],["e=k",{"2":{"270":3,"271":1}}],["e=1moda",{"2":{"125":1}}],["etale",{"2":{"270":1}}],["effect",{"2":{"235":1,"246":1}}],["efficiency",{"2":{"143":1}}],["efficient",{"2":{"60":1,"61":1,"127":1,"146":1}}],["ep",{"2":{"213":1}}],["e2",{"2":{"192":4,"255":2}}],["e→e",{"2":{"270":1,"271":1}}],["e→k",{"2":{"180":1}}],["e→a",{"2":{"53":1}}],["e×",{"2":{"176":1}}],["euler",{"2":{"148":1}}],["emb",{"2":{"108":3}}],["embs",{"2":{"107":8}}],["embed",{"2":{"185":1,"263":4}}],["embeds",{"2":{"184":2}}],["embedings",{"2":{"106":1}}],["embeddding",{"2":{"99":1}}],["embeddings",{"0":{"100":1,"103":1,"160":1,"166":1,"184":1,"256":1,"263":1},"1":{"185":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1},"2":{"99":1,"100":9,"101":3,"102":1,"103":1,"105":2,"106":1,"107":8,"108":1,"109":3,"204":1}}],["embedding",{"0":{"99":1,"102":1,"104":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1},"2":{"99":1,"100":6,"101":3,"102":1,"103":2,"104":4,"105":7,"106":6,"107":10,"108":8,"109":1,"112":1,"117":1,"120":6,"122":2,"124":7,"131":1,"182":1,"183":3,"184":1,"230":4,"232":1,"238":1,"263":3,"297":1}}],["employed",{"2":{"96":1}}],["empty",{"2":{"17":1,"48":1,"67":1,"87":1,"278":1,"279":1,"280":1}}],["echelon",{"2":{"75":2,"88":1,"143":1}}],["essentially",{"2":{"73":1,"75":2,"133":1,"134":1}}],["everything",{"2":{"120":2,"122":1}}],["every",{"2":{"112":5,"127":1,"131":2,"163":1}}],["even=true",{"2":{"263":2}}],["even=false",{"2":{"153":1}}],["even",{"2":{"13":1,"92":1,"93":1,"133":1,"153":2,"155":1,"161":1,"163":4,"205":1,"206":2,"209":2,"246":2,"250":2,"263":2,"268":1}}],["evaluating",{"0":{"103":1},"2":{"267":1}}],["evaluation",{"2":{"61":1,"103":2}}],["evaluated",{"2":{"61":1}}],["evaluates",{"2":{"60":4,"61":1}}],["evaluate",{"2":{"60":6,"61":1,"146":1}}],["equipped",{"2":{"205":2}}],["equivalence",{"0":{"182":1,"284":1},"1":{"183":1,"285":1}}],["equivalently",{"2":{"88":1}}],["equivalent",{"2":{"17":1,"246":2}}],["equals",{"2":{"174":3}}],["equal",{"2":{"52":1,"89":1,"98":1,"109":1,"126":1,"129":1,"167":1,"182":1,"208":1,"226":1,"239":4,"249":1,"261":2}}],["equationorder",{"2":{"168":1,"169":1}}],["equations",{"2":{"97":1}}],["equation",{"2":{"45":4,"46":3,"48":5,"50":1,"53":3,"54":2,"55":2,"96":1,"109":1,"121":1,"125":2,"140":1,"142":1,"168":3,"169":3,"170":4,"209":1}}],["ellcrviso",{"2":{"253":1}}],["ellipticcurvepoint",{"2":{"48":8,"51":1,"53":3,"54":2}}],["ellipticcurve",{"2":{"45":2,"46":13,"47":1,"48":3,"50":1,"51":1,"52":2,"53":2,"129":1,"131":1,"253":1}}],["elliptic",{"0":{"49":1,"56":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"45":10,"46":5,"48":12,"50":3,"51":4,"52":4,"53":6,"54":3,"55":2}}],["elsewhere",{"2":{"246":1}}],["elts",{"2":{"142":1}}],["eltype",{"2":{"67":1,"68":1}}],["elemenentary",{"2":{"250":1}}],["elementary",{"0":{"88":1,"202":1},"2":{"14":2,"17":2,"88":3,"157":9,"170":1,"202":7,"250":8}}],["element",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"2":1,"7":6,"8":2,"9":1,"11":2,"13":1,"15":3,"17":4,"23":1,"25":1,"29":5,"32":2,"48":1,"53":2,"55":1,"58":1,"59":4,"60":6,"61":2,"63":3,"67":1,"68":3,"70":1,"71":1,"73":2,"79":1,"86":1,"100":3,"103":1,"106":1,"107":6,"108":1,"109":1,"111":11,"113":3,"114":9,"116":2,"117":6,"123":1,"124":3,"127":1,"128":9,"129":3,"131":6,"133":1,"142":2,"143":1,"146":3,"147":2,"148":1,"160":2,"170":1,"176":2,"182":1,"190":1,"196":3,"219":4,"230":1,"232":1,"240":2,"241":2,"248":1,"267":3,"283":1,"287":4,"288":1,"293":1,"298":1,"302":3}}],["elements",{"0":{"6":1,"29":1,"58":1,"103":1,"127":1,"198":1},"1":{"7":1,"8":1,"9":1,"10":1,"11":1,"59":1,"60":1,"61":1,"62":1,"63":1,"128":1,"129":1,"130":1,"131":1},"2":{"2":3,"6":1,"7":1,"8":1,"11":1,"13":1,"15":1,"17":7,"27":1,"29":1,"58":9,"59":4,"60":1,"61":1,"62":2,"67":8,"68":10,"73":1,"75":2,"79":1,"80":1,"82":1,"86":1,"88":6,"89":3,"93":1,"109":1,"111":2,"112":6,"117":2,"127":4,"128":4,"131":4,"133":1,"136":1,"141":1,"142":1,"143":4,"146":8,"147":2,"168":2,"169":4,"170":1,"171":1,"178":1,"180":4,"196":7,"262":1,"279":2,"280":2}}],["elem",{"2":{"129":1,"146":11,"147":2,"171":3,"266":6}}],["easily",{"2":{"58":1}}],["easy",{"2":{"43":1,"133":1,"175":1}}],["each",{"2":{"13":3,"29":1,"61":1,"94":1,"96":1,"117":1,"161":1,"182":1,"228":2,"231":1,"239":1}}],["edition",{"2":{"273":1}}],["edit",{"2":{"35":1}}],["e",{"2":{"32":4,"46":27,"47":3,"48":16,"50":4,"51":10,"52":10,"53":10,"54":3,"55":1,"58":2,"60":4,"61":1,"67":3,"68":7,"88":3,"94":1,"97":2,"98":1,"101":6,"102":3,"103":4,"104":5,"105":4,"106":5,"107":21,"112":1,"118":1,"122":1,"125":1,"128":1,"129":3,"131":4,"139":1,"142":3,"144":1,"145":1,"146":3,"147":6,"170":1,"174":9,"175":2,"176":2,"177":2,"178":2,"179":2,"180":1,"181":3,"182":2,"184":6,"185":4,"187":4,"190":1,"191":2,"192":3,"193":2,"213":4,"214":3,"215":16,"216":3,"217":2,"218":13,"219":15,"220":4,"221":2,"222":2,"223":2,"224":2,"225":2,"226":6,"227":15,"228":6,"229":2,"230":17,"231":4,"232":15,"233":3,"234":6,"235":5,"236":3,"237":2,"238":17,"239":3,"240":5,"241":2,"242":1,"246":1,"253":3,"254":1,"261":2,"270":10,"271":3,"280":16,"281":21,"283":7,"286":1,"287":7,"288":6,"291":1,"292":7,"293":2,"294":7,"297":1,"298":1,"302":7}}],["eigenvalues",{"2":{"155":2}}],["ei",{"2":{"58":1}}],["ei∈z",{"2":{"58":1}}],["ei≠1",{"2":{"14":1}}],["ei∣ei+1",{"2":{"14":1}}],["either",{"2":{"7":1,"17":1,"29":1,"45":1,"47":1,"67":1,"94":1,"111":1,"128":1,"178":1,"206":1,"209":2,"214":2,"229":1,"301":2}}],["ekz",{"2":{"14":1}}],["ek",{"2":{"14":1}}],["e1z×⋯×z",{"2":{"14":1}}],["e1",{"2":{"14":1,"192":4,"255":2,"270":1}}],["ej",{"2":{"13":1}}],["encyclopedia",{"2":{"273":1}}],["encompassing",{"2":{"30":1}}],["encoded",{"2":{"16":1,"149":1}}],["en",{"2":{"270":1}}],["enabled",{"2":{"235":2}}],["enough",{"2":{"93":1}}],["ensure",{"2":{"93":1}}],["entries",{"2":{"67":1,"68":1,"81":1,"84":4,"85":1,"88":1,"89":3,"107":1,"111":1,"131":1,"146":1,"148":1,"169":1,"197":2,"206":1,"246":1,"270":2,"279":1,"280":1}}],["entry",{"2":{"13":1,"83":4,"84":1,"88":4,"89":1,"112":5,"131":2,"232":1,"235":1}}],["env",{"2":{"61":1}}],["environment",{"2":{"36":1,"42":1}}],["endowed",{"2":{"270":1}}],["endomorphisms",{"0":{"262":1},"2":{"211":1,"262":2}}],["endomorphism",{"2":{"52":2,"188":1,"262":7}}],["end",{"2":{"11":1,"17":3}}],["enumeration",{"0":{"153":1,"239":1},"1":{"240":1},"2":{"3":1,"16":1,"17":1,"38":2}}],["error",{"2":{"2":2,"125":1,"147":2,"170":2,"187":1,"209":1,"230":3,"249":1,"282":1}}],["except",{"2":{"261":1}}],["excess",{"2":{"163":4}}],["extra",{"2":{"88":2,"113":2}}],["extremely",{"2":{"58":1}}],["extensions`",{"2":{"187":1}}],["extensions",{"2":{"92":4,"98":1,"106":1,"109":1,"116":1,"117":1,"133":2,"141":1,"167":1,"187":1,"268":1}}],["extension",{"0":{"106":1,"280":1},"1":{"281":1},"2":{"73":1,"92":1,"93":2,"94":3,"96":6,"97":2,"98":2,"106":1,"111":4,"113":1,"114":1,"116":5,"117":3,"119":6,"120":5,"121":7,"126":5,"133":5,"141":1,"174":2,"182":1,"184":1,"190":1,"213":2,"214":1,"229":1,"235":1,"261":2,"270":1,"271":1,"297":1}}],["extending",{"2":{"98":1,"180":1,"213":1}}],["extended",{"2":{"2":5,"246":6}}],["extend",{"2":{"2":3,"88":3,"106":2}}],["existence",{"2":{"73":1}}],["exists",{"2":{"64":1,"113":1,"135":1,"178":1,"190":1,"192":1,"201":1,"209":1,"293":1}}],["exist",{"2":{"48":1,"89":1}}],["execute",{"2":{"36":1}}],["exp⁡",{"2":{"209":1}}],["exp⁡d",{"2":{"58":1}}],["expensive",{"2":{"144":1,"286":2}}],["experimental",{"2":{"30":1}}],["explicit",{"2":{"128":1}}],["expands",{"2":{"60":4}}],["expanded",{"2":{"59":4,"111":2}}],["exp",{"2":{"59":2,"63":6}}],["expressing",{"2":{"25":1}}],["exponents",{"2":{"58":3,"61":2}}],["exponent",{"2":{"14":2,"59":1,"60":2,"63":3,"94":2}}],["example",{"0":{"95":1,"108":1,"169":1,"187":1,"189":1,"191":1,"193":1,"223":1,"234":1},"2":{"12":1,"38":1,"43":1,"51":1,"78":1,"79":1,"86":1,"106":1,"108":1,"131":1,"168":1,"206":1,"261":2,"274":1}}],["examples",{"0":{"0":1,"48":1,"76":1,"142":1,"175":1,"177":1,"179":1,"181":1,"183":1,"185":1,"215":1,"217":1,"219":1,"221":1,"225":1,"227":1,"230":1,"232":1,"236":1,"238":1,"240":1,"281":1,"283":1,"285":1,"287":1,"289":1,"292":1,"294":1,"296":1,"298":1,"300":1,"302":1},"2":{"17":3,"22":1,"24":1,"25":2,"26":3,"28":1,"32":2,"33":1,"45":2,"46":2,"48":4,"51":2,"52":1,"53":1,"67":3,"68":4,"100":2,"101":3,"102":1,"103":1,"105":2,"107":5,"116":6,"117":2,"118":2,"120":1,"124":3,"175":1,"196":2,"201":2,"209":1,"215":1,"244":1,"246":5,"248":1,"249":2,"254":5,"255":2,"267":1,"281":1,"285":1}}],["d=±1",{"2":{"255":1}}],["dt",{"2":{"213":2}}],["d1",{"2":{"213":2}}],["dyadic",{"2":{"213":1,"220":3,"221":1,"228":1}}],["d→q",{"2":{"205":1}}],["d→gi",{"2":{"18":2}}],["d×d→q",{"2":{"205":1}}],["dual",{"0":{"259":1},"2":{"170":1,"205":1,"255":1,"259":2,"288":3,"293":1}}],["due",{"2":{"127":1,"135":1,"141":1,"146":1}}],["d∗a",{"2":{"137":1}}],["da",{"2":{"135":1,"137":1}}],["datum",{"2":{"228":1,"286":1}}],["dated",{"2":{"92":1}}],["database",{"2":{"281":2}}],["databases",{"2":{"281":1}}],["data",{"2":{"25":5,"61":1,"142":1,"146":3,"214":2}}],["drop",{"2":{"68":1,"87":1}}],["dn",{"2":{"61":1}}],["d",{"2":{"18":5,"32":5,"58":2,"59":4,"61":1,"67":4,"81":1,"88":3,"89":1,"109":1,"111":3,"116":1,"117":1,"118":2,"135":1,"137":3,"161":4,"169":4,"182":3,"196":9,"205":1,"209":2,"215":2,"219":2,"227":2,"230":2,"232":2,"234":2,"238":2,"246":1,"254":2,"255":2,"267":3,"273":1,"281":8,"283":4,"285":4,"287":2,"289":4,"292":2,"294":2,"296":2,"298":2,"300":4,"302":2}}],["di=−1",{"2":{"213":1}}],["di=1",{"2":{"213":1}}],["dim",{"2":{"155":1,"163":1,"176":1,"177":1}}],["dimensions",{"2":{"32":1}}],["dimensional",{"2":{"30":1,"32":1,"73":1,"90":1,"270":1}}],["dimension",{"2":{"14":1,"22":1,"26":7,"32":2,"155":1,"163":1,"174":2,"175":2,"176":3,"182":2,"187":1,"249":1,"270":1,"283":2,"286":1,"289":1}}],["dichotomy",{"2":{"126":1}}],["dictionary",{"2":{"29":1,"59":1,"67":3,"68":1,"107":1,"144":1,"229":1,"231":1}}],["dictionaries",{"2":{"16":1}}],["dict",{"2":{"16":2,"29":1,"59":4,"61":5,"67":3,"68":2,"93":1,"107":2,"144":3,"146":1,"182":1,"183":1,"231":1,"232":1,"239":1,"240":2}}],["di",{"2":{"117":1,"213":1,"214":1}}],["dixon",{"2":{"88":4}}],["diagonalization",{"0":{"180":1},"1":{"181":1},"2":{"161":1}}],["diagonal",{"2":{"75":2,"87":4,"88":5,"89":2,"148":1,"163":1,"178":1,"180":5,"181":2,"197":2,"206":1,"246":1,"282":2,"283":1}}],["digits",{"2":{"58":1}}],["distinction",{"2":{"268":1}}],["distributed",{"2":{"131":1}}],["distributivity",{"2":{"32":1}}],["display",{"2":{"196":1}}],["disable",{"2":{"116":2}}],["disabled",{"2":{"45":1,"47":1,"122":1,"235":1,"245":1,"265":1,"267":1,"278":2,"279":2,"280":2}}],["disjoint",{"2":{"68":2,"119":3}}],["discarded",{"2":{"146":2}}],["disc",{"2":{"54":2,"170":1,"176":1,"214":1}}],["discrete",{"0":{"54":1},"2":{"54":1,"78":1,"171":1}}],["discriminant",{"0":{"156":1,"194":1,"204":1,"260":1},"1":{"195":1,"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1,"204":1,"205":2,"206":2,"207":2,"208":2,"209":2,"210":2,"211":2},"2":{"45":1,"46":4,"61":1,"96":1,"97":3,"118":10,"129":5,"131":5,"156":1,"157":8,"168":4,"170":5,"176":3,"177":1,"196":2,"204":1,"205":6,"209":3,"213":3,"214":1,"218":6,"219":1,"250":8,"260":1,"261":1,"286":2,"287":1}}],["differents",{"2":{"170":1}}],["differently",{"2":{"139":1,"141":1}}],["different",{"2":{"30":2,"68":1,"109":1,"116":1,"133":1,"143":1,"170":3,"230":1,"288":1,"301":1}}],["difference",{"2":{"17":1,"68":2}}],["divide",{"2":{"170":1}}],["divides",{"2":{"125":1,"145":1,"169":1}}],["divided",{"2":{"88":2}}],["dividing",{"2":{"94":1,"146":2,"168":1,"228":2}}],["divisor",{"2":{"169":4,"170":1}}],["divisors",{"2":{"14":3,"17":2,"88":4,"144":2,"146":2,"168":1}}],["divisible",{"2":{"113":3,"146":3,"163":1,"169":1,"246":1}}],["divisibility",{"2":{"88":1,"255":3}}],["division",{"2":{"48":2}}],["div",{"2":{"81":1,"90":1}}],["divexact",{"2":{"17":1,"81":1,"90":1,"145":1}}],["directories",{"2":{"38":1}}],["directory",{"2":{"34":1,"38":1,"39":1,"43":2}}],["directly",{"2":{"35":1}}],["direct",{"0":{"18":1,"165":1},"2":{"13":1,"15":3,"16":1,"18":9,"73":1,"154":3,"165":2,"186":26,"201":2,"209":1,"210":20,"237":6,"238":2,"257":20,"263":1,"290":24}}],["dfg",{"2":{"5":1}}],["downloads",{"2":{"274":1}}],["don",{"2":{"228":1}}],["done",{"2":{"4":1,"121":1,"285":1}}],["dollar",{"2":{"116":1}}],["dot",{"2":{"90":9}}],["do",{"2":{"61":1,"79":1,"201":2,"274":1}}],["document",{"2":{"133":1}}],["documentation",{"0":{"34":1,"35":1,"36":1},"1":{"35":1,"36":1},"2":{"34":1,"35":1}}],["doctest",{"2":{"36":1}}],["doc",{"2":{"36":2}}],["docs>",{"2":{"36":1}}],["docs",{"2":{"34":1,"35":1,"36":2}}],["does",{"2":{"12":1,"60":2,"61":1,"89":1,"97":1,"146":1}}],["doi",{"2":{"4":2}}],["domain",{"2":{"2":2,"15":1,"73":1,"94":1,"123":3,"141":2,"167":1,"261":1}}],["de",{"2":{"281":2}}],["der",{"2":{"272":1,"273":1}}],["depth",{"2":{"253":18,"297":12,"299":12}}],["depend",{"2":{"146":1}}],["depending",{"2":{"60":1,"107":1,"139":1,"186":1,"218":5,"224":1,"253":3,"290":1,"297":2,"299":2}}],["depends",{"2":{"4":1,"196":1}}],["dealing",{"2":{"176":1}}],["deal",{"2":{"167":1}}],["deals",{"2":{"55":1,"73":1,"78":1,"92":2,"139":1,"268":1}}],["degenerate",{"2":{"149":1,"182":2,"188":1,"208":3}}],["deg⁡",{"2":{"146":2}}],["degree",{"0":{"280":1},"1":{"281":1},"2":{"95":1,"96":1,"97":2,"98":4,"109":1,"111":3,"113":1,"116":5,"117":2,"118":7,"133":1,"142":3,"146":8,"147":2,"167":1,"169":2,"170":2,"174":2,"177":2,"215":2,"230":1,"236":4,"238":2,"246":3,"248":1,"254":7,"255":3,"261":4,"263":1,"268":2,"270":1,"280":4,"281":8,"283":1,"285":2,"286":1,"287":6,"289":5,"302":3}}],["decide",{"2":{"97":2,"185":1,"195":1}}],["decomposed",{"2":{"192":1}}],["decomposition",{"2":{"2":1,"98":2,"123":2,"142":1,"183":1,"185":1,"191":1,"193":1,"213":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"236":1,"238":1,"240":1,"285":1,"289":1,"294":1,"295":4,"296":2,"300":1,"302":1}}],["decom",{"2":{"61":2}}],["denominator",{"2":{"131":1,"135":1,"137":2,"155":1,"206":1}}],["denoted",{"2":{"254":1}}],["denotes",{"2":{"246":1}}],["denote",{"2":{"89":2}}],["density",{"2":{"88":2}}],["dense",{"2":{"85":2,"86":1,"87":2,"88":2,"90":3,"133":1}}],["descibing",{"2":{"98":1}}],["describe",{"2":{"99":1}}],["described",{"2":{"30":1,"121":1}}],["describes",{"2":{"13":3,"30":1}}],["desired",{"2":{"75":2,"98":1,"195":1}}],["dedekind",{"2":{"73":1,"135":1,"141":1,"143":1,"167":1}}],["delete",{"2":{"68":3}}],["dets",{"2":{"218":1,"219":1}}],["details",{"2":{"141":1}}],["determinants",{"2":{"218":2,"224":1}}],["determinant",{"0":{"224":1},"1":{"225":1},"2":{"88":4,"109":1,"153":6,"155":1,"163":1,"176":3,"182":1,"213":5,"214":1,"218":4,"224":5,"239":11,"250":1,"254":1,"272":1}}],["determined",{"2":{"182":1,"246":1}}],["determines",{"2":{"22":1,"98":1,"186":1,"290":1}}],["determine",{"2":{"2":3,"64":1,"96":1,"98":1,"106":1,"182":1}}],["det",{"2":{"64":1,"88":2,"109":2,"129":1,"131":1,"155":1,"161":2,"163":1,"176":3,"177":1,"214":2,"215":3,"217":1,"218":2,"219":1,"221":1,"223":1,"224":2,"225":3,"230":1,"236":1,"238":2,"239":2,"246":2,"250":1}}],["developed",{"2":{"36":1}}],["development",{"2":{"5":1,"36":1}}],["deformation",{"2":{"246":3}}],["defect",{"2":{"111":3}}],["definite",{"0":{"297":1},"1":{"298":1},"2":{"155":3,"159":1,"178":12,"179":2,"233":4,"235":1,"248":1,"252":9,"253":2,"254":2,"258":1,"265":1,"266":3,"267":1,"272":1,"293":9,"294":1,"297":2,"298":1}}],["definitions",{"0":{"269":1},"1":{"270":1,"271":1},"2":{"149":1,"167":1,"269":1,"272":1}}],["definition",{"2":{"121":1,"126":1,"182":1,"213":1,"233":2}}],["defining",{"2":{"2":1,"33":1,"46":1,"94":2,"96":5,"97":4,"105":1,"116":6,"117":2,"118":2,"119":4,"121":3,"122":1,"125":3,"168":1,"175":2,"177":3,"217":2,"232":2,"283":2,"287":3}}],["define",{"2":{"59":1,"107":1,"116":2,"138":1,"147":1,"176":1,"213":1,"228":1,"233":1,"274":1,"286":2,"288":1,"291":1,"297":1}}],["defines",{"2":{"48":1,"73":1,"75":1,"94":1,"144":1,"168":4,"231":1,"288":1}}],["defined",{"0":{"262":1},"2":{"46":2,"48":1,"50":1,"60":1,"68":1,"75":3,"93":1,"94":1,"95":1,"96":2,"97":4,"101":1,"104":1,"105":1,"107":1,"108":2,"116":3,"119":1,"121":1,"124":2,"126":2,"130":1,"140":1,"146":3,"154":1,"155":3,"159":3,"163":2,"176":3,"187":1,"198":1,"207":2,"209":1,"213":3,"230":2,"235":1,"250":2,"266":1,"286":2,"288":2}}],["default",{"2":{"22":1,"45":1,"47":1,"75":2,"107":1,"116":2,"121":1,"122":1,"146":1,"153":3,"157":2,"180":1,"202":2,"209":2,"235":1,"245":1,"250":2,"253":7,"262":3,"265":1,"267":1,"278":2,"279":2,"280":2,"297":5,"299":5,"301":2}}],["deutsche",{"2":{"5":1}}],["hlb",{"2":{"281":2}}],["h3",{"2":{"187":1}}],["h2",{"2":{"185":3,"187":2}}],["hypothesis",{"2":{"146":1}}],["hyperkaehler",{"2":{"246":8}}],["hyperbolic",{"0":{"192":1},"1":{"193":1},"2":{"192":6,"193":1,"246":5,"255":1}}],["hyperelliptic",{"2":{"46":2}}],["hypellcrv",{"2":{"46":2,"129":1,"131":1}}],["http",{"2":{"121":1,"281":2}}],["https",{"2":{"4":1,"274":1}}],["highest",{"2":{"254":3}}],["hilbert",{"2":{"94":2,"111":2,"182":1,"229":1}}],["hierarchy",{"2":{"38":1}}],["hcat",{"2":{"87":2}}],["hnf",{"2":{"73":3,"75":4,"88":6,"136":6,"143":1,"144":3,"148":1}}],["huge",{"2":{"61":1}}],["h=h1⊗⋅⊗hn",{"2":{"19":1}}],["h=g",{"2":{"17":2}}],["h→g",{"2":{"17":3}}],["h+h",{"2":{"15":1}}],["h",{"2":{"15":8,"17":9,"19":1,"20":2,"46":1,"175":1,"177":10,"179":4,"181":4,"182":2,"185":5,"187":2,"191":2,"192":2,"193":2,"246":10,"254":1,"273":4}}],["holy",{"2":{"246":1}}],["holds",{"2":{"88":2,"113":1,"145":1}}],["hold",{"2":{"85":1,"174":2}}],["horizontally",{"2":{"87":2}}],["homomorpisms",{"2":{"20":1}}],["homomorphisms",{"2":{"15":1,"20":1,"196":1,"297":1}}],["homomorphism",{"2":{"15":1,"182":1,"297":2}}],["homology",{"2":{"16":1}}],["hom",{"0":{"20":1},"2":{"15":3,"16":2,"19":1,"20":1,"108":1}}],["hofmann",{"2":{"4":2}}],["however",{"2":{"61":1,"73":1,"87":1,"116":1,"167":1}}],["how",{"0":{"1":1},"2":{"116":2,"175":1,"246":1,"274":1}}],["habilitationsschrift",{"2":{"272":1}}],["half",{"2":{"208":2}}],["hand",{"2":{"127":1}}],["handle",{"2":{"58":1}}],["hadamard",{"2":{"88":1}}],["having",{"2":{"12":1,"17":1}}],["have",{"2":{"6":1,"9":1,"12":1,"13":3,"30":1,"45":1,"48":1,"58":1,"61":1,"67":1,"68":1,"79":1,"86":2,"87":1,"94":1,"98":1,"116":2,"125":1,"126":2,"127":2,"133":1,"141":1,"143":2,"169":2,"171":1,"201":2,"206":1,"208":1,"255":3,"288":2}}],["hart",{"2":{"4":2}}],["hasse",{"2":{"163":3,"182":4,"183":1,"284":2,"285":1}}],["has",{"2":{"2":1,"17":8,"61":1,"67":1,"74":1,"93":1,"94":1,"109":1,"113":1,"117":1,"125":1,"141":1,"146":1,"147":3,"167":1,"168":3,"169":1,"178":1,"182":1,"209":2,"218":3,"230":1,"231":1,"235":1,"239":1,"242":1,"246":1,"288":1,"297":1,"301":5}}],["heuristically",{"2":{"253":3,"297":2,"299":2}}],["helper",{"2":{"171":1}}],["hessian",{"2":{"163":1}}],["hence",{"2":{"93":1,"143":1,"167":1}}],["hermgenus",{"2":{"229":2,"231":8,"235":3,"237":3,"239":1,"240":1,"241":2}}],["hermlocalgenus",{"2":{"214":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"229":1,"231":1,"235":2,"237":3,"239":1,"240":2,"241":2}}],["hermlat",{"2":{"214":2,"215":1,"217":1,"221":1,"223":1,"225":1,"229":1,"230":1,"233":1,"235":7,"236":1,"238":1,"280":4}}],["hermspace",{"2":{"174":2,"192":1}}],["hermitan",{"2":{"280":1}}],["hermite",{"2":{"75":2,"88":3}}],["hermitian",{"0":{"212":1,"270":1,"271":1,"280":1},"1":{"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"281":1},"2":{"3":1,"174":5,"175":2,"177":2,"178":5,"179":2,"181":1,"184":1,"185":2,"186":3,"187":11,"191":1,"192":1,"193":1,"213":2,"214":2,"215":3,"216":3,"218":17,"219":1,"220":4,"222":1,"224":3,"226":4,"227":1,"228":1,"229":2,"230":3,"231":9,"232":1,"233":2,"234":1,"235":9,"236":2,"237":2,"238":3,"239":4,"240":23,"241":2,"245":2,"268":3,"270":10,"271":6,"272":3,"278":8,"280":12,"281":8,"283":2,"287":1,"290":3,"292":1,"294":1,"302":4}}],["herm",{"2":{"38":2}}],["here",{"2":{"38":1,"68":1,"92":1,"108":1,"109":1,"141":1,"143":1,"171":3,"175":1,"182":1,"196":1,"215":1,"229":1,"246":1,"268":1,"272":1,"274":1,"281":1}}],["hecke",{"0":{"4":1},"2":{"4":3,"5":1,"12":1,"36":4,"38":3,"42":4,"43":2,"58":1,"92":1,"93":12,"94":1,"97":1,"105":1,"106":1,"109":2,"116":1,"126":1,"133":1,"146":1,"167":2,"196":1,"209":1,"215":1,"219":1,"227":1,"230":3,"232":1,"234":1,"238":1,"239":6,"240":3,"246":1,"254":1,"274":5,"281":10,"283":1,"287":8,"292":1,"294":1,"302":10}}],["m∩e⊗n",{"2":{"288":1}}],["m∩qn",{"2":{"255":1}}],["m2",{"2":{"255":2}}],["mz=2nz+∑x∈nzφ",{"2":{"195":1}}],["mz",{"2":{"195":1,"197":1}}],["m−1",{"2":{"176":1,"213":1}}],["m⊗r≅n⊗r",{"2":{"149":1}}],["m⊗zp",{"2":{"149":1}}],["mfp",{"2":{"142":2}}],["m→l",{"2":{"121":1}}],["m→k",{"2":{"121":1}}],["mr",{"2":{"93":4}}],["m0=zk",{"2":{"93":1}}],["m0",{"2":{"93":3}}],["m0≤zk",{"2":{"93":1}}],["m∞=",{"2":{"93":1}}],["m∞",{"2":{"93":3}}],["mc",{"2":{"88":4,"95":2,"96":2,"146":6,"274":1}}],["m⊂v",{"2":{"73":1}}],["ms",{"2":{"146":2}}],["msubsetit",{"2":{"70":1,"71":1}}],["msets",{"2":{"67":1}}],["mset",{"2":{"17":3,"67":14,"68":20,"70":1,"71":1}}],["meara",{"2":{"166":2}}],["meanwhile",{"2":{"270":1}}],["mean",{"2":{"109":1}}],["means",{"2":{"67":1,"233":1,"246":1}}],["metric",{"2":{"147":1,"168":1,"169":1}}],["method",{"2":{"88":1}}],["methods",{"2":{"58":1,"78":1,"186":1,"248":1,"268":1}}],["mentioned",{"2":{"108":1,"171":1}}],["me",{"2":{"61":2}}],["mp=lp",{"2":{"295":1}}],["mp=q",{"2":{"54":1}}],["mpolyringelem",{"2":{"46":1}}],["mpolyring",{"2":{"46":1}}],["mq=p",{"2":{"48":1}}],["mukai",{"2":{"246":8}}],["mu",{"2":{"146":4}}],["mutable",{"2":{"86":1}}],["mult",{"2":{"68":2}}],["multivariate",{"2":{"133":1}}],["multiset",{"2":{"67":9,"68":6}}],["multi",{"0":{"65":1,"66":1,"70":1},"1":{"66":1,"67":2,"68":2,"69":1,"70":1,"71":1,"72":1},"2":{"67":4,"68":5,"70":1,"71":1}}],["multiply",{"2":{"60":2,"89":1}}],["multipliers",{"2":{"169":2}}],["multiplied",{"2":{"58":1}}],["multiplicities",{"2":{"68":4}}],["multiplicity",{"2":{"67":3,"68":6}}],["multiplicatively",{"2":{"144":1,"171":1}}],["multiplicative",{"2":{"58":1,"135":1,"148":2}}],["multiplication",{"2":{"17":2,"28":1,"81":1,"90":1,"111":1}}],["multiple",{"2":{"17":2,"51":1,"54":1,"97":1,"111":1,"125":1,"153":2}}],["much",{"2":{"68":1,"133":1}}],["must",{"2":{"39":3,"45":1,"46":1,"48":1,"80":1,"85":1,"94":1,"96":1,"107":2,"113":1,"118":1,"146":1,"159":1,"174":6,"246":1,"255":2,"279":1,"280":1,"284":2,"288":2}}],["mts",{"2":{"35":1}}],["mh",{"2":{"17":1}}],["mg",{"2":{"17":1}}],["m",{"2":{"13":16,"17":4,"48":1,"54":1,"67":4,"68":19,"73":2,"74":6,"75":5,"87":4,"88":1,"89":3,"93":5,"94":9,"97":2,"121":2,"123":9,"125":2,"136":10,"144":6,"148":2,"149":1,"161":5,"168":3,"169":4,"176":2,"180":4,"182":6,"188":4,"195":10,"196":8,"197":1,"201":2,"213":2,"226":6,"253":4,"255":26,"261":19,"273":1,"284":4,"288":12,"295":4,"299":10,"301":5}}],["miscaellenous",{"0":{"138":1,"147":1}}],["miscellaneous",{"0":{"63":1,"125":1,"131":1}}],["minpoly",{"2":{"114":3,"131":1}}],["minkowski",{"2":{"109":3,"112":2,"131":2,"147":1,"168":1,"169":3}}],["min",{"2":{"63":1,"153":5,"239":3}}],["minimal",{"2":{"17":1,"25":2,"88":1,"113":1,"114":2,"131":1,"168":1,"286":8,"301":2}}],["minimum",{"0":{"83":1},"2":{"2":1,"83":4,"88":1,"142":2,"146":8,"147":10,"217":1,"218":2,"232":2,"246":2,"266":3,"285":1,"292":1,"295":1}}],["mirrors",{"2":{"38":1,"43":1,"196":1}}],["might",{"2":{"30":1,"172":1}}],["mi",{"2":{"13":3,"74":3,"295":2}}],["m=∑aiωi",{"2":{"73":1}}],["m=",{"2":{"13":1}}],["move",{"2":{"196":1}}],["morphisms",{"0":{"122":1}}],["morphism",{"2":{"99":1,"105":1,"106":3,"120":2,"122":1,"184":1,"270":2}}],["moreover",{"2":{"68":1,"285":1,"293":1}}],["more",{"2":{"7":1,"12":1,"58":1,"79":1,"86":1,"92":2,"109":1,"127":1,"141":1,"146":2,"167":1,"171":1,"254":1}}],["monomorphism",{"2":{"182":1,"297":1}}],["monic",{"2":{"125":1,"168":1}}],["monitored",{"2":{"96":1}}],["monte",{"2":{"88":1}}],["modification",{"2":{"261":3}}],["modern",{"2":{"92":1}}],["modelled",{"2":{"79":1,"86":1}}],["mod",{"2":{"61":2,"84":3,"89":1,"95":1,"96":1,"130":2,"146":2,"148":1,"163":1,"171":1}}],["moduli",{"2":{"246":2}}],["modulus",{"2":{"94":1,"97":4,"195":5,"196":1,"197":4,"201":2,"209":2}}],["modular",{"2":{"61":3,"88":1,"213":1,"293":9,"294":2,"295":1}}],["module$",{"2":{"297":1}}],["module",{"0":{"255":1,"288":1},"1":{"289":1},"2":{"43":2,"73":4,"74":3,"75":3,"109":1,"125":2,"135":1,"139":1,"141":2,"143":2,"167":3,"195":4,"196":4,"197":8,"201":30,"202":4,"203":3,"206":21,"207":1,"208":1,"209":1,"242":1,"250":1,"255":2,"261":6,"286":1,"288":1}}],["modules",{"0":{"195":1,"202":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"12":1,"13":1,"73":3,"167":1,"196":2,"201":2,"208":1,"209":1,"210":3}}],["modulo",{"0":{"2":1},"2":{"2":1,"84":3,"88":2,"89":5,"93":3,"94":2,"146":3,"148":2,"182":1,"207":2}}],["mostly",{"2":{"13":1}}],["most",{"2":{"12":1,"134":1,"196":1,"235":1,"255":1,"272":1}}],["marcus",{"2":{"273":1}}],["markus",{"2":{"272":1,"281":2}}],["magma",{"2":{"272":1}}],["may",{"2":{"253":3,"295":1,"297":2,"299":2}}],["makes",{"2":{"233":1}}],["mass",{"0":{"233":1},"1":{"234":1},"2":{"159":3,"233":4,"234":1,"235":3,"251":2}}],["main",{"2":{"246":1}}],["maintaining",{"2":{"73":1}}],["mainly",{"2":{"15":1,"167":1,"269":1}}],["maximum",{"0":{"83":1},"2":{"83":2,"84":1,"88":2}}],["maximalorder",{"2":{"168":3}}],["maximal",{"0":{"301":1},"1":{"302":1},"2":{"2":2,"61":1,"73":1,"75":1,"83":1,"93":2,"94":1,"95":1,"96":8,"97":1,"113":1,"118":3,"121":2,"142":4,"143":1,"145":1,"146":4,"147":2,"163":1,"167":4,"168":7,"169":1,"172":4,"175":1,"177":2,"183":4,"184":1,"185":1,"191":1,"193":1,"215":3,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":2,"232":1,"236":3,"238":3,"240":8,"246":1,"258":1,"261":3,"274":1,"281":4,"285":2,"286":1,"287":12,"289":5,"292":2,"294":1,"296":1,"300":1,"301":16,"302":19}}],["maxabs",{"2":{"63":1}}],["max",{"2":{"63":1,"153":5,"235":2,"239":5}}],["made",{"2":{"61":1,"143":1,"268":1}}],["manifold",{"2":{"246":1}}],["manifolds",{"2":{"246":2}}],["manipulation",{"0":{"89":1}}],["manual",{"0":{"57":1},"2":{"34":1,"57":1}}],["many",{"2":{"18":1,"58":2,"88":1,"116":1,"167":1,"272":1}}],["matspaceelem",{"2":{"296":2,"298":1}}],["matches",{"2":{"261":1}}],["match",{"2":{"209":1}}],["math",{"2":{"281":2}}],["mathematischen",{"2":{"273":1}}],["mathematics",{"2":{"273":3}}],["mathematically",{"2":{"58":1,"126":1,"133":1}}],["mathematik",{"2":{"272":1}}],["mathbb",{"2":{"261":1}}],["mathcal",{"2":{"170":2}}],["matd×d",{"2":{"169":1}}],["matn×m",{"2":{"86":1}}],["mat",{"2":{"74":3,"111":1,"138":2,"147":2,"169":2,"273":1}}],["matelem",{"2":{"64":3,"85":1,"87":1,"90":2,"111":1,"152":1,"164":1,"174":2,"176":1,"180":5,"188":2,"226":2,"244":1,"245":1,"253":1,"262":5,"278":1,"279":2,"280":2,"282":2,"286":2,"295":3,"297":1,"299":1}}],["matrices",{"0":{"64":1,"73":1,"86":1,"226":1},"1":{"74":1,"75":1,"76":1,"87":1,"88":1,"89":1,"90":1,"227":1},"2":{"64":1,"73":1,"78":1,"79":1,"86":6,"87":4,"90":1,"141":2,"254":1,"255":1,"262":2,"270":2,"295":2,"299":2}}],["matrixelem",{"2":{"90":2,"254":1}}],["matrixalgebra",{"2":{"22":1}}],["matrix",{"0":{"152":1,"206":1,"244":1},"2":{"7":1,"11":1,"13":4,"14":2,"15":2,"24":1,"25":2,"26":3,"30":1,"64":4,"73":5,"74":11,"75":4,"85":1,"87":30,"88":9,"89":10,"90":12,"109":6,"111":7,"131":6,"136":2,"138":4,"140":2,"142":1,"143":1,"144":1,"146":4,"147":4,"148":1,"152":1,"155":1,"162":1,"163":2,"164":3,"168":4,"169":14,"170":1,"174":8,"175":2,"176":5,"177":1,"178":2,"180":12,"181":2,"182":1,"187":2,"188":3,"189":1,"196":3,"197":6,"201":7,"206":5,"213":1,"215":1,"217":1,"219":1,"226":8,"227":3,"228":1,"230":1,"231":1,"232":3,"234":1,"238":1,"242":2,"244":12,"245":1,"246":10,"248":1,"249":12,"250":1,"254":6,"255":9,"261":6,"262":3,"263":1,"265":2,"266":2,"267":2,"270":3,"278":4,"279":15,"280":15,"281":4,"282":6,"283":6,"285":2,"286":12,"287":14,"289":11,"292":4,"294":1,"295":3,"296":2,"298":1,"300":2,"302":13}}],["matalgebraelem",{"2":{"25":1}}],["mapping",{"2":{"120":2,"122":1,"182":1}}],["mapclassgrp",{"2":{"94":2,"146":1}}],["maprayclassgrp",{"2":{"93":5,"94":2}}],["maps",{"0":{"15":1},"2":{"15":3,"17":1,"19":3,"94":1,"171":1,"186":1,"257":3,"261":1,"290":4}}],["map",{"2":{"2":15,"15":5,"17":20,"19":7,"20":6,"26":1,"32":3,"46":1,"53":3,"89":1,"93":3,"94":6,"95":1,"109":1,"112":2,"117":1,"120":8,"121":3,"122":5,"123":6,"131":2,"142":1,"146":20,"148":7,"171":2,"177":1,"180":1,"187":4,"201":6,"215":12,"219":12,"227":12,"230":12,"232":12,"234":3,"238":12,"246":1,"261":10,"281":15,"283":7,"285":6,"286":1,"287":5,"289":6,"292":4,"294":4,"296":3,"298":3,"300":6,"302":4}}],["rwth",{"2":{"272":1,"281":2}}],["rt",{"2":{"213":2}}],["r2",{"2":{"148":1}}],["r1",{"2":{"148":1,"213":2}}],["r+2≤i≤r+s",{"2":{"131":1}}],["r+1≤i≤r+s",{"2":{"109":1,"112":3}}],["ri",{"2":{"213":2}}],["rich",{"2":{"167":1}}],["riemann",{"2":{"146":1}}],["right",{"2":{"88":3,"246":1}}],["rincipal",{"2":{"61":1}}],["ringelement",{"2":{"207":1}}],["ringelem",{"2":{"81":1}}],["rings",{"0":{"148":1},"2":{"60":1,"78":1,"133":1}}],["ring",{"0":{"82":1},"2":{"2":2,"22":1,"23":2,"28":2,"32":2,"46":2,"58":2,"59":1,"75":2,"79":2,"80":3,"82":4,"86":3,"87":9,"89":5,"90":1,"94":2,"95":1,"96":1,"97":2,"98":1,"109":1,"116":2,"131":2,"139":1,"141":2,"142":1,"143":2,"146":3,"148":8,"161":1,"167":1,"169":2,"176":3,"177":1,"180":1,"196":1,"201":4,"206":4,"234":2,"246":1,"270":1,"271":3,"279":3,"281":2,"286":7,"287":2,"295":2,"301":3}}],["root",{"0":{"254":1},"1":{"255":1,"256":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1},"2":{"96":1,"196":1,"230":3,"246":2,"254":26,"255":2,"261":2,"263":2}}],["roots",{"2":{"93":1,"119":3,"254":1}}],["role",{"2":{"78":1}}],["rows",{"0":{"79":1,"84":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1},"2":{"7":1,"17":3,"73":1,"74":3,"79":4,"81":1,"86":5,"87":3,"88":5,"89":7,"136":1,"180":3,"242":1,"245":1,"278":1,"279":1,"280":1,"286":1}}],["row",{"2":{"7":1,"13":3,"73":1,"74":3,"80":9,"81":9,"82":1,"84":1,"85":6,"87":2,"88":6,"89":21,"90":1,"111":1,"143":1,"249":1,"255":1,"287":4,"289":12,"295":1}}],["running",{"0":{"41":1,"42":1,"43":1},"1":{"42":1,"43":1},"2":{"40":2,"281":1}}],["run",{"2":{"36":3,"40":2,"42":3,"43":4}}],["runtime",{"2":{"25":2}}],["ramify",{"2":{"228":1}}],["ramification",{"2":{"98":1,"119":1,"123":2,"147":2}}],["ramified",{"2":{"94":1,"119":9,"147":3,"168":4,"170":1,"183":1,"213":1,"220":3,"221":1,"228":1}}],["raise",{"2":{"209":1}}],["raises",{"2":{"125":1}}],["raised",{"2":{"58":1,"147":2,"249":1,"282":1}}],["radical",{"2":{"111":1,"116":3,"119":2,"169":2,"182":1,"201":4,"208":7}}],["radius",{"2":{"103":1,"112":9,"131":5,"169":1,"170":1}}],["ray",{"0":{"93":1,"94":1},"1":{"95":1},"2":{"92":2,"93":6,"94":16,"95":1,"96":4,"98":1}}],["rationally",{"2":{"284":4,"285":2}}],["rationalunion",{"2":{"153":3,"159":1,"164":1,"195":2,"209":2,"241":2,"246":2,"248":1,"255":1}}],["rationals",{"0":{"56":1},"2":{"55":1,"111":1,"114":2,"116":2,"117":1,"281":2,"283":1,"285":1,"287":1,"289":1,"292":1,"294":1,"296":1,"298":1,"300":1,"302":1}}],["rational",{"0":{"53":1,"282":1,"284":1},"1":{"283":1,"285":1},"2":{"28":1,"53":2,"64":1,"88":2,"92":1,"96":1,"105":1,"111":1,"116":1,"125":1,"126":3,"133":1,"147":1,"153":3,"159":1,"163":1,"175":1,"177":2,"207":1,"217":1,"228":1,"231":1,"232":1,"242":1,"249":4,"250":1,"252":3,"271":1,"282":11,"283":5,"284":4,"286":3,"287":2,"293":3}}],["range",{"2":{"16":1,"30":1}}],["ranks",{"2":{"218":2,"219":1,"261":1}}],["rank",{"2":{"13":1,"14":4,"88":1,"109":1,"118":3,"139":1,"143":1,"146":2,"155":2,"161":2,"163":2,"167":1,"176":5,"177":1,"178":1,"192":1,"196":1,"213":2,"215":2,"218":4,"219":1,"231":2,"232":1,"236":2,"238":1,"239":6,"240":6,"242":1,"245":1,"246":5,"248":1,"250":2,"253":3,"254":10,"255":3,"261":5,"263":1,"278":2,"279":2,"280":2,"281":6,"285":1,"286":2,"287":1,"297":2,"299":2,"302":3}}],["random",{"0":{"50":1},"2":{"7":2,"50":1,"89":1}}],["rand",{"2":{"7":2,"50":2,"89":1,"131":1}}],["r",{"2":{"17":2,"28":2,"32":4,"46":3,"52":2,"59":3,"68":4,"73":7,"75":3,"79":1,"80":6,"82":2,"85":2,"86":3,"87":16,"89":2,"93":2,"98":6,"103":2,"109":3,"116":2,"169":9,"170":6,"172":4,"196":2,"230":4,"236":4,"238":4,"240":4,"242":1,"246":4,"248":2,"254":4,"261":9,"295":1}}],["regarding",{"2":{"213":1,"268":1}}],["regulator",{"2":{"118":2}}],["regular",{"2":{"68":1,"176":2,"178":3,"179":2,"201":2,"208":5}}],["redo",{"2":{"146":2}}],["reducible",{"2":{"116":1}}],["reduced",{"2":{"121":1,"143":1,"147":1,"168":1,"169":1,"170":2,"265":1}}],["reduces",{"2":{"88":1,"89":3}}],["reduce",{"2":{"2":2,"61":1,"88":1,"89":3,"146":2}}],["reduction",{"0":{"2":1},"2":{"2":10,"84":3,"89":1}}],["recursively",{"2":{"126":1}}],["recall",{"2":{"112":3,"131":1}}],["recognizable",{"2":{"254":1}}],["recognition",{"2":{"254":9}}],["recomputation",{"2":{"146":1}}],["reconstruction",{"2":{"88":1}}],["record",{"2":{"32":1}}],["reverse",{"2":{"89":1}}],["required",{"2":{"171":1}}],["require",{"2":{"121":1,"141":1}}],["requires",{"2":{"87":1,"90":1,"96":1,"131":1,"141":1,"201":4,"229":1,"235":1}}],["requirements",{"2":{"30":1}}],["remove",{"2":{"68":2}}],["refining",{"2":{"61":2}}],["references",{"0":{"272":1}}],["reference",{"2":{"161":1,"163":1,"209":1}}],["referred",{"2":{"109":1,"133":2,"140":1,"270":2,"271":1}}],["refer",{"2":{"55":1,"58":1,"126":1,"133":1,"242":1,"270":1,"271":3,"297":1}}],["repl",{"2":{"281":1}}],["repeated",{"2":{"36":1}}],["represented",{"2":{"73":1,"134":1,"135":1,"141":2,"167":1,"184":7,"185":4,"253":2,"262":6,"297":2,"299":2}}],["represents",{"2":{"61":1,"160":3,"164":1,"166":2}}],["represent",{"2":{"58":1,"79":1,"86":1,"116":1,"149":1,"196":1}}],["representing",{"2":{"17":1,"74":3,"104":1,"109":1,"111":1,"163":1}}],["representatives",{"0":{"224":1,"235":1},"1":{"225":1,"236":1},"2":{"154":1,"159":3,"165":1,"186":1,"218":1,"233":2,"235":6,"236":2,"237":2,"247":1,"251":3,"290":1}}],["representative",{"0":{"159":1,"164":1},"2":{"6":1,"155":2,"159":5,"163":3,"164":3,"198":1,"199":3,"224":7,"225":2,"235":2,"236":2,"241":2,"247":1}}],["representations",{"0":{"160":1,"166":1},"2":{"127":1,"166":1}}],["representation",{"2":{"6":1,"14":2,"96":1,"109":1,"111":2,"127":2,"131":4,"133":1,"143":1,"184":2,"253":2,"262":8,"297":2,"299":2}}],["real",{"0":{"252":1},"2":{"32":1,"93":2,"97":1,"99":1,"100":5,"101":5,"103":2,"104":1,"105":1,"107":10,"109":1,"112":6,"116":1,"119":5,"124":7,"131":1,"146":1,"169":1,"175":2,"177":3,"178":1,"179":1,"181":1,"182":1,"183":4,"185":1,"189":1,"191":1,"193":1,"228":1,"231":1,"240":1}}],["relnumfieldorder",{"2":{"147":1,"169":5}}],["relnumfieldorderfractionalideal",{"2":{"137":2,"138":1,"147":2,"239":3,"287":2,"302":3}}],["relnumfieldorderideal",{"2":{"83":3,"137":1,"138":1,"147":7,"169":1,"239":3}}],["relnonsimplenumfield",{"2":{"93":1,"96":1,"133":2}}],["related",{"2":{"58":1,"146":1}}],["relation",{"2":{"11":1,"13":7,"14":1,"146":2,"295":1}}],["relations",{"2":{"11":1,"13":1,"14":3,"17":3,"197":1,"255":2}}],["relatively",{"2":{"213":1}}],["relative",{"0":{"141":1},"2":{"3":1,"94":2,"96":2,"97":2,"98":1,"111":1,"118":2,"120":2,"133":1,"139":2,"141":1,"167":2,"175":1,"177":3,"215":4,"217":1,"230":5,"232":1,"236":4,"238":4,"240":12,"281":4,"283":1,"287":16,"292":2,"302":12}}],["relsimplenumfieldembedding",{"2":{"230":1}}],["relsimplenumfieldelem",{"2":{"133":1,"215":1,"219":1,"227":1,"230":1,"232":1,"234":1,"238":1,"281":3,"283":1,"287":6,"292":1,"294":1,"302":7}}],["relsimplenumfield",{"2":{"93":1,"96":2,"120":1,"133":5,"230":2,"240":3}}],["rels",{"2":{"14":1}}],["returned",{"2":{"17":1,"19":1,"25":2,"75":1,"88":1,"94":2,"98":2,"100":1,"112":5,"113":1,"131":2,"144":1,"145":1,"146":1,"157":2,"168":1,"169":1,"202":2,"218":5,"235":1,"250":2,"267":1,"293":3,"295":1,"299":1}}],["return",{"2":{"7":1,"13":1,"14":12,"15":2,"16":1,"17":8,"18":4,"22":1,"23":2,"24":3,"25":2,"26":2,"28":1,"30":1,"32":2,"33":1,"45":1,"46":11,"47":1,"48":3,"50":1,"51":1,"52":2,"53":2,"54":1,"67":1,"68":6,"70":4,"71":4,"72":1,"75":1,"81":1,"84":1,"87":7,"88":8,"89":3,"90":7,"93":1,"96":1,"97":1,"100":2,"101":2,"103":2,"105":2,"107":7,"113":1,"116":1,"117":2,"118":2,"119":3,"120":3,"122":3,"123":6,"124":5,"129":1,"131":5,"138":1,"146":2,"147":1,"148":1,"151":1,"152":1,"153":4,"154":1,"155":11,"157":6,"158":1,"159":5,"160":1,"162":2,"163":13,"164":3,"165":1,"166":1,"168":1,"169":2,"170":2,"171":1,"176":8,"178":6,"180":7,"182":3,"184":2,"186":4,"188":2,"190":1,"192":1,"195":1,"197":7,"198":2,"200":1,"201":2,"202":6,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":3,"211":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":8,"248":1,"249":4,"250":12,"251":2,"252":4,"253":5,"254":5,"255":12,"257":3,"258":2,"259":1,"261":4,"262":3,"263":2,"266":5,"267":1,"278":4,"279":4,"280":4,"282":5,"284":4,"286":14,"288":9,"290":4,"291":3,"293":7,"295":3,"297":2,"299":3,"301":6}}],["returns",{"2":{"7":5,"8":2,"10":1,"16":1,"17":4,"18":1,"26":1,"46":1,"48":1,"59":4,"74":3,"75":3,"81":4,"83":6,"84":1,"87":1,"88":1,"89":1,"93":2,"101":1,"102":1,"111":12,"112":2,"113":3,"114":7,"116":4,"117":7,"118":4,"119":6,"120":5,"121":2,"122":5,"123":1,"128":2,"129":6,"131":10,"137":3,"138":7,"144":3,"145":3,"146":8,"147":24,"148":4,"157":2,"168":11,"169":20,"170":6,"171":1,"182":3,"186":1,"197":2,"198":1,"199":2,"201":2,"202":2,"246":2,"250":2,"255":1,"278":1,"279":1,"280":1,"286":1,"290":1}}],["rescaling",{"0":{"207":1,"241":1,"248":1},"2":{"180":1,"288":1}}],["rescaled",{"2":{"159":1,"164":1,"201":2,"241":2,"246":1,"288":2,"293":1}}],["rescale",{"2":{"159":1,"164":1,"196":1,"201":2,"207":1,"241":2,"248":2,"263":1,"288":1,"289":1}}],["rest",{"2":{"133":1,"175":1,"215":1,"230":1,"285":1}}],["restricting",{"2":{"180":1}}],["restriction",{"0":{"105":1},"2":{"105":2,"122":1,"180":1}}],["restrict",{"2":{"105":4,"106":1,"108":2,"180":2,"211":2,"236":2,"238":2,"240":2}}],["restricts",{"2":{"105":1,"106":1}}],["restricted",{"2":{"12":1}}],["resulting",{"2":{"125":1}}],["result",{"2":{"88":1,"93":1,"111":1,"116":1,"131":1,"146":1,"169":1}}],["results",{"2":{"61":1,"171":1,"272":1}}],["reshape",{"2":{"32":1,"33":1}}],["respec",{"2":{"196":1}}],["respectively",{"2":{"112":2,"131":1,"185":1,"195":1,"213":1,"255":1,"299":2}}],["respective",{"2":{"67":1,"201":2,"218":1,"237":2,"261":1,"297":1}}],["respect",{"2":{"23":1,"27":1,"29":1,"54":1,"89":1,"109":1,"111":5,"114":1,"129":1,"138":1,"168":3,"169":3,"174":1,"180":3,"184":1,"209":1,"246":1,"253":2,"255":2,"262":6,"265":1,"267":1,"270":2,"297":2,"299":2}}],["responsibility",{"2":{"93":1}}],["resp",{"2":{"18":1,"178":2,"213":4,"245":2,"278":8,"293":3}}],["resolutions",{"2":{"16":1}}],["research",{"2":{"4":1,"5":1}}],["residue",{"2":{"2":3,"61":1,"84":3,"89":2,"142":2,"148":5,"161":1,"170":3,"246":1}}],["n=|vgvt|",{"2":{"266":2}}],["n=t",{"2":{"198":1}}],["ns",{"2":{"263":2}}],["n2",{"2":{"255":2}}],["n⊆e⊗m",{"2":{"288":1}}],["n⊆qm",{"2":{"255":1}}],["n⊆m",{"2":{"195":1,"255":1}}],["n∗j2",{"2":{"246":1}}],["nt",{"2":{"213":1}}],["n1",{"2":{"213":1}}],["nz",{"2":{"196":1,"197":1}}],["nz=φ",{"2":{"195":1}}],["nzas",{"2":{"195":1}}],["n→q",{"2":{"195":2}}],["n×m",{"2":{"195":1}}],["n×d",{"2":{"111":1}}],["n⊗zp",{"2":{"149":1}}],["nx",{"2":{"125":1}}],["nf",{"2":{"121":1,"129":2,"147":1,"169":3}}],["n−ibxi",{"2":{"116":1}}],["nlog⁡|n",{"2":{"112":1}}],["nnz",{"2":{"88":1}}],["nrows",{"2":{"85":1}}],["nrels",{"2":{"14":1}}],["ncring",{"2":{"80":1}}],["ncols",{"2":{"13":3}}],["nikulin",{"2":{"273":1}}],["niemeier",{"2":{"246":4}}],["nice",{"2":{"67":2,"68":4,"125":2}}],["ni",{"2":{"61":1,"213":2}}],["npm",{"2":{"36":1}}],["nauk",{"2":{"273":1}}],["named",{"2":{"116":2}}],["names",{"2":{"30":1}}],["nature",{"2":{"93":1}}],["naturally",{"2":{"105":1}}],["natural",{"2":{"27":1,"109":1,"140":1}}],["narrow",{"2":{"93":1,"146":2,"171":1}}],["naive",{"2":{"60":3}}],["navigate",{"2":{"36":1}}],["ng",{"2":{"17":2}}],["ngens",{"2":{"7":3}}],["n⋅g→g",{"2":{"17":2}}],["n⋅g",{"2":{"17":2}}],["n",{"2":{"13":5,"17":8,"42":3,"52":1,"54":2,"61":2,"67":1,"68":10,"84":6,"85":4,"87":10,"88":2,"89":2,"93":3,"94":6,"96":1,"111":3,"113":4,"116":5,"119":1,"125":6,"131":2,"137":1,"145":2,"149":1,"155":2,"159":1,"161":4,"163":1,"174":4,"176":1,"182":2,"195":6,"196":2,"197":3,"199":2,"201":2,"207":2,"208":3,"213":1,"246":25,"254":5,"255":15,"266":4,"273":1,"288":3,"291":1}}],["numerator",{"2":{"137":1,"146":1,"206":1}}],["numfieldordelem",{"2":{"130":1}}],["numfieldorderfractionalideal",{"2":{"288":1}}],["numfieldorderideal",{"2":{"145":3,"147":4,"288":1}}],["numfieldorderelem",{"2":{"128":4,"129":5,"130":8,"131":9,"145":1}}],["numfieldorder",{"2":{"128":3,"129":1,"168":2,"169":4,"170":2}}],["numfieldhom",{"2":{"105":1,"106":1,"119":1,"120":2,"121":1,"122":3,"176":1}}],["numfieldelem",{"2":{"103":1,"107":7,"111":15,"113":2,"114":9,"116":6,"117":4,"118":1,"123":1,"128":1,"129":1,"131":1,"145":1,"147":2,"168":2,"169":4,"222":1,"224":2,"288":2,"293":1}}],["numfieldemb",{"2":{"100":2,"101":3,"102":2,"103":2,"105":2,"106":1,"107":7}}],["numfield",{"2":{"100":2,"101":1,"105":1,"113":1,"114":1,"116":3,"117":4,"118":4,"119":5,"120":6,"121":2,"122":2,"123":1,"124":3,"168":1,"169":1,"174":4,"176":2,"214":1,"216":1,"231":1,"239":2,"280":4}}],["numpages",{"2":{"4":1}}],["numbers",{"2":{"58":1,"61":1,"92":1,"113":1,"116":1,"126":2,"129":1,"131":1,"133":1,"146":1,"149":1,"167":1,"170":1,"242":1}}],["number",{"0":{"2":1,"56":1,"115":1,"116":1,"133":1,"140":1,"141":1,"279":1},"1":{"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1},"2":{"3":2,"4":2,"14":3,"25":4,"32":1,"42":2,"52":1,"55":1,"58":2,"61":1,"62":1,"73":1,"78":1,"79":1,"81":1,"86":2,"88":10,"92":3,"95":2,"96":8,"97":1,"98":1,"99":2,"101":3,"105":5,"107":5,"108":9,"109":4,"111":17,"113":3,"114":11,"116":25,"117":7,"118":11,"119":6,"120":1,"121":3,"122":6,"123":4,"124":2,"125":1,"126":5,"127":1,"128":2,"129":1,"131":2,"133":3,"134":1,"135":1,"139":4,"141":2,"142":4,"145":1,"146":6,"147":2,"153":3,"155":2,"157":4,"161":1,"167":6,"168":6,"169":12,"170":2,"171":1,"174":2,"175":3,"177":6,"179":1,"181":1,"185":1,"191":1,"193":1,"202":4,"207":1,"215":6,"216":1,"217":4,"219":2,"221":2,"223":2,"225":2,"227":2,"230":8,"232":4,"234":2,"236":6,"238":7,"240":7,"246":1,"250":4,"252":1,"254":5,"261":1,"266":4,"268":1,"270":1,"272":2,"273":4,"274":2,"279":2,"280":6,"281":16,"283":5,"285":2,"286":1,"287":14,"288":1,"289":6,"292":2,"294":2,"296":1,"298":2,"300":1,"302":2}}],["ny",{"2":{"4":2}}],["neg",{"2":{"263":2}}],["negative",{"2":{"14":1,"58":1,"62":1,"107":7,"147":2,"153":1,"155":1,"178":5,"182":1,"228":1,"231":1,"252":4,"255":1,"293":3}}],["neighbor",{"2":{"246":1}}],["necessary",{"2":{"213":1,"269":1,"274":1}}],["necessarily",{"2":{"61":1}}],["needs",{"2":{"61":1}}],["neat",{"2":{"17":5}}],["neutral",{"2":{"7":1}}],["new",{"2":{"4":2,"25":1,"39":4,"82":1,"89":2,"148":1,"207":1,"273":2,"285":1}}],["nemo",{"2":{"4":3,"93":1,"134":1,"209":1}}],["next",{"2":{"2":1,"133":1}}],["no",{"2":{"48":1,"58":1,"94":1,"142":1,"196":1,"209":1,"230":1,"235":1,"246":1,"272":1,"301":2}}],["nonsimplenumfield",{"2":{"111":1,"117":3,"121":2}}],["nonzero",{"2":{"81":1,"88":1,"146":2}}],["nonethelss",{"2":{"281":1}}],["none",{"2":{"20":1,"186":1,"290":1}}],["non",{"2":{"3":1,"14":1,"17":1,"45":1,"58":2,"88":3,"96":4,"108":7,"111":1,"116":3,"117":3,"121":2,"126":1,"131":1,"133":4,"141":1,"143":1,"146":3,"147":2,"149":2,"153":2,"161":1,"171":1,"174":1,"178":1,"182":2,"188":1,"207":1,"213":2,"222":1,"233":1,"255":1,"266":5,"270":1,"271":1,"288":1}}],["nothing",{"2":{"32":1,"94":1,"195":2,"239":1,"267":1,"279":3,"280":3}}],["noted",{"2":{"58":1,"94":1}}],["note",{"2":{"8":1,"17":1,"26":1,"30":1,"36":1,"68":1,"79":1,"96":1,"98":1,"99":1,"103":1,"116":1,"145":1,"149":1,"155":1,"157":2,"166":1,"178":1,"180":1,"182":1,"184":1,"186":1,"202":2,"213":2,"215":1,"228":1,"229":1,"233":1,"235":1,"250":2,"266":3,"268":2,"281":1,"286":3,"288":1,"295":1}}],["not",{"2":{"2":4,"12":1,"20":1,"25":2,"40":1,"53":1,"58":3,"61":3,"67":1,"68":1,"73":3,"79":1,"88":1,"89":1,"92":1,"97":1,"98":1,"101":1,"111":1,"116":2,"118":2,"119":1,"120":1,"124":2,"141":3,"145":1,"146":3,"147":2,"157":2,"167":1,"169":3,"187":1,"201":4,"202":2,"224":1,"228":1,"230":2,"244":2,"249":1,"250":2,"267":1,"279":3,"280":3,"281":1,"282":1,"286":1,"295":1,"301":2}}],["now",{"2":{"2":1,"168":1,"180":1,"263":1,"268":1,"281":1,"285":1}}],["norms",{"2":{"88":1,"218":3,"219":1,"224":1}}],["norm2",{"2":{"83":1}}],["normliased",{"2":{"6":1}}],["normalization",{"2":{"167":1}}],["normalized",{"2":{"161":1}}],["normalising",{"2":{"143":1}}],["normalised",{"2":{"112":1}}],["normalise",{"2":{"112":3}}],["normalisation",{"2":{"75":2}}],["normalform",{"2":{"38":2}}],["normal",{"0":{"203":1},"2":{"2":1,"14":1,"15":1,"16":1,"87":2,"88":5,"96":1,"97":5,"98":9,"120":6,"122":1,"123":2,"137":1,"142":2,"146":8,"195":1,"203":2,"208":3,"217":1,"232":2,"285":1,"292":1}}],["norm",{"0":{"83":1},"2":{"2":1,"61":1,"93":8,"96":1,"98":6,"113":9,"114":7,"118":1,"125":1,"131":6,"138":6,"142":3,"146":14,"147":9,"155":3,"163":3,"169":1,"213":4,"215":2,"217":1,"218":11,"224":2,"231":2,"232":2,"238":1,"250":3,"261":1,"285":1,"291":3,"292":2,"301":11}}],["zassenhaus",{"2":{"273":1}}],["zmodh",{"2":{"246":1}}],["zeta",{"2":{"170":2}}],["zero",{"2":{"7":1,"22":3,"24":3,"29":4,"45":1,"58":1,"87":6,"88":5,"107":1,"112":1,"131":1,"143":1,"146":3,"171":1,"187":1,"207":1,"252":1,"266":4,"278":1,"279":1,"280":1,"288":1}}],["z^",{"2":{"146":1}}],["z^2",{"2":{"15":6}}],["zn",{"2":{"127":1}}],["zk",{"2":{"74":3,"96":2,"135":3,"143":3,"146":6}}],["zlattices",{"2":{"38":2}}],["zgenus",{"2":{"38":2}}],["zzlocalgenus",{"2":{"158":1,"161":1,"162":2,"163":13,"164":4,"165":3,"166":2}}],["zzlat",{"2":{"151":1,"159":2,"162":1,"164":1,"195":2,"197":2,"205":1,"242":3,"244":1,"246":6,"248":2,"249":3,"250":8,"251":4,"252":1,"253":2,"254":4,"255":13,"257":15,"258":5,"260":1,"261":6,"262":10,"263":2,"265":2,"266":5,"267":1,"279":6}}],["zzgenus",{"2":{"149":2,"151":1,"152":1,"153":1,"154":3,"155":12,"156":1,"157":4,"158":1,"159":7,"160":2,"209":1,"247":1}}],["zzpolyringelem",{"2":{"131":3}}],["zzmodmatrix",{"2":{"88":2}}],["zzmodringelem",{"2":{"84":1,"88":1,"163":3,"209":1}}],["zzmatrix",{"2":{"7":1,"8":1,"13":1,"14":1,"17":2,"90":4,"131":1,"136":2,"144":1,"147":1,"168":1,"169":1,"254":1}}],["zz",{"2":{"64":2,"90":1,"116":1,"131":1,"196":1,"209":1,"244":2,"246":4,"249":2}}],["zzring",{"2":{"58":2}}],["zzringelem|integer",{"2":{"169":1}}],["zzringelem",{"2":{"7":3,"8":2,"10":1,"11":1,"14":3,"17":13,"51":3,"52":1,"54":1,"58":1,"59":4,"60":2,"61":8,"79":1,"84":11,"86":1,"88":30,"89":10,"90":1,"111":1,"113":4,"116":1,"118":2,"119":1,"128":2,"129":1,"130":2,"131":3,"136":3,"137":1,"144":5,"145":1,"146":5,"147":14,"148":1,"155":1,"157":4,"163":1,"168":5,"169":3,"170":4,"202":4,"248":1,"250":4,"266":3,"267":2}}],["z",{"2":{"2":10,"12":2,"13":8,"17":9,"53":2,"58":1,"88":1,"95":2,"96":1,"109":5,"116":1,"136":1,"138":1,"139":1,"140":2,"142":5,"143":2,"146":6,"147":1,"149":3,"152":1,"153":1,"155":1,"157":4,"159":1,"161":1,"162":1,"164":1,"167":3,"168":2,"169":5,"170":2,"175":2,"177":2,"195":1,"196":9,"201":11,"205":1,"206":10,"209":1,"242":4,"244":1,"246":2,"250":6,"254":2,"255":4,"257":3,"261":3,"262":3,"265":1,"274":1,"279":3,"286":2}}],["18",{"2":{"263":1}}],["18802",{"2":{"52":1}}],["1979",{"2":{"273":1}}],["1999",{"2":{"273":1}}],["1997",{"2":{"273":1}}],["1993",{"2":{"273":1}}],["193",{"2":{"273":1}}],["19",{"2":{"230":3,"246":1,"263":2}}],["195",{"2":{"5":1}}],["1+4ω",{"2":{"166":1}}],["1+i",{"2":{"146":2}}],["1+ζ7+ζ72",{"2":{"2":1}}],["1^10",{"2":{"246":1}}],["1^8",{"2":{"246":1}}],["1^22",{"2":{"246":1,"263":1}}],["1^26",{"2":{"246":1}}],["1^24",{"2":{"246":1}}],["1^",{"2":{"146":1,"246":2}}],["111",{"2":{"273":1}}],["113",{"2":{"272":1}}],["11",{"2":{"254":2}}],["117",{"2":{"146":1}}],["11^",{"2":{"146":1}}],["1145",{"2":{"4":2}}],["1=10",{"2":{"145":1}}],["1st",{"2":{"143":1}}],["1>",{"2":{"95":1,"96":2,"146":2,"215":4,"230":2,"236":4,"238":4,"240":12,"281":4,"287":36,"289":4,"292":7,"302":48}}],["144",{"2":{"146":1}}],["14309957929619471",{"2":{"146":2}}],["14",{"2":{"67":2,"289":1,"302":6}}],["1507194",{"2":{"234":2}}],["15",{"2":{"67":1,"68":2,"149":1,"161":1,"201":1,"240":1,"261":2,"283":2}}],["157",{"2":{"4":2}}],["16",{"2":{"53":1,"209":1,"254":4,"263":1}}],["164",{"2":{"4":2}}],["126>",{"2":{"289":1}}],["128",{"2":{"104":1}}],["12",{"2":{"17":2,"146":2,"254":20,"261":2}}],["1≤i",{"2":{"169":1,"270":1}}],["1≤i≤t",{"2":{"213":1}}],["1≤i≤d",{"2":{"148":1}}],["1≤i≤2s",{"2":{"109":1}}],["1≤i≤r",{"2":{"73":1,"109":1}}],["1≤i≤n",{"2":{"13":1,"213":1,"286":3}}],["1≤j≤n",{"2":{"117":1}}],["1≤j≤m",{"2":{"13":1}}],["177",{"2":{"273":1}}],["17",{"2":{"4":2,"51":1}}],["138",{"2":{"273":1}}],["13217457633644257",{"2":{"146":2}}],["13",{"2":{"2":1,"54":1,"146":1,"246":3}}],["10>",{"2":{"289":1}}],["1024",{"2":{"234":1}}],["1047",{"2":{"234":1}}],["1000",{"2":{"61":1}}],["100",{"2":{"51":3,"61":1}}],["101",{"2":{"51":2,"52":3,"53":3,"54":1}}],["10",{"2":{"2":1,"4":2,"95":1,"96":2,"104":1,"107":2,"112":2,"116":1,"142":1,"146":1,"201":1,"254":12,"261":1,"283":1,"285":1,"287":1,"289":2,"300":1}}],["1",{"2":{"2":8,"7":4,"11":3,"15":5,"17":27,"25":7,"26":3,"29":7,"32":4,"33":7,"36":1,"42":2,"45":5,"46":2,"48":21,"50":2,"51":3,"52":3,"53":7,"54":3,"58":1,"61":1,"64":4,"67":8,"68":14,"73":1,"85":2,"88":1,"89":1,"95":2,"96":6,"100":6,"101":3,"102":1,"103":2,"104":2,"105":6,"106":1,"107":12,"108":20,"109":3,"111":5,"116":2,"117":3,"120":1,"124":1,"125":1,"131":1,"139":1,"141":2,"142":9,"145":1,"146":50,"147":2,"157":4,"159":1,"161":4,"163":2,"168":1,"169":1,"170":1,"175":10,"177":9,"179":2,"180":1,"181":20,"182":1,"183":14,"185":9,"187":6,"189":5,"191":2,"193":2,"196":17,"201":30,"202":4,"206":6,"209":10,"213":1,"215":28,"217":7,"218":5,"219":12,"221":6,"223":6,"225":6,"227":6,"230":26,"232":9,"233":1,"234":8,"236":24,"238":34,"239":2,"240":48,"244":6,"246":128,"248":7,"249":2,"250":4,"253":6,"254":31,"255":17,"261":35,"263":36,"267":18,"268":1,"270":1,"274":1,"281":49,"283":23,"285":10,"287":179,"289":62,"292":40,"294":11,"296":14,"297":4,"298":22,"299":4,"300":6,"302":189}}],["+z",{"2":{"205":1}}],["+t",{"2":{"201":4}}],["+nz",{"2":{"198":1}}],["+4",{"2":{"17":1}}],["+2z",{"2":{"205":1}}],["+2",{"2":{"17":1}}],["+",{"2":{"2":18,"17":1,"29":2,"45":9,"46":12,"48":12,"50":2,"52":1,"53":10,"54":4,"68":3,"81":1,"90":1,"96":1,"100":2,"101":1,"103":3,"104":2,"105":2,"106":2,"107":2,"108":6,"111":3,"120":1,"124":1,"130":1,"145":1,"146":31,"147":2,"168":1,"169":1,"175":3,"177":4,"215":4,"219":1,"227":3,"230":7,"232":2,"234":11,"238":8,"240":1,"255":2,"281":5,"283":2,"287":25,"288":1,"289":1,"292":3,"294":1,"298":1,"302":13}}],["7>",{"2":{"285":1,"287":2,"289":2,"292":2}}],["728381",{"2":{"234":1}}],["765",{"2":{"234":1}}],["73205080756887729353",{"2":{"103":1}}],["73",{"2":{"100":5,"105":1,"107":2}}],["74",{"2":{"54":2}}],["7^4",{"2":{"2":1}}],["7^3",{"2":{"2":1}}],["7^5",{"2":{"2":2}}],["7^2",{"2":{"2":2}}],["77",{"2":{"2":2,"103":1}}],["7",{"2":{"2":7,"67":3,"68":2,"107":1,"146":8,"161":2,"175":4,"177":5,"179":1,"181":1,"183":6,"185":2,"187":1,"189":1,"191":2,"193":2,"230":1,"232":5,"234":1,"238":1,"246":3,"274":1,"281":3,"283":2,"285":6,"287":11,"289":3,"292":3,"294":2,"296":1,"298":1,"300":1,"302":2}}],["=lp",{"2":{"293":1}}],["=l",{"2":{"293":2}}],["=l1×",{"2":{"257":1,"290":1}}],["=l1⊕",{"2":{"257":2,"290":2}}],["=∑i=1n1",{"2":{"233":1}}],["=g",{"2":{"213":2,"228":1}}],["=ordp",{"2":{"213":1}}],["=rank",{"2":{"213":1}}],["=psi",{"2":{"213":1}}],["=t1×",{"2":{"210":1}}],["=t1⊕",{"2":{"210":2}}],["=1d∑x∈dexp⁡",{"2":{"209":1}}],["=1",{"2":{"192":1}}],["=ψ",{"2":{"192":1}}],["=0",{"2":{"190":1,"192":1,"208":1}}],["=v1×",{"2":{"186":1}}],["=v1⊕",{"2":{"186":2}}],["=φ",{"2":{"182":1,"184":1,"297":1}}],["=deg⁡",{"2":{"146":1}}],["=hom⁡",{"2":{"145":1}}],["=z",{"2":{"140":1}}],["=b",{"2":{"140":1}}],["=a",{"2":{"113":1,"125":1}}],["=σi+s",{"2":{"112":3,"131":1}}],["=q",{"2":{"109":1,"140":1}}],["=infplc",{"2":{"97":1}}],["=mα",{"2":{"109":1}}],["=m",{"2":{"73":1}}],["=>9",{"2":{"67":1}}],["=>",{"2":{"29":4,"67":5,"107":2,"146":4,"230":3,"232":1,"238":3,"240":2}}],["==2",{"2":{"174":2}}],["==",{"2":{"25":1,"29":2,"47":2,"48":1,"52":1,"64":1,"68":1,"81":1,"85":1,"90":1,"98":1,"102":1,"103":1,"111":1,"116":2,"129":1,"142":1,"145":1,"166":1,"196":1,"201":2,"209":4,"239":1,"244":2,"246":9,"253":1,"255":1,"261":1,"286":2,"295":3,"297":1,"299":1}}],["===",{"2":{"2":1}}],["=",{"2":{"2":9,"4":11,"11":2,"13":7,"15":4,"17":29,"18":1,"19":1,"20":1,"22":1,"24":1,"25":8,"26":4,"28":2,"29":4,"32":5,"33":4,"36":1,"42":3,"45":6,"46":3,"47":2,"48":12,"50":2,"51":4,"52":2,"53":7,"54":5,"61":3,"64":3,"67":3,"68":7,"87":1,"88":6,"93":4,"94":2,"95":4,"96":7,"100":4,"101":6,"102":2,"103":4,"104":2,"105":6,"106":3,"107":12,"108":5,"111":3,"112":2,"113":1,"116":14,"117":4,"118":4,"120":2,"121":1,"122":2,"124":3,"128":2,"131":2,"136":2,"138":2,"142":9,"144":3,"145":1,"146":18,"147":4,"148":1,"153":2,"161":12,"163":1,"168":12,"169":4,"174":4,"175":5,"177":4,"179":5,"180":1,"181":5,"183":5,"185":9,"186":2,"187":4,"189":3,"191":6,"193":6,"195":5,"196":10,"201":18,"205":1,"208":3,"209":4,"213":3,"214":2,"215":13,"217":8,"219":11,"221":8,"223":8,"225":8,"227":11,"230":16,"232":11,"234":12,"235":5,"236":12,"238":16,"239":2,"240":5,"244":3,"245":1,"246":32,"248":1,"249":2,"253":7,"254":6,"255":11,"261":10,"262":5,"263":4,"265":2,"266":12,"267":6,"274":5,"278":2,"279":5,"280":5,"281":34,"283":12,"285":11,"286":2,"287":8,"288":1,"289":11,"290":2,"291":2,"292":8,"294":10,"295":1,"296":7,"297":5,"298":8,"299":5,"300":11,"302":10}}],["ζm",{"2":{"125":2}}],["ζn",{"2":{"116":1}}],["ζ^2",{"2":{"2":1}}],["ζ",{"2":{"2":3}}],["ζ7",{"2":{"2":1}}],["ζ7+77",{"2":{"2":1}}],["kum",{"2":{"246":2}}],["kummer",{"2":{"96":1,"119":3,"125":1}}],["k3",{"2":{"246":8}}],["kp",{"2":{"213":1}}],["kp×",{"2":{"213":1}}],["kw",{"2":{"211":2}}],["kir19",{"2":{"272":1}}],["kir16",{"2":{"182":1,"213":1,"233":1,"269":1,"272":1}}],["kirschmer",{"2":{"272":1,"281":4}}],["kissing",{"2":{"266":2}}],["kind",{"2":{"186":1}}],["k×",{"2":{"176":3,"224":2}}],["k⋅a",{"2":{"131":1}}],["k⊃k",{"2":{"120":1}}],["kt",{"2":{"116":1,"175":1,"177":1,"179":1,"181":1,"185":1,"189":1,"191":1,"193":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"240":1,"281":3,"283":1,"287":1,"292":1,"294":1,"298":1,"302":1}}],["ktok",{"2":{"105":2,"106":2}}],["k∈z≥1",{"2":{"111":1}}],["k⟶rdα⟼",{"2":{"109":1}}],["k=q",{"2":{"109":2,"117":1,"140":1,"279":3}}],["k→r",{"2":{"109":1}}],["k→l",{"2":{"105":1,"120":1}}],["k→k",{"2":{"105":1,"106":2,"109":1}}],["k→c",{"2":{"103":1,"105":1,"106":2,"109":1,"120":1}}],["kronnecker",{"2":{"92":1}}],["kannan",{"2":{"88":3}}],["ker⁡",{"2":{"262":1}}],["kernel",{"2":{"182":1,"196":1,"246":1,"255":1,"261":4,"262":1}}],["keep",{"2":{"175":1}}],["keepzrows",{"2":{"87":2}}],["key",{"2":{"78":1}}],["keys",{"2":{"67":1,"68":1,"144":3,"146":1,"229":1,"231":1}}],["keyword",{"2":{"42":1,"93":1,"98":3,"146":1,"211":2,"244":1}}],["kn",{"2":{"73":1}}],["knowledgeable",{"2":{"268":1}}],["knowledge",{"2":{"121":1}}],["known",{"2":{"54":1,"58":2,"120":1,"147":2,"167":1,"168":2,"242":1,"249":1,"282":1}}],["knows",{"2":{"40":1,"147":4}}],["know",{"2":{"17":1}}],["kx",{"2":{"2":1}}],["k",{"2":{"2":8,"22":2,"23":4,"24":2,"25":5,"26":3,"27":1,"28":1,"32":7,"45":3,"46":2,"58":3,"70":4,"71":4,"72":2,"73":5,"93":6,"94":2,"95":2,"96":15,"97":2,"98":1,"100":9,"101":6,"102":2,"103":3,"104":2,"105":14,"106":6,"107":12,"108":5,"109":9,"111":18,"113":4,"114":11,"116":9,"117":16,"118":18,"119":22,"120":25,"121":7,"122":15,"123":12,"124":10,"125":7,"126":2,"131":4,"135":1,"139":5,"140":4,"141":3,"142":8,"145":1,"146":6,"168":17,"169":4,"170":1,"174":4,"175":4,"176":1,"177":2,"178":4,"179":4,"180":3,"181":7,"182":3,"183":6,"184":3,"185":7,"189":5,"190":3,"191":3,"192":3,"193":3,"207":4,"208":2,"213":2,"214":2,"215":3,"216":2,"217":3,"218":17,"219":3,"220":4,"221":3,"222":1,"223":3,"224":2,"225":3,"226":4,"227":3,"228":5,"229":2,"230":3,"231":5,"232":3,"233":2,"234":2,"235":5,"236":5,"237":2,"238":5,"239":1,"240":5,"270":15,"271":2,"274":2,"279":16,"281":11,"283":7,"285":12,"286":1,"287":2,"288":4,"289":12,"291":1,"292":2,"293":1,"294":3,"296":7,"297":1,"298":7,"300":12,"302":3}}],["c1",{"2":{"169":1}}],["cm",{"2":{"118":1,"119":3,"178":1,"187":2}}],["cf",{"2":{"96":1,"97":1}}],["cilog⁡|x",{"2":{"112":1}}],["ci",{"2":{"74":2}}],["citation",{"2":{"4":1}}],["citing",{"0":{"4":1}}],["crt",{"2":{"61":1,"148":1}}],["creating",{"2":{"214":1}}],["creation",{"0":{"7":1,"13":1,"22":1,"28":1,"32":1,"45":1,"74":1,"80":1,"111":1,"116":1,"128":1,"136":1,"144":1,"150":1,"162":1,"168":1,"174":1,"214":1,"229":1,"243":1,"277":1},"1":{"112":1,"113":1,"114":1,"151":1,"152":1,"153":1,"154":1,"169":1,"175":1,"215":1,"230":1,"244":1,"245":1,"246":1,"247":1,"248":1,"278":1,"279":1,"280":1,"281":1},"2":{"7":1,"13":1}}],["created",{"2":{"15":2,"18":3,"67":1,"87":1,"111":1,"116":1,"142":1,"247":1}}],["creates",{"2":{"13":6,"94":1,"116":1,"136":6,"144":5,"265":1}}],["create",{"2":{"7":1,"13":1,"17":7,"29":1,"67":2,"74":1,"82":1,"89":1,"94":1,"97":1,"103":1,"116":2,"142":1,"174":4}}],["close",{"0":{"264":1,"267":1},"1":{"265":1,"266":1,"267":1},"2":{"267":3}}],["closure",{"2":{"55":1,"93":3,"96":3,"98":3,"120":3,"167":1,"255":5,"288":3}}],["clm",{"2":{"93":1}}],["claus",{"2":{"4":2}}],["classes",{"2":{"159":2,"233":1,"235":2,"251":1}}],["classgrpctx",{"2":{"146":1}}],["classgroup",{"2":{"95":1,"146":1,"171":1}}],["classfield",{"2":{"94":7,"96":9,"97":10,"98":20}}],["classifies",{"2":{"92":1}}],["classical",{"2":{"73":1}}],["class",{"0":{"91":1,"93":1,"94":1,"146":1},"1":{"92":1,"93":1,"94":1,"95":2,"96":1,"97":1,"98":1},"2":{"3":3,"61":1,"78":1,"92":5,"93":13,"94":30,"95":3,"96":9,"97":3,"98":4,"111":1,"116":2,"118":5,"131":1,"146":21,"149":1,"171":2,"176":1,"182":1,"186":1,"213":2,"214":2,"224":5,"239":1,"272":1,"274":2,"281":2,"290":1}}],["c6",{"2":{"46":1}}],["curvers",{"2":{"55":1}}],["curves",{"0":{"49":1,"56":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"55":1}}],["curve",{"2":{"45":12,"46":5,"48":16,"50":3,"51":4,"52":4,"53":6,"54":3,"55":2}}],["currently",{"2":{"14":1,"58":1,"68":1,"98":1,"141":1,"167":1}}],["current",{"2":{"14":3,"36":1}}],["ctoa",{"2":{"26":1}}],["c→a",{"2":{"26":1}}],["central",{"2":{"24":3,"97":3}}],["center",{"0":{"26":1},"2":{"5":1,"24":1,"26":11}}],["c2",{"2":{"17":1,"169":1}}],["c2×c4",{"2":{"17":1}}],["c4",{"2":{"17":1,"46":1}}],["cambridge",{"2":{"273":2}}],["cache",{"2":{"146":1,"159":1}}],["cached",{"2":{"28":1,"116":8,"168":4,"174":4,"234":2,"281":2}}],["caching",{"2":{"116":1}}],["cai+daj",{"2":{"89":1}}],["carlo",{"2":{"88":1}}],["cardinality",{"0":{"51":1},"2":{"147":1}}],["categorical",{"0":{"186":1,"210":1,"257":1,"290":1},"1":{"187":1}}],["cat",{"2":{"87":1}}],["ca+db",{"2":{"81":1}}],["ca+b",{"2":{"81":2}}],["calculus",{"2":{"78":1}}],["callers",{"2":{"93":1}}],["called",{"2":{"17":2,"18":1,"73":2,"92":1,"99":1,"109":5,"133":2,"140":1,"141":1,"146":1,"163":2,"167":1,"182":2,"184":1,"186":5,"210":3,"250":1,"255":1,"257":3,"270":3,"271":3,"290":4,"297":2}}],["callable",{"2":{"89":1}}],["call",{"2":{"17":1,"18":3,"73":1,"94":1,"109":2,"126":1,"186":6,"210":6,"213":2,"255":1,"257":6,"270":1,"271":2,"286":1,"290":7}}],["caputured",{"2":{"58":1}}],["cases",{"2":{"58":1,"61":1,"126":1,"178":1,"184":1,"270":1}}],["case",{"2":{"25":2,"39":1,"61":1,"88":1,"93":1,"105":1,"109":1,"126":1,"141":1,"145":1,"157":2,"167":1,"168":2,"176":1,"178":2,"183":1,"184":1,"201":2,"202":4,"235":1,"250":2,"255":1,"268":1,"270":2,"293":2,"299":1}}],["cannot",{"2":{"2":1,"98":1}}],["canonically",{"2":{"94":2}}],["canonical",{"2":{"2":1,"16":1,"18":4,"58":1,"94":1,"111":5,"117":2,"121":4,"148":1,"186":1,"203":1,"270":2,"286":1,"290":1}}],["can",{"2":{"2":3,"7":1,"11":1,"15":2,"20":1,"22":1,"29":2,"36":1,"38":1,"40":1,"42":3,"43":2,"45":1,"47":2,"51":1,"54":1,"58":4,"59":1,"60":1,"61":3,"62":1,"67":3,"68":2,"73":1,"75":2,"79":1,"87":2,"93":1,"96":1,"98":1,"103":1,"104":1,"106":1,"111":2,"113":1,"116":6,"122":1,"126":1,"127":1,"133":1,"142":1,"143":3,"146":2,"167":1,"168":2,"171":1,"180":1,"183":1,"184":2,"185":1,"186":3,"192":1,"195":1,"229":1,"235":2,"245":1,"247":1,"248":1,"265":1,"267":1,"272":1,"278":2,"279":2,"280":2,"281":2,"286":1,"288":2,"290":2,"293":1,"294":1}}],["c",{"2":{"17":2,"26":6,"46":6,"67":6,"68":5,"74":4,"81":3,"87":2,"89":7,"93":2,"95":1,"96":1,"97":14,"98":5,"103":2,"111":3,"112":2,"120":1,"124":2,"129":2,"131":2,"134":1,"146":9,"265":2,"274":2}}],["cyclic",{"2":{"13":2,"14":3,"96":2,"97":3}}],["cyclotomix",{"2":{"187":1}}],["cyclotomic",{"2":{"2":3,"92":1,"105":1,"106":3,"116":3,"175":2,"177":3,"179":1,"181":1,"183":4,"185":1,"189":1,"191":1,"193":1,"240":1}}],["cyclomotic",{"2":{"2":1}}],["choosing",{"2":{"214":1,"229":1}}],["choose",{"2":{"143":1}}],["chosen",{"2":{"7":2,"215":1,"253":3,"297":2,"299":2}}],["check=true",{"2":{"261":1}}],["checkisunit",{"2":{"113":2}}],["checking",{"2":{"97":1}}],["checked",{"2":{"45":1,"47":1,"111":1,"113":1,"116":1,"120":1,"128":2,"144":1,"148":1,"168":5,"169":2,"245":1,"266":3,"267":1,"278":2,"279":2,"280":2}}],["checks",{"2":{"32":1,"97":1,"113":1,"169":1,"172":1}}],["check",{"2":{"32":2,"45":2,"47":2,"97":2,"116":5,"119":1,"128":4,"144":2,"148":2,"168":9,"195":1,"214":1,"245":2,"266":3,"267":2,"278":4,"279":4,"280":4}}],["cham",{"2":{"273":1}}],["changing",{"2":{"87":1,"89":1}}],["changed",{"2":{"88":1}}],["change",{"0":{"82":1},"2":{"30":1,"46":6,"82":1,"89":1,"169":2}}],["charpoly",{"2":{"114":3,"131":2}}],["char",{"2":{"67":1,"68":7}}],["characteristic",{"2":{"2":3,"45":1,"114":2,"131":1,"142":1}}],["chapter",{"2":{"55":1,"73":1,"78":1,"92":1,"139":1,"141":1,"149":1,"161":1,"167":1,"268":1,"270":1,"271":1}}],["coinvariant",{"2":{"262":2}}],["coxeter",{"2":{"246":1,"254":4}}],["cover",{"0":{"199":1},"2":{"197":1,"199":1}}],["corollary",{"2":{"209":1}}],["core",{"2":{"167":1}}],["correctness",{"2":{"146":2}}],["correct",{"2":{"88":1,"93":1,"166":1}}],["corresponds",{"2":{"213":1,"237":2,"254":1}}],["correspond",{"2":{"17":2,"27":1,"87":2,"228":1}}],["corresponding",{"2":{"15":1,"17":2,"22":1,"29":2,"39":3,"87":3,"93":1,"97":2,"100":5,"101":1,"103":1,"104":2,"105":2,"106":2,"107":2,"108":8,"117":1,"124":10,"131":1,"136":1,"143":1,"183":6,"186":1,"188":1,"228":1,"229":1,"230":7,"231":1,"232":2,"238":1,"246":2,"254":2,"257":3,"286":3,"290":3}}],["course",{"2":{"273":1}}],["couple",{"2":{"171":1}}],["counterparts",{"2":{"86":1}}],["could",{"2":{"18":1,"177":1}}],["cohen",{"2":{"73":1,"75":2,"273":2}}],["coords",{"2":{"47":4,"48":3}}],["coordinate",{"2":{"29":2,"32":1}}],["coordinates",{"2":{"23":2,"47":3,"48":1,"111":7,"129":1,"196":1,"254":1,"286":1}}],["coerces",{"2":{"128":3}}],["coercing",{"2":{"82":1,"89":1}}],["coercion",{"2":{"46":1,"128":1,"196":1}}],["coeff",{"2":{"111":1,"169":2}}],["coefficient",{"2":{"75":2,"83":1,"88":1,"111":1,"128":2,"129":1,"131":1,"133":1,"147":2,"148":1,"169":1,"286":3,"287":1,"288":1}}],["coefficients",{"2":{"2":2,"7":1,"45":1,"46":3,"55":1,"58":1,"111":3,"113":1,"127":1,"141":1,"226":2}}],["copies",{"2":{"186":1}}],["copy",{"2":{"33":1,"68":1,"138":2,"147":2}}],["coprimes",{"2":{"61":1}}],["coprime",{"2":{"17":1,"60":1,"61":18,"93":2,"94":1,"137":1,"144":4,"146":3,"147":2,"169":1}}],["co",{"2":{"16":1,"170":1}}],["codifferent",{"2":{"170":2}}],["codomain",{"2":{"15":1,"17":1,"94":1,"261":1}}],["code",{"0":{"0":1},"2":{"61":4,"88":1,"93":1}}],["colon",{"2":{"145":1}}],["col",{"2":{"89":2}}],["cols",{"2":{"89":2}}],["collecting",{"2":{"269":1}}],["collections",{"2":{"68":3,"290":1}}],["collection",{"2":{"16":1,"149":2,"186":4,"210":3,"229":1,"257":3,"290":3}}],["collects",{"2":{"251":1}}],["collect",{"2":{"68":1,"146":1}}],["collaborative",{"2":{"5":1}}],["column",{"2":{"7":1,"88":1,"89":3}}],["columns",{"2":{"7":1,"17":1,"73":1,"79":1,"86":1,"87":1,"88":3,"89":1,"279":2,"280":2}}],["coming",{"2":{"143":1}}],["come",{"2":{"133":1}}],["comes",{"2":{"126":1,"203":1,"205":1}}],["commands",{"2":{"281":1}}],["common",{"2":{"30":1,"73":1,"139":1}}],["commutative",{"2":{"24":4,"78":1,"86":1}}],["complicated",{"2":{"141":1}}],["completion",{"2":{"182":1,"190":1,"192":2,"213":2,"214":1,"218":3,"226":2,"235":2,"237":1,"284":1,"293":1,"295":2,"301":3}}],["completions",{"2":{"149":1,"184":2,"228":1,"261":1,"285":1,"295":2,"299":1}}],["completely",{"2":{"182":1}}],["complete",{"2":{"133":1,"146":1,"159":1}}],["complex",{"0":{"99":1,"100":1,"103":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1},"2":{"99":2,"100":9,"101":3,"102":1,"103":2,"104":2,"105":5,"106":4,"107":8,"108":9,"109":2,"112":6,"119":4,"122":2,"124":11,"131":1,"183":3,"228":1,"230":4,"232":1,"238":1}}],["complexes",{"2":{"16":1}}],["complements",{"2":{"68":1}}],["complement",{"2":{"17":9,"68":1,"188":4,"189":1,"262":1}}],["compare",{"2":{"255":1}}],["compared",{"2":{"58":1}}],["compact",{"2":{"61":1}}],["compose",{"2":{"187":2}}],["compositum",{"2":{"96":1,"98":3,"120":2}}],["composition",{"2":{"15":1}}],["component",{"2":{"8":1,"18":2,"117":2,"161":4,"163":1}}],["components",{"2":{"7":3,"8":1,"196":1,"258":3}}],["computing",{"0":{"263":1},"2":{"60":1,"61":1,"96":1,"97":1,"105":1,"168":1,"272":1,"286":2}}],["computed",{"2":{"20":1,"61":4,"88":2,"93":1,"94":4,"106":1,"146":1,"186":1,"218":1,"266":3,"290":1}}],["compute",{"2":{"19":2,"20":1,"46":2,"48":1,"51":1,"88":2,"96":3,"97":1,"98":1,"111":1,"112":4,"120":1,"129":1,"131":2,"146":4,"159":1,"265":1,"274":1}}],["computes",{"2":{"17":1,"20":1,"25":1,"60":4,"61":2,"88":2,"93":2,"111":1,"118":1,"121":1,"125":1,"131":2,"136":1,"137":1,"144":1,"145":1,"146":6,"147":5,"169":1,"170":1}}],["computer",{"2":{"4":2,"58":1}}],["computational",{"2":{"273":2}}],["computation",{"2":{"4":1,"61":1,"78":1,"88":1,"96":1,"146":1,"172":1,"235":1}}],["computations",{"0":{"16":1},"1":{"17":1,"18":1,"19":1,"20":1},"2":{"3":1,"4":1}}],["combinations",{"2":{"128":1}}],["combination",{"2":{"6":1}}],["congruent",{"2":{"163":1}}],["conway",{"2":{"149":1,"273":1}}],["conj",{"2":{"102":2}}],["conjugation",{"2":{"119":1,"122":3}}],["conjugated",{"0":{"102":1},"2":{"100":1}}],["conjugates",{"0":{"112":1},"2":{"100":3,"112":14,"131":4}}],["conjugate",{"2":{"64":3,"102":1}}],["conjugacy",{"0":{"64":1}}],["conductor",{"2":{"94":1,"97":8,"98":1,"142":1}}],["condition",{"2":{"88":1}}],["conditions",{"2":{"67":1,"153":1}}],["concatenation",{"2":{"88":1}}],["concatenates",{"2":{"87":2}}],["concatenated",{"2":{"87":1}}],["concretely",{"2":{"2":1}}],["convention",{"2":{"155":1}}],["conventions",{"0":{"109":1},"2":{"30":1,"73":1,"139":1}}],["convenience",{"2":{"103":1}}],["conversely",{"2":{"286":1}}],["conversions",{"0":{"96":1}}],["conversion",{"0":{"60":1,"85":1,"121":1},"2":{"90":1}}],["converting",{"2":{"171":1}}],["convert",{"2":{"85":2}}],["continuity",{"2":{"213":1}}],["continuous",{"2":{"40":1,"190":1}}],["context",{"2":{"186":1,"270":1,"271":1,"290":1}}],["controls",{"2":{"116":3}}],["contrast",{"2":{"86":1,"270":1}}],["containment",{"2":{"295":1}}],["contain",{"2":{"141":1,"169":1}}],["contained",{"2":{"92":1,"96":2,"111":1,"128":2,"131":1,"137":1,"145":1,"147":5,"172":3,"180":2,"293":1}}],["contains",{"2":{"17":1,"93":1,"111":1,"119":1,"168":1,"169":1,"170":1,"182":2}}],["containing",{"2":{"15":1,"17":1,"39":1,"59":1,"73":1,"117":1,"120":1,"125":2,"131":1,"168":1,"169":2,"222":1,"254":1}}],["config",{"2":{"35":1}}],["consequence",{"2":{"86":1}}],["consuming",{"2":{"32":1,"116":1}}],["consists",{"2":{"67":1,"295":1}}],["consisting",{"2":{"25":1,"116":1,"120":2,"122":1,"147":2,"228":1,"254":1,"262":1,"286":1}}],["considered",{"2":{"98":1,"129":1,"131":1,"138":2,"147":2}}],["consider",{"2":{"4":1}}],["const",{"2":{"169":2}}],["constant",{"0":{"31":1,"33":1},"1":{"32":1,"33":1},"2":{"22":2,"26":1,"30":1,"32":9,"33":5}}],["constructing",{"2":{"214":1,"229":2}}],["construction",{"0":{"59":1,"87":1,"100":1},"2":{"28":1,"94":2}}],["constructions",{"0":{"186":1,"210":1,"257":1,"290":1},"1":{"187":1},"2":{"16":1,"246":1}}],["constructor",{"2":{"87":1}}],["constructors",{"0":{"67":1},"2":{"87":1,"116":1,"175":1}}],["constructs",{"2":{"80":3,"87":3,"111":1,"116":1}}],["construct",{"2":{"45":1,"58":1,"89":1,"186":1,"215":1,"230":1,"290":1}}],["constructed",{"2":{"15":1,"29":1,"96":1,"103":1,"104":1,"109":1,"116":1,"117":2,"128":1,"140":1,"168":1,"246":1}}],["b=",{"2":{"270":1}}],["bn",{"2":{"255":1}}],["bn==a",{"2":{"145":1}}],["bm",{"2":{"255":1}}],["bbm=bn",{"2":{"255":1}}],["br",{"2":{"209":1}}],["brown",{"2":{"209":5}}],["b+m∈m",{"2":{"198":1}}],["bd",{"2":{"148":1}}],["b1",{"2":{"148":1}}],["b∈k",{"2":{"119":2}}],["b∈matd×d",{"2":{"109":1,"140":1}}],["b^2",{"2":{"111":1}}],["back",{"2":{"180":1,"281":1}}],["bacher",{"2":{"253":9,"297":6,"299":6}}],["bachem",{"2":{"88":3}}],["bach",{"2":{"146":3}}],["bad",{"2":{"146":2,"213":2,"215":1,"228":1}}],["balls",{"2":{"169":1}}],["ball",{"2":{"103":2}}],["bass",{"2":{"170":3}}],["bashhecke",{"2":{"36":1}}],["basically",{"2":{"196":1}}],["basics",{"0":{"21":1,"44":1},"1":{"22":1,"23":1,"24":1,"25":1,"26":1,"45":1,"46":1,"47":1,"48":1}}],["basic",{"0":{"13":1,"23":1,"46":1,"81":1,"117":1,"129":1,"168":1},"1":{"169":1},"2":{"134":1}}],["basis",{"2":{"2":1,"23":2,"25":4,"27":1,"32":1,"58":2,"61":2,"73":2,"88":1,"95":1,"96":1,"109":6,"111":10,"117":10,"121":2,"123":3,"127":1,"128":1,"129":1,"136":3,"138":7,"140":5,"142":5,"143":1,"144":1,"146":6,"147":10,"148":1,"168":9,"169":26,"178":1,"180":4,"181":1,"188":3,"192":1,"195":1,"196":2,"213":1,"215":2,"217":1,"230":1,"232":2,"236":2,"238":2,"240":6,"242":2,"244":2,"245":4,"246":3,"249":2,"253":1,"254":2,"255":5,"262":3,"265":2,"267":1,"270":3,"278":5,"279":5,"280":5,"281":4,"282":2,"283":1,"285":1,"286":17,"287":24,"288":1,"289":4,"292":5,"295":3,"296":1,"297":1,"302":27}}],["based",{"2":{"88":1,"96":1,"166":1,"272":1}}],["bases",{"2":{"23":1,"288":1,"299":3}}],["base",{"0":{"82":1},"2":{"2":1,"23":1,"46":7,"48":1,"54":1,"58":2,"59":3,"60":1,"61":4,"75":1,"79":2,"82":2,"86":2,"87":2,"89":2,"90":1,"96":2,"97":5,"98":5,"105":3,"111":1,"114":2,"117":2,"118":1,"119":2,"126":3,"131":2,"144":4,"146":6,"167":1,"176":2,"177":1,"180":2,"216":1,"217":1,"230":3,"231":1,"232":1,"239":1,"241":2,"270":1,"271":2,"286":3,"287":2,"293":1,"295":2}}],["block",{"2":{"87":2,"163":1,"213":4,"218":7,"224":1,"226":2}}],["blocks",{"2":{"79":1,"87":1,"161":2,"214":1,"215":2,"216":1,"218":4,"224":1,"238":1}}],["bf",{"2":{"61":1}}],["bibliography",{"0":{"273":1}}],["bijection",{"2":{"270":2}}],["bijective",{"2":{"201":2,"261":1}}],["bigger",{"2":{"246":1}}],["bi⋅bj",{"2":{"169":1}}],["bilinear",{"2":{"155":2,"157":2,"163":2,"180":1,"195":2,"196":2,"197":8,"201":4,"205":1,"206":4,"208":4,"209":2,"270":1,"273":1}}],["binding",{"2":{"134":1}}],["bivariate",{"2":{"46":2}}],["biproduct",{"2":{"18":2,"186":7,"187":1,"210":7,"257":7,"290":7}}],["biproducts",{"2":{"18":1,"186":4,"210":3,"257":3,"290":4}}],["b8",{"2":{"46":1}}],["b6",{"2":{"46":1}}],["b4",{"2":{"46":1}}],["b2",{"2":{"46":1,"201":2}}],["bu",{"2":{"255":3}}],["build",{"2":{"36":3}}],["building",{"0":{"36":1},"2":{"79":1}}],["but",{"2":{"2":1,"8":1,"58":1,"61":2,"68":1,"73":1,"90":5,"98":1,"167":1,"168":1,"288":1}}],["bogomolov",{"2":{"246":2}}],["bound",{"2":{"146":7}}],["bound2",{"2":{"88":2}}],["bounded",{"2":{"7":1,"61":1,"146":2,"239":2}}],["both",{"2":{"17":1,"121":1,"126":1,"141":1,"169":1,"184":1,"186":1,"201":4,"235":1,"255":1,"265":1,"267":1,"270":1,"290":1}}],["bool=true",{"2":{"263":1}}],["boolean",{"2":{"116":1,"153":1}}],["bool",{"2":{"14":5,"15":1,"17":5,"24":2,"25":2,"28":1,"32":1,"33":1,"45":1,"47":1,"48":1,"61":2,"64":1,"87":1,"88":3,"93":4,"96":1,"97":2,"98":3,"100":1,"101":2,"107":5,"113":5,"116":3,"119":12,"120":2,"121":1,"122":4,"124":1,"128":2,"129":1,"136":2,"138":2,"144":2,"145":5,"146":7,"147":8,"148":1,"155":3,"157":4,"160":1,"163":1,"166":1,"168":9,"169":3,"170":3,"172":2,"174":4,"178":6,"182":2,"184":2,"190":1,"192":1,"195":2,"201":6,"202":4,"203":1,"208":2,"209":1,"214":1,"220":4,"231":1,"235":2,"245":1,"246":1,"250":6,"252":3,"253":3,"255":6,"262":5,"263":2,"265":1,"266":3,"267":1,"278":2,"279":2,"280":2,"284":2,"286":1,"293":7,"295":1,"297":1,"299":4,"301":3}}],["booktitle",{"2":{"4":1}}],["b",{"2":{"7":2,"25":5,"46":2,"59":20,"61":3,"64":4,"67":5,"81":4,"87":11,"88":4,"89":4,"90":4,"98":10,"105":2,"108":1,"109":2,"111":6,"116":6,"129":3,"131":3,"136":7,"137":1,"145":6,"146":10,"155":6,"163":6,"175":2,"177":2,"179":2,"181":2,"185":2,"187":1,"191":2,"193":2,"195":1,"196":2,"198":4,"201":2,"208":3,"215":10,"217":2,"219":8,"221":2,"223":2,"225":2,"227":8,"230":9,"232":8,"234":10,"236":4,"238":10,"240":1,"242":2,"244":3,"249":2,"255":1,"265":1,"267":1,"270":2,"278":4,"279":5,"280":5,"281":11,"283":3,"287":31,"292":5,"294":3,"298":2,"302":15}}],["berlin",{"2":{"273":1}}],["beauville",{"2":{"246":2}}],["before",{"2":{"230":1}}],["beta",{"2":{"121":1}}],["between",{"2":{"15":2,"17":1,"196":1,"201":1,"239":1,"257":3,"270":1,"290":3,"295":1}}],["belong",{"2":{"80":1}}],["below",{"2":{"40":1}}],["behaviour",{"2":{"68":1,"116":1}}],["because",{"2":{"43":1}}],["being",{"2":{"9":1,"116":1,"126":1,"141":1,"144":1,"148":1,"168":1,"213":1,"235":1}}],["be",{"2":{"2":2,"7":1,"12":1,"15":2,"20":1,"22":1,"29":1,"36":1,"38":1,"39":4,"40":1,"42":3,"45":1,"47":2,"54":1,"58":3,"60":1,"61":5,"62":1,"67":1,"68":1,"73":3,"75":4,"79":1,"86":1,"87":2,"88":2,"93":2,"94":3,"96":3,"98":3,"103":2,"104":1,"106":1,"107":2,"109":1,"111":3,"112":1,"113":3,"114":2,"116":9,"117":1,"118":1,"120":1,"121":1,"122":1,"125":2,"126":1,"127":1,"128":4,"131":1,"133":2,"141":2,"143":5,"146":8,"149":1,"155":2,"159":2,"163":2,"167":2,"168":2,"170":1,"171":1,"174":4,"176":6,"178":2,"182":1,"184":5,"186":2,"190":3,"192":4,"195":3,"201":2,"208":1,"209":3,"213":4,"224":1,"228":4,"229":1,"233":3,"235":3,"239":1,"245":2,"246":1,"247":1,"248":1,"265":1,"267":2,"270":2,"271":1,"272":1,"278":4,"279":8,"280":8,"281":2,"284":2,"285":1,"286":2,"288":4,"290":1,"291":4,"293":3,"295":3,"297":2}}],["begin",{"2":{"2":1,"269":1}}],["by",{"0":{"262":1},"2":{"2":3,"5":1,"7":1,"17":10,"29":2,"30":1,"42":1,"45":2,"46":4,"47":2,"55":3,"58":2,"59":1,"60":2,"61":9,"63":1,"68":3,"75":2,"79":1,"81":1,"82":1,"84":1,"86":1,"88":2,"89":3,"90":2,"92":1,"93":5,"94":4,"96":4,"97":1,"98":3,"101":1,"104":1,"105":1,"107":1,"108":2,"109":2,"111":1,"113":1,"116":4,"119":1,"121":2,"122":2,"124":2,"126":1,"128":1,"133":3,"134":2,"136":2,"140":1,"143":3,"144":3,"145":1,"146":12,"147":1,"155":2,"157":2,"159":3,"161":1,"163":2,"164":1,"168":2,"169":1,"170":1,"180":4,"184":7,"185":4,"195":1,"196":2,"197":2,"202":2,"206":1,"207":1,"209":3,"213":2,"214":2,"224":1,"229":2,"231":1,"235":3,"239":2,"241":2,"245":3,"246":5,"249":1,"250":4,"253":3,"254":4,"262":1,"265":2,"266":1,"267":1,"269":1,"270":1,"271":3,"278":7,"279":7,"280":7,"281":1,"288":2,"291":1,"297":2,"299":3,"301":2}}],["qld",{"2":{"281":2}}],["qmodnzelem",{"2":{"198":2}}],["qmodnz",{"2":{"197":2}}],["qf",{"2":{"195":2}}],["q2",{"2":{"183":4,"185":3}}],["q×",{"2":{"148":1}}],["qx",{"2":{"95":1,"96":1,"108":1,"111":1,"116":1,"117":2,"118":2,"120":1,"142":1,"168":1,"169":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"274":1,"281":1}}],["q⊗m∩zn",{"2":{"88":1}}],["q+1−n",{"2":{"52":1}}],["qg",{"2":{"28":1,"29":8}}],["qqfield",{"2":{"159":2,"180":1}}],["qqfieldelem",{"2":{"25":1,"33":1,"48":1,"60":2,"61":3,"67":2,"111":2,"114":1,"118":1,"138":2,"147":1,"155":4,"159":1,"163":4,"168":2,"169":1,"195":2,"196":1,"197":2,"199":2,"233":1,"250":3,"251":1,"255":1,"266":5,"267":3}}],["qqmatrix",{"2":{"25":1,"136":1,"159":2,"162":1,"168":2,"169":1,"197":2,"206":1,"246":1,"249":2,"255":4}}],["qq",{"2":{"22":2,"24":1,"25":2,"26":4,"28":1,"29":1,"32":3,"33":1,"45":1,"46":2,"48":5,"95":2,"96":1,"108":1,"111":1,"116":6,"117":2,"118":3,"120":1,"142":4,"146":4,"153":8,"168":1,"169":2,"201":7,"206":4,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"244":2,"254":1,"255":1,"261":3,"267":1,"274":1,"281":3,"283":1,"285":1,"287":1,"289":5}}],["quick",{"2":{"274":1}}],["quickly",{"2":{"103":1}}],["quadlat",{"2":{"279":4}}],["quadspacecls",{"2":{"186":3,"290":3}}],["quadspace",{"2":{"159":2,"174":2,"180":1,"182":3,"249":1}}],["quadbin",{"2":{"38":2}}],["quad",{"2":{"38":2,"39":2,"43":2}}],["quadform",{"2":{"38":6,"39":6,"43":3}}],["quadratic",{"0":{"195":1,"245":1,"248":1,"270":1,"271":1,"279":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"3":1,"32":2,"43":1,"100":7,"101":4,"102":1,"103":1,"104":2,"105":2,"107":8,"108":3,"111":2,"116":5,"124":8,"159":3,"161":1,"163":1,"166":1,"174":6,"175":2,"176":1,"178":5,"179":2,"180":1,"181":1,"182":2,"183":2,"184":1,"185":2,"186":3,"189":1,"195":8,"196":6,"197":10,"198":2,"201":37,"202":4,"203":3,"204":1,"205":1,"206":20,"207":2,"208":8,"209":7,"210":3,"242":3,"244":1,"245":2,"248":1,"249":3,"250":1,"255":2,"261":6,"268":2,"270":6,"271":5,"272":2,"278":8,"279":13,"281":6,"283":2,"284":2,"285":4,"289":3,"290":3,"296":1,"298":1,"300":2}}],["quaternion",{"2":{"30":1}}],["quomap",{"2":{"94":1}}],["quo",{"2":{"17":7,"93":3,"94":5,"148":2}}],["quot",{"2":{"19":2,"20":4,"42":8,"60":4,"61":4,"111":2,"112":2,"121":6,"186":12,"290":12}}],["quotype",{"2":{"17":4,"211":4}}],["quotient",{"0":{"148":1},"2":{"17":8,"93":1,"94":5,"96":1,"111":1,"125":1,"133":1,"134":1,"146":1,"148":2,"195":1,"211":2}}],["quotients",{"0":{"17":1},"2":{"92":2,"133":1,"196":1}}],["q",{"2":{"2":1,"12":1,"14":1,"48":2,"54":4,"58":1,"61":5,"92":2,"94":3,"97":2,"98":3,"109":5,"114":2,"116":1,"117":1,"118":1,"119":1,"121":2,"126":3,"133":2,"139":1,"140":1,"148":4,"169":1,"175":1,"179":4,"180":1,"181":4,"183":6,"185":5,"189":2,"195":1,"196":4,"197":2,"201":10,"206":13,"208":2,"209":4}}],["2πi8br",{"2":{"209":1}}],["2z",{"2":{"196":2,"201":5,"205":1,"206":4,"209":1}}],["2i",{"2":{"166":1}}],["2im",{"2":{"109":8}}],["2>",{"2":{"146":8,"289":2}}],["24",{"2":{"124":5,"246":4}}],["2log⁡",{"2":{"112":2,"131":2}}],["2re",{"2":{"109":5}}],["2s",{"2":{"109":1}}],["26",{"2":{"108":2,"283":1}}],["2168244",{"2":{"234":2}}],["21",{"2":{"103":1,"246":2}}],["2^m",{"2":{"161":1}}],["2^1",{"2":{"146":1}}],["2^4",{"2":{"146":2}}],["2^",{"2":{"103":1,"112":9,"131":5,"169":1}}],["2^2",{"2":{"51":1}}],["2000",{"2":{"273":1}}],["2018",{"2":{"273":1}}],["2019",{"2":{"272":1}}],["2016",{"2":{"272":1}}],["2017",{"2":{"4":3}}],["20",{"2":{"68":2,"146":1,"246":2,"261":1,"285":1,"289":1,"300":1}}],["25>",{"2":{"289":1}}],["25",{"2":{"67":1,"183":1,"285":1,"289":2,"300":1}}],["22",{"2":{"53":1,"263":1}}],["22>",{"2":{"2":1}}],["2×2×2",{"2":{"33":1}}],["2nd",{"2":{"17":1}}],["28>",{"2":{"287":2}}],["28",{"2":{"2":1,"146":1}}],["290",{"2":{"273":1}}],["29",{"2":{"2":9}}],["238",{"2":{"273":1}}],["236067977",{"2":{"107":2}}],["23",{"2":{"2":2,"53":1,"246":2}}],["23+55ζ75",{"2":{"2":1}}],["2",{"0":{"83":1,"280":1},"1":{"281":1},"2":{"2":4,"11":4,"13":5,"15":6,"17":35,"24":1,"26":3,"29":6,"32":7,"33":6,"45":4,"46":4,"47":1,"48":21,"50":3,"51":2,"52":4,"53":10,"54":3,"59":1,"61":2,"67":8,"68":23,"88":1,"95":3,"96":4,"100":2,"102":1,"104":3,"106":1,"107":7,"108":1,"111":5,"113":1,"116":2,"117":3,"118":4,"120":1,"124":7,"129":1,"131":1,"139":1,"142":18,"143":1,"146":54,"155":2,"163":2,"166":1,"168":1,"169":2,"175":2,"176":2,"177":4,"181":6,"182":1,"183":1,"187":1,"189":1,"192":1,"196":11,"201":30,"206":6,"209":6,"213":1,"215":14,"217":11,"219":10,"221":4,"223":4,"225":5,"227":5,"230":12,"232":11,"233":1,"234":7,"236":6,"238":14,"240":18,"244":10,"246":38,"248":3,"249":9,"254":53,"255":4,"261":23,"263":17,"267":6,"268":1,"270":2,"274":2,"280":4,"281":13,"283":15,"285":7,"287":52,"289":9,"292":6,"294":1,"296":7,"298":4,"300":7,"302":23}}],["izv",{"2":{"273":1}}],["ir",{"2":{"261":2,"263":1}}],["irreducibility",{"2":{"116":2}}],["irreducible",{"2":{"109":1,"116":1,"126":1,"131":1,"254":4,"258":2}}],["illustrate",{"2":{"246":1}}],["iπq",{"2":{"209":1}}],["ignored",{"2":{"153":1}}],["i2",{"2":{"148":1}}],["i1",{"2":{"148":1}}],["i→o",{"2":{"148":1}}],["ij",{"2":{"80":3}}],["i∈rn∣xi=0",{"2":{"79":1}}],["i∈v",{"2":{"8":1}}],["ie",{"2":{"61":3,"92":1,"98":1,"146":4}}],["i^int",{"2":{"146":1}}],["i^k",{"2":{"59":1}}],["i^",{"2":{"58":1}}],["imag",{"2":{"112":3,"131":1}}],["imaginary",{"2":{"99":1,"100":4,"101":5,"108":2,"124":1}}],["images",{"2":{"15":1,"17":1,"195":2}}],["image",{"2":{"15":1,"17":2,"103":1,"112":1,"131":1}}],["im",{"2":{"99":1,"103":1}}],["improve",{"2":{"253":3,"297":2,"299":2}}],["impossible",{"2":{"141":1}}],["important",{"2":{"58":1,"78":1,"79":1}}],["implicit",{"2":{"270":2}}],["implicitly",{"2":{"98":2,"109":1,"140":1}}],["implementation",{"2":{"272":1}}],["implements",{"2":{"246":1}}],["implemented",{"2":{"30":1,"53":1,"86":1,"167":1,"268":1,"272":1}}],["i",{"2":{"7":2,"8":3,"15":1,"18":2,"25":4,"32":2,"58":1,"59":2,"60":4,"61":3,"67":3,"68":6,"73":3,"79":1,"80":3,"81":2,"88":4,"89":23,"94":6,"97":2,"100":3,"106":2,"108":15,"111":6,"112":2,"117":2,"118":1,"122":2,"124":1,"129":3,"131":3,"136":6,"138":6,"144":2,"145":1,"146":22,"147":13,"148":9,"166":1,"169":6,"170":1,"182":3,"184":2,"213":3,"218":6,"224":1,"226":1,"228":1,"230":1,"233":1,"242":1,"246":1,"253":1,"254":3,"263":2,"270":1,"271":1,"288":1,"293":1,"295":3}}],["idempotents",{"2":{"147":2,"148":1}}],["identical",{"2":{"116":3}}],["identity",{"2":{"9":1,"87":2,"88":1,"119":1,"122":1,"174":2,"244":2,"246":1,"270":1,"279":3,"280":3}}],["idel",{"2":{"92":1}}],["idealp",{"2":{"239":1}}],["ideals",{"0":{"135":1,"143":1},"1":{"136":1,"137":1,"138":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"3":2,"58":1,"61":3,"73":2,"74":3,"75":3,"83":1,"93":3,"94":1,"95":1,"131":1,"135":2,"137":1,"141":1,"142":1,"143":6,"144":2,"146":26,"147":4,"169":3,"171":1,"228":2,"231":1,"286":6,"287":1,"288":1}}],["ideal",{"0":{"2":1},"2":{"2":2,"59":3,"61":7,"73":2,"83":1,"93":2,"97":3,"113":1,"119":1,"123":3,"125":3,"135":3,"136":25,"137":2,"138":3,"141":1,"143":2,"144":24,"145":4,"146":7,"147":11,"148":4,"155":2,"163":2,"167":1,"169":1,"170":4,"184":1,"192":2,"213":3,"214":2,"215":2,"216":1,"218":9,"220":4,"222":2,"226":2,"231":2,"235":1,"237":1,"238":1,"239":1,"241":1,"250":2,"255":1,"285":1,"286":2,"287":13,"288":1,"291":3,"292":2,"293":5,"295":4,"299":1,"301":3,"302":12}}],["id",{"2":{"7":1}}],["iff",{"2":{"88":1}}],["if",{"2":{"4":1,"17":3,"18":2,"19":1,"20":1,"25":2,"32":1,"39":2,"40":1,"43":1,"46":2,"48":2,"54":1,"55":1,"61":1,"64":1,"68":1,"73":3,"87":1,"88":7,"89":1,"92":2,"93":4,"94":2,"96":1,"97":5,"98":7,"99":1,"100":1,"101":2,"103":1,"106":1,"109":3,"113":3,"116":8,"117":1,"119":13,"120":2,"121":1,"122":4,"125":3,"126":1,"128":5,"131":1,"136":2,"139":1,"140":2,"144":3,"145":3,"146":9,"147":4,"148":2,"149":1,"153":1,"155":2,"157":2,"160":2,"161":2,"163":4,"168":8,"169":2,"172":2,"176":1,"178":3,"182":1,"184":1,"186":6,"190":1,"192":1,"195":2,"196":1,"201":4,"202":2,"205":1,"206":1,"207":1,"208":3,"209":2,"210":6,"213":4,"228":1,"230":1,"233":1,"235":1,"236":1,"238":1,"239":1,"240":1,"244":2,"245":1,"246":4,"249":1,"250":3,"253":4,"254":1,"255":2,"257":6,"262":3,"267":2,"270":1,"271":1,"278":5,"279":7,"280":4,"282":1,"286":2,"290":6,"293":5,"295":4,"297":3,"299":4,"301":3}}],["inherits",{"2":{"195":1}}],["inj",{"2":{"187":3}}],["injective",{"2":{"17":1}}],["injections",{"2":{"18":3,"186":7,"210":4,"257":6,"290":7}}],["injection",{"2":{"17":6,"18":3,"120":2}}],["inner",{"0":{"180":1},"1":{"181":1},"2":{"180":2,"181":1,"198":2,"246":2}}],["inert",{"2":{"220":3,"221":1}}],["inertia",{"2":{"98":1,"123":2,"147":1,"182":1,"228":1,"231":1,"252":1}}],["inegtral",{"2":{"157":1}}],["inefficient",{"2":{"8":1}}],["infp",{"2":{"230":2}}],["infplc",{"2":{"93":1,"94":1,"95":1,"96":1,"97":3,"124":6,"182":4,"183":1,"190":1,"229":1,"230":2,"231":1,"232":1,"239":1,"240":1,"284":3,"295":1}}],["information",{"2":{"109":1,"146":1,"168":2,"171":1,"177":1}}],["inf",{"2":{"93":1,"94":1,"97":2,"111":1,"235":1}}],["infinity",{"2":{"48":3}}],["infinite",{"0":{"124":1},"2":{"7":1,"93":1,"94":1,"98":1,"111":1,"124":11,"183":3,"228":1,"229":1,"230":5,"231":2,"232":1,"236":1,"238":2,"240":1}}],["ingredients",{"2":{"78":1}}],["init",{"2":{"61":1}}],["inplace",{"2":{"84":3,"87":2,"88":1,"89":7}}],["input",{"2":{"60":1,"111":1,"144":1,"254":2,"261":1,"267":1,"281":1}}],["inproceedings",{"2":{"4":1}}],["ins",{"2":{"263":3}}],["install",{"2":{"274":1}}],["installed",{"2":{"274":1}}],["instances",{"2":{"68":1}}],["instance",{"2":{"68":1,"177":1,"183":1,"255":1}}],["instructions",{"2":{"274":1}}],["instead",{"2":{"40":1,"62":1,"88":1}}],["inside",{"0":{"278":1},"2":{"40":1,"188":1,"244":1,"245":1,"249":1,"255":1,"278":2,"279":4,"280":4,"288":4,"297":1}}],["increasing",{"2":{"213":1}}],["increase",{"2":{"25":2}}],["inctions",{"2":{"210":2}}],["including",{"2":{"40":1}}],["include",{"2":{"285":1}}],["included",{"2":{"39":2,"67":1}}],["includes",{"2":{"32":1}}],["inclusion",{"2":{"15":1,"17":2,"26":1,"261":1}}],["inducing",{"2":{"262":3}}],["induced",{"2":{"15":1,"196":1}}],["indicating",{"2":{"75":2}}],["indicated",{"2":{"30":1}}],["indefinite",{"0":{"265":1},"2":{"178":1,"235":1,"265":1}}],["independent",{"2":{"73":1,"141":1,"171":3}}],["indexed",{"2":{"143":1}}],["index",{"2":{"17":3,"78":1,"81":1,"89":5,"109":2,"121":1,"146":3,"147":3,"168":2,"169":11,"170":2,"182":1,"211":3,"228":1,"231":1,"246":1,"286":1,"291":1}}],["inv",{"2":{"105":1,"106":1,"136":1,"137":1,"138":2,"147":2,"169":4,"239":2}}],["invertable",{"2":{"146":2}}],["invertible",{"2":{"64":1,"88":1,"145":3,"146":1}}],["inverses",{"2":{"169":1}}],["inverse",{"2":{"136":1,"138":1,"145":1,"146":1,"147":1,"148":1,"155":1,"169":1,"170":1,"171":1}}],["inversion",{"2":{"89":1}}],["involution",{"2":{"122":3,"176":2,"177":1,"213":1,"222":1,"270":4,"271":2,"286":3,"287":1}}],["involved",{"2":{"60":1,"92":1}}],["invoke",{"2":{"43":1}}],["invoked",{"2":{"42":1}}],["invoking",{"2":{"2":1}}],["invariant",{"2":{"17":1,"45":4,"46":3,"163":4,"182":7,"183":2,"209":6,"213":1,"222":1,"262":3,"284":6,"285":2}}],["invariants",{"0":{"10":1,"14":1,"97":1,"114":1,"118":1,"170":1,"208":1,"218":1,"250":1,"252":1,"291":1},"1":{"219":1,"251":1,"252":1,"292":1},"2":{"46":8,"161":1,"176":1,"182":3,"183":1,"213":1,"229":1,"251":1}}],["introduced",{"2":{"73":1}}],["introduction",{"0":{"12":1,"30":1,"55":1,"78":1,"92":1,"126":1,"139":1,"268":1},"1":{"13":1,"14":1,"140":1,"141":1,"142":1,"269":1,"270":1,"271":1,"272":1},"2":{"141":1}}],["int64",{"2":{"67":3,"68":5,"107":1,"142":1,"146":1,"183":2,"219":4,"232":1,"240":1,"254":1}}],["into",{"2":{"18":1,"60":1,"61":1,"73":1,"75":2,"82":1,"88":1,"89":1,"93":1,"122":1,"124":2,"128":3,"131":1,"136":1,"171":1,"184":2,"185":1,"201":2,"228":1,"261":1,"263":2,"295":1}}],["int",{"2":{"7":1,"8":2,"13":2,"14":3,"17":1,"18":2,"25":2,"26":2,"48":1,"52":2,"61":4,"67":3,"68":2,"70":2,"71":2,"72":1,"80":4,"81":3,"85":2,"87":6,"88":8,"89":17,"93":2,"98":4,"103":2,"107":2,"111":4,"112":7,"116":3,"117":1,"118":3,"119":1,"125":4,"130":3,"131":4,"144":1,"145":4,"146":6,"147":3,"153":1,"155":3,"163":5,"169":4,"170":1,"174":2,"176":2,"182":4,"209":4,"211":5,"216":1,"218":17,"224":1,"226":1,"229":1,"231":2,"239":6,"246":3,"250":1,"252":3,"253":8,"254":1,"263":2,"266":1,"267":1,"284":2,"286":2,"293":1,"295":1,"297":5,"299":4}}],["intended",{"2":{"248":1}}],["intermediate",{"2":{"171":1}}],["interpreted",{"2":{"167":1}}],["interaction",{"2":{"139":1}}],["interesting",{"2":{"58":1}}],["interface",{"2":{"30":1,"139":1,"171":1}}],["intersect",{"2":{"17":1,"68":2,"98":1,"145":1,"246":2,"255":1,"288":1,"289":1}}],["intersection",{"2":{"17":2,"98":1,"246":1,"255":1,"288":1}}],["internal",{"2":{"281":1}}],["internals",{"0":{"132":1},"1":{"133":1,"134":1}}],["internally",{"2":{"6":1,"8":1,"86":1,"133":1,"134":1}}],["international",{"2":{"4":1}}],["integration",{"2":{"40":1}}],["integrality",{"2":{"168":1}}],["integral",{"0":{"64":1,"84":1,"151":1,"301":1},"1":{"302":1},"2":{"2":3,"61":2,"64":2,"88":1,"93":1,"113":4,"125":2,"135":2,"137":2,"141":2,"143":1,"147":1,"149":1,"153":1,"155":3,"157":3,"166":1,"167":1,"168":1,"204":1,"205":1,"209":1,"231":3,"239":2,"250":7,"251":1,"254":2,"255":1,"261":6,"263":2,"265":1,"293":5,"294":1,"301":24,"302":5}}],["integer",{"0":{"149":1,"242":1,"243":1},"1":{"150":1,"151":1,"152":1,"153":1,"154":1,"155":1,"156":1,"157":1,"158":1,"159":1,"160":1,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"243":1,"244":2,"245":2,"246":2,"247":2,"248":2,"249":1,"250":1,"251":1,"252":1,"253":1},"2":{"13":1,"17":4,"58":1,"59":2,"84":1,"88":1,"89":1,"90":1,"113":1,"116":1,"119":1,"125":1,"128":2,"131":3,"135":1,"137":1,"143":1,"144":4,"146":3,"147":3,"149":1,"153":3,"157":2,"164":1,"169":2,"195":1,"196":2,"201":4,"202":2,"204":1,"206":4,"209":2,"242":2,"244":3,"246":14,"247":1,"248":2,"249":3,"250":3,"251":1,"254":10,"255":4,"261":4,"263":4,"267":1,"273":1,"293":3}}],["integerunion",{"2":{"13":4,"17":1,"54":1,"116":1,"128":1,"131":1,"162":2}}],["integers",{"2":{"2":1,"7":1,"14":1,"58":1,"61":1,"67":2,"79":1,"86":1,"89":1,"98":1,"109":1,"111":1,"139":1,"141":1,"153":1,"161":1,"163":1,"167":1,"168":1,"213":1,"240":15,"242":1,"253":1}}],["in",{"0":{"245":1},"2":{"3":3,"4":1,"6":1,"7":1,"14":3,"15":1,"16":1,"17":14,"19":1,"25":7,"30":3,"32":1,"34":1,"36":2,"38":2,"39":5,"42":1,"43":1,"45":1,"58":11,"59":2,"60":1,"61":10,"63":3,"67":1,"68":12,"73":5,"74":3,"78":3,"79":1,"84":2,"86":1,"87":1,"88":5,"89":1,"92":2,"93":2,"94":2,"96":5,"98":4,"105":1,"107":3,"109":5,"111":6,"113":5,"116":3,"119":1,"121":1,"126":4,"127":6,"128":4,"129":2,"131":4,"133":5,"135":2,"136":6,"137":1,"139":1,"141":8,"143":6,"144":5,"145":6,"146":17,"147":13,"149":2,"155":1,"157":2,"159":2,"160":2,"161":3,"166":1,"167":8,"168":5,"169":4,"170":1,"171":1,"172":1,"176":2,"178":3,"180":2,"184":5,"186":2,"188":1,"190":2,"195":2,"196":1,"198":1,"201":2,"202":4,"203":2,"208":2,"209":2,"211":1,"213":4,"218":5,"220":3,"224":3,"226":2,"228":4,"229":1,"230":1,"233":5,"235":6,"236":4,"238":1,"240":1,"241":2,"242":1,"246":2,"248":1,"250":3,"251":1,"255":16,"261":1,"262":1,"263":4,"265":1,"266":2,"270":10,"271":2,"273":4,"278":2,"279":2,"280":2,"281":2,"286":2,"288":5,"290":1,"291":1,"293":3,"295":2,"301":6}}],["its",{"2":{"96":1,"97":1,"111":1,"117":1,"146":1,"147":2,"149":2,"157":1,"159":1,"176":8,"196":1,"203":1,"208":1,"218":1,"224":2,"226":2,"231":1,"233":1,"242":1,"250":4,"251":1,"254":1,"273":1,"274":1,"293":1}}],["itself",{"2":{"26":1,"149":1,"297":1}}],["itrs",{"2":{"68":5}}],["iter",{"2":{"67":3}}],["iterated",{"2":{"18":2}}],["iterate",{"2":{"11":1,"68":1}}],["iterators",{"0":{"65":1,"69":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2}}],["iterator",{"0":{"11":1},"2":{"17":2,"67":3,"68":1,"70":3,"71":3,"72":1,"211":2,"266":6}}],["ith",{"2":{"13":1,"18":2,"218":5,"224":1,"226":2}}],["it",{"2":{"2":1,"10":1,"14":2,"16":1,"17":1,"18":1,"25":2,"29":1,"43":1,"45":1,"46":1,"47":1,"58":2,"61":1,"78":1,"79":1,"86":1,"89":1,"92":1,"93":2,"94":1,"96":2,"97":1,"107":1,"111":1,"113":1,"116":1,"119":1,"120":1,"125":1,"128":2,"131":1,"136":2,"141":1,"142":1,"144":2,"146":1,"147":3,"157":4,"159":1,"167":2,"168":4,"169":4,"178":1,"195":1,"198":1,"201":6,"202":2,"203":1,"205":1,"213":2,"218":1,"224":1,"231":1,"235":1,"237":2,"239":1,"242":1,"246":2,"250":2,"265":1,"266":3,"267":1,"281":1,"290":1,"293":3,"301":1}}],["isbasis=false",{"2":{"246":1}}],["isbasis",{"2":{"168":3}}],["iseven",{"2":{"155":1,"163":1,"250":1}}],["isempty",{"2":{"68":1}}],["isreal",{"2":{"124":1,"230":2,"236":2,"238":2,"240":2}}],["issubset",{"2":{"17":1,"68":1}}],["issac",{"2":{"4":2}}],["isotropic",{"0":{"190":1},"1":{"191":1},"2":{"190":4,"191":1,"295":3,"296":1}}],["isometries",{"0":{"253":1},"2":{"297":1}}],["isometric",{"2":{"149":1,"180":2,"182":7,"183":2,"201":9,"203":1,"208":1,"233":2,"253":6,"261":1,"284":6,"285":2,"299":9,"300":2}}],["isometry",{"0":{"201":1,"299":1},"1":{"300":1},"2":{"159":2,"182":2,"186":1,"201":11,"203":1,"233":1,"235":2,"246":1,"251":1,"290":1,"297":1,"299":5}}],["isomorphic",{"2":{"15":3,"16":2,"17":2,"53":1,"94":3,"121":2,"122":6,"211":3,"261":1}}],["isomorphisms",{"2":{"16":1}}],["isomorphism",{"2":{"15":1,"16":3,"18":2,"94":1,"120":1,"121":3,"122":1,"146":2,"148":1}}],["isolated",{"2":{"17":1}}],["isone",{"2":{"9":1,"61":2,"64":1,"88":1,"96":1,"145":1}}],["iszero",{"2":{"9":1,"88":1}}],["is",{"2":{"2":1,"5":2,"6":1,"7":1,"8":1,"9":1,"10":2,"12":2,"13":5,"14":16,"15":1,"16":3,"17":25,"18":1,"19":2,"20":2,"24":9,"25":8,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"38":1,"39":2,"42":2,"43":1,"45":2,"46":7,"47":1,"48":3,"52":2,"53":1,"54":2,"55":3,"57":1,"58":4,"59":1,"60":1,"61":6,"62":3,"64":4,"68":4,"73":8,"75":1,"78":2,"79":5,"83":1,"85":1,"86":5,"87":4,"88":28,"89":4,"92":7,"93":14,"94":12,"96":7,"97":13,"98":13,"99":2,"100":2,"101":7,"103":3,"105":3,"106":1,"107":17,"108":1,"109":19,"111":8,"112":1,"113":16,"116":8,"117":2,"118":2,"119":38,"120":9,"121":6,"122":6,"123":1,"124":3,"125":5,"126":4,"127":2,"128":4,"129":1,"131":8,"133":2,"134":2,"135":2,"136":7,"137":2,"139":5,"140":6,"141":6,"142":3,"143":3,"144":8,"145":10,"146":21,"147":27,"148":4,"149":2,"153":3,"154":1,"155":12,"157":26,"159":1,"160":1,"161":3,"163":13,"166":2,"167":6,"168":14,"169":23,"170":9,"171":1,"172":4,"174":2,"176":6,"178":21,"179":6,"180":7,"182":12,"183":2,"184":6,"185":4,"187":2,"190":4,"191":1,"192":4,"193":1,"195":3,"196":5,"198":1,"201":8,"202":16,"203":3,"205":3,"206":1,"207":2,"208":7,"209":9,"213":9,"215":1,"218":12,"220":8,"221":4,"224":1,"226":4,"231":4,"233":6,"235":3,"239":4,"242":3,"244":4,"245":3,"246":10,"249":4,"250":32,"252":6,"253":8,"254":5,"255":13,"261":5,"262":10,"263":2,"265":1,"266":11,"267":4,"268":1,"270":10,"271":4,"274":3,"278":11,"279":9,"280":6,"281":1,"282":2,"284":2,"285":3,"286":9,"288":1,"290":1,"291":1,"293":25,"294":4,"295":4,"296":1,"297":6,"298":1,"299":13,"300":2,"301":23,"302":3}}],["tgmtt=gl",{"2":{"299":1}}],["tvmtt=vl",{"2":{"299":1}}],["t→ti",{"2":{"210":6}}],["t→u",{"2":{"201":2}}],["tn",{"2":{"210":3}}],["t1",{"2":{"210":3}}],["t=m",{"2":{"197":2}}],["t+1",{"2":{"175":1,"177":1,"179":1,"181":1,"185":1,"191":1,"193":1}}],["t^2",{"2":{"175":2,"177":2,"179":1,"181":1,"185":1,"191":1,"193":1,"215":1,"217":2,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":2,"234":1,"236":1,"238":1,"240":1,"281":3,"283":2,"287":2,"292":1,"294":1,"298":1,"302":1}}],["t^3",{"2":{"116":1}}],["tutorials",{"0":{"275":1}}],["turns",{"2":{"136":1}}],["tuple",{"2":{"25":1,"46":8,"73":1,"80":2,"81":1,"98":1,"116":1,"120":2,"142":1,"147":2,"169":2,"182":2,"183":1,"209":2,"213":1,"246":1,"252":3,"254":1,"261":1,"266":2,"267":3,"286":1,"287":1,"302":3}}],["tuples",{"2":{"19":1,"120":1,"229":1,"266":2,"267":1}}],["t2",{"2":{"131":2,"169":1,"201":2}}],["t∈k",{"2":{"113":1,"125":1}}],["twice",{"2":{"67":1}}],["two",{"2":{"2":1,"17":1,"48":1,"55":1,"64":1,"79":1,"90":1,"111":1,"116":1,"119":1,"120":1,"126":1,"127":1,"142":2,"146":8,"149":1,"165":1,"169":1,"175":1,"176":1,"184":3,"186":1,"195":1,"208":1,"213":1,"214":1,"215":1,"217":1,"228":1,"229":1,"230":1,"232":2,"237":2,"254":1,"255":2,"281":1,"285":1,"288":1,"290":1,"292":1,"297":1}}],["typo",{"2":{"166":1}}],["typically",{"2":{"58":1,"73":1,"88":1}}],["types",{"0":{"85":1,"133":1},"2":{"30":1,"38":1,"60":1,"108":1,"109":1,"133":2,"254":2}}],["type",{"0":{"67":1,"196":1},"2":{"6":1,"7":1,"12":1,"13":8,"15":1,"17":1,"22":1,"30":1,"58":4,"59":3,"67":4,"79":4,"86":4,"87":3,"90":1,"96":2,"98":5,"103":2,"109":2,"112":6,"116":1,"126":1,"128":6,"131":3,"133":2,"134":1,"135":1,"143":3,"169":1,"170":1,"186":3,"210":3,"214":2,"215":1,"217":1,"221":1,"223":1,"225":1,"229":1,"230":2,"236":1,"238":1,"242":1,"246":3,"254":7,"257":3,"266":6,"279":3,"290":3,"295":4}}],["ti→t",{"2":{"210":6}}],["tied",{"2":{"146":1}}],["tip",{"2":{"116":1}}],["times",{"2":{"87":4,"89":2,"118":1,"213":1}}],["time",{"2":{"32":1,"40":1,"116":1}}],["title",{"2":{"4":1}}],["talk",{"2":{"270":1}}],["tamely",{"2":{"119":6}}],["ta",{"2":{"88":3}}],["ta=e",{"2":{"88":1}}],["ta=bt",{"2":{"64":1}}],["taken",{"2":{"184":1,"272":1,"295":1}}],["take",{"2":{"40":1}}],["takes",{"2":{"36":1}}],["table",{"0":{"33":1},"2":{"28":1,"33":4}}],["tasks",{"2":{"146":1}}],["task",{"2":{"19":2,"20":3,"186":3,"290":3}}],["targeted",{"2":{"7":1}}],["texts",{"2":{"273":2}}],["terms",{"2":{"198":1,"224":1,"242":1}}],["terminology",{"2":{"73":1,"139":1,"269":1}}],["terminal",{"2":{"36":1}}],["tend",{"2":{"116":1}}],["tensors",{"2":{"19":1}}],["tensor",{"0":{"19":1},"2":{"16":2,"18":1,"19":5}}],["technical",{"2":{"75":2}}],["tested",{"2":{"116":1,"184":1}}],["testtt",{"2":{"113":1}}],["testlong=1",{"2":{"42":1}}],["tests",{"0":{"39":1,"40":1,"41":1,"42":1,"43":1},"1":{"42":1,"43":1},"2":{"17":1,"38":1,"39":1,"40":2,"42":2,"43":3,"61":1,"88":2,"97":1,"98":3,"119":2,"125":1,"145":1,"146":3,"172":1,"178":1}}],["testing",{"0":{"37":1},"1":{"38":1,"39":1,"40":1,"41":1,"42":1,"43":1},"2":{"15":1,"121":1,"146":1}}],["test",{"2":{"9":1,"38":3,"39":7,"40":6,"42":7,"43":4,"116":1,"245":1,"278":2,"279":2,"280":2}}],["t",{"2":{"13":6,"22":1,"46":22,"60":9,"64":6,"67":10,"68":9,"70":5,"71":5,"72":1,"79":2,"80":4,"81":14,"83":10,"85":2,"86":2,"87":5,"88":12,"89":15,"90":29,"111":4,"113":2,"116":4,"125":1,"129":2,"131":2,"138":5,"147":5,"161":3,"168":1,"169":3,"171":2,"175":3,"177":3,"179":2,"181":2,"184":6,"185":2,"186":18,"188":5,"189":2,"191":2,"193":2,"196":1,"197":15,"200":2,"201":24,"202":14,"203":5,"207":1,"208":16,"209":10,"210":9,"211":4,"215":2,"217":2,"219":2,"221":2,"223":2,"225":2,"227":2,"228":1,"230":2,"232":2,"234":2,"236":2,"238":2,"240":3,"281":6,"283":2,"287":2,"290":18,"292":2,"294":2,"298":2,"299":1,"302":2}}],["tr∘φ",{"2":{"180":1}}],["trk",{"2":{"169":1}}],["treated",{"2":{"139":1}}],["try",{"2":{"113":1,"125":1}}],["tr",{"2":{"111":3,"129":1,"131":4,"180":1}}],["trans",{"2":{"88":3}}],["transpose",{"2":{"87":3,"88":1,"246":1}}],["transformations",{"2":{"88":1,"253":2,"297":2}}],["transformation",{"2":{"75":1,"89":1}}],["transform",{"2":{"75":2,"81":1,"88":5,"89":1,"180":2}}],["transforms",{"2":{"73":1,"75":2}}],["trace",{"2":{"52":6,"111":2,"131":2,"161":1,"169":2,"170":2,"180":1}}],["trigger",{"2":{"146":1,"172":1}}],["tries",{"2":{"89":1,"121":1,"122":1,"169":1}}],["triangular",{"2":{"73":1,"75":2,"88":5,"89":4}}],["triple",{"2":{"25":1,"246":1}}],["trivial",{"2":{"9":1,"14":3,"17":1,"88":1,"116":1,"119":1,"131":1,"145":1,"174":1,"182":1,"202":2,"208":1,"222":1,"270":1}}],["trr",{"2":{"5":1}}],["true",{"2":{"2":1,"17":5,"25":5,"28":1,"29":2,"32":1,"33":1,"45":1,"47":1,"48":3,"52":1,"64":2,"87":1,"88":3,"93":3,"96":2,"100":1,"101":4,"102":1,"103":1,"107":3,"113":2,"116":7,"119":3,"120":2,"121":1,"122":4,"128":4,"138":2,"142":2,"145":2,"146":6,"147":2,"148":2,"153":1,"157":2,"168":7,"174":4,"179":5,"183":2,"185":3,"187":2,"191":1,"195":3,"196":1,"201":8,"202":2,"208":1,"221":2,"235":2,"236":3,"244":2,"245":1,"246":6,"250":2,"253":2,"255":3,"261":2,"262":8,"263":1,"265":1,"266":3,"267":1,"278":2,"279":2,"280":2,"285":2,"286":2,"294":3,"296":1,"297":2,"298":1,"299":1,"300":1}}],["throughout",{"2":{"270":1}}],["throw",{"2":{"2":1}}],["three",{"2":{"186":1,"261":1,"295":1}}],["than",{"2":{"92":1,"97":1,"127":1,"131":1,"169":1,"246":1,"288":1}}],["that",{"2":{"2":2,"7":1,"10":1,"12":2,"13":3,"14":5,"15":1,"16":1,"17":6,"18":3,"19":1,"20":1,"24":1,"25":3,"26":1,"38":1,"40":1,"46":3,"48":1,"54":1,"58":2,"59":1,"61":2,"68":1,"73":2,"75":1,"78":1,"79":2,"85":1,"86":1,"87":1,"88":7,"89":4,"93":2,"94":2,"96":1,"97":3,"98":2,"99":1,"101":1,"103":1,"107":1,"109":3,"111":5,"112":6,"113":5,"116":2,"117":3,"119":8,"120":1,"123":1,"125":1,"127":1,"128":2,"131":6,"134":1,"135":1,"136":4,"137":2,"138":1,"140":1,"141":1,"143":1,"144":1,"145":1,"146":6,"147":16,"148":1,"149":1,"153":1,"155":1,"157":6,"160":1,"166":1,"167":4,"168":1,"169":13,"170":4,"174":2,"178":4,"180":4,"182":2,"184":1,"186":1,"190":1,"192":2,"196":3,"201":4,"202":2,"203":1,"208":1,"213":4,"215":1,"226":4,"228":2,"229":1,"233":3,"235":1,"246":2,"250":6,"255":3,"261":3,"265":1,"266":8,"267":1,"268":1,"281":1,"286":5,"288":1,"293":4,"295":2,"297":1,"299":3,"301":3}}],["though",{"2":{"93":1,"133":1,"268":1}}],["those",{"2":{"58":1,"74":1,"98":3,"167":1,"186":1,"228":1,"267":1}}],["thorough",{"2":{"25":6}}],["third",{"2":{"273":1}}],["think",{"2":{"58":1,"196":1}}],["things",{"2":{"36":1}}],["this",{"2":{"6":1,"7":2,"8":2,"13":1,"16":1,"17":3,"20":1,"25":2,"28":1,"30":2,"32":1,"36":1,"39":3,"43":1,"45":1,"47":1,"51":1,"52":1,"54":1,"55":2,"57":1,"58":3,"60":1,"61":2,"73":1,"75":3,"78":1,"88":2,"89":4,"92":2,"93":4,"94":3,"96":2,"97":2,"98":2,"105":2,"108":1,"111":9,"113":1,"114":6,"116":4,"117":5,"118":3,"119":3,"120":1,"121":3,"122":4,"123":1,"125":1,"128":3,"133":4,"134":1,"139":1,"141":1,"143":1,"145":1,"146":1,"155":9,"157":2,"159":6,"163":7,"164":2,"167":2,"168":2,"169":6,"170":2,"172":1,"175":1,"182":1,"184":1,"186":1,"197":2,"198":1,"199":2,"202":2,"209":1,"215":1,"224":1,"229":1,"230":1,"233":1,"245":1,"246":2,"248":1,"250":2,"255":1,"258":1,"263":1,"265":1,"266":1,"267":1,"268":1,"270":3,"271":2,"278":2,"279":2,"280":2,"281":1,"285":1,"288":1,"290":1,"291":1,"293":1,"299":1,"301":3}}],["th",{"2":{"7":1,"8":2,"52":1,"73":2,"88":4,"89":11,"93":1,"111":1,"113":1,"116":1,"117":1,"118":1,"119":1,"125":3,"137":1,"145":1}}],["thus",{"2":{"2":1,"17":1,"58":1,"73":1,"88":1,"133":2,"141":1,"146":1,"169":1,"196":1}}],["theoretically",{"2":{"268":1}}],["theorem",{"2":{"92":1,"146":1,"166":1}}],["theory",{"0":{"91":1,"123":1},"1":{"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"98":1},"2":{"3":1,"4":2,"58":1,"73":1,"78":1,"92":2,"96":1,"125":1,"204":1,"273":3}}],["their",{"2":{"58":1,"67":1,"86":1,"143":1,"149":1,"184":1,"186":3,"201":2,"210":3,"237":2,"257":3,"273":1,"290":4,"297":1}}],["them",{"2":{"58":1,"73":1,"196":1,"201":2,"239":1,"242":1}}],["these",{"2":{"30":1,"116":1,"175":1,"176":1,"233":1,"281":1}}],["then",{"2":{"20":1,"39":2,"61":2,"68":1,"87":1,"88":3,"93":2,"94":3,"96":1,"98":3,"103":1,"109":3,"112":3,"113":1,"117":1,"121":1,"131":2,"136":2,"139":1,"140":2,"141":1,"144":3,"146":2,"148":1,"163":1,"168":2,"169":2,"170":1,"196":1,"205":1,"206":1,"207":1,"208":1,"213":1,"233":2,"245":1,"246":1,"254":1,"255":1,"267":2,"278":4,"279":3,"286":1,"293":1,"299":1}}],["they",{"2":{"15":1,"17":1,"18":1,"61":1,"67":1,"79":1,"86":1,"116":1,"127":3,"135":1,"149":1,"168":2,"171":2,"186":4,"201":4,"204":1,"208":1,"210":3,"233":1,"257":3,"290":4}}],["therefore",{"2":{"18":1,"186":3,"210":3,"257":3,"270":1,"271":1,"290":3}}],["there",{"2":{"13":1,"17":1,"64":1,"73":1,"87":1,"113":1,"135":1,"139":1,"166":1,"167":2,"171":1,"178":1,"190":1,"192":1,"196":1,"201":1,"209":1,"214":1,"229":1,"268":1,"270":1,"293":2,"295":1}}],["the",{"0":{"35":1,"36":1,"41":1,"155":1,"196":1,"199":1,"207":1,"248":1,"251":1},"1":{"42":1,"43":1,"156":1,"157":1,"158":1},"2":{"2":18,"4":3,"5":4,"6":1,"7":11,"8":5,"9":1,"10":2,"11":1,"12":1,"13":11,"14":15,"15":3,"16":1,"17":57,"18":11,"19":4,"20":2,"22":6,"23":4,"24":3,"25":8,"26":5,"27":2,"28":3,"29":5,"30":9,"32":6,"33":2,"34":3,"35":2,"36":3,"38":5,"39":4,"40":4,"42":7,"43":4,"45":3,"46":18,"47":2,"48":6,"50":1,"51":4,"52":8,"53":3,"54":3,"55":6,"57":1,"58":22,"59":9,"60":16,"61":24,"62":1,"63":6,"64":2,"67":6,"68":21,"73":13,"74":11,"75":18,"78":2,"79":6,"80":5,"81":5,"82":1,"83":7,"84":5,"85":1,"86":6,"87":16,"88":48,"89":24,"90":14,"92":5,"93":36,"94":32,"96":14,"97":21,"98":23,"100":2,"101":4,"102":1,"103":8,"104":1,"105":3,"107":7,"109":23,"111":40,"112":19,"113":8,"114":11,"116":37,"117":12,"118":27,"119":17,"120":9,"121":4,"122":6,"123":8,"124":4,"125":4,"126":12,"127":7,"128":13,"129":11,"130":1,"131":36,"133":8,"134":4,"135":3,"136":12,"137":7,"138":13,"139":5,"140":6,"141":5,"143":13,"144":18,"145":4,"146":59,"147":46,"148":22,"149":6,"151":2,"152":1,"153":5,"154":3,"155":21,"157":9,"158":1,"159":7,"160":2,"161":11,"162":4,"163":28,"164":1,"165":2,"166":1,"167":16,"168":30,"169":50,"170":23,"171":7,"172":3,"174":11,"175":2,"176":24,"177":2,"178":14,"180":34,"182":19,"183":2,"184":6,"185":1,"186":24,"188":4,"190":3,"192":6,"195":13,"196":10,"197":19,"198":2,"199":3,"200":2,"201":2,"202":8,"203":1,"204":1,"205":6,"206":3,"207":3,"208":10,"209":17,"210":12,"211":5,"213":29,"214":7,"215":2,"216":1,"218":41,"222":3,"224":8,"226":4,"228":13,"229":10,"230":1,"231":12,"233":10,"235":16,"237":6,"239":3,"240":15,"241":5,"242":4,"244":7,"245":3,"246":23,"248":2,"249":11,"250":19,"251":5,"252":7,"253":20,"254":25,"255":30,"257":15,"258":3,"259":2,"261":12,"262":18,"263":3,"265":3,"266":11,"267":1,"269":2,"270":15,"271":9,"272":3,"274":3,"278":13,"279":33,"280":27,"281":6,"282":13,"284":16,"285":5,"286":44,"288":35,"290":22,"291":15,"293":18,"295":17,"297":17,"299":21,"301":19}}],["topics",{"2":{"273":1}}],["touching",{"2":{"266":1}}],["torquadmodulemap",{"2":{"201":2,"203":1,"208":3,"210":8,"211":1,"261":4}}],["torquadmoduleelem",{"2":{"198":3,"199":2}}],["torquadmodule",{"2":{"195":1,"196":1,"197":9,"200":3,"201":4,"202":4,"203":3,"205":1,"206":1,"207":2,"208":8,"209":3,"210":15,"211":2}}],["torsion",{"0":{"195":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"14":5,"17":2,"38":2,"111":3,"113":3,"141":1,"146":10,"171":1,"195":3,"196":2,"201":6,"202":4,"203":3,"206":6,"207":1,"208":2,"209":3,"210":3}}],["totient",{"2":{"148":1}}],["totally",{"2":{"62":1,"107":3,"119":6,"178":3,"183":1,"293":4,"294":1}}],["too",{"2":{"133":1}}],["tol",{"2":{"112":12,"131":9,"169":2}}],["together",{"2":{"17":10,"18":3,"32":1,"73":2,"111":1,"117":1,"120":2,"121":2,"146":1,"148":2,"149":1,"180":1,"186":3,"196":1,"210":3,"242":1,"257":3,"270":1,"290":3}}],["tommy",{"2":{"4":2}}],["to",{"0":{"1":1,"35":1,"85":1,"199":1},"2":{"2":8,"6":1,"7":2,"9":1,"12":2,"13":1,"15":3,"16":1,"17":8,"18":2,"19":2,"20":4,"23":2,"27":2,"29":2,"35":2,"36":3,"39":3,"42":1,"43":3,"52":1,"53":1,"54":1,"55":2,"58":6,"61":2,"68":2,"73":2,"74":2,"75":1,"79":1,"80":1,"84":3,"85":2,"86":2,"87":10,"88":5,"89":8,"90":1,"92":1,"93":6,"94":7,"96":3,"97":3,"98":3,"100":5,"103":2,"104":1,"105":4,"106":4,"107":2,"108":8,"109":3,"111":4,"112":1,"113":2,"114":1,"116":5,"117":1,"120":5,"121":3,"122":4,"124":10,"125":2,"126":2,"127":2,"129":1,"133":4,"135":1,"136":1,"138":2,"140":1,"141":3,"142":2,"143":4,"146":12,"147":1,"149":1,"153":1,"167":2,"168":4,"169":4,"171":1,"174":4,"175":1,"176":6,"177":1,"178":1,"180":8,"182":3,"183":6,"184":2,"186":7,"188":1,"190":2,"192":1,"195":1,"196":3,"199":1,"200":1,"203":1,"204":1,"209":3,"210":6,"211":5,"213":6,"224":1,"226":1,"228":2,"229":1,"230":7,"232":2,"233":2,"235":1,"237":2,"238":1,"239":5,"241":1,"242":2,"245":2,"246":9,"248":1,"249":1,"253":11,"254":1,"255":2,"257":6,"258":1,"261":3,"262":6,"265":1,"266":3,"267":2,"268":1,"270":7,"271":6,"274":4,"278":4,"279":4,"280":4,"281":4,"285":1,"286":2,"287":1,"288":4,"290":7,"291":3,"293":2,"297":13,"299":9}}],["www",{"2":{"281":2}}],["writes",{"2":{"61":2,"111":1,"145":1}}],["written",{"2":{"58":1}}],["wrt",{"2":{"2":1,"58":2,"127":1,"142":2,"146":8,"168":1,"217":1,"232":2,"285":1,"292":1}}],["work",{"2":{"142":1,"175":1,"204":1,"270":1}}],["works",{"2":{"43":1,"60":1,"108":1,"176":1,"263":1,"265":1}}],["words",{"2":{"25":1}}],["would",{"2":{"39":1}}],["w",{"2":{"25":5,"180":3,"188":4,"255":1}}],["warning",{"2":{"53":1}}],["ways",{"2":{"126":1,"214":1,"229":1}}],["way",{"2":{"38":1,"87":1,"96":1,"167":1,"281":1}}],["was",{"2":{"18":2,"67":1,"75":1,"138":1,"147":1,"207":1}}],["wants",{"2":{"18":2,"43":1,"186":6,"210":6,"257":6,"290":6}}],["want",{"2":{"2":2}}],["while",{"2":{"30":1,"68":1,"73":1,"92":1,"133":3,"176":1,"178":1,"281":1}}],["which",{"2":{"2":2,"12":1,"16":1,"25":2,"30":1,"39":1,"45":1,"46":2,"47":1,"48":1,"55":2,"68":1,"79":1,"106":1,"107":1,"109":3,"111":2,"116":1,"120":1,"121":1,"122":1,"129":1,"131":2,"135":1,"139":1,"140":1,"143":2,"144":2,"146":3,"147":1,"164":1,"168":3,"169":3,"176":2,"178":1,"180":1,"182":1,"186":1,"209":1,"211":1,"228":6,"230":1,"231":1,"235":1,"246":2,"249":1,"270":1,"272":1,"281":2,"285":1,"286":2,"290":2,"295":1,"301":3}}],["whose",{"2":{"17":1,"67":2,"109":1,"153":1,"163":1,"180":1,"209":3,"211":2,"218":3,"231":1,"235":1,"242":1,"246":2,"286":1,"301":2}}],["whole",{"2":{"2":1,"42":1}}],["whether",{"2":{"14":5,"15":1,"24":4,"45":1,"47":1,"64":1,"107":7,"111":1,"113":6,"116":3,"119":9,"124":2,"129":1,"139":1,"144":1,"145":1,"147":6,"155":1,"157":8,"166":1,"168":4,"169":2,"170":3,"171":1,"178":7,"182":2,"184":4,"185":1,"190":1,"192":1,"201":2,"202":4,"203":1,"208":1,"218":5,"220":4,"224":1,"231":1,"235":2,"250":10,"252":3,"253":3,"255":6,"267":1,"284":2,"293":7,"295":1,"299":3,"301":3}}],["when",{"2":{"2":1,"40":1,"58":1,"93":1,"111":2,"146":1,"163":1,"213":1}}],["whereas",{"2":{"197":1}}],["where",{"2":{"2":1,"7":1,"8":1,"13":1,"16":1,"17":1,"42":2,"52":1,"58":1,"61":4,"67":1,"70":1,"71":1,"74":3,"79":1,"80":3,"83":1,"86":1,"87":2,"88":1,"89":3,"90":4,"92":1,"94":3,"96":1,"109":2,"111":1,"116":1,"117":2,"118":1,"121":1,"125":1,"126":2,"127":1,"137":1,"138":1,"145":1,"147":4,"155":1,"161":2,"169":1,"176":1,"180":1,"182":1,"184":2,"186":6,"188":2,"190":1,"195":1,"196":1,"207":1,"213":3,"218":3,"235":1,"239":1,"242":1,"246":2,"254":1,"255":1,"261":1,"266":2,"267":1,"286":1,"290":6,"293":1,"299":2}}],["wissenschaften",{"2":{"273":1}}],["wise",{"2":{"171":1}}],["witt",{"2":{"182":2,"183":1,"284":2,"285":1}}],["without",{"2":{"61":1,"88":1,"96":1}}],["within",{"2":{"5":1,"12":1,"36":1}}],["with",{"2":{"2":1,"4":1,"7":5,"11":1,"13":5,"14":1,"16":1,"17":16,"18":3,"23":1,"25":4,"26":1,"27":1,"28":1,"29":1,"32":3,"36":1,"40":1,"42":2,"45":5,"47":1,"48":6,"50":1,"53":3,"54":3,"55":2,"64":1,"67":8,"68":9,"73":3,"75":4,"78":2,"80":3,"86":1,"87":2,"88":5,"89":3,"92":2,"93":1,"94":2,"95":1,"96":4,"98":1,"105":1,"107":1,"109":2,"111":9,"112":2,"114":1,"116":3,"117":2,"119":1,"120":2,"121":3,"122":2,"128":2,"129":1,"131":2,"134":2,"136":2,"138":1,"139":1,"140":2,"141":1,"142":7,"144":1,"145":1,"146":11,"148":3,"152":1,"153":1,"155":2,"157":4,"162":1,"163":2,"167":1,"168":5,"169":6,"170":1,"174":5,"175":4,"176":2,"177":3,"180":6,"184":1,"186":9,"188":2,"196":4,"201":8,"202":4,"203":1,"204":1,"205":2,"206":1,"207":1,"208":1,"209":2,"210":9,"215":2,"217":2,"226":4,"229":1,"230":1,"231":4,"232":3,"236":2,"238":2,"239":2,"240":6,"242":1,"244":2,"246":9,"248":2,"249":2,"250":4,"253":2,"254":6,"255":8,"257":9,"261":6,"262":6,"263":1,"265":3,"267":2,"268":1,"270":8,"272":2,"278":1,"279":6,"280":6,"281":6,"283":4,"285":1,"287":28,"288":2,"289":17,"290":9,"292":4,"295":1,"297":2,"299":4,"301":5,"302":24}}],["wildanger",{"2":{"116":2,"146":1}}],["wil",{"2":{"98":1}}],["william",{"2":{"4":2}}],["will",{"2":{"2":2,"13":3,"25":2,"30":1,"40":3,"58":1,"61":1,"68":5,"75":2,"87":1,"89":1,"93":1,"96":1,"98":2,"103":2,"111":1,"113":2,"114":2,"116":2,"117":1,"125":1,"128":4,"131":1,"133":3,"141":1,"143":1,"146":9,"169":1,"170":1,"175":1,"195":3,"215":1,"230":2,"242":1,"267":1,"270":1,"274":1,"279":3,"280":3,"281":1,"285":1,"295":2}}],["wide",{"2":{"16":1,"30":1}}],["weakly",{"2":{"119":3}}],["weighted",{"2":{"112":1}}],["weierstrass",{"2":{"45":1,"46":2,"55":2}}],["weber",{"2":{"92":1}}],["well",{"2":{"15":1,"19":2,"87":1,"90":1,"137":1,"142":1,"146":1,"149":1,"167":2,"186":1,"195":1,"254":1,"261":1,"290":1}}],["we",{"2":{"2":8,"7":1,"9":1,"55":1,"58":1,"67":1,"73":3,"93":2,"99":1,"103":1,"109":3,"112":3,"125":1,"126":4,"131":1,"133":2,"139":1,"141":1,"142":1,"143":2,"167":1,"169":1,"175":1,"176":1,"178":2,"185":1,"196":5,"213":6,"215":1,"228":2,"230":2,"233":1,"242":1,"246":1,"255":1,"269":1,"270":5,"271":4,"286":2,"291":1,"297":2}}],["xviii+203",{"2":{"273":1}}],["xvi+578",{"2":{"273":1}}],["x↦φ",{"2":{"205":1}}],["x↦log⁡",{"2":{"104":1}}],["xk∈po",{"2":{"169":2}}],["xk=1",{"2":{"111":1}}],["x∈l",{"2":{"250":1}}],["x∈v∣φ",{"2":{"288":1}}],["x∈vp",{"2":{"190":1}}],["x∈v",{"2":{"184":1}}],["x∈k",{"2":{"169":1}}],["x∈k|xb⊆a",{"2":{"145":1}}],["x∈o∣∃k∈z≥0",{"2":{"169":2}}],["x≡r2modi2",{"2":{"148":1}}],["x≡r1modi1",{"2":{"148":1}}],["x≡ymodi",{"2":{"148":1}}],["x∩y",{"2":{"145":1}}],["x−1",{"2":{"116":1}}],["x¯n",{"2":{"111":1}}],["x¯1",{"2":{"111":1}}],["xn−b",{"2":{"119":2}}],["xn−a",{"2":{"116":1}}],["xn+∑i=0n−1",{"2":{"116":1}}],["xn=1",{"2":{"113":1}}],["xn",{"2":{"111":1,"116":2,"126":2}}],["x1",{"2":{"111":1,"116":2,"126":2}}],["xa=bd",{"2":{"88":1}}],["xs",{"2":{"87":2}}],["xj",{"2":{"80":3}}],["xiv+499",{"2":{"273":1}}],["xii+534",{"2":{"273":1}}],["xinl",{"2":{"250":1}}],["xi⊆i",{"2":{"169":1}}],["xi",{"2":{"79":1,"80":1,"286":4}}],["x=∑i=1dxiωi∈o",{"2":{"169":1}}],["x=",{"2":{"73":1}}],["x2−d",{"2":{"116":1}}],["x26",{"2":{"64":2,"230":2,"236":2,"238":2,"240":2}}],["x2+",{"2":{"2":1}}],["x3c",{"2":{"2":1,"13":3,"15":1,"19":1,"50":1,"51":1,"52":1,"53":2,"67":1,"90":1,"95":1,"96":3,"116":1,"142":3,"146":12,"168":2,"184":2,"186":6,"188":2,"195":1,"215":6,"217":1,"230":4,"232":2,"236":4,"238":7,"240":12,"281":4,"285":1,"287":40,"289":12,"290":6,"292":9,"302":48}}],["x^4",{"2":{"120":1}}],["x^8",{"2":{"120":1}}],["x^2",{"2":{"2":3,"45":1,"46":2,"95":1,"96":3,"101":1,"104":1,"105":2,"108":3,"111":1,"116":3,"117":3,"118":2,"142":1,"169":1,"215":1,"217":2,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":2,"234":1,"236":1,"238":1,"274":1}}],["x^3",{"2":{"2":3,"45":3,"46":3,"48":5,"50":1,"53":3,"54":2,"67":1,"108":1,"168":1}}],["x+",{"2":{"2":1}}],["x",{"2":{"2":7,"7":7,"8":4,"13":2,"17":3,"29":4,"45":6,"46":4,"48":5,"50":1,"53":4,"54":2,"60":5,"61":14,"67":1,"68":10,"73":1,"88":1,"90":6,"95":2,"96":2,"103":6,"104":1,"105":1,"107":3,"108":2,"109":2,"111":14,"112":28,"113":4,"116":8,"117":6,"118":4,"120":2,"125":2,"126":3,"129":2,"131":13,"140":3,"142":4,"144":13,"145":5,"146":3,"147":6,"148":3,"155":2,"163":2,"168":2,"169":4,"171":1,"182":3,"184":4,"186":12,"190":2,"195":2,"196":2,"205":4,"208":5,"209":1,"210":12,"215":2,"217":2,"219":2,"221":2,"223":2,"225":2,"227":2,"230":2,"232":2,"234":2,"236":2,"238":2,"246":2,"250":6,"257":12,"267":6,"270":3,"271":1,"274":2,"281":3,"283":1,"287":2,"288":1,"290":12,"291":3,"297":3}}],["f^4+f^3+f^2+f+1",{"2":{"261":1}}],["f^2+f+1",{"2":{"261":1}}],["f+1",{"2":{"255":1}}],["fp",{"2":{"142":1}}],["f2",{"2":{"122":1}}],["f1",{"2":{"111":1,"116":2,"117":1,"126":2}}],["f∈z",{"2":{"140":1}}],["f∈q",{"2":{"109":1}}],["f∈k",{"2":{"2":1,"116":1,"126":1}}],["fn∈k",{"2":{"126":1}}],["fn",{"2":{"103":2,"111":1,"116":2,"126":1}}],["flavour",{"2":{"288":1}}],["flat",{"2":{"18":2}}],["float64",{"2":{"88":2,"169":2,"170":1}}],["fl",{"2":{"64":1,"142":1}}],["fxied",{"2":{"58":1}}],["fqpolyrepfieldelem",{"2":{"61":1}}],["fqfieldelem",{"2":{"53":2,"142":1}}],["fq",{"2":{"52":2}}],["far",{"2":{"139":1}}],["fakefracfldmat",{"2":{"138":1,"147":1,"169":1}}],["fakefmpqmat",{"2":{"131":1,"138":1}}],["family",{"2":{"129":1,"131":1}}],["famous",{"2":{"92":1}}],["failure",{"2":{"125":2}}],["faster",{"2":{"60":1,"97":1,"133":1}}],["fast",{"2":{"58":1,"127":1}}],["fact",{"2":{"61":1,"109":1,"143":1}}],["factors",{"2":{"61":2,"144":1,"146":1}}],["factorised",{"2":{"61":1}}],["factorisation",{"2":{"61":9}}],["factorization",{"2":{"51":1,"93":1,"131":2,"144":1}}],["factored",{"0":{"58":1},"1":{"59":1,"60":1,"61":1,"62":1,"63":1},"2":{"58":5,"59":3,"60":5,"61":3,"62":1,"63":3,"113":1,"146":6,"147":1}}],["factor",{"2":{"51":1,"61":7,"131":1,"144":3,"146":6,"180":1}}],["facelem",{"2":{"58":4,"59":11,"60":5,"61":25,"63":3,"112":1,"146":2,"147":1}}],["fac",{"2":{"51":4,"61":1,"131":4,"146":11,"147":2,"171":3}}],["false",{"2":{"17":4,"24":1,"25":2,"32":1,"36":1,"45":1,"47":1,"48":2,"87":1,"88":3,"93":2,"96":1,"97":1,"100":2,"107":1,"113":2,"116":4,"119":1,"120":2,"121":1,"122":4,"136":2,"142":1,"144":2,"145":1,"146":7,"153":1,"168":2,"179":1,"185":1,"193":1,"214":1,"221":2,"234":2,"235":2,"245":1,"246":1,"255":1,"265":1,"267":2,"278":2,"279":2,"280":2,"281":2,"286":2,"294":2,"299":1,"300":1,"302":3}}],["follows",{"2":{"73":1,"103":1,"106":1,"269":1}}],["follow",{"2":{"73":1,"139":1}}],["following",{"2":{"30":1,"42":1,"68":1,"73":1,"103":1,"116":2,"126":1,"148":1,"175":1,"177":1,"186":1,"209":2,"274":1,"281":2,"288":1,"290":1}}],["found",{"2":{"38":1,"121":1,"272":1}}],["forschungsgemeinschaft",{"2":{"5":1}}],["for",{"0":{"84":1,"212":1,"297":1},"1":{"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"298":1},"2":{"4":2,"7":1,"9":1,"11":1,"13":1,"17":13,"18":2,"25":3,"28":1,"29":1,"30":3,"32":1,"33":1,"34":1,"38":1,"40":1,"43":2,"51":1,"55":2,"58":2,"59":2,"60":1,"61":3,"62":1,"67":2,"68":8,"70":1,"71":1,"73":2,"75":3,"78":1,"79":4,"86":2,"88":6,"89":1,"92":3,"93":3,"94":2,"96":5,"97":2,"98":3,"99":1,"103":1,"108":1,"109":2,"112":3,"113":1,"116":3,"117":2,"118":1,"119":2,"121":1,"125":2,"131":3,"135":1,"139":1,"141":2,"142":1,"143":3,"144":2,"146":14,"147":4,"148":3,"149":3,"157":4,"161":4,"163":1,"166":1,"167":1,"168":2,"169":3,"170":1,"171":3,"175":1,"177":1,"178":1,"180":3,"182":2,"183":2,"184":1,"186":5,"195":1,"197":2,"198":1,"199":3,"202":2,"204":1,"209":4,"210":3,"213":5,"214":1,"215":3,"216":3,"218":13,"220":4,"222":2,"224":3,"226":2,"228":1,"229":2,"230":4,"231":4,"235":5,"236":1,"237":2,"238":3,"239":2,"240":22,"246":6,"248":1,"250":5,"251":2,"253":1,"254":1,"255":4,"257":3,"263":3,"266":2,"268":1,"270":3,"271":1,"272":1,"274":2,"285":2,"288":2,"290":5,"297":2}}],["format",{"2":{"281":1}}],["formally",{"2":{"58":1}}],["formal",{"2":{"4":1,"94":3,"96":1,"98":2}}],["former",{"2":{"178":1}}],["formula",{"2":{"97":1,"229":1}}],["form",{"0":{"203":1,"207":1,"248":1},"2":{"14":1,"16":1,"17":2,"58":2,"59":1,"61":2,"73":1,"75":4,"79":1,"86":1,"87":1,"88":7,"109":1,"113":1,"117":1,"119":2,"143":1,"146":5,"147":1,"155":2,"157":6,"161":2,"163":5,"168":1,"180":4,"195":3,"196":1,"197":14,"201":4,"203":2,"205":2,"206":5,"207":3,"208":7,"209":8,"213":2,"246":3,"248":1}}],["forms",{"2":{"3":1,"43":1,"146":1,"166":1,"195":1,"208":1,"242":1,"272":1,"273":1,"281":2}}],["fujiki",{"2":{"246":2}}],["full",{"2":{"88":3,"178":1,"196":1,"245":1,"278":2,"279":2,"280":2}}],["further",{"2":{"61":1,"73":1}}],["fundamental",{"2":{"58":1,"146":2,"254":6}}],["functors",{"2":{"16":1}}],["functions",{"0":{"61":1,"68":1},"2":{"16":1,"17":1,"30":3,"62":1,"68":2,"74":1,"111":2,"116":2,"167":1,"171":3,"290":1}}],["functionality",{"0":{"84":1},"2":{"12":1,"30":2,"39":1,"55":1,"99":1,"108":1,"196":1}}],["function",{"2":{"2":1,"7":3,"8":2,"25":1,"75":1,"89":4,"93":1,"103":7,"109":1,"111":7,"114":4,"116":2,"117":4,"118":2,"119":4,"120":3,"121":3,"122":5,"123":1,"128":3,"131":1,"146":3,"148":1,"157":2,"168":1,"169":6,"170":2,"178":1,"196":1,"202":2,"250":2,"278":1,"279":1,"280":1,"281":1}}],["future",{"2":{"30":1,"168":1}}],["features",{"0":{"3":1},"2":{"55":1}}],["fbar",{"2":{"2":2}}],["fi",{"2":{"117":1}}],["fixed",{"2":{"79":1,"86":1,"98":1,"122":2,"167":1,"176":4,"177":1,"180":2,"184":2,"190":1,"262":2,"270":3,"271":3,"286":4,"287":2,"291":1,"301":3}}],["fix",{"2":{"73":1}}],["filter",{"2":{"68":2,"267":2}}],["file",{"2":{"35":1,"38":1,"39":5}}],["files",{"0":{"35":1},"2":{"34":1,"35":1}}],["first",{"2":{"22":1,"60":1,"85":1,"113":1,"254":1}}],["finitly",{"2":{"141":1}}],["finite",{"0":{"49":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"10":1,"11":1,"14":4,"17":2,"18":3,"30":1,"50":1,"51":2,"55":1,"60":1,"67":3,"73":1,"93":1,"98":1,"109":1,"126":2,"133":3,"141":1,"146":1,"184":2,"186":7,"195":1,"196":2,"201":18,"202":4,"205":1,"206":4,"210":6,"233":1,"257":6,"261":6,"270":1,"290":7}}],["finitely",{"2":{"6":1,"11":1,"12":2,"13":1,"17":4,"18":1,"73":1,"242":1,"270":1,"271":1}}],["fingengrpabmap",{"2":{"93":4}}],["fingengrpab",{"2":{"93":4}}],["fingenabgrouphom",{"2":{"15":1,"16":1,"17":11,"18":4,"94":1}}],["fingenabgroup",{"2":{"7":9,"13":13,"14":12,"15":6,"16":2,"17":41,"18":5,"19":6,"20":3,"53":1,"93":2,"146":5,"148":4,"197":1}}],["fingenabgroupelem",{"2":{"6":1,"7":7,"8":2,"10":1,"13":1,"17":9,"146":1}}],["finfieldelem",{"2":{"50":1,"51":1,"52":2,"53":2}}],["finding",{"2":{"96":1}}],["finds",{"2":{"63":3,"88":3,"125":1,"146":1,"169":1}}],["find",{"2":{"16":1,"17":1,"88":2,"89":3,"98":2,"113":1,"121":1,"122":1,"125":1,"133":1,"146":4,"147":2,"148":1,"169":1}}],["finally",{"2":{"2":1,"68":1,"271":1,"281":1}}],["fieker",{"2":{"4":2}}],["fieldelem",{"2":{"45":1,"46":2,"111":2,"129":1,"131":1,"176":2,"180":5,"182":1,"241":2}}],["field",{"0":{"91":1,"115":1,"279":1},"1":{"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"98":1,"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1},"2":{"2":10,"3":1,"22":2,"23":1,"28":1,"32":3,"45":2,"46":8,"48":1,"50":1,"51":2,"58":2,"62":1,"73":1,"89":2,"92":4,"93":2,"94":21,"95":4,"96":23,"97":10,"98":8,"99":1,"100":7,"101":8,"102":1,"103":1,"104":2,"105":12,"106":3,"107":13,"108":11,"109":3,"111":18,"113":3,"114":13,"116":38,"117":10,"118":8,"119":10,"120":1,"121":6,"122":9,"123":4,"124":10,"125":1,"126":9,"127":4,"128":5,"129":1,"131":2,"133":5,"134":1,"135":1,"139":3,"140":2,"141":1,"142":7,"143":1,"145":1,"146":11,"147":2,"148":4,"167":5,"168":6,"169":11,"170":2,"171":1,"174":2,"175":5,"176":5,"177":11,"179":1,"180":2,"181":1,"183":3,"184":2,"185":1,"187":2,"190":1,"191":1,"193":1,"215":6,"216":2,"217":6,"219":2,"221":2,"223":2,"225":2,"227":2,"230":12,"231":2,"232":6,"234":2,"236":6,"238":7,"239":1,"240":7,"241":2,"249":1,"270":5,"271":3,"274":2,"279":8,"280":4,"281":12,"283":6,"285":2,"286":8,"287":18,"288":1,"289":6,"291":1,"292":2,"294":2,"296":1,"298":2,"300":1,"302":2}}],["fields",{"0":{"2":1,"49":1,"56":1,"94":1,"116":1,"133":1,"134":1,"140":1,"141":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1,"95":1},"2":{"3":2,"55":3,"58":1,"61":1,"78":1,"92":5,"98":1,"99":1,"108":1,"109":2,"116":6,"119":1,"120":2,"133":8,"139":3,"141":2,"142":1,"143":1,"166":1,"167":5,"213":1,"268":1,"272":2,"273":1}}],["fr",{"2":{"117":1}}],["fraction",{"2":{"141":1}}],["fractional",{"0":{"135":1},"1":{"136":1,"137":1,"138":1},"2":{"59":1,"73":1,"135":2,"136":16,"137":1,"138":2,"141":1,"147":2,"255":1,"286":1,"287":13,"288":1,"291":1,"292":2,"293":2,"302":12}}],["frakp",{"2":{"2":2}}],["frobenius",{"0":{"52":1},"2":{"52":8,"94":1}}],["from",{"0":{"85":1,"151":1,"152":1,"154":1,"205":1,"206":1,"244":1,"247":1},"2":{"2":2,"15":2,"18":1,"20":1,"45":3,"61":1,"67":2,"87":2,"90":1,"93":2,"94":1,"116":2,"120":2,"122":2,"123":3,"126":1,"143":1,"146":2,"177":1,"182":1,"246":1,"272":1,"287":1,"297":2,"299":1,"301":1}}],["frequently",{"2":{"58":1,"73":1,"116":1}}],["fredrik",{"2":{"4":2}}],["free",{"2":{"3":1,"13":2,"14":3,"15":2,"16":1,"73":1,"74":1,"109":1,"139":1,"141":1,"143":1,"167":1,"279":1,"280":1}}],["f",{"2":{"2":6,"16":2,"17":1,"46":3,"51":2,"88":2,"89":3,"93":3,"98":1,"101":4,"102":2,"103":4,"105":7,"106":6,"109":1,"111":1,"116":4,"117":2,"122":2,"126":1,"140":2,"146":10,"147":6,"148":1,"180":1,"182":3,"203":1,"234":2,"255":1,"261":4,"262":3,"274":2,"281":2,"297":3}}],["f=x3+",{"2":{"2":1}}],["f=ok",{"2":{"2":2}}],["f¯∈f",{"2":{"2":1}}],["gm",{"2":{"299":1}}],["gb=",{"2":{"270":1}}],["gc",{"2":{"265":1}}],["gcd",{"2":{"61":1,"145":1}}],["good",{"2":{"213":1}}],["gorenstein",{"2":{"170":4}}],["going",{"2":{"93":1,"285":1}}],["g2",{"2":{"154":2,"160":3,"166":2,"186":1,"215":1,"219":8,"227":3,"230":1,"232":5,"237":6,"238":4,"290":1}}],["g∘f",{"2":{"105":1}}],["galois",{"0":{"123":1},"2":{"98":1,"123":1}}],["glue",{"2":{"261":10}}],["globally",{"2":{"185":1}}],["global",{"0":{"228":1,"229":1},"1":{"229":1,"230":2,"231":1,"232":1,"233":1,"234":1},"2":{"92":1,"228":1,"229":2,"230":1,"231":8,"235":4,"237":2,"239":1,"241":2}}],["gl",{"2":{"88":1,"299":1}}],["glz",{"2":{"64":3}}],["gf",{"2":{"45":2,"50":1,"51":2,"52":2,"53":3,"54":1,"142":1}}],["gt",{"2":{"42":2,"89":1,"93":1,"103":1,"135":1,"146":2,"169":1,"196":4,"208":1,"213":1}}],["guarenteed",{"2":{"146":1}}],["guaranteed",{"2":{"25":2,"93":1,"103":1}}],["guides",{"0":{"1":1}}],["g=g1⊗⋯⊗gn",{"2":{"19":1}}],["g1",{"2":{"154":2,"160":3,"166":2,"186":1,"213":1,"215":1,"217":4,"221":5,"223":2,"225":3,"230":3,"236":9,"237":6,"238":5,"290":1}}],["g1×⋯×gn",{"2":{"19":1}}],["g1⊗⋯⊗gn",{"2":{"19":2}}],["g→o×",{"2":{"146":1}}],["g→h",{"2":{"17":5}}],["g→a⊕b⊕c",{"2":{"18":1}}],["g→a",{"2":{"16":2}}],["gi→hi",{"2":{"19":1}}],["gi→hj",{"2":{"15":1}}],["gi",{"2":{"18":1,"19":1,"213":2,"295":2}}],["give",{"2":{"133":1,"146":2}}],["gives",{"2":{"73":1}}],["given",{"0":{"72":1,"278":1},"2":{"2":1,"6":1,"7":2,"13":1,"14":1,"15":1,"16":1,"17":4,"18":3,"19":2,"23":2,"25":2,"26":2,"29":1,"32":3,"33":1,"45":1,"46":3,"51":2,"55":1,"61":1,"64":1,"67":1,"68":2,"81":1,"88":3,"89":7,"93":6,"94":4,"96":2,"97":1,"98":4,"103":1,"104":1,"105":3,"106":3,"107":3,"109":1,"111":10,"113":1,"114":5,"116":6,"117":5,"118":2,"119":4,"120":2,"121":4,"122":4,"123":4,"128":3,"133":2,"146":4,"153":1,"157":4,"159":1,"161":1,"163":1,"164":1,"168":1,"169":3,"171":1,"180":3,"184":2,"186":3,"188":2,"190":1,"195":1,"196":1,"197":2,"202":4,"203":2,"206":1,"208":1,"209":2,"210":3,"213":1,"216":3,"218":14,"220":4,"222":1,"224":3,"226":2,"229":2,"231":6,"233":1,"235":3,"237":2,"239":1,"241":2,"242":1,"245":1,"246":2,"249":1,"250":4,"253":2,"254":2,"255":2,"257":3,"261":3,"262":3,"265":1,"266":1,"278":4,"279":4,"280":4,"281":1,"286":2,"288":1,"290":4,"295":1,"297":2,"301":6}}],["giving",{"2":{"4":1,"59":1,"98":1,"127":1,"153":1}}],["g≅z",{"2":{"14":1}}],["grundlehren",{"2":{"273":1}}],["graduate",{"2":{"273":2}}],["gram=zz",{"2":{"248":1,"254":2}}],["gram=2",{"2":{"246":1}}],["gram=matrix",{"2":{"209":1}}],["gram",{"0":{"152":1,"226":1,"244":1},"1":{"227":1},"2":{"152":1,"155":1,"162":1,"164":2,"174":7,"175":2,"176":4,"177":1,"178":2,"180":7,"181":2,"182":1,"196":2,"197":4,"201":4,"206":5,"213":1,"215":1,"219":1,"226":6,"227":3,"228":1,"230":1,"231":1,"232":1,"234":1,"238":1,"244":8,"246":6,"248":1,"249":6,"250":1,"254":8,"255":3,"261":4,"263":1,"265":1,"266":2,"270":2,"279":22,"280":22,"281":4,"282":2,"283":5,"285":2,"286":2,"287":2,"289":3,"292":1,"294":1,"295":1,"296":1,"298":1,"299":2,"300":2,"302":1}}],["grptogrp",{"2":{"123":3}}],["grp",{"2":{"123":3}}],["grpgentonfmorset",{"2":{"122":1}}],["grpabfingemmap",{"2":{"17":1}}],["grpab",{"2":{"12":1,"16":1,"146":4}}],["grh",{"2":{"119":1,"146":8}}],["groupalgebra",{"2":{"28":1}}],["groups",{"0":{"93":1,"194":1,"204":1},"1":{"195":1,"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1,"204":1,"205":2,"206":2,"207":2,"208":2,"209":2,"210":2,"211":2},"2":{"3":2,"12":2,"13":7,"15":3,"16":1,"17":2,"18":2,"19":2,"78":1,"92":3,"94":1,"116":1,"171":1,"202":2,"204":1,"261":1,"272":1,"273":1}}],["group",{"0":{"20":1,"27":1,"53":1,"146":1,"156":1,"260":1},"1":{"28":1,"29":1},"2":{"3":1,"6":1,"7":1,"11":5,"12":1,"13":20,"14":3,"15":5,"16":3,"17":15,"18":4,"20":2,"27":1,"28":8,"29":8,"30":1,"53":6,"58":1,"92":1,"93":30,"94":13,"95":1,"96":3,"97":3,"98":1,"118":3,"119":1,"122":3,"123":10,"131":1,"135":1,"146":56,"148":8,"156":1,"157":8,"171":11,"195":2,"196":6,"197":3,"201":4,"202":12,"203":2,"205":6,"206":4,"209":2,"211":5,"233":1,"235":1,"250":12,"253":8,"260":1,"274":2,"297":7,"298":2}}],["geometric",{"2":{"273":1}}],["getting",{"0":{"274":1}}],["get",{"2":{"23":1,"88":1,"93":1,"177":1,"183":1,"224":1,"281":1}}],["getindex",{"2":{"7":1,"8":2,"81":1,"89":2}}],["genordidl",{"2":{"138":1,"147":1,"169":1}}],["gengrp",{"2":{"122":1}}],["genusrep",{"2":{"38":2}}],["genus",{"0":{"153":1,"154":1,"155":1,"161":1,"209":1,"213":1,"214":1,"228":1,"229":1,"235":1,"247":1,"251":1},"1":{"156":1,"157":1,"158":1,"162":1,"163":1,"164":1,"165":1,"166":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"229":1,"230":2,"231":1,"232":1,"233":1,"234":1,"236":1},"2":{"38":4,"39":2,"43":2,"96":1,"149":7,"151":2,"152":2,"154":1,"155":10,"157":6,"159":9,"160":2,"161":4,"162":4,"163":5,"164":4,"165":1,"209":5,"213":2,"214":4,"215":4,"216":3,"217":1,"218":17,"219":1,"220":4,"221":1,"222":1,"223":1,"224":3,"225":1,"226":4,"227":1,"228":3,"229":5,"230":5,"231":11,"232":1,"233":6,"235":9,"236":3,"237":4,"238":6,"239":2,"240":21,"241":4,"246":19,"247":1,"251":5,"263":5}}],["gen",{"2":{"15":7,"111":1,"146":2,"147":2,"169":1}}],["genera",{"0":{"149":1,"150":1,"157":1,"212":1,"237":1,"239":1},"1":{"150":1,"151":2,"152":2,"153":2,"154":2,"155":1,"156":1,"157":1,"158":1,"159":1,"160":1,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":2,"239":1,"240":2,"241":1},"2":{"149":2,"153":7,"157":2,"209":2,"239":4,"240":2,"263":1}}],["generalized",{"2":{"90":3,"109":1,"146":1,"169":1,"286":1}}],["generally",{"2":{"58":1}}],["general",{"2":{"12":1,"16":1,"25":2,"58":3,"59":1,"73":1,"74":1,"92":1,"94":1,"96":1,"116":1,"133":1,"141":2,"146":2,"167":1,"204":1,"270":1,"271":1}}],["generator",{"2":{"116":3,"143":1,"146":7,"147":6,"222":1,"250":2,"255":1,"285":1,"292":1}}],["generators",{"0":{"25":1},"2":{"6":1,"7":1,"11":1,"13":4,"14":3,"15":1,"17":3,"25":5,"53":1,"141":1,"148":3,"195":2,"253":5,"278":1,"286":7,"287":2,"297":3,"298":1}}],["generating",{"2":{"73":2,"286":2}}],["generate",{"2":{"73":1}}],["generates",{"2":{"25":2}}],["generated",{"2":{"6":1,"11":1,"12":1,"17":9,"61":4,"73":1,"93":1,"136":2,"141":1,"143":1,"144":4,"145":1,"146":3,"147":1,"155":1,"163":1,"168":1,"170":1,"242":1,"250":2,"270":1,"271":1,"291":1}}],["generically",{"2":{"61":1}}],["generic",{"2":{"12":1,"28":1,"74":3,"296":2,"298":1}}],["gensl",{"2":{"246":2}}],["gens",{"2":{"7":1,"17":8,"25":5,"53":3,"111":1,"195":3,"201":2,"215":2,"219":2,"227":2,"230":2,"232":2,"234":2,"238":2,"278":4,"279":5,"280":5,"281":8,"283":4,"285":4,"287":2,"289":4,"292":2,"294":2,"296":2,"298":2,"300":4,"302":2}}],["g",{"2":{"7":6,"11":4,"13":1,"14":14,"15":17,"16":5,"17":68,"18":10,"19":2,"20":2,"25":5,"27":2,"28":3,"29":9,"58":1,"88":2,"89":10,"98":1,"105":3,"106":2,"122":2,"128":1,"139":1,"146":1,"155":14,"157":10,"158":1,"159":8,"164":3,"174":3,"201":2,"213":6,"216":7,"218":41,"220":8,"222":2,"224":8,"226":8,"228":2,"231":17,"233":2,"234":2,"235":16,"241":9,"254":2,"262":9,"263":4,"266":2,"281":6,"283":2,"287":2,"292":2,"294":2,"298":2,"302":2}}],["pv",{"2":{"293":1}}],["pvlp",{"2":{"293":1}}],["p=7∗ok",{"2":{"285":1}}],["p=29",{"2":{"2":1}}],["pdf",{"2":{"272":2}}],["pmaximal",{"2":{"169":2}}],["pmatrix",{"2":{"169":2}}],["pmat",{"2":{"73":1,"74":4,"75":7,"168":1,"169":1,"278":1,"279":1,"280":1,"286":1}}],["pp",{"2":{"163":1}}],["phi",{"2":{"148":2,"201":10,"248":1}}],["p^",{"2":{"196":2}}],["p^m",{"2":{"161":1}}],["p^2",{"2":{"142":1}}],["p^e",{"2":{"131":1}}],["p−j=0",{"2":{"89":1}}],["p−subgroup",{"2":{"17":1}}],["p≠0",{"2":{"89":1}}],["pi",{"2":{"111":1,"147":5}}],["picard",{"2":{"94":1,"146":4,"171":1}}],["pivot",{"2":{"88":1}}],["pid",{"2":{"58":1,"73":1}}],["psi",{"2":{"213":1}}],["pseudo",{"0":{"73":1},"1":{"74":1,"75":1,"76":1},"2":{"73":12,"74":7,"75":4,"96":1,"141":2,"168":1,"169":6,"215":2,"230":1,"236":2,"238":2,"240":6,"253":1,"278":2,"279":2,"280":2,"281":2,"286":11,"287":23,"288":2,"289":8,"292":4,"297":1,"299":2,"302":27}}],["psubgroups",{"2":{"17":2}}],["performance",{"2":{"253":3,"297":2,"299":2}}],["performant",{"2":{"86":1}}],["per",{"2":{"45":1,"47":1,"100":1}}],["pkg",{"2":{"42":2,"274":2}}],["plc",{"2":{"93":1,"97":2,"124":2}}],["plane",{"2":{"192":1,"246":5,"255":1}}],["planes",{"2":{"192":1}}],["play",{"2":{"142":1}}],["plays",{"2":{"78":1}}],["places",{"0":{"124":1},"2":{"93":3,"94":1,"97":1,"98":2,"124":12,"146":1,"184":2,"228":2,"229":2,"230":1,"231":2,"236":1,"238":1,"240":1,"301":1}}],["place",{"2":{"36":1,"111":1,"124":5,"182":1,"183":3,"190":2,"228":1,"230":7,"231":1,"232":1,"238":1,"284":3,"295":1}}],["please",{"2":{"4":1,"274":1}}],["push",{"2":{"17":1,"68":1,"87":1}}],["pure",{"2":{"17":10,"19":1,"119":1}}],["publisher",{"2":{"4":1}}],["pohst",{"2":{"273":1}}],["po",{"2":{"169":2}}],["poverorders",{"2":{"169":1}}],["poverorder",{"2":{"169":2}}],["polredabs",{"2":{"121":2}}],["poly",{"2":{"116":1}}],["polyringelem",{"2":{"46":2,"93":2,"114":4,"116":1,"117":2}}],["polyring",{"2":{"46":1}}],["polynomial",{"2":{"2":3,"46":3,"88":1,"93":1,"95":1,"96":3,"105":2,"109":1,"113":1,"114":4,"116":9,"117":2,"118":2,"119":5,"121":2,"122":1,"125":3,"126":1,"127":1,"131":2,"133":1,"142":2,"168":1,"169":1,"175":2,"177":3,"217":2,"232":2,"234":2,"281":2,"283":2,"287":3}}],["polynomials",{"0":{"2":1},"2":{"46":4,"96":2,"116":3,"117":2,"126":1,"133":2,"168":1}}],["pop",{"2":{"68":3}}],["point",{"2":{"47":2,"48":7,"50":2,"51":3,"53":3,"54":2,"94":1,"171":1}}],["points",{"0":{"47":1,"50":1,"53":1},"1":{"48":1},"2":{"48":6,"52":1,"53":2}}],["pointwise",{"2":{"15":1,"148":1}}],["pos",{"2":{"263":2}}],["posinf",{"2":{"111":1}}],["positivity",{"0":{"62":1,"107":1},"2":{"62":1}}],["positive",{"2":{"13":1,"62":2,"67":2,"84":1,"98":1,"107":15,"125":1,"131":1,"137":1,"146":1,"155":1,"178":5,"179":1,"248":1,"250":2,"252":4,"253":3,"258":1,"267":1,"293":7,"294":2,"297":2,"299":2}}],["position",{"2":{"7":1}}],["possible",{"2":{"29":1,"46":1,"61":1,"75":2,"96":1,"139":1,"142":1,"145":1,"211":2,"224":1,"290":1}}],["possibly",{"2":{"25":2,"138":2,"147":2}}],["powermod",{"2":{"130":1}}],["powers",{"2":{"58":1,"61":1,"224":1}}],["power",{"2":{"17":1,"52":1,"58":1,"60":1,"61":1,"96":2,"109":2,"111":2,"118":1,"125":1,"145":6,"146":3,"168":3,"169":2}}],["potentially",{"2":{"7":1,"116":1}}],["packings",{"2":{"273":1}}],["packing",{"2":{"266":1}}],["packages",{"2":{"4":2}}],["pass",{"2":{"113":1}}],["passed",{"2":{"61":1,"93":1}}],["pairwise",{"2":{"144":1,"186":1,"233":1}}],["pair",{"2":{"16":1,"67":1,"122":1,"149":1,"153":3,"209":4}}],["pairs",{"2":{"15":1,"29":1,"59":1,"100":1,"120":1,"286":1}}],["parity",{"2":{"209":15}}],["pari",{"2":{"121":1}}],["pariwise",{"2":{"61":3}}],["parametried",{"2":{"133":1}}],["parametrized",{"2":{"58":1,"79":1,"86":1,"92":1,"128":1}}],["parameters",{"2":{"253":3,"297":2,"299":2}}],["parameter",{"2":{"116":3,"246":2}}],["parallel",{"2":{"42":1}}],["parentof",{"2":{"143":1}}],["parent",{"2":{"7":2,"48":2,"58":1,"61":1,"111":2,"116":1,"129":1,"169":2,"199":1}}],["partial=false",{"2":{"208":1}}],["partial",{"2":{"61":3}}],["particularly",{"2":{"204":1}}],["particular",{"2":{"40":1,"68":1,"79":1,"168":1,"213":1,"233":1,"268":1,"270":1}}],["part",{"2":{"5":1,"75":3,"182":1,"196":1}}],["pages",{"2":{"4":2}}],["pradical",{"2":{"169":3}}],["practical",{"2":{"92":1}}],["press",{"2":{"273":1}}],["prescribed",{"2":{"98":1}}],["preserves",{"2":{"75":2}}],["present>",{"2":{"142":1}}],["presentation",{"2":{"58":1,"61":3,"133":1,"143":1}}],["presented",{"2":{"12":1,"13":1}}],["precision",{"2":{"112":1}}],["precisely",{"2":{"79":1,"86":1,"146":1}}],["prec",{"2":{"61":2,"103":4}}],["preimages",{"2":{"20":1}}],["preimage",{"2":{"15":1,"19":1}}],["predicates",{"0":{"9":1,"24":1,"113":1,"119":1,"172":1,"178":1,"220":1,"293":1},"1":{"120":1,"179":1,"221":1,"294":1},"2":{"9":1}}],["primary",{"0":{"157":1,"202":1},"2":{"127":1,"157":7,"202":5,"250":7}}],["primitive=true",{"2":{"263":1}}],["primitive",{"2":{"111":1,"116":1,"117":3,"133":1,"204":1,"255":13,"261":3,"263":4,"288":2}}],["primes",{"2":{"17":1,"61":1,"88":3,"94":1,"98":1,"146":1,"149":1,"155":2,"168":4,"170":2,"231":1,"232":1}}],["prime",{"0":{"2":1},"2":{"2":7,"17":1,"45":1,"61":1,"88":2,"96":2,"98":2,"111":1,"113":2,"119":2,"123":3,"131":1,"142":2,"144":3,"146":13,"147":9,"148":2,"149":1,"157":8,"161":3,"162":2,"163":2,"169":5,"170":1,"183":2,"184":1,"185":1,"191":1,"192":2,"193":1,"202":8,"213":2,"214":2,"215":4,"216":2,"217":2,"218":12,"219":1,"220":4,"221":1,"222":1,"223":1,"225":1,"226":2,"227":1,"228":3,"230":1,"231":1,"232":1,"235":2,"236":1,"237":1,"238":2,"239":2,"240":1,"241":1,"250":8,"261":1,"285":2,"289":1,"293":2,"294":1,"295":2,"296":1,"299":1,"300":1,"301":3,"302":1}}],["princ",{"2":{"147":2}}],["principal",{"2":{"61":3,"120":3,"131":1,"136":2,"141":1,"142":2,"144":5,"146":18,"147":4,"285":1,"292":1}}],["prints",{"2":{"281":1}}],["printed",{"2":{"116":2}}],["printing",{"2":{"116":3}}],["println",{"2":{"11":1}}],["proper",{"2":{"301":3}}],["property",{"2":{"33":1,"94":1,"135":1,"148":1,"184":1,"301":3}}],["properties",{"0":{"23":1,"46":1,"88":1,"101":1,"117":1,"129":1,"168":1,"295":1},"1":{"169":1,"296":1}}],["prompt",{"2":{"274":1}}],["progress",{"2":{"96":1,"171":1}}],["program",{"2":{"88":1}}],["programming",{"2":{"4":2}}],["probabilistic",{"2":{"93":1,"96":1,"119":1}}],["provide",{"2":{"103":1}}],["provided",{"2":{"30":1,"105":1,"116":2,"134":2,"137":1,"267":1}}],["proven",{"2":{"88":1}}],["proj",{"2":{"61":2,"187":3}}],["projective",{"2":{"47":1,"55":1,"73":1}}],["projections",{"2":{"18":3,"186":7,"210":6,"257":6,"290":7}}],["projection",{"2":{"17":5,"18":3,"94":1,"146":1,"148":2,"188":3,"196":1,"208":1}}],["project",{"2":{"5":1,"48":1,"61":1}}],["processing",{"2":{"171":1}}],["processes",{"2":{"42":2}}],["process",{"2":{"36":1,"60":1}}],["proceedings",{"2":{"4":2}}],["prod",{"2":{"25":2,"58":1,"59":1,"131":1,"186":2,"290":2}}],["producs",{"0":{"19":1}}],["product",{"2":{"13":1,"18":6,"19":4,"60":1,"61":2,"88":1,"90":7,"146":2,"180":3,"181":1,"182":1,"186":10,"198":6,"210":8,"229":1,"246":2,"257":8,"290":10}}],["products",{"0":{"18":1,"180":1},"1":{"181":1},"2":{"13":1,"15":1,"16":1,"18":3,"58":1,"61":1,"90":1,"186":4,"210":3,"257":3,"290":4}}],["p",{"2":{"2":10,"17":13,"47":1,"48":9,"51":5,"54":5,"59":2,"61":5,"75":6,"88":3,"89":1,"98":6,"111":6,"112":5,"113":3,"119":6,"123":9,"124":4,"131":1,"142":3,"144":3,"146":8,"147":23,"148":2,"149":1,"155":2,"157":14,"158":2,"161":2,"162":4,"163":12,"166":1,"169":19,"182":7,"183":5,"184":3,"185":3,"190":5,"191":2,"192":4,"193":2,"196":3,"202":12,"213":13,"214":4,"215":3,"216":2,"217":2,"218":24,"219":2,"220":8,"221":2,"222":2,"223":2,"225":2,"226":4,"227":2,"228":3,"230":2,"232":1,"235":2,"236":2,"237":2,"238":3,"239":5,"240":2,"241":1,"250":14,"253":2,"261":6,"273":5,"284":6,"285":4,"289":2,"293":4,"294":2,"295":10,"296":4,"299":2,"300":2,"301":15,"302":4}}],["aφ",{"2":{"288":1}}],["akad",{"2":{"273":1}}],["again",{"2":{"271":1,"297":1}}],["agrees",{"2":{"301":1}}],["agree",{"2":{"18":1,"176":1,"186":3,"210":3,"235":2,"257":3,"290":3}}],["a+n∈m",{"2":{"199":2}}],["a∩z",{"2":{"147":2}}],["a∩o",{"2":{"83":1,"147":2}}],["ae",{"2":{"146":1}}],["a∗b⊊order",{"2":{"145":1}}],["a∗o",{"2":{"59":1}}],["a∈k",{"2":{"113":1,"288":1}}],["a∈k∗",{"2":{"93":1}}],["am",{"2":{"255":1}}],["among",{"2":{"167":1,"266":1}}],["amounts",{"2":{"98":1}}],["ambient",{"0":{"278":1,"282":1},"1":{"283":1},"2":{"107":1,"128":2,"129":1,"131":2,"148":1,"169":10,"170":2,"176":1,"196":1,"199":1,"213":1,"242":2,"245":1,"246":1,"249":4,"253":3,"255":9,"257":3,"261":1,"262":11,"265":3,"271":1,"278":4,"279":3,"280":3,"282":3,"283":1,"286":2,"288":6,"289":1,"290":3,"297":4,"299":4,"301":3,"302":1}}],["amp",{"0":{"62":1,"107":1},"2":{"62":1,"159":2,"163":2}}],["a>",{"2":{"96":1,"142":2,"215":2,"217":1,"230":1,"232":1,"238":2}}],["a−1",{"2":{"93":1}}],["automatically",{"2":{"281":1}}],["automorphism",{"2":{"94":3,"97":1,"122":4,"123":3,"174":1,"182":1,"233":1,"235":1,"253":5,"297":6,"298":2}}],["automorphisms",{"0":{"297":1},"1":{"298":1},"2":{"92":1,"98":2,"122":2}}],["auto",{"2":{"235":3}}],["aut",{"2":{"233":1}}],["author",{"2":{"4":1,"281":2}}],["a⋅b",{"2":{"90":4}}],["a⋅at",{"2":{"83":1}}],["aachen",{"2":{"272":1,"281":2}}],["aai+baj",{"2":{"89":1}}],["aa+bb",{"2":{"81":1}}],["a=a1×⋯×ak",{"2":{"186":1,"290":1}}],["a=re",{"2":{"145":1}}],["a=nd−1",{"2":{"137":1}}],["a=",{"2":{"89":1,"146":2}}],["a=∏aini",{"2":{"61":1}}],["avoiding",{"2":{"146":1}}],["avoided",{"2":{"88":1}}],["available",{"2":{"17":1,"55":2,"60":1,"68":3,"74":1,"167":1,"171":1,"281":1}}],["aj→aj+c⋅ai",{"2":{"89":2}}],["aj",{"2":{"81":1,"89":1,"163":1,"182":1}}],["aω",{"2":{"73":1}}],["appearance",{"2":{"116":1}}],["appearing",{"2":{"105":1}}],["appears",{"2":{"105":1,"266":3}}],["appended",{"2":{"87":1}}],["appends",{"2":{"87":1}}],["appropriate",{"2":{"67":1}}],["apply",{"2":{"39":1,"167":1,"248":1}}],["applying",{"2":{"2":1,"89":1}}],["applicable",{"2":{"92":1}}],["applications",{"2":{"30":1,"58":1,"273":2}}],["applies",{"2":{"89":1}}],["applied",{"2":{"2":2,"96":1}}],["ai⊂k",{"2":{"141":1}}],["aij",{"2":{"89":2}}],["aij=xj",{"2":{"80":3}}],["aiωi|i",{"2":{"73":1}}],["ai",{"2":{"58":2,"61":1,"73":4,"80":3,"81":1,"89":6,"117":1,"141":1,"148":1,"163":1,"180":1,"182":1,"286":4}}],["affine",{"2":{"47":1}}],["a6",{"2":{"46":3,"55":2}}],["a4x",{"2":{"46":1}}],["a4",{"2":{"46":2,"55":2}}],["a3y",{"2":{"46":1}}],["a3",{"2":{"46":2,"55":1}}],["a2x^2",{"2":{"46":1}}],["a2",{"2":{"46":2,"55":1,"116":1,"117":3}}],["a1i1⋯adid",{"2":{"117":1}}],["a1=a2=a3=0",{"2":{"55":1}}],["a1xy",{"2":{"46":1}}],["a1",{"2":{"46":2,"55":1,"116":1,"117":4,"148":1,"180":4,"182":1}}],["a→q×",{"2":{"148":1}}],["a→i",{"2":{"94":1}}],["a→l",{"2":{"32":1}}],["a→g",{"2":{"16":1}}],["advanced",{"2":{"273":1}}],["ade",{"2":{"254":10}}],["admitting",{"2":{"246":1}}],["admits",{"2":{"19":1,"235":2}}],["ad∈z≥1",{"2":{"148":1}}],["ad−1",{"2":{"117":1}}],["adic",{"2":{"88":1,"111":1,"144":1,"147":5,"155":1,"161":1,"163":3,"218":3,"237":1,"240":15,"253":1,"295":1}}],["added",{"2":{"39":3,"58":1,"79":1}}],["adds",{"2":{"39":2,"112":1}}],["add",{"2":{"35":1,"43":1,"48":1,"81":2,"86":1,"87":1,"88":1,"89":4,"274":1}}],["additive",{"2":{"209":1}}],["additionally",{"2":{"88":1}}],["additional",{"2":{"25":1,"86":1,"113":1,"135":1,"168":2}}],["addition",{"2":{"7":1,"15":1,"96":1}}],["adding",{"0":{"35":1,"39":1,"40":1},"2":{"42":1}}],["address",{"2":{"4":1}}],["a⊕b",{"2":{"18":1}}],["a⊗zq",{"2":{"14":1}}],["attributes",{"0":{"155":1,"163":1,"176":1,"197":1,"216":1,"231":1,"249":1,"286":1},"1":{"156":1,"157":1,"158":1,"177":1,"217":1,"232":1,"287":1}}],["at",{"0":{"103":1},"2":{"7":3,"40":1,"48":1,"61":2,"94":2,"98":2,"107":6,"111":1,"113":1,"122":1,"146":1,"147":1,"149":1,"158":1,"162":2,"167":1,"169":1,"170":1,"182":3,"184":3,"190":2,"192":2,"213":2,"214":1,"216":1,"218":9,"220":4,"222":1,"226":4,"228":2,"229":1,"231":2,"235":4,"237":1,"239":1,"241":1,"246":7,"261":3,"263":1,"274":1,"284":3,"285":1,"293":2,"295":3,"299":1,"301":9}}],["archiv",{"2":{"272":1}}],["arr",{"2":{"128":4}}],["arranges",{"2":{"61":1}}],["arrays",{"2":{"59":1,"87":1}}],["array",{"2":{"7":1,"17":1,"32":2,"33":2,"48":1,"86":1,"88":2,"89":1,"90":3,"93":1,"112":4,"117":1,"131":2,"144":1,"146":3,"171":1}}],["artin",{"2":{"94":1}}],["arithmetic",{"0":{"90":1,"130":1,"137":1,"145":1,"171":1},"2":{"127":1,"130":1,"133":1,"134":1,"167":1}}],["arbmatrix",{"2":{"169":1}}],["arbfieldelem",{"2":{"112":6,"131":5,"169":1,"170":2}}],["arb",{"2":{"61":1,"112":5,"131":4}}],["arbitrary",{"2":{"27":1,"55":1,"99":1,"270":1,"271":1}}],["args",{"2":{"42":2}}],["arguments",{"2":{"116":1,"146":1,"153":1,"161":1,"211":2}}],["argument",{"2":{"22":1,"42":1,"54":1,"64":2,"75":2,"93":1,"98":1,"209":2}}],["are",{"2":{"2":1,"6":2,"8":1,"12":2,"13":2,"15":3,"16":1,"17":2,"18":1,"30":2,"34":1,"38":1,"58":5,"61":2,"67":4,"68":3,"73":2,"74":4,"75":2,"79":2,"86":2,"87":2,"88":1,"89":1,"92":1,"93":1,"98":3,"107":1,"109":3,"113":1,"116":2,"119":3,"122":2,"126":1,"127":2,"128":1,"129":1,"130":1,"131":1,"133":5,"135":2,"137":1,"139":1,"140":1,"141":1,"142":1,"143":2,"144":2,"145":2,"146":5,"147":2,"148":1,"149":3,"153":1,"167":5,"168":3,"169":1,"171":3,"175":1,"178":1,"180":2,"182":2,"184":1,"186":7,"196":3,"197":2,"201":3,"204":1,"208":1,"210":3,"211":3,"213":2,"214":1,"218":3,"224":2,"228":5,"229":1,"233":2,"235":1,"242":1,"246":2,"253":4,"255":1,"257":3,"261":1,"266":3,"267":2,"268":2,"270":3,"271":1,"272":2,"281":2,"284":2,"285":1,"286":2,"290":6,"295":1,"297":2,"299":5}}],["asymptotically",{"2":{"127":1}}],["asked",{"2":{"40":1}}],["associated",{"2":{"68":2,"157":4,"178":1,"195":1,"213":1,"231":1,"241":1,"246":3,"270":1}}],["associativity",{"2":{"32":1}}],["associative",{"2":{"3":2,"30":1,"32":1,"33":1}}],["asscciated",{"2":{"67":1}}],["assumes",{"2":{"61":1,"88":1,"93":1,"97":1,"119":1,"120":1}}],["assume",{"2":{"39":1,"140":1,"255":1}}],["assumed",{"2":{"10":1,"14":2,"16":1,"88":1,"89":1,"119":1,"131":1,"136":2,"144":1,"147":1,"168":1,"169":2,"266":3}}],["assuming",{"2":{"17":1,"113":1,"120":2,"146":1,"170":1}}],["as",{"2":{"6":1,"7":1,"12":1,"13":1,"14":1,"15":4,"16":2,"17":3,"18":4,"19":3,"20":1,"22":1,"25":3,"27":1,"32":2,"42":1,"46":5,"54":1,"55":1,"58":4,"60":1,"61":4,"67":1,"68":1,"73":2,"74":1,"75":5,"85":1,"86":2,"87":2,"90":10,"93":3,"94":2,"96":1,"98":4,"103":1,"104":1,"105":3,"106":1,"107":1,"108":1,"109":2,"111":1,"112":5,"116":4,"117":3,"120":3,"122":1,"123":3,"126":2,"127":4,"128":1,"129":1,"131":7,"133":3,"134":1,"135":1,"137":1,"138":2,"139":4,"140":2,"141":3,"142":1,"143":1,"144":2,"146":5,"147":2,"148":3,"149":2,"155":2,"157":2,"159":1,"161":1,"163":2,"167":3,"168":2,"169":2,"171":1,"176":3,"184":1,"186":7,"187":2,"192":1,"195":3,"196":3,"202":2,"209":2,"210":6,"211":5,"213":1,"218":1,"230":1,"231":1,"235":2,"242":2,"246":1,"247":1,"250":4,"254":2,"257":9,"258":1,"261":2,"265":1,"268":1,"270":4,"271":5,"279":3,"281":2,"283":1,"285":1,"287":1,"288":1,"289":1,"290":10,"292":1,"294":1,"296":1,"297":1,"298":1,"300":1,"302":1}}],["al",{"2":{"288":4,"293":2}}],["alpha",{"2":{"142":2,"180":1}}],["already",{"2":{"136":2,"144":1,"168":2}}],["along",{"2":{"106":1,"208":1,"281":1}}],["almost",{"2":{"79":1}}],["alias",{"2":{"68":1,"199":1,"288":1}}],["algassrelord",{"2":{"138":1,"147":1,"168":1}}],["algassrelordidl",{"2":{"138":1,"147":1}}],["algassabsord",{"2":{"138":1,"147":1,"148":2,"168":2}}],["algassabsordidl",{"2":{"138":1,"147":1,"148":2}}],["algerbaic",{"2":{"58":1}}],["algebrae",{"2":{"239":1}}],["algebraic",{"2":{"4":1,"61":2,"78":1,"111":2,"129":1,"131":1,"273":2}}],["algebras",{"0":{"22":1,"27":1,"31":1},"1":{"28":1,"29":1,"32":1,"33":1},"2":{"3":3,"22":1,"30":7,"186":2,"290":2}}],["algebra",{"0":{"77":1},"1":{"78":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1},"2":{"3":1,"4":2,"22":6,"23":2,"24":3,"25":6,"26":7,"27":1,"28":5,"29":4,"32":12,"33":3,"78":3,"176":1,"180":1,"184":2,"186":1,"239":1,"270":1,"286":1,"290":1,"293":1}}],["algssrelord",{"2":{"46":1,"129":1,"131":1}}],["algorithmic",{"2":{"273":1}}],["algorithms",{"2":{"78":1,"92":1,"272":1}}],["algorithm",{"2":{"17":1,"60":1,"61":1,"73":1,"88":5,"93":2,"96":3,"147":1,"169":1}}],["allowed",{"2":{"113":1,"246":1}}],["allowing",{"2":{"58":1}}],["allows",{"2":{"20":1,"61":2,"146":1}}],["allow",{"2":{"15":2,"133":1,"171":1}}],["all",{"0":{"42":1},"2":{"13":1,"17":7,"20":1,"42":1,"43":2,"58":1,"61":2,"68":3,"70":4,"71":4,"72":1,"73":1,"79":1,"82":1,"84":4,"87":1,"88":3,"89":4,"92":1,"93":2,"96":1,"98":3,"106":2,"107":6,"108":1,"119":2,"120":1,"122":1,"124":3,"125":1,"130":1,"131":1,"137":1,"143":1,"144":1,"145":1,"146":3,"149":1,"153":1,"167":1,"169":4,"170":1,"171":1,"178":3,"182":1,"184":1,"206":1,"213":2,"228":1,"239":2,"250":1,"255":1,"261":1,"266":2,"267":1,"281":1,"285":1,"297":1,"301":1}}],["alternatively",{"2":{"13":1}}],["also",{"2":{"7":1,"14":1,"15":1,"17":8,"18":1,"20":1,"23":1,"29":1,"39":1,"43":1,"68":1,"74":1,"87":3,"103":1,"111":1,"127":1,"133":1,"143":2,"146":2,"153":1,"157":2,"163":1,"167":2,"170":1,"171":2,"184":1,"186":1,"201":1,"202":2,"233":1,"242":1,"246":1,"250":2,"254":1,"266":3,"267":1,"271":1,"288":1,"290":2}}],["always",{"2":{"6":1,"96":1,"109":2,"143":1,"155":2,"163":1,"167":1,"176":1,"270":1}}],["action",{"2":{"222":1}}],["act",{"2":{"211":2}}],["actually",{"2":{"60":4,"61":1,"94":1,"96":1,"128":1,"133":1}}],["actual",{"2":{"20":1}}],["acbfield",{"2":{"112":1}}],["acbfieldelem",{"2":{"103":2,"112":6,"131":2}}],["access",{"0":{"8":1,"89":1},"2":{"68":1,"133":1,"242":1,"281":1}}],["acknowledgement",{"0":{"5":1}}],["acm",{"2":{"4":4}}],["anti",{"2":{"201":10}}],["antic",{"2":{"134":1}}],["anticnumerfield",{"2":{"125":1}}],["ans",{"2":{"146":4}}],["another",{"2":{"126":1,"288":1}}],["anonymous",{"2":{"103":2}}],["annotated",{"2":{"40":1,"42":1}}],["any",{"2":{"25":2,"61":1,"67":3,"68":1,"73":2,"79":1,"87":1,"105":1,"109":1,"118":1,"128":2,"141":1,"143":1,"146":1,"159":1,"164":1,"167":1,"168":1,"213":2,"218":2,"226":2,"231":3,"233":1,"241":2,"266":1,"270":1,"286":2,"288":2,"295":3,"297":2}}],["an",{"0":{"151":1},"2":{"2":1,"7":3,"9":1,"12":1,"16":4,"17":10,"20":1,"22":1,"23":1,"25":2,"26":1,"29":1,"32":1,"33":1,"45":2,"48":1,"51":2,"53":1,"54":1,"55":1,"58":2,"61":2,"64":1,"67":1,"68":4,"70":3,"71":3,"72":1,"73":2,"75":1,"78":1,"81":1,"85":1,"86":1,"87":1,"88":5,"89":8,"90":2,"93":4,"96":2,"97":1,"99":1,"103":2,"104":2,"105":2,"106":3,"108":2,"109":5,"111":7,"113":2,"114":4,"116":3,"117":3,"119":1,"120":5,"121":3,"122":5,"123":2,"125":5,"126":2,"128":4,"129":2,"131":5,"133":2,"135":4,"138":2,"139":2,"140":2,"141":2,"142":1,"143":2,"144":1,"145":3,"146":11,"147":5,"148":2,"153":2,"157":2,"163":1,"164":1,"168":5,"169":2,"170":1,"171":2,"176":2,"178":1,"180":6,"182":4,"184":2,"190":1,"192":1,"196":2,"199":1,"201":3,"202":2,"203":1,"205":1,"209":3,"211":5,"241":2,"242":1,"245":1,"246":3,"249":1,"250":5,"251":2,"261":1,"262":1,"265":1,"266":2,"267":1,"270":3,"271":1,"278":4,"282":1,"293":4,"295":2,"297":3,"299":1}}],["and",{"0":{"0":1,"17":1,"51":1,"56":1,"65":1,"67":1,"83":1,"85":1,"160":1,"168":1,"180":1,"202":1,"264":1,"265":1,"269":1,"270":1,"271":1,"282":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"169":1,"181":1,"265":1,"266":1,"267":1,"270":1,"271":1,"283":1},"2":{"2":5,"3":6,"4":7,"5":1,"6":1,"7":3,"9":1,"11":2,"13":5,"14":1,"15":5,"16":8,"17":13,"18":3,"19":1,"22":1,"25":1,"26":1,"29":1,"32":2,"36":2,"38":2,"48":1,"53":1,"55":3,"58":4,"59":1,"60":2,"61":5,"62":1,"67":2,"68":5,"73":5,"74":3,"75":2,"78":2,"80":1,"81":1,"86":2,"87":5,"88":9,"89":10,"92":4,"93":6,"94":4,"96":2,"98":5,"99":1,"103":1,"105":2,"106":3,"107":3,"109":3,"111":1,"112":3,"113":3,"116":6,"117":1,"119":8,"120":8,"121":1,"122":7,"123":3,"125":3,"128":3,"129":1,"131":2,"133":3,"135":1,"137":1,"139":4,"140":1,"141":5,"142":1,"143":2,"144":2,"145":3,"146":10,"148":4,"149":3,"154":1,"155":1,"157":4,"167":1,"168":1,"169":3,"171":2,"174":4,"176":1,"178":1,"180":2,"182":5,"183":1,"184":7,"185":1,"186":10,"188":2,"190":2,"192":2,"195":4,"196":4,"198":1,"201":6,"202":2,"206":1,"208":2,"209":3,"210":9,"213":7,"214":1,"222":1,"228":2,"229":2,"231":1,"233":3,"235":3,"236":2,"237":4,"239":3,"241":2,"242":2,"245":1,"246":7,"248":1,"250":4,"253":5,"254":13,"255":11,"257":9,"261":11,"262":3,"263":1,"265":1,"266":8,"267":1,"268":3,"269":1,"270":5,"271":4,"272":3,"273":5,"274":1,"278":3,"279":4,"280":4,"281":5,"284":2,"285":2,"286":3,"288":5,"290":10,"295":4,"297":5,"299":10,"301":10,"302":3}}],["abuse",{"2":{"270":1,"271":1}}],["ab",{"2":{"246":3}}],["abgrp",{"2":{"196":1}}],["about",{"2":{"177":1,"270":1}}],["above",{"2":{"2":1,"39":1,"98":1,"143":1,"146":1,"183":1,"239":1}}],["ab=o",{"2":{"137":1}}],["ab=ok",{"2":{"136":1}}],["abelian",{"2":{"3":1,"6":1,"7":1,"11":5,"12":3,"13":16,"15":7,"16":4,"17":14,"18":2,"29":1,"53":3,"92":5,"93":6,"94":3,"96":9,"97":2,"119":3,"146":2,"171":2,"195":2,"196":4,"197":2,"201":4,"202":8,"203":2,"205":1,"206":4,"211":6,"246":1}}],["absalgassmor",{"2":{"186":4,"290":4}}],["absordquoring",{"2":{"148":2}}],["absolute",{"0":{"134":1,"140":1},"2":{"3":1,"63":1,"84":1,"88":1,"108":1,"109":4,"111":4,"114":4,"117":3,"118":3,"119":3,"121":2,"126":1,"128":1,"131":4,"133":2,"139":2,"140":1,"141":1,"143":1,"167":2,"266":2,"286":2,"287":2}}],["absnonsimplenumfield",{"2":{"133":2}}],["absnonsimplenumfieldelem",{"2":{"116":1,"117":1}}],["absnonsimplenumfieldembedding",{"2":{"108":1}}],["absnumfieldorderset",{"2":{"169":1}}],["absnumfieldorderfractionalideal",{"2":{"136":7,"137":3,"138":4,"147":3,"169":1,"291":1}}],["absnumfieldorderfractionalidealset",{"2":{"61":4}}],["absnumfieldorderelem",{"2":{"98":2,"128":1,"129":1,"130":2,"131":6,"136":1,"144":1,"169":1}}],["absnumfieldorder",{"2":{"94":1,"128":3,"136":7,"138":1,"144":1,"146":1,"147":1,"168":5,"169":6,"170":3,"172":3}}],["absnumfieldorderidealset",{"2":{"58":1,"61":5,"143":1,"144":1}}],["absnumfieldorderideal",{"2":{"58":1,"61":13,"74":2,"83":1,"93":2,"94":2,"97":4,"98":2,"111":2,"119":1,"123":3,"125":1,"136":4,"137":2,"138":1,"143":2,"144":19,"145":12,"146":12,"147":32,"148":7,"169":3,"170":2,"171":3,"182":4,"184":1,"190":1,"192":1,"214":2,"216":1,"231":1,"239":1,"284":3,"286":1,"295":3,"299":1,"301":3}}],["abs",{"2":{"64":1,"84":1,"88":1,"104":3,"112":12,"131":9,"153":4,"169":2}}],["abssimplenumfieldembedding",{"2":{"95":1,"96":1,"100":3,"106":1,"107":1,"124":3,"183":1,"230":1,"232":1,"240":1}}],["abssimplenumfieldelem",{"2":{"2":1,"58":1,"59":1,"61":30,"74":6,"83":1,"93":5,"95":1,"96":3,"97":4,"109":1,"111":6,"112":8,"113":3,"116":3,"117":1,"119":1,"123":3,"125":3,"133":2,"136":1,"138":2,"142":3,"143":1,"144":8,"145":3,"146":18,"147":27,"148":6,"168":2,"169":3,"170":1,"171":3,"181":2,"182":4,"184":1,"190":1,"192":1,"214":2,"215":1,"216":1,"219":1,"227":1,"230":3,"231":1,"232":1,"234":1,"238":1,"239":1,"240":3,"281":6,"283":3,"284":2,"285":3,"286":1,"287":9,"289":6,"292":1,"294":1,"295":3,"296":3,"298":2,"299":1,"300":2,"301":3,"302":10}}],["abssimplenumfieldorderquoringelem",{"2":{"148":1}}],["abssimplenumfieldorderquoring",{"2":{"148":7}}],["abssimplenumfieldorderideal",{"2":{"142":1,"146":4,"183":1,"232":1,"240":3}}],["abssimplenumfieldorderelem",{"2":{"74":2,"128":1,"131":2,"144":8,"146":4,"147":8,"148":4,"169":1}}],["abssimplenumfieldorderfractionalideal",{"2":{"61":5,"74":3,"135":1,"136":2,"145":6,"146":2,"218":2,"231":2,"286":1,"287":2,"291":2,"293":1,"302":3}}],["abssimplenumfieldorder",{"2":{"59":1,"119":1,"131":2,"136":1,"144":12,"146":13,"147":3,"148":3,"168":5,"169":17,"170":6,"171":6}}],["abssimplenumfield",{"2":{"58":1,"59":1,"61":28,"74":2,"83":1,"93":3,"94":1,"95":1,"96":4,"97":4,"109":1,"111":2,"112":1,"113":1,"116":3,"118":3,"119":6,"120":11,"121":4,"122":5,"123":6,"124":3,"125":3,"131":1,"133":4,"134":1,"138":1,"143":1,"144":7,"145":3,"146":12,"147":24,"148":6,"168":4,"169":2,"170":1,"171":3,"182":4,"183":1,"184":1,"190":1,"192":1,"214":2,"216":1,"231":1,"232":1,"239":1,"240":1,"284":2,"286":1,"295":3,"299":1,"301":3}}],["abstractlat",{"2":{"245":1,"249":1,"250":2,"252":3,"253":4,"255":8,"259":2,"261":2,"278":4,"282":5,"284":6,"286":15,"288":22,"290":9,"291":3,"293":7,"295":3,"297":2,"299":6,"301":11}}],["abstractly",{"2":{"214":1,"229":1}}],["abstractspacemor",{"2":{"186":8,"187":2,"188":1,"257":8,"290":8}}],["abstractspaceres",{"2":{"180":1}}],["abstractspace",{"2":{"176":8,"178":6,"180":7,"182":4,"184":2,"186":9,"188":2,"190":1,"245":1,"249":1,"278":4,"282":2,"301":1}}],["abstractstring",{"2":{"116":1}}],["abstractset",{"2":{"67":1}}],["abstractalgebra",{"0":{"85":1},"2":{"85":1,"296":2,"298":1}}],["abstractassociativealgebra",{"2":{"22":1,"23":2,"24":3,"25":2,"26":3,"30":1,"168":2}}],["abstractunitrange",{"2":{"17":2,"87":2}}],["abstractmatrix",{"2":{"13":2,"90":1}}],["abstract",{"2":{"12":1,"20":1,"93":1,"96":1,"148":1}}],["abstractvector",{"2":{"8":1,"13":1,"90":3}}],["a",{"0":{"2":1,"43":1,"72":1,"152":1,"205":1,"206":1,"235":1,"244":1,"245":1,"247":1,"278":1,"279":1,"280":1},"1":{"236":1,"281":1},"2":{"2":3,"4":1,"6":3,"7":11,"8":1,"10":2,"11":1,"12":1,"13":4,"14":15,"15":5,"16":8,"17":24,"18":9,"19":3,"20":1,"22":1,"23":7,"24":9,"25":20,"26":14,"27":1,"29":17,"30":2,"32":5,"33":5,"38":2,"39":6,"40":2,"43":1,"46":7,"48":1,"50":2,"51":4,"53":5,"54":1,"55":1,"58":2,"59":5,"60":2,"61":33,"63":6,"64":5,"67":16,"68":13,"70":1,"71":1,"73":16,"74":3,"75":5,"79":1,"81":8,"82":2,"83":12,"84":10,"85":8,"86":4,"87":27,"88":75,"89":60,"90":26,"92":1,"93":7,"94":12,"95":4,"96":19,"97":11,"98":25,"99":3,"100":2,"101":3,"102":1,"103":4,"104":3,"105":14,"106":8,"107":35,"108":3,"109":3,"111":50,"112":2,"113":17,"114":31,"116":18,"117":15,"118":7,"119":6,"120":10,"121":11,"122":11,"123":15,"125":4,"126":5,"127":3,"128":8,"129":6,"131":28,"133":9,"134":1,"135":4,"136":10,"137":6,"138":12,"139":3,"140":2,"141":5,"142":7,"143":4,"144":18,"145":13,"146":35,"147":74,"148":5,"149":5,"152":3,"153":5,"155":6,"157":8,"159":6,"161":19,"162":3,"163":8,"164":4,"166":1,"167":6,"168":23,"169":14,"171":5,"174":2,"175":2,"176":2,"177":2,"178":1,"179":2,"180":6,"181":2,"182":5,"183":1,"184":3,"185":2,"186":10,"188":5,"189":1,"190":4,"191":2,"192":3,"193":2,"195":5,"196":17,"198":5,"199":7,"201":12,"202":8,"203":3,"206":1,"207":1,"209":1,"210":9,"213":8,"214":3,"215":14,"216":4,"217":4,"218":32,"219":14,"220":8,"221":3,"222":3,"223":4,"224":6,"225":5,"226":6,"227":20,"228":1,"229":4,"230":15,"231":8,"232":16,"233":4,"234":18,"235":6,"236":3,"238":15,"239":1,"240":3,"241":8,"242":4,"245":2,"246":8,"247":1,"250":6,"253":5,"254":10,"255":9,"257":9,"258":1,"261":7,"262":7,"263":4,"265":1,"268":3,"270":12,"271":7,"273":2,"274":6,"278":7,"279":11,"280":8,"281":4,"282":1,"283":1,"285":1,"286":15,"287":1,"288":10,"289":2,"290":9,"291":2,"292":1,"293":8,"294":1,"295":9,"296":1,"297":6,"298":1,"299":2,"300":1,"301":17,"302":1}}],["og10",{"2":{"246":2}}],["og6",{"2":{"246":2}}],["oe",{"2":{"213":1,"218":3,"220":3,"222":1,"239":1,"271":2,"286":1,"288":1,"291":2,"293":2,"297":1}}],["old",{"2":{"207":1}}],["oddity",{"2":{"161":1,"163":4}}],["odd",{"2":{"161":2,"163":1,"209":2,"246":1,"254":2}}],["o→o",{"2":{"148":1}}],["occur",{"2":{"113":1}}],["other",{"0":{"154":1},"2":{"90":1,"127":1,"167":1,"168":1,"178":1,"185":1,"266":1}}],["otherwise",{"2":{"17":1,"18":1,"48":1,"64":1,"99":1,"113":1,"119":1,"120":2,"122":3,"146":2,"169":1,"195":1,"213":1,"253":1,"262":3,"297":1,"301":3}}],["obvious",{"2":{"60":1}}],["objects",{"2":{"67":1,"68":2,"79":1,"86":1,"146":1,"171":1,"186":3,"210":3,"257":3,"290":3}}],["object",{"2":{"58":1,"89":1,"104":1,"111":1,"116":1}}],["obtained",{"2":{"84":1,"88":1,"146":2,"171":1,"180":1,"288":1}}],["obtaining",{"2":{"60":1}}],["obtain",{"2":{"2":1,"18":2,"20":1,"29":1,"61":2,"93":1,"186":7,"210":6,"257":6,"274":1,"290":6}}],["o",{"2":{"46":2,"53":4,"58":1,"59":1,"83":1,"94":2,"109":8,"119":2,"128":14,"129":2,"131":6,"136":16,"138":4,"139":1,"140":3,"141":3,"144":21,"146":34,"147":10,"148":8,"161":2,"166":2,"168":7,"169":52,"170":19}}],["operatinos",{"2":{"130":1}}],["operation",{"2":{"15":1,"16":1,"75":2}}],["operations",{"0":{"75":1,"81":1,"98":1,"110":1,"115":1,"188":1,"255":1,"288":1},"1":{"111":1,"112":1,"113":1,"114":1,"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1,"189":1,"289":1},"2":{"15":1,"16":1,"81":1,"88":1,"90":1,"127":1,"137":1,"145":1,"255":1}}],["operate",{"2":{"73":1}}],["options",{"2":{"42":1}}],["optionally",{"2":{"51":1}}],["optional",{"2":{"22":1,"54":1,"75":2,"98":3}}],["op",{"2":{"16":2}}],["output",{"2":{"111":2,"155":1,"157":2,"170":1,"180":1,"202":2,"231":1,"245":1,"250":2,"254":2,"261":1,"267":1,"278":4,"279":3,"301":7}}],["outputs",{"2":{"8":1}}],["outside",{"2":{"36":1}}],["outer",{"2":{"16":1}}],["oscar",{"2":{"5":1}}],["original",{"2":{"186":1}}],["orthogonality",{"0":{"188":1},"1":{"189":1}}],["orthogonal",{"0":{"200":1,"258":1},"2":{"178":1,"180":3,"181":1,"186":1,"188":3,"189":1,"192":1,"200":2,"258":3,"262":1,"288":2}}],["ord",{"2":{"169":1}}],["ordered",{"2":{"70":1,"71":1,"109":1,"161":1}}],["ordering",{"2":{"27":1}}],["orders",{"0":{"51":1,"140":1,"141":1,"167":1},"1":{"168":1,"169":1,"170":1,"171":1,"172":1},"2":{"3":4,"109":1,"127":1,"139":3,"141":1,"142":1,"143":2,"146":1,"167":6,"169":2,"170":1}}],["order",{"2":{"2":4,"10":3,"13":1,"14":2,"17":5,"28":1,"51":9,"52":1,"54":1,"61":1,"73":1,"75":1,"83":1,"93":3,"95":1,"96":3,"97":1,"106":2,"109":3,"111":4,"112":3,"113":1,"118":4,"121":2,"127":3,"128":2,"129":2,"131":4,"137":1,"138":3,"139":1,"140":3,"141":3,"142":6,"143":1,"146":15,"147":11,"148":1,"167":6,"168":29,"169":9,"170":7,"172":2,"175":1,"177":2,"183":4,"184":1,"185":1,"191":1,"193":1,"211":3,"215":3,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":2,"232":1,"236":3,"238":3,"239":2,"240":8,"253":3,"274":1,"281":4,"285":2,"286":2,"287":12,"289":5,"292":2,"294":1,"295":1,"296":1,"297":3,"298":1,"300":1,"302":13}}],["orbit",{"2":{"123":1}}],["or",{"2":{"7":1,"13":1,"17":3,"18":2,"22":1,"29":1,"30":2,"36":1,"42":1,"45":1,"47":1,"59":1,"60":4,"64":1,"67":1,"73":1,"93":1,"94":4,"105":1,"107":2,"109":1,"111":1,"116":5,"124":2,"125":1,"126":2,"128":2,"139":2,"141":2,"142":1,"145":1,"146":5,"161":2,"167":2,"168":2,"178":1,"185":2,"186":4,"206":1,"209":2,"214":2,"218":5,"224":2,"228":2,"229":2,"246":4,"262":2,"270":3,"281":2,"290":4,"293":1,"301":2}}],["organized",{"2":{"38":1}}],["org",{"2":{"4":1,"121":1,"274":1}}],["once",{"2":{"142":1,"271":1,"274":1}}],["only",{"2":{"43":1,"88":2,"92":1,"94":1,"98":4,"100":1,"116":2,"119":2,"121":1,"128":2,"146":5,"153":3,"167":1,"180":1,"182":1,"208":1,"211":5,"213":1,"255":1,"263":1,"266":3,"267":1,"268":1}}],["onto",{"2":{"18":1,"61":1,"146":1,"188":1,"196":1}}],["ones",{"2":{"87":1,"98":1,"213":1}}],["one",{"2":{"7":1,"11":1,"13":3,"18":5,"29":1,"32":3,"39":2,"40":3,"43":3,"51":1,"58":1,"59":1,"68":3,"73":1,"74":1,"78":1,"100":1,"113":1,"116":1,"122":1,"126":1,"142":1,"143":1,"153":4,"176":1,"177":1,"180":2,"182":1,"183":1,"186":14,"187":1,"195":1,"201":2,"209":2,"210":12,"233":1,"254":2,"257":12,"262":2,"266":3,"281":2,"286":1,"288":3,"290":14,"297":1}}],["on",{"2":{"4":3,"18":1,"22":1,"42":2,"43":1,"47":1,"48":7,"50":1,"51":1,"52":3,"53":1,"60":3,"68":1,"70":2,"71":2,"72":1,"73":2,"87":1,"88":2,"96":1,"107":1,"109":1,"127":1,"139":1,"141":1,"146":2,"166":1,"171":1,"180":1,"186":1,"195":1,"196":1,"208":2,"209":2,"218":5,"224":1,"246":4,"253":3,"262":1,"272":1,"274":1,"290":1,"297":2,"299":2}}],["ok→f",{"2":{"2":1}}],["ok",{"2":{"2":9,"109":1,"139":1,"141":4,"169":4,"183":3,"184":1,"185":2,"191":2,"192":2,"193":2,"213":1,"214":2,"215":2,"216":1,"217":2,"218":9,"219":2,"220":4,"221":2,"222":1,"223":2,"225":2,"226":2,"227":2,"228":1,"230":2,"231":1,"232":2,"235":1,"236":2,"237":1,"238":2,"239":1,"271":1,"274":2,"285":2,"289":2,"291":1,"293":1,"294":2,"296":2,"300":2,"301":3,"302":2}}],["overlapping",{"2":{"266":1}}],["overlattice",{"2":{"261":3,"301":6}}],["overlattices",{"0":{"261":1}}],["overorder",{"2":{"169":3}}],["overorders",{"2":{"169":2}}],["overall",{"2":{"30":1}}],["overgroup",{"2":{"17":1}}],["over",{"0":{"2":1,"49":1,"56":1,"279":1,"280":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1,"281":1},"2":{"2":1,"7":1,"11":1,"22":2,"25":2,"26":3,"28":2,"32":3,"46":3,"48":1,"50":1,"51":2,"52":2,"55":2,"68":1,"78":1,"79":2,"80":2,"86":1,"87":6,"89":3,"95":1,"96":4,"97":7,"98":5,"105":1,"111":5,"114":4,"116":6,"117":1,"118":2,"119":2,"141":1,"142":3,"146":6,"161":1,"166":1,"167":1,"169":1,"174":4,"175":4,"176":3,"177":5,"178":1,"182":2,"184":3,"190":1,"192":3,"196":1,"201":4,"206":4,"213":4,"214":1,"215":4,"216":2,"217":2,"218":15,"220":4,"222":1,"224":2,"226":4,"228":2,"230":2,"231":3,"232":2,"233":2,"235":5,"236":4,"237":2,"238":4,"239":2,"240":21,"242":2,"249":1,"253":1,"261":1,"268":1,"270":5,"271":1,"272":2,"279":11,"280":8,"281":8,"283":5,"284":1,"285":2,"286":4,"287":9,"288":5,"289":10,"291":1,"293":1,"297":1}}],["oft",{"2":{"197":1}}],["offset",{"2":{"88":1}}],["off",{"2":{"75":2,"197":1}}],["of",{"0":{"2":1,"22":1,"43":1,"53":1,"64":1,"72":1,"82":1,"100":1,"116":1,"133":1,"140":1,"141":1,"149":1,"150":1,"153":1,"155":1,"174":1,"214":1,"229":1,"235":1,"237":1,"239":1,"243":1,"277":1},"1":{"150":1,"151":2,"152":2,"153":2,"154":2,"155":1,"156":2,"157":2,"158":2,"159":1,"160":1,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"175":1,"215":1,"230":1,"236":1,"238":1,"240":1,"244":1,"245":1,"246":1,"247":1,"248":1,"278":1,"279":1,"280":1,"281":1},"2":{"2":11,"3":2,"4":2,"5":1,"6":2,"7":10,"8":2,"10":1,"11":1,"12":3,"13":11,"14":14,"15":4,"16":2,"17":39,"18":1,"19":1,"20":1,"22":2,"23":2,"24":1,"25":7,"26":8,"27":2,"28":3,"29":3,"30":4,"32":4,"33":1,"36":1,"38":1,"40":1,"42":2,"43":1,"45":1,"46":10,"47":1,"48":6,"50":1,"51":4,"52":10,"53":8,"54":5,"55":2,"58":9,"59":3,"60":2,"61":14,"62":1,"67":6,"68":13,"70":6,"71":6,"72":2,"73":8,"74":4,"75":6,"78":2,"79":5,"81":2,"83":6,"84":7,"85":1,"86":7,"87":4,"88":46,"89":18,"90":2,"92":8,"93":19,"94":13,"95":6,"96":14,"97":10,"98":10,"99":2,"100":7,"101":1,"102":1,"103":4,"104":1,"105":10,"106":7,"107":7,"108":10,"109":20,"111":40,"112":17,"113":7,"114":18,"116":16,"117":6,"118":24,"119":7,"120":11,"121":3,"122":9,"123":16,"124":8,"125":3,"126":6,"128":13,"129":9,"131":28,"133":8,"134":1,"135":2,"136":11,"137":2,"138":12,"139":8,"140":6,"141":3,"142":7,"143":6,"144":10,"145":1,"146":49,"147":32,"148":12,"149":5,"151":1,"152":1,"153":5,"154":2,"155":19,"157":4,"159":9,"160":2,"161":16,"162":2,"163":16,"164":5,"165":2,"166":1,"167":13,"168":13,"169":43,"170":15,"171":6,"172":1,"174":1,"175":5,"176":15,"177":6,"178":3,"180":18,"182":12,"183":11,"184":4,"186":14,"187":1,"188":4,"190":3,"192":7,"195":6,"196":14,"197":14,"198":3,"199":1,"200":1,"201":4,"202":6,"203":1,"204":2,"205":2,"206":2,"208":5,"209":12,"210":6,"211":4,"213":20,"214":6,"215":5,"216":3,"218":45,"220":4,"222":4,"224":12,"226":8,"228":15,"229":5,"230":7,"231":13,"233":10,"235":9,"236":6,"237":8,"238":5,"239":3,"240":12,"241":8,"242":3,"245":2,"246":13,"247":1,"248":1,"249":8,"250":10,"251":4,"252":5,"253":13,"254":21,"255":16,"257":6,"258":3,"259":1,"261":17,"262":13,"263":5,"265":2,"266":8,"267":2,"268":3,"270":15,"271":10,"272":4,"273":6,"274":2,"278":4,"279":20,"280":21,"281":16,"282":14,"283":6,"284":6,"285":4,"286":37,"287":18,"288":12,"289":10,"290":10,"291":9,"292":2,"293":9,"295":16,"297":14,"299":11,"301":17,"302":15}}]],"serializationVersion":2}';export{e as default}; diff --git a/dev/assets/chunks/@localSearchIndexroot.BzPtGbyX.js b/dev/assets/chunks/@localSearchIndexroot.BzPtGbyX.js deleted file mode 100644 index 5f094e9387..0000000000 --- a/dev/assets/chunks/@localSearchIndexroot.BzPtGbyX.js +++ /dev/null @@ -1 +0,0 @@ -const e='{"documentCount":303,"nextId":303,"documentIds":{"0":"/dev/examples#Examples-and-sample-code","1":"/dev/howto/#How-to-guides","2":"/dev/howto/reduction#Reduction-of-polynomials-over-number-fields-modulo-a-prime-ideal","3":"/dev/#features","4":"/dev/#Citing-Hecke","5":"/dev/#acknowledgement","6":"/dev/manual/abelian/elements#elements","7":"/dev/manual/abelian/elements#creation","8":"/dev/manual/abelian/elements#access","9":"/dev/manual/abelian/elements#predicates","10":"/dev/manual/abelian/elements#invariants","11":"/dev/manual/abelian/elements#iterator","12":"/dev/manual/abelian/introduction#AbelianGroupLink2","13":"/dev/manual/abelian/introduction#Basic-Creation","14":"/dev/manual/abelian/introduction#invariants","15":"/dev/manual/abelian/maps#maps","16":"/dev/manual/abelian/structural#Structural-Computations","17":"/dev/manual/abelian/structural#Subgroups-and-Quotients","18":"/dev/manual/abelian/structural#Direct-Products","19":"/dev/manual/abelian/structural#Tensor-Producs","20":"/dev/manual/abelian/structural#hom-group","21":"/dev/manual/algebras/basics#basics","22":"/dev/manual/algebras/basics#Creation-of-algebras","23":"/dev/manual/algebras/basics#Basic-properties","24":"/dev/manual/algebras/basics#predicates","25":"/dev/manual/algebras/basics#generators","26":"/dev/manual/algebras/basics#center","27":"/dev/manual/algebras/groupalgebras#Group-algebras","28":"/dev/manual/algebras/groupalgebras#creation","29":"/dev/manual/algebras/groupalgebras#elements","30":"/dev/manual/algebras/intro#Algebras","31":"/dev/manual/algebras/structureconstant#SCA","32":"/dev/manual/algebras/structureconstant#creation","33":"/dev/manual/algebras/structureconstant#Structure-constant-table","34":"/dev/manual/developer/documentation#documentation","35":"/dev/manual/developer/documentation#Adding-files-to-the-documentation","36":"/dev/manual/developer/documentation#Building-the-documentation","37":"/dev/manual/developer/test#testing","38":"/dev/manual/developer/test#structure","39":"/dev/manual/developer/test#Adding-tests","40":"/dev/manual/developer/test#Adding-long-tests","41":"/dev/manual/developer/test#Running-the-tests","42":"/dev/manual/developer/test#Running-all-tests","43":"/dev/manual/developer/test#Running-a-subset-of-tests","44":"/dev/manual/elliptic_curves/basics#basics","45":"/dev/manual/elliptic_curves/basics#creation","46":"/dev/manual/elliptic_curves/basics#Basic-properties","47":"/dev/manual/elliptic_curves/basics#points","48":"/dev/manual/elliptic_curves/basics#examples","49":"/dev/manual/elliptic_curves/intro#introduction","50":"/dev/manual/elliptic_curves/finite_fields#Elliptic-curves-over-finite-fields","51":"/dev/manual/elliptic_curves/finite_fields#Random-points","52":"/dev/manual/elliptic_curves/finite_fields#Cardinality-and-orders","53":"/dev/manual/elliptic_curves/finite_fields#frobenius","54":"/dev/manual/elliptic_curves/finite_fields#Group-structure-of-rational-points","55":"/dev/manual/elliptic_curves/finite_fields#Discrete-logarithm","56":"/dev/manual/elliptic_curves/number_fields#Elliptic-curves-over-rationals-and-number-fields","57":"/dev/manual/#manual","58":"/dev/manual/misc/FacElem#Factored-Elements","59":"/dev/manual/misc/FacElem#construction","60":"/dev/manual/misc/FacElem#conversion","61":"/dev/manual/misc/FacElem#Special-functions","62":"/dev/manual/misc/FacElem#Positivity-and-Signs","63":"/dev/manual/misc/FacElem#miscellaneous","64":"/dev/manual/misc/conjugacy#Conjugacy-of-integral-matrices","65":"/dev/manual/misc/mset#Multi-sets-and-sub-set-iterators","66":"/dev/manual/misc/mset#multi-sets","67":"/dev/manual/misc/mset#Type-and-constructors","68":"/dev/manual/misc/mset#functions","69":"/dev/manual/misc/mset#Sub-set-iterators","70":"/dev/manual/misc/mset#sub-multi-sets","71":"/dev/manual/misc/mset#sub-sets","72":"/dev/manual/misc/mset#Sub-sets-of-a-given-size","73":"/dev/manual/misc/pmat#PMatLink","74":"/dev/manual/misc/pmat#creation","75":"/dev/manual/misc/pmat#operations","76":"/dev/manual/misc/pmat#examples","77":"/dev/manual/number_fields/class_fields#Class-Field-Theory","78":"/dev/manual/number_fields/class_fields#introduction","79":"/dev/manual/number_fields/class_fields#Ray-Class-Groups","80":"/dev/manual/number_fields/class_fields#Ray-Class-Fields","81":"/dev/manual/number_fields/class_fields#example","82":"/dev/manual/number_fields/class_fields#conversions","83":"/dev/manual/number_fields/class_fields#invariants","84":"/dev/manual/number_fields/class_fields#operations","85":"/dev/manual/number_fields/complex_embeddings#Complex-embedding","86":"/dev/manual/number_fields/complex_embeddings#Construction-of-complex-embeddings","87":"/dev/manual/number_fields/complex_embeddings#properties","88":"/dev/manual/number_fields/complex_embeddings#Conjugated-embedding","89":"/dev/manual/number_fields/complex_embeddings#Evaluating-elements-at-complex-embeddings","90":"/dev/manual/number_fields/complex_embeddings#Logarithmic-embedding","91":"/dev/manual/number_fields/complex_embeddings#restriction","92":"/dev/manual/number_fields/complex_embeddings#extension","93":"/dev/manual/number_fields/complex_embeddings#positivity_and_signs2","94":"/dev/manual/number_fields/complex_embeddings#example","95":"/dev/manual/number_fields/conventions#conventions","96":"/dev/manual/misc/sparse#Sparse-linear-algebra","97":"/dev/manual/misc/sparse#introduction","98":"/dev/manual/misc/sparse#Sparse-rows","99":"/dev/manual/misc/sparse#creation","100":"/dev/manual/misc/sparse#Basic-operations","101":"/dev/manual/misc/sparse#Change-of-base-ring","102":"/dev/manual/misc/sparse#Maximum,-minimum-and-2-norm","103":"/dev/manual/misc/sparse#Functionality-for-integral-sparse-rows","104":"/dev/manual/misc/sparse#Conversion-to/from-julia-and-AbstractAlgebra-types","105":"/dev/manual/misc/sparse#Sparse-matrices","106":"/dev/manual/misc/sparse#construction","107":"/dev/manual/misc/sparse#Elementary-Properties","108":"/dev/manual/misc/sparse#Manipulation/-Access","109":"/dev/manual/misc/sparse#arithmetic","110":"/dev/manual/number_fields/elements#Element-operations","111":"/dev/manual/number_fields/elements#creation","112":"/dev/manual/number_fields/elements#conjugates","113":"/dev/manual/number_fields/elements#predicates","114":"/dev/manual/number_fields/elements#invariants","115":"/dev/manual/number_fields/intro#NumberFieldsLink","116":"/dev/manual/number_fields/internal#internals","117":"/dev/manual/number_fields/internal#Types-of-number-fields","118":"/dev/manual/number_fields/internal#Absolute-simple-fields","119":"/dev/manual/number_fields/fields#Number-field-operations","120":"/dev/manual/number_fields/fields#Creation-of-number-fields","121":"/dev/manual/number_fields/fields#Basic-properties","122":"/dev/manual/number_fields/fields#invariants","123":"/dev/manual/number_fields/fields#predicates","124":"/dev/manual/number_fields/fields#subfields","125":"/dev/manual/number_fields/fields#conversion","126":"/dev/manual/number_fields/fields#morphisms","127":"/dev/manual/number_fields/fields#Galois-theory","128":"/dev/manual/number_fields/fields#Infinite-places","129":"/dev/manual/number_fields/fields#miscellaneous","130":"/dev/manual/orders/elements#elements","131":"/dev/manual/orders/elements#creation","132":"/dev/manual/orders/elements#Basic-properties","133":"/dev/manual/orders/elements#arithmetic","134":"/dev/manual/orders/elements#miscellaneous","135":"/dev/manual/orders/frac_ideals#Fractional-ideals","136":"/dev/manual/orders/frac_ideals#creation","137":"/dev/manual/orders/frac_ideals#arithmetic","138":"/dev/manual/orders/frac_ideals#miscaellenous","139":"/dev/manual/orders/introduction#introduction","140":"/dev/manual/orders/introduction#Orders-of-absolute-number-fields","141":"/dev/manual/orders/introduction#Orders-of-relative-number-fields","142":"/dev/manual/orders/introduction#examples","143":"/dev/manual/orders/ideals#NfOrdIdlLink2","144":"/dev/manual/orders/ideals#creation","145":"/dev/manual/orders/ideals#arithmetic","146":"/dev/manual/orders/ideals#Class-Group","147":"/dev/manual/orders/ideals#miscaellenous","148":"/dev/manual/orders/ideals#Quotient-Rings","149":"/dev/manual/orders/orders#orders","150":"/dev/manual/orders/orders#Creation-and-basic-properties","151":"/dev/manual/orders/orders#example","152":"/dev/manual/orders/orders#invariants","153":"/dev/manual/orders/orders#arithmetic","154":"/dev/manual/orders/orders#predicates","155":"/dev/manual/quad_forms/Zgenera#Genera-of-Integer-Lattices","156":"/dev/manual/quad_forms/Zgenera#Creation-of-Genera","157":"/dev/manual/quad_forms/Zgenera#From-an-integral-Lattice","158":"/dev/manual/quad_forms/Zgenera#From-a-gram-matrix","159":"/dev/manual/quad_forms/Zgenera#Enumeration-of-genus-symbols","160":"/dev/manual/quad_forms/Zgenera#From-other-genus-symbols","161":"/dev/manual/quad_forms/Zgenera#Attributes-of-the-genus","162":"/dev/manual/quad_forms/Zgenera#Discriminant-group","163":"/dev/manual/quad_forms/Zgenera#Primary-genera","164":"/dev/manual/quad_forms/Zgenera#local-Symbol","165":"/dev/manual/quad_forms/Zgenera#representative-s","166":"/dev/manual/quad_forms/Zgenera#Embeddings-and-Representations","167":"/dev/manual/quad_forms/Zgenera#Local-genus-Symbols","168":"/dev/manual/quad_forms/Zgenera#creation","169":"/dev/manual/quad_forms/Zgenera#attributes","170":"/dev/manual/quad_forms/Zgenera#representative","171":"/dev/manual/quad_forms/Zgenera#Direct-sums","172":"/dev/manual/quad_forms/Zgenera#embeddings-representations","173":"/dev/manual/quad_forms/basics#Spaces2","174":"/dev/manual/quad_forms/basics#Creation-of-spaces","175":"/dev/manual/quad_forms/basics#examples","176":"/dev/manual/quad_forms/basics#attributes","177":"/dev/manual/quad_forms/basics#Examples-2","178":"/dev/manual/quad_forms/basics#predicates","179":"/dev/manual/quad_forms/basics#Examples-3","180":"/dev/manual/quad_forms/basics#Inner-products-and-diagonalization","181":"/dev/manual/quad_forms/basics#Examples-4","182":"/dev/manual/quad_forms/basics#equivalence","183":"/dev/manual/quad_forms/basics#Examples-5","184":"/dev/manual/quad_forms/basics#embeddings","185":"/dev/manual/quad_forms/basics#Examples-6","186":"/dev/manual/quad_forms/basics#Categorical-constructions","187":"/dev/manual/quad_forms/basics#example","188":"/dev/manual/quad_forms/basics#Orthogonality-operations","189":"/dev/manual/quad_forms/basics#Example-2","190":"/dev/manual/quad_forms/basics#Isotropic-spaces","191":"/dev/manual/quad_forms/basics#Example-3","192":"/dev/manual/quad_forms/basics#Hyperbolic-spaces","193":"/dev/manual/quad_forms/basics#Example-4","194":"/dev/manual/quad_forms/discriminant_group#Discriminant-Groups","195":"/dev/manual/quad_forms/discriminant_group#Torsion-Quadratic-Modules","196":"/dev/manual/quad_forms/discriminant_group#The-underlying-Type","197":"/dev/manual/quad_forms/discriminant_group#attributes","198":"/dev/manual/quad_forms/discriminant_group#elements","199":"/dev/manual/quad_forms/discriminant_group#Lift-to-the-cover","200":"/dev/manual/quad_forms/discriminant_group#Orthogonal-submodules","201":"/dev/manual/quad_forms/discriminant_group#isometry","202":"/dev/manual/quad_forms/discriminant_group#Primary-and-elementary-modules","203":"/dev/manual/quad_forms/discriminant_group#Smith-normal-form","204":"/dev/manual/quad_forms/discriminant_group#Discriminant-Groups-2","205":"/dev/manual/quad_forms/discriminant_group#From-a-lattice","206":"/dev/manual/quad_forms/discriminant_group#From-a-matrix","207":"/dev/manual/quad_forms/discriminant_group#Rescaling-the-form","208":"/dev/manual/quad_forms/discriminant_group#invariants","209":"/dev/manual/quad_forms/discriminant_group#genus","210":"/dev/manual/quad_forms/discriminant_group#Categorical-constructions","211":"/dev/manual/quad_forms/discriminant_group#submodules","212":"/dev/manual/quad_forms/introduction#introduction","213":"/dev/manual/quad_forms/introduction#Definitions-and-vocabulary","214":"/dev/manual/quad_forms/introduction#Quadratic-and-hermitian-spaces","215":"/dev/manual/quad_forms/introduction#Quadratic-and-hermitian-lattices","216":"/dev/manual/quad_forms/introduction#references","217":"/dev/manual/quad_forms/genusherm#Genera-for-hermitian-lattices","218":"/dev/manual/quad_forms/genusherm#Local-genus-symbols","219":"/dev/manual/quad_forms/genusherm#Creation-of-local-genus-symbols","220":"/dev/manual/quad_forms/genusherm#examples","221":"/dev/manual/quad_forms/genusherm#attributes","222":"/dev/manual/quad_forms/genusherm#Examples-2","223":"/dev/manual/quad_forms/genusherm#invariants","224":"/dev/manual/quad_forms/genusherm#Examples-3","225":"/dev/manual/quad_forms/genusherm#predicates","226":"/dev/manual/quad_forms/genusherm#Examples-4","227":"/dev/manual/quad_forms/genusherm#Local-uniformizer","228":"/dev/manual/quad_forms/genusherm#example","229":"/dev/manual/quad_forms/genusherm#Determinant-representatives","230":"/dev/manual/quad_forms/genusherm#Examples-5","231":"/dev/manual/quad_forms/genusherm#Gram-matrices","232":"/dev/manual/quad_forms/genusherm#Examples-6","233":"/dev/manual/quad_forms/genusherm#Global-genus-symbols","234":"/dev/manual/quad_forms/genusherm#Creation-of-global-genus-symbols","235":"/dev/manual/quad_forms/genusherm#Examples-7","236":"/dev/manual/quad_forms/genusherm#Attributes-2","237":"/dev/manual/quad_forms/genusherm#Examples-8","238":"/dev/manual/quad_forms/genusherm#mass","239":"/dev/manual/quad_forms/genusherm#Example-2","240":"/dev/manual/quad_forms/genusherm#Representatives-of-a-genus","241":"/dev/manual/quad_forms/genusherm#Examples-9","242":"/dev/manual/quad_forms/genusherm#Sum-of-genera","243":"/dev/manual/quad_forms/genusherm#Examples-10","244":"/dev/manual/quad_forms/genusherm#Enumeration-of-genera","245":"/dev/manual/quad_forms/genusherm#Examples-11","246":"/dev/manual/quad_forms/genusherm#rescaling","247":"/dev/manual/quad_forms/integer_lattices#Integer-Lattices","248":"/dev/manual/quad_forms/integer_lattices#Creation-of-integer-lattices","249":"/dev/manual/quad_forms/integer_lattices#From-a-gram-matrix","250":"/dev/manual/quad_forms/integer_lattices#In-a-quadratic-space","251":"/dev/manual/quad_forms/integer_lattices#Special-lattices","252":"/dev/manual/quad_forms/integer_lattices#From-a-genus","253":"/dev/manual/quad_forms/integer_lattices#Rescaling-the-Quadratic-Form","254":"/dev/manual/quad_forms/integer_lattices#attributes","255":"/dev/manual/quad_forms/integer_lattices#invariants","256":"/dev/manual/quad_forms/integer_lattices#The-Genus","257":"/dev/manual/quad_forms/integer_lattices#Real-invariants","258":"/dev/manual/quad_forms/integer_lattices#isometries","259":"/dev/manual/quad_forms/integer_lattices#Root-lattices","260":"/dev/manual/quad_forms/integer_lattices#Module-operations","261":"/dev/manual/quad_forms/integer_lattices#embeddings","262":"/dev/manual/quad_forms/integer_lattices#Categorical-constructions","263":"/dev/manual/quad_forms/integer_lattices#Orthogonal-sublattices","264":"/dev/manual/quad_forms/integer_lattices#Dual-lattice","265":"/dev/manual/quad_forms/integer_lattices#Discriminant-group","266":"/dev/manual/quad_forms/integer_lattices#overlattices","267":"/dev/manual/quad_forms/integer_lattices#Sublattices-defined-by-endomorphisms","268":"/dev/manual/quad_forms/integer_lattices#Computing-embeddings","269":"/dev/manual/quad_forms/integer_lattices#LLL,-Short-and-Close-Vectors","270":"/dev/manual/quad_forms/integer_lattices#LLL-and-indefinite-LLL","271":"/dev/manual/quad_forms/integer_lattices#Short-Vectors","272":"/dev/manual/quad_forms/integer_lattices#Close-Vectors","273":"/dev/tutorials/#tutorials","274":"/dev/references#bibliography","275":"/dev/start/#Getting-started","276":"/dev/manual/quad_forms/lattices#lattices","277":"/dev/manual/quad_forms/lattices#Creation-of-lattices","278":"/dev/manual/quad_forms/lattices#Inside-a-given-ambient-space","279":"/dev/manual/quad_forms/lattices#Quadratic-lattice-over-a-number-field","280":"/dev/manual/quad_forms/lattices#Hermitian-lattice-over-a-degree-2-extension","281":"/dev/manual/quad_forms/lattices#examples","282":"/dev/manual/quad_forms/lattices#Ambient-space-and-rational-span","283":"/dev/manual/quad_forms/lattices#Examples-2","284":"/dev/manual/quad_forms/lattices#Rational-equivalence","285":"/dev/manual/quad_forms/lattices#Examples-3","286":"/dev/manual/quad_forms/lattices#attributes","287":"/dev/manual/quad_forms/lattices#Examples-4","288":"/dev/manual/quad_forms/lattices#Module-operations","289":"/dev/manual/quad_forms/lattices#Examples-5","290":"/dev/manual/quad_forms/lattices#Categorical-constructions","291":"/dev/manual/quad_forms/lattices#invariants","292":"/dev/manual/quad_forms/lattices#Examples-6","293":"/dev/manual/quad_forms/lattices#predicates","294":"/dev/manual/quad_forms/lattices#Examples-7","295":"/dev/manual/quad_forms/lattices#Local-properties","296":"/dev/manual/quad_forms/lattices#Examples-8","297":"/dev/manual/quad_forms/lattices#Automorphisms-for-definite-lattices","298":"/dev/manual/quad_forms/lattices#Examples-9","299":"/dev/manual/quad_forms/lattices#isometry","300":"/dev/manual/quad_forms/lattices#Examples-10","301":"/dev/manual/quad_forms/lattices#Maximal-integral-lattices","302":"/dev/manual/quad_forms/lattices#Examples-11"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[4,1,1],"1":[3,1,1],"2":[10,1,139],"3":[1,1,40],"4":[2,1,78],"5":[1,1,21],"6":[1,1,29],"7":[1,1,93],"8":[1,1,39],"9":[1,1,18],"10":[1,1,16],"11":[1,1,36],"12":[1,1,38],"13":[2,1,100],"14":[1,1,79],"15":[1,1,97],"16":[2,1,75],"17":[3,2,225],"18":[2,2,85],"19":[2,2,52],"20":[2,2,46],"21":[1,1,1],"22":[3,1,46],"23":[2,1,29],"24":[1,1,27],"25":[1,1,88],"26":[1,1,43],"27":[2,1,20],"28":[1,2,41],"29":[1,2,58],"30":[1,1,67],"31":[3,1,1],"32":[1,3,86],"33":[3,3,36],"34":[1,1,13],"35":[5,1,15],"36":[3,1,51],"37":[1,1,1],"38":[1,1,47],"39":[2,2,45],"40":[3,2,41],"41":[3,1,1],"42":[3,4,54],"43":[5,4,44],"44":[1,1,1],"45":[1,1,72],"46":[2,1,110],"47":[1,1,42],"48":[1,2,84],"49":[1,1,55],"50":[5,1,1],"51":[2,5,35],"52":[3,5,52],"53":[1,5,47],"54":[5,5,70],"55":[2,5,60],"56":[7,1,1],"57":[1,1,5],"58":[2,1,140],"59":[1,2,62],"60":[1,2,68],"61":[2,2,202],"62":[3,2,24],"63":[1,2,22],"64":[4,1,49],"65":[6,1,1],"66":[2,6,1],"67":[3,6,120],"68":[1,6,151],"69":[3,6,1],"70":[3,7,33],"71":[2,7,33],"72":[6,7,20],"73":[2,1,140],"74":[1,2,50],"75":[1,2,83],"76":[1,2,1],"77":[3,1,1],"78":[1,3,74],"79":[3,3,159],"80":[3,3,128],"81":[1,5,46],"82":[1,3,154],"83":[1,3,94],"84":[1,3,131],"85":[2,1,32],"86":[4,2,49],"87":[1,2,41],"88":[2,2,28],"89":[5,2,88],"90":[2,2,51],"91":[1,2,80],"92":[1,2,65],"93":[3,2,84],"94":[1,2,59],"95":[1,1,146],"96":[3,1,1],"97":[1,3,44],"98":[2,3,60],"99":[1,4,37],"100":[2,4,54],"101":[4,4,22],"102":[5,4,33],"103":[5,4,41],"104":[7,4,38],"105":[2,3,67],"106":[1,4,121],"107":[2,4,251],"108":[2,4,148],"109":[1,4,75],"110":[2,1,1],"111":[1,2,186],"112":[1,3,95],"113":[1,3,106],"114":[1,3,45],"115":[1,1,70],"116":[1,1,1],"117":[4,1,94],"118":[3,1,29],"119":[3,1,1],"120":[4,3,222],"121":[2,3,111],"122":[1,3,77],"123":[1,3,105],"124":[1,4,104],"125":[1,3,98],"126":[1,3,91],"127":[2,3,52],"128":[2,3,57],"129":[1,3,90],"130":[1,1,46],"131":[1,1,73],"132":[2,1,69],"133":[1,1,18],"134":[1,1,190],"135":[2,1,44],"136":[1,2,62],"137":[1,2,56],"138":[1,2,60],"139":[1,1,61],"140":[5,1,52],"141":[5,1,98],"142":[1,1,97],"143":[1,1,90],"144":[1,1,92],"145":[1,1,93],"146":[2,1,331],"147":[1,1,161],"148":[2,1,123],"149":[1,1,96],"150":[4,1,145],"151":[1,5,232],"152":[1,1,102],"153":[1,1,93],"154":[1,1,22],"155":[4,1,69],"156":[3,4,1],"157":[4,5,12],"158":[4,5,17],"159":[4,5,63],"160":[4,5,19],"161":[4,4,88],"162":[2,7,4],"163":[2,7,61],"164":[2,7,13],"165":[3,4,63],"166":[3,4,19],"167":[3,4,73],"168":[1,7,25],"169":[1,7,117],"170":[1,7,37],"171":[2,7,16],"172":[2,7,46],"173":[1,1,1],"174":[3,1,52],"175":[1,4,67],"176":[1,1,87],"177":[1,2,65],"178":[1,1,71],"179":[1,2,32],"180":[4,1,110],"181":[1,5,35],"182":[1,1,134],"183":[1,2,60],"184":[1,1,94],"185":[1,2,56],"186":[2,1,116],"187":[1,3,43],"188":[2,1,35],"189":[1,3,21],"190":[2,1,54],"191":[1,3,32],"192":[2,1,61],"193":[1,3,33],"194":[2,1,1],"195":[3,2,91],"196":[3,5,146],"197":[1,5,51],"198":[1,5,29],"199":[4,5,27],"200":[2,5,13],"201":[1,5,114],"202":[4,5,58],"203":[3,5,41],"204":[2,2,23],"205":[3,2,42],"206":[3,2,54],"207":[3,2,33],"208":[1,2,63],"209":[1,2,117],"210":[2,2,59],"211":[1,2,39],"212":[1,1,45],"213":[3,1,15],"214":[4,4,120],"215":[4,4,70],"216":[1,1,57],"217":[4,1,1],"218":[3,4,152],"219":[5,7,60],"220":[1,10,86],"221":[1,7,38],"222":[1,8,48],"223":[1,7,86],"224":[1,8,54],"225":[1,7,33],"226":[1,8,38],"227":[2,7,38],"228":[1,8,32],"229":[2,7,58],"230":[1,9,34],"231":[2,7,48],"232":[1,9,45],"233":[3,4,78],"234":[5,7,66],"235":[1,10,119],"236":[1,7,90],"237":[1,8,80],"238":[1,7,75],"239":[1,8,63],"240":[4,4,93],"241":[1,8,64],"242":[3,4,43],"243":[1,7,96],"244":[3,4,82],"245":[1,7,78],"246":[1,4,41],"247":[2,1,63],"248":[4,2,1],"249":[4,6,39],"250":[4,6,48],"251":[2,6,227],"252":[3,6,15],"253":[4,6,51],"254":[1,2,59],"255":[1,2,100],"256":[2,3,29],"257":[2,3,27],"258":[1,2,78],"259":[2,1,116],"260":[2,2,147],"261":[1,2,1],"262":[2,3,63],"263":[2,3,29],"264":[2,3,11],"265":[2,3,6],"266":[1,3,117],"267":[4,3,60],"268":[2,3,80],"269":[5,2,1],"270":[3,7,55],"271":[2,7,88],"272":[2,7,80],"273":[1,1,1],"274":[1,1,89],"275":[2,1,73],"276":[1,1,1],"277":[3,1,1],"278":[5,4,62],"279":[6,4,83],"280":[7,4,77],"281":[1,11,137],"282":[5,1,34],"283":[1,6,60],"284":[2,1,44],"285":[1,3,88],"286":[1,1,127],"287":[1,2,81],"288":[2,1,113],"289":[1,3,67],"290":[2,1,114],"291":[1,1,53],"292":[1,2,57],"293":[1,1,84],"294":[1,2,51],"295":[2,1,100],"296":[1,3,40],"297":[4,1,106],"298":[1,5,45],"299":[1,1,83],"300":[1,2,44],"301":[3,1,69],"302":[1,4,66]},"averageFieldLength":[2.072607260726073,3.006600660066005,64.3960396039604],"storedFields":{"0":{"title":"Examples and sample code","titles":[]},"1":{"title":"How-to guides","titles":[]},"2":{"title":"Reduction of polynomials over number fields modulo a prime ideal","titles":[]},"3":{"title":"Features","titles":[]},"4":{"title":"Citing Hecke","titles":[]},"5":{"title":"Acknowledgement","titles":[]},"6":{"title":"Elements","titles":[]},"7":{"title":"Creation","titles":["Elements"]},"8":{"title":"Access","titles":["Elements"]},"9":{"title":"Predicates","titles":["Elements"]},"10":{"title":"Invariants","titles":["Elements"]},"11":{"title":"Iterator","titles":["Elements"]},"12":{"title":"Introduction","titles":[]},"13":{"title":"Basic Creation","titles":["Introduction"]},"14":{"title":"Invariants","titles":["Introduction"]},"15":{"title":"Maps","titles":[]},"16":{"title":"Structural Computations","titles":[]},"17":{"title":"Subgroups and Quotients","titles":["Structural Computations"]},"18":{"title":"Direct Products","titles":["Structural Computations"]},"19":{"title":"Tensor Producs","titles":["Structural Computations"]},"20":{"title":"Hom-Group","titles":["Structural Computations"]},"21":{"title":"Basics","titles":[]},"22":{"title":"Creation of algebras","titles":["Basics"]},"23":{"title":"Basic properties","titles":["Basics"]},"24":{"title":"Predicates","titles":["Basics"]},"25":{"title":"Generators","titles":["Basics"]},"26":{"title":"Center","titles":["Basics"]},"27":{"title":"Group algebras","titles":[]},"28":{"title":"Creation","titles":["Group algebras"]},"29":{"title":"Elements","titles":["Group algebras"]},"30":{"title":"Introduction","titles":[]},"31":{"title":"Structure constant algebras","titles":[]},"32":{"title":"Creation","titles":["Structure constant algebras"]},"33":{"title":"Structure constant table","titles":["Structure constant algebras"]},"34":{"title":"Documentation","titles":[]},"35":{"title":"Adding files to the documentation","titles":["Documentation"]},"36":{"title":"Building the documentation","titles":["Documentation"]},"37":{"title":"Testing","titles":[]},"38":{"title":"Structure","titles":["Testing"]},"39":{"title":"Adding tests","titles":["Testing","Structure"]},"40":{"title":"Adding long tests","titles":["Testing","Structure"]},"41":{"title":"Running the tests","titles":["Testing"]},"42":{"title":"Running all tests","titles":["Testing","Running the tests"]},"43":{"title":"Running a subset of tests","titles":["Testing","Running the tests"]},"44":{"title":"Basics","titles":[]},"45":{"title":"Creation","titles":["Basics"]},"46":{"title":"Basic properties","titles":["Basics"]},"47":{"title":"Points","titles":["Basics"]},"48":{"title":"Examples","titles":["Basics","Points"]},"49":{"title":"Introduction","titles":[]},"50":{"title":"Elliptic curves over finite fields","titles":[]},"51":{"title":"Random points","titles":["Elliptic curves over finite fields"]},"52":{"title":"Cardinality and orders","titles":["Elliptic curves over finite fields"]},"53":{"title":"Frobenius","titles":["Elliptic curves over finite fields"]},"54":{"title":"Group structure of rational points","titles":["Elliptic curves over finite fields"]},"55":{"title":"Discrete logarithm","titles":["Elliptic curves over finite fields"]},"56":{"title":"Elliptic curves over rationals and number fields","titles":[]},"57":{"title":"Manual","titles":[]},"58":{"title":"Factored Elements","titles":[]},"59":{"title":"Construction","titles":["Factored Elements"]},"60":{"title":"Conversion","titles":["Factored Elements"]},"61":{"title":"Special functions","titles":["Factored Elements"]},"62":{"title":"Positivity & Signs","titles":["Factored Elements"]},"63":{"title":"Miscellaneous","titles":["Factored Elements"]},"64":{"title":"Conjugacy of integral matrices","titles":[]},"65":{"title":"Multi-sets and sub-set iterators","titles":[]},"66":{"title":"Multi-sets","titles":["Multi-sets and sub-set iterators"]},"67":{"title":"Type and constructors","titles":["Multi-sets and sub-set iterators","Multi-sets"]},"68":{"title":"Functions","titles":["Multi-sets and sub-set iterators","Multi-sets"]},"69":{"title":"Sub-set iterators","titles":["Multi-sets and sub-set iterators"]},"70":{"title":"Sub-multi-sets","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"71":{"title":"Sub-sets","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"72":{"title":"Sub-sets of a given size","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"73":{"title":"Pseudo-matrices","titles":[]},"74":{"title":"Creation","titles":["Pseudo-matrices"]},"75":{"title":"Operations","titles":["Pseudo-matrices"]},"76":{"title":"Examples","titles":["Pseudo-matrices"]},"77":{"title":"Class Field Theory","titles":[]},"78":{"title":"Introduction","titles":["Class Field Theory"]},"79":{"title":"Ray Class Groups","titles":["Class Field Theory"]},"80":{"title":"Ray Class Fields","titles":["Class Field Theory"]},"81":{"title":"Example","titles":["Class Field Theory","Ray Class Fields"]},"82":{"title":"Conversions","titles":["Class Field Theory"]},"83":{"title":"Invariants","titles":["Class Field Theory"]},"84":{"title":"Operations","titles":["Class Field Theory"]},"85":{"title":"Complex embedding","titles":[]},"86":{"title":"Construction of complex embeddings","titles":["Complex embedding"]},"87":{"title":"Properties","titles":["Complex embedding"]},"88":{"title":"Conjugated embedding","titles":["Complex embedding"]},"89":{"title":"Evaluating elements at complex embeddings","titles":["Complex embedding"]},"90":{"title":"Logarithmic embedding","titles":["Complex embedding"]},"91":{"title":"Restriction","titles":["Complex embedding"]},"92":{"title":"Extension","titles":["Complex embedding"]},"93":{"title":"Positivity & Signs","titles":["Complex embedding"]},"94":{"title":"Example","titles":["Complex embedding"]},"95":{"title":"Conventions","titles":[]},"96":{"title":"Sparse linear algebra","titles":[]},"97":{"title":"Introduction","titles":["Sparse linear algebra"]},"98":{"title":"Sparse rows","titles":["Sparse linear algebra"]},"99":{"title":"Creation","titles":["Sparse linear algebra","Sparse rows"]},"100":{"title":"Basic operations","titles":["Sparse linear algebra","Sparse rows"]},"101":{"title":"Change of base ring","titles":["Sparse linear algebra","Sparse rows"]},"102":{"title":"Maximum, minimum and 2-norm","titles":["Sparse linear algebra","Sparse rows"]},"103":{"title":"Functionality for integral sparse rows","titles":["Sparse linear algebra","Sparse rows"]},"104":{"title":"Conversion to/from julia and AbstractAlgebra types","titles":["Sparse linear algebra","Sparse rows"]},"105":{"title":"Sparse matrices","titles":["Sparse linear algebra"]},"106":{"title":"Construction","titles":["Sparse linear algebra","Sparse matrices"]},"107":{"title":"Elementary Properties","titles":["Sparse linear algebra","Sparse matrices"]},"108":{"title":"Manipulation/ Access","titles":["Sparse linear algebra","Sparse matrices"]},"109":{"title":"Arithmetic","titles":["Sparse linear algebra","Sparse matrices"]},"110":{"title":"Element operations","titles":[]},"111":{"title":"Creation","titles":["Element operations"]},"112":{"title":"Conjugates","titles":["Element operations","Creation"]},"113":{"title":"Predicates","titles":["Element operations","Creation"]},"114":{"title":"Invariants","titles":["Element operations","Creation"]},"115":{"title":"Introduction","titles":[]},"116":{"title":"Internals","titles":[]},"117":{"title":"Types of number fields","titles":["Internals"]},"118":{"title":"Absolute simple fields","titles":["Internals"]},"119":{"title":"Number field operations","titles":[]},"120":{"title":"Creation of number fields","titles":["Number field operations"]},"121":{"title":"Basic properties","titles":["Number field operations"]},"122":{"title":"Invariants","titles":["Number field operations"]},"123":{"title":"Predicates","titles":["Number field operations"]},"124":{"title":"Subfields","titles":["Number field operations","Predicates"]},"125":{"title":"Conversion","titles":["Number field operations"]},"126":{"title":"Morphisms","titles":["Number field operations"]},"127":{"title":"Galois theory","titles":["Number field operations"]},"128":{"title":"Infinite places","titles":["Number field operations"]},"129":{"title":"Miscellaneous","titles":["Number field operations"]},"130":{"title":"Elements","titles":[]},"131":{"title":"Creation","titles":["Elements"]},"132":{"title":"Basic properties","titles":["Elements"]},"133":{"title":"Arithmetic","titles":["Elements"]},"134":{"title":"Miscellaneous","titles":["Elements"]},"135":{"title":"Fractional ideals","titles":[]},"136":{"title":"Creation","titles":["Fractional ideals"]},"137":{"title":"Arithmetic","titles":["Fractional ideals"]},"138":{"title":"Miscaellenous","titles":["Fractional ideals"]},"139":{"title":"Introduction","titles":[]},"140":{"title":"Orders of absolute number fields","titles":["Introduction"]},"141":{"title":"Orders of relative number fields","titles":["Introduction"]},"142":{"title":"Examples","titles":["Introduction"]},"143":{"title":"Ideals","titles":[]},"144":{"title":"Creation","titles":["Ideals"]},"145":{"title":"Arithmetic","titles":["Ideals"]},"146":{"title":"Class Group","titles":["Ideals"]},"147":{"title":"Miscaellenous","titles":["Ideals"]},"148":{"title":"Quotient Rings","titles":["Ideals"]},"149":{"title":"Orders","titles":[]},"150":{"title":"Creation and basic properties","titles":["Orders"]},"151":{"title":"Example","titles":["Orders","Creation and basic properties"]},"152":{"title":"Invariants","titles":["Orders"]},"153":{"title":"Arithmetic","titles":["Orders"]},"154":{"title":"Predicates","titles":["Orders"]},"155":{"title":"Genera of Integer Lattices","titles":[]},"156":{"title":"Creation of Genera","titles":["Genera of Integer Lattices"]},"157":{"title":"From an integral Lattice","titles":["Genera of Integer Lattices","Creation of Genera"]},"158":{"title":"From a gram matrix","titles":["Genera of Integer Lattices","Creation of Genera"]},"159":{"title":"Enumeration of genus symbols","titles":["Genera of Integer Lattices","Creation of Genera"]},"160":{"title":"From other genus symbols","titles":["Genera of Integer Lattices","Creation of Genera"]},"161":{"title":"Attributes of the genus","titles":["Genera of Integer Lattices"]},"162":{"title":"Discriminant group","titles":["Genera of Integer Lattices","Attributes of the genus"]},"163":{"title":"Primary genera","titles":["Genera of Integer Lattices","Attributes of the genus"]},"164":{"title":"local Symbol","titles":["Genera of Integer Lattices","Attributes of the genus"]},"165":{"title":"Representative(s)","titles":["Genera of Integer Lattices"]},"166":{"title":"Embeddings and Representations","titles":["Genera of Integer Lattices"]},"167":{"title":"Local genus Symbols","titles":["Genera of Integer Lattices"]},"168":{"title":"Creation","titles":["Genera of Integer Lattices","Local genus Symbols"]},"169":{"title":"Attributes","titles":["Genera of Integer Lattices","Local genus Symbols"]},"170":{"title":"Representative","titles":["Genera of Integer Lattices","Local genus Symbols"]},"171":{"title":"Direct sums","titles":["Genera of Integer Lattices","Local genus Symbols"]},"172":{"title":"Embeddings/Representations","titles":["Genera of Integer Lattices","Local genus Symbols"]},"173":{"title":"Spaces","titles":[]},"174":{"title":"Creation of spaces","titles":["Spaces"]},"175":{"title":"Examples","titles":["Spaces","Creation of spaces"]},"176":{"title":"Attributes","titles":["Spaces"]},"177":{"title":"Examples","titles":["Spaces","Attributes"]},"178":{"title":"Predicates","titles":["Spaces"]},"179":{"title":"Examples","titles":["Spaces","Predicates"]},"180":{"title":"Inner products and diagonalization","titles":["Spaces"]},"181":{"title":"Examples","titles":["Spaces","Inner products and diagonalization"]},"182":{"title":"Equivalence","titles":["Spaces"]},"183":{"title":"Examples","titles":["Spaces","Equivalence"]},"184":{"title":"Embeddings","titles":["Spaces"]},"185":{"title":"Examples","titles":["Spaces","Embeddings"]},"186":{"title":"Categorical constructions","titles":["Spaces"]},"187":{"title":"Example","titles":["Spaces","Categorical constructions"]},"188":{"title":"Orthogonality operations","titles":["Spaces"]},"189":{"title":"Example","titles":["Spaces","Orthogonality operations"]},"190":{"title":"Isotropic spaces","titles":["Spaces"]},"191":{"title":"Example","titles":["Spaces","Isotropic spaces"]},"192":{"title":"Hyperbolic spaces","titles":["Spaces"]},"193":{"title":"Example","titles":["Spaces","Hyperbolic spaces"]},"194":{"title":"Discriminant Groups","titles":[]},"195":{"title":"Torsion Quadratic Modules","titles":["Discriminant Groups"]},"196":{"title":"The underlying Type","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"197":{"title":"Attributes","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"198":{"title":"Elements","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"199":{"title":"Lift to the cover","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"200":{"title":"Orthogonal submodules","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"201":{"title":"Isometry","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"202":{"title":"Primary and elementary modules","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"203":{"title":"Smith normal form","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"204":{"title":"Discriminant Groups","titles":["Discriminant Groups"]},"205":{"title":"From a lattice","titles":["Discriminant Groups","Discriminant Groups"]},"206":{"title":"From a matrix","titles":["Discriminant Groups","Discriminant Groups"]},"207":{"title":"Rescaling the form","titles":["Discriminant Groups","Discriminant Groups"]},"208":{"title":"Invariants","titles":["Discriminant Groups","Discriminant Groups"]},"209":{"title":"Genus","titles":["Discriminant Groups","Discriminant Groups"]},"210":{"title":"Categorical constructions","titles":["Discriminant Groups","Discriminant Groups"]},"211":{"title":"Submodules","titles":["Discriminant Groups","Discriminant Groups"]},"212":{"title":"Introduction","titles":[]},"213":{"title":"Definitions and vocabulary","titles":["Introduction"]},"214":{"title":"Quadratic and hermitian spaces","titles":["Introduction","Definitions and vocabulary"]},"215":{"title":"Quadratic and hermitian lattices","titles":["Introduction","Definitions and vocabulary"]},"216":{"title":"References","titles":["Introduction"]},"217":{"title":"Genera for hermitian lattices","titles":[]},"218":{"title":"Local genus symbols","titles":["Genera for hermitian lattices"]},"219":{"title":"Creation of local genus symbols","titles":["Genera for hermitian lattices","Local genus symbols"]},"220":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Creation of local genus symbols"]},"221":{"title":"Attributes","titles":["Genera for hermitian lattices","Local genus symbols"]},"222":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Attributes"]},"223":{"title":"Invariants","titles":["Genera for hermitian lattices","Local genus symbols"]},"224":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Invariants"]},"225":{"title":"Predicates","titles":["Genera for hermitian lattices","Local genus symbols"]},"226":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Predicates"]},"227":{"title":"Local uniformizer","titles":["Genera for hermitian lattices","Local genus symbols"]},"228":{"title":"Example","titles":["Genera for hermitian lattices","Local genus symbols","Local uniformizer"]},"229":{"title":"Determinant representatives","titles":["Genera for hermitian lattices","Local genus symbols"]},"230":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Determinant representatives"]},"231":{"title":"Gram matrices","titles":["Genera for hermitian lattices","Local genus symbols"]},"232":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Gram matrices"]},"233":{"title":"Global genus symbols","titles":["Genera for hermitian lattices"]},"234":{"title":"Creation of global genus symbols","titles":["Genera for hermitian lattices","Global genus symbols"]},"235":{"title":"Examples","titles":["Genera for hermitian lattices","Global genus symbols","Creation of global genus symbols"]},"236":{"title":"Attributes","titles":["Genera for hermitian lattices","Global genus symbols"]},"237":{"title":"Examples","titles":["Genera for hermitian lattices","Global genus symbols","Attributes"]},"238":{"title":"Mass","titles":["Genera for hermitian lattices","Global genus symbols"]},"239":{"title":"Example","titles":["Genera for hermitian lattices","Global genus symbols","Mass"]},"240":{"title":"Representatives of a genus","titles":["Genera for hermitian lattices"]},"241":{"title":"Examples","titles":["Genera for hermitian lattices","Representatives of a genus"]},"242":{"title":"Sum of genera","titles":["Genera for hermitian lattices"]},"243":{"title":"Examples","titles":["Genera for hermitian lattices","Sum of genera"]},"244":{"title":"Enumeration of genera","titles":["Genera for hermitian lattices"]},"245":{"title":"Examples","titles":["Genera for hermitian lattices","Enumeration of genera"]},"246":{"title":"Rescaling","titles":["Genera for hermitian lattices"]},"247":{"title":"Integer Lattices","titles":[]},"248":{"title":"Creation of integer lattices","titles":["Integer Lattices"]},"249":{"title":"From a gram matrix","titles":["Integer Lattices","Creation of integer lattices"]},"250":{"title":"In a quadratic space","titles":["Integer Lattices","Creation of integer lattices"]},"251":{"title":"Special lattices","titles":["Integer Lattices","Creation of integer lattices"]},"252":{"title":"From a genus","titles":["Integer Lattices","Creation of integer lattices"]},"253":{"title":"Rescaling the Quadratic Form","titles":["Integer Lattices","Creation of integer lattices"]},"254":{"title":"Attributes","titles":["Integer Lattices"]},"255":{"title":"Invariants","titles":["Integer Lattices"]},"256":{"title":"The Genus","titles":["Integer Lattices","Invariants"]},"257":{"title":"Real invariants","titles":["Integer Lattices","Invariants"]},"258":{"title":"Isometries","titles":["Integer Lattices"]},"259":{"title":"Root lattices","titles":[]},"260":{"title":"Module operations","titles":["Root lattices"]},"261":{"title":"Embeddings","titles":["Root lattices"]},"262":{"title":"Categorical constructions","titles":["Root lattices","Embeddings"]},"263":{"title":"Orthogonal sublattices","titles":["Root lattices","Embeddings"]},"264":{"title":"Dual lattice","titles":["Root lattices","Embeddings"]},"265":{"title":"Discriminant group","titles":["Root lattices","Embeddings"]},"266":{"title":"Overlattices","titles":["Root lattices","Embeddings"]},"267":{"title":"Sublattices defined by endomorphisms","titles":["Root lattices","Embeddings"]},"268":{"title":"Computing embeddings","titles":["Root lattices","Embeddings"]},"269":{"title":"LLL, Short and Close Vectors","titles":["Root lattices"]},"270":{"title":"LLL and indefinite LLL","titles":["Root lattices","LLL, Short and Close Vectors"]},"271":{"title":"Short Vectors","titles":["Root lattices","LLL, Short and Close Vectors"]},"272":{"title":"Close Vectors","titles":["Root lattices","LLL, Short and Close Vectors"]},"273":{"title":"Tutorials","titles":[]},"274":{"title":"Bibliography","titles":[]},"275":{"title":"Getting started","titles":[]},"276":{"title":"Lattices","titles":[]},"277":{"title":"Creation of lattices","titles":["Lattices"]},"278":{"title":"Inside a given ambient space","titles":["Lattices","Creation of lattices"]},"279":{"title":"Quadratic lattice over a number field","titles":["Lattices","Creation of lattices"]},"280":{"title":"Hermitian lattice over a degree 2 extension","titles":["Lattices","Creation of lattices"]},"281":{"title":"Examples","titles":["Lattices","Creation of lattices","Hermitian lattice over a degree 2 extension"]},"282":{"title":"Ambient space and rational span","titles":["Lattices"]},"283":{"title":"Examples","titles":["Lattices","Ambient space and rational span"]},"284":{"title":"Rational equivalence","titles":["Lattices"]},"285":{"title":"Examples","titles":["Lattices","Rational equivalence"]},"286":{"title":"Attributes","titles":["Lattices"]},"287":{"title":"Examples","titles":["Lattices","Attributes"]},"288":{"title":"Module operations","titles":["Lattices"]},"289":{"title":"Examples","titles":["Lattices","Module operations"]},"290":{"title":"Categorical constructions","titles":["Lattices"]},"291":{"title":"Invariants","titles":["Lattices"]},"292":{"title":"Examples","titles":["Lattices","Invariants"]},"293":{"title":"Predicates","titles":["Lattices"]},"294":{"title":"Examples","titles":["Lattices","Predicates"]},"295":{"title":"Local properties","titles":["Lattices"]},"296":{"title":"Examples","titles":["Lattices","Local properties"]},"297":{"title":"Automorphisms for definite lattices","titles":["Lattices"]},"298":{"title":"Examples","titles":["Lattices","Automorphisms for definite lattices"]},"299":{"title":"Isometry","titles":["Lattices"]},"300":{"title":"Examples","titles":["Lattices","Isometry"]},"301":{"title":"Maximal integral lattices","titles":["Lattices"]},"302":{"title":"Examples","titles":["Lattices","Maximal integral lattices"]}},"dirtCount":0,"index":[["∣x",{"2":{"291":1}}],["∣x∈l",{"2":{"291":1}}],["~markus",{"2":{"281":2}}],["\\t\\t\\t",{"2":{"280":2}}],["ℤ",{"2":{"251":2}}],["≅",{"2":{"251":1}}],["∩",{"2":{"251":1}}],["∩z",{"2":{"150":1}}],["±1",{"2":{"229":1}}],["×ln",{"2":{"262":1,"290":1}}],["×tn",{"2":{"210":1}}],["×vn",{"2":{"186":1}}],["↦φ",{"2":{"205":1}}],["ψ",{"2":{"192":3}}],["`h`",{"2":{"251":1}}],["`v`",{"2":{"251":1}}],["`sek`",{"2":{"235":2}}],["`cyclotomix",{"2":{"187":1}}],["`facelemzzringelem",{"2":{"58":1}}],["⊕ln",{"2":{"262":2,"290":2}}],["⊕tn",{"2":{"210":2}}],["⊕vn",{"2":{"186":2}}],["⊕c",{"2":{"18":1}}],["φp",{"2":{"190":2}}],["φ",{"2":{"176":7,"178":3,"180":1,"182":3,"184":3,"190":2,"192":1,"195":1,"198":1,"214":8,"255":4,"260":2,"288":3,"291":4,"297":3}}],["≤c1⋅∑idxi2",{"2":{"151":1}}],["∈2z",{"2":{"255":1}}],["∈r",{"2":{"151":1}}],["∈matd×d",{"2":{"95":1}}],["∏i",{"2":{"169":1}}],["∏aiei",{"2":{"146":1}}],["∏bd",{"2":{"59":2}}],["∏biei",{"2":{"59":2}}],["−n",{"2":{"134":1}}],["−1",{"2":{"95":1,"120":1,"134":1,"176":1,"218":1,"223":5}}],["∗b",{"2":{"132":1,"134":1}}],["∗a",{"2":{"107":1}}],["γ",{"2":{"121":1,"266":2}}],["γ∈k",{"2":{"121":1}}],["γ↦βγ",{"2":{"95":1}}],["→li+1",{"2":{"172":1}}],["→",{"2":{"108":1}}],["⋮⋱⋮⋮⋮⋱⋮σ1",{"2":{"95":1}}],["⊆oe",{"2":{"288":1}}],["⊆o",{"2":{"95":1}}],["⊆r",{"2":{"85":1}}],["σ∣σ∈homoe",{"2":{"291":1}}],["σ",{"2":{"126":2,"184":5}}],["σr+2s",{"2":{"112":3,"134":1}}],["σr+2",{"2":{"95":1}}],["σr+s",{"2":{"95":5}}],["σr+1",{"2":{"95":7,"112":3,"134":1}}],["σr",{"2":{"95":4}}],["σ1",{"2":{"95":3}}],["σi=σi+s",{"2":{"95":1}}],["σi",{"2":{"95":2,"112":3,"134":1}}],["β⋅",{"2":{"95":1}}],["β",{"2":{"95":2}}],["|r|",{"2":{"259":1}}],["|x∈l",{"2":{"161":1,"169":1}}],["|−1",{"2":{"112":1}}],["|σr+s",{"2":{"112":1,"134":1}}],["|σr+1",{"2":{"112":1,"134":1}}],["|σr",{"2":{"112":1,"134":1}}],["|σ1",{"2":{"112":1,"134":1}}],["|",{"2":{"90":1,"112":5,"134":4,"165":1,"208":2}}],["|ι",{"2":{"90":1}}],["≥vp",{"2":{"79":1}}],["∑i=1n1|o",{"2":{"165":1}}],["∑i=1nmi",{"2":{"13":1}}],["∑idxi2≤c2⋅t2",{"2":{"151":1}}],["∑aiωi",{"2":{"141":1}}],["∑zkmi",{"2":{"74":1}}],["∑cimi",{"2":{"74":2}}],["ω2",{"2":{"95":5}}],["ωd",{"2":{"95":6,"140":1}}],["ω1⋮ωd",{"2":{"140":1}}],["ω1",{"2":{"95":6,"140":1}}],["ωi∈o",{"2":{"141":1}}],["ωi∈l",{"2":{"141":1}}],["ωi∈v",{"2":{"73":1}}],["ωi",{"2":{"73":2,"151":1}}],["ω∈v",{"2":{"73":1}}],["αφ",{"2":{"180":1}}],["αi",{"2":{"146":1}}],["αd",{"2":{"140":1}}],["αd−1",{"2":{"95":3}}],["α1⋮αd",{"2":{"140":1}}],["α1",{"2":{"140":1}}],["α2",{"2":{"95":1}}],["αb=ae",{"2":{"146":1}}],["αb=a",{"2":{"61":1}}],["α",{"2":{"61":1,"95":14,"140":2,"146":6,"150":2,"152":1,"180":1}}],["$^3",{"2":{"175":1,"177":2}}],["$^2",{"2":{"146":21,"175":1,"177":2}}],["$n",{"2":{"120":1}}],["$1",{"2":{"82":1}}],["$",{"2":{"58":2,"120":3,"146":24,"175":1,"177":2,"245":6}}],["$e",{"2":{"46":1}}],["915",{"2":{"239":1}}],["998259",{"2":{"239":1}}],["99e",{"2":{"89":1,"90":1}}],["9",{"2":{"67":4,"68":1,"129":1,"146":3,"209":1,"259":18}}],["94",{"2":{"54":1}}],["97",{"2":{"54":1}}],["└──",{"2":{"38":3}}],["│",{"2":{"38":72}}],["├──",{"2":{"38":28}}],["570",{"2":{"281":1}}],["5313",{"2":{"239":1}}],["5>",{"2":{"146":2,"289":1}}],["5^",{"2":{"146":2}}],["5^2",{"2":{"52":1}}],["52810618909468316764975",{"2":{"146":2}}],["5200",{"2":{"54":1}}],["512",{"2":{"146":6}}],["5917",{"2":{"239":1}}],["59",{"2":{"92":2}}],["50",{"2":{"67":2}}],["58",{"2":{"54":1}}],["5",{"2":{"25":1,"28":1,"45":3,"46":4,"67":3,"68":10,"89":1,"91":1,"92":3,"93":6,"120":6,"128":3,"146":8,"155":1,"167":2,"169":1,"201":7,"220":1,"224":1,"232":1,"235":1,"237":1,"239":1,"243":1,"251":4,"254":2,"259":24,"266":2,"268":1,"275":1,"283":3,"285":2,"287":9,"289":4,"300":2,"302":3}}],["55",{"2":{"2":1,"90":1}}],["55ζ^5",{"2":{"2":1}}],["ϕi",{"2":{"19":1}}],["ϕ",{"2":{"19":1,"20":1}}],["⊗",{"2":{"18":1}}],["⊂",{"2":{"17":1}}],["ιk→k",{"2":{"124":1}}],["ι",{"2":{"17":5,"85":2,"90":1,"91":2,"92":1,"124":1}}],["^5",{"2":{"201":2}}],["^1",{"2":{"146":5}}],["^int",{"2":{"146":1}}],["^",{"2":{"133":1,"146":4}}],["^j",{"2":{"25":1}}],["^k",{"2":{"25":1}}],["^3",{"2":{"13":1,"17":1}}],["^2",{"2":{"13":1,"146":1,"196":5,"201":2,"275":1}}],["63",{"2":{"94":4}}],["62",{"2":{"91":1}}],["62e",{"2":{"90":1}}],["64",{"2":{"89":1,"151":1}}],["65",{"2":{"52":1}}],["6",{"2":{"13":2,"17":8,"55":2,"67":3,"68":2,"94":1,"146":3,"187":1,"201":6,"204":1,"206":3,"209":1,"230":2,"245":1,"251":3,"259":32,"260":3,"266":5,"287":4,"289":3,"298":1,"302":6}}],["vm",{"2":{"299":1}}],["vl",{"2":{"299":1}}],["vg",{"2":{"251":2}}],["vol",{"2":{"274":4}}],["volume",{"2":{"233":1,"291":3,"292":1}}],["vocabulary",{"0":{"213":1},"1":{"214":1,"215":1},"2":{"213":1,"215":1}}],["vj",{"2":{"214":1}}],["v×v→e",{"2":{"214":1}}],["vn",{"2":{"186":3,"214":1}}],["v1",{"2":{"186":3,"214":1}}],["v→vi",{"2":{"186":6}}],["v→v",{"2":{"182":1,"184":1}}],["vcat",{"2":{"106":2,"251":1}}],["v=dw",{"2":{"260":1}}],["v=qn",{"2":{"247":1}}],["v=",{"2":{"99":1}}],["v∈m∞",{"2":{"79":1}}],["vp×vp",{"2":{"190":1}}],["vp",{"2":{"79":1,"151":2,"184":1,"192":1}}],["vararg",{"2":{"186":3,"210":3,"262":3,"290":3}}],["varname=",{"2":{"120":1}}],["varname",{"2":{"120":2}}],["various",{"2":{"97":1,"107":3,"109":1}}],["variable=n",{"2":{"42":1}}],["variable",{"2":{"42":1,"120":1}}],["variety",{"2":{"15":1}}],["valence",{"2":{"107":6}}],["val",{"2":{"107":2,"244":2}}],["valuations",{"2":{"223":1,"244":2}}],["valuation",{"2":{"61":5,"111":3,"144":1,"147":16,"167":2,"223":5,"295":1}}],["valued",{"2":{"107":2}}],["valueiterator",{"2":{"68":2}}],["value",{"2":{"60":4,"63":1,"75":1,"89":1,"103":1,"107":2,"134":1,"163":2,"196":2,"197":6,"201":8,"202":2,"206":10,"223":4,"236":1,"251":1,"255":2,"258":6,"260":1,"271":1,"293":3,"295":1,"297":4,"299":5}}],["values",{"2":{"30":1,"67":2,"68":2,"195":1,"196":1,"209":1,"223":1,"234":1}}],["verlag",{"2":{"274":3}}],["vertically",{"2":{"106":2}}],["verbose",{"2":{"82":1,"153":1}}],["very",{"2":{"60":1,"68":2,"105":1,"120":1,"153":1}}],["version",{"2":{"60":1,"61":3,"148":1,"271":1,"275":3,"281":2}}],["versions",{"2":{"30":1,"125":1,"146":1}}],["versa",{"2":{"29":1}}],["vectors",{"0":{"269":1,"271":1,"272":1},"1":{"270":1,"271":1,"272":1},"2":{"60":2,"70":1,"71":1,"251":1,"253":1,"259":1,"271":13,"272":4,"279":1,"280":1}}],["vectorspace",{"2":{"14":1,"73":1}}],["vector",{"2":{"7":2,"8":2,"13":2,"14":1,"17":7,"18":1,"19":1,"23":1,"25":7,"32":2,"45":1,"47":1,"48":2,"54":3,"59":4,"61":1,"67":2,"68":1,"70":2,"71":2,"73":1,"74":3,"75":1,"79":1,"80":1,"83":3,"84":2,"86":5,"92":1,"93":3,"94":1,"99":4,"104":3,"106":1,"107":3,"109":2,"111":8,"112":8,"113":1,"120":2,"121":8,"124":2,"126":1,"128":6,"131":4,"132":3,"134":5,"138":1,"142":2,"144":4,"146":8,"147":3,"148":2,"150":5,"151":8,"152":1,"153":4,"159":2,"161":1,"165":1,"169":1,"176":1,"180":8,"182":1,"186":16,"195":2,"196":3,"199":2,"210":11,"211":4,"214":1,"219":1,"220":1,"223":4,"224":5,"232":1,"234":1,"235":2,"236":2,"237":2,"239":1,"240":2,"243":1,"244":2,"245":2,"247":1,"253":2,"256":1,"258":2,"259":1,"260":7,"262":11,"263":1,"267":2,"271":4,"272":7,"278":1,"279":1,"280":1,"281":4,"282":1,"283":3,"285":2,"286":6,"287":8,"289":2,"290":16,"292":1,"294":1,"295":3,"296":1,"297":1,"298":2,"300":2,"302":7}}],["vi",{"2":{"214":1}}],["view",{"2":{"214":1}}],["viewed",{"2":{"130":1}}],["vi→v",{"2":{"186":6}}],["vitepress",{"2":{"35":1}}],["vice",{"2":{"29":1}}],["via",{"2":{"13":1,"15":2,"68":1,"107":1,"131":1,"143":1,"146":2,"153":1,"160":1,"196":1}}],["v",{"2":{"8":1,"17":1,"68":4,"70":2,"71":2,"73":2,"79":1,"99":1,"111":3,"172":2,"176":23,"178":18,"180":22,"182":12,"184":15,"186":9,"188":7,"190":6,"192":5,"195":1,"196":2,"201":3,"214":11,"215":4,"247":2,"250":4,"251":10,"255":1,"260":13,"271":10,"272":3,"274":2,"278":16,"288":4,"291":2,"293":2,"297":2,"301":4}}],["02",{"2":{"151":1}}],["02e",{"2":{"93":2}}],["0≤bi",{"2":{"148":1}}],["0≤ij≤dj−1",{"2":{"121":1}}],["0≤n≤3",{"2":{"82":1}}],["09",{"2":{"94":4}}],["00",{"2":{"86":3,"94":8,"128":1,"235":1}}],["0",{"2":{"7":4,"11":3,"15":3,"17":10,"22":1,"25":40,"29":4,"32":4,"33":8,"48":6,"51":1,"64":22,"67":1,"68":3,"79":1,"80":2,"86":3,"90":2,"91":2,"92":4,"93":1,"94":4,"107":2,"122":1,"124":2,"126":1,"128":1,"134":1,"135":1,"142":3,"146":23,"167":3,"175":10,"177":6,"179":2,"181":23,"183":6,"185":10,"187":6,"189":4,"195":2,"196":9,"201":130,"208":2,"209":6,"220":32,"222":4,"224":28,"226":2,"228":2,"230":2,"232":32,"235":32,"237":31,"239":7,"241":2,"243":35,"245":1,"249":4,"251":554,"253":6,"254":2,"258":6,"259":84,"260":14,"266":92,"268":278,"271":2,"272":5,"275":1,"281":80,"283":60,"285":17,"287":114,"289":39,"292":26,"294":23,"296":27,"297":4,"298":46,"299":4,"300":17,"302":64}}],[">=",{"2":{"281":2}}],[">zmodh",{"2":{"251":1}}],[">",{"2":{"7":7,"8":2,"10":1,"13":5,"14":12,"15":2,"16":2,"17":22,"18":4,"19":2,"20":1,"22":1,"23":2,"24":2,"25":2,"26":3,"28":1,"32":2,"33":1,"45":2,"46":13,"48":5,"52":2,"53":2,"54":2,"55":1,"59":6,"60":5,"61":17,"64":1,"67":4,"68":4,"70":3,"71":3,"72":1,"74":3,"79":6,"80":7,"82":6,"83":5,"84":9,"86":2,"87":3,"88":1,"89":2,"93":7,"99":3,"100":3,"101":1,"102":7,"103":5,"104":1,"106":10,"107":21,"108":8,"109":10,"111":15,"112":6,"113":4,"114":7,"120":6,"121":8,"122":7,"123":12,"124":8,"125":4,"126":6,"127":4,"128":4,"129":3,"131":3,"132":6,"134":16,"136":9,"137":4,"138":9,"142":1,"144":17,"145":9,"146":24,"147":42,"148":10,"150":12,"151":29,"152":11,"154":2,"157":1,"158":1,"159":1,"160":1,"161":11,"163":4,"164":1,"165":6,"166":1,"168":2,"169":13,"170":3,"171":1,"172":1,"174":4,"176":8,"178":6,"180":7,"182":5,"184":2,"186":9,"187":4,"188":2,"190":1,"192":1,"195":1,"196":1,"197":9,"198":2,"199":2,"200":1,"201":10,"202":4,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":6,"219":2,"221":3,"223":14,"225":4,"227":1,"229":2,"231":2,"234":2,"236":8,"238":1,"240":6,"242":2,"244":2,"246":2,"249":1,"250":1,"251":5,"253":1,"254":4,"255":10,"256":2,"257":4,"258":5,"259":3,"260":11,"262":6,"263":2,"264":1,"266":6,"267":5,"268":2,"270":1,"271":5,"272":1,"278":4,"279":4,"280":4,"282":5,"284":4,"286":15,"288":9,"290":9,"291":3,"293":7,"295":3,"297":2,"299":3,"301":6}}],["80",{"2":{"183":1}}],["8z",{"2":{"167":1,"209":1}}],["81",{"2":{"92":2}}],["85",{"2":{"54":1,"55":2}}],["88",{"2":{"54":2}}],["8",{"2":{"4":1,"13":2,"17":3,"28":2,"67":1,"124":1,"218":1,"220":1,"224":1,"230":2,"232":2,"235":1,"237":1,"243":1,"245":1,"251":3,"259":38,"266":10,"268":1,"287":1}}],["yield",{"2":{"295":1}}],["yields",{"2":{"263":1}}],["y∈l",{"2":{"255":1,"291":1,"297":1}}],["y∈v",{"2":{"182":1}}],["yes",{"2":{"201":2}}],["yet",{"2":{"54":1}}],["year",{"2":{"4":1}}],["y2=x3+a4x+a6which",{"2":{"49":1}}],["y2+h∗y=f",{"2":{"46":1}}],["y2+a1xy+a3y=x3+a2x2+a4x+a6specified",{"2":{"49":1}}],["y2+a1xy+a3y=x3+a2x2+a4x+a6",{"2":{"46":1}}],["y",{"2":{"45":3,"46":2,"68":4,"109":6,"112":11,"132":2,"134":3,"144":6,"145":5,"147":4,"148":2,"182":2,"205":2,"255":1,"291":1,"297":2}}],["y^2",{"2":{"45":3,"46":2,"48":5,"51":1,"54":3,"55":2}}],["york",{"2":{"4":2,"274":2}}],["your",{"2":{"4":1,"36":1,"275":1}}],["j2",{"2":{"251":1}}],["j≤n∈en×n",{"2":{"214":1}}],["j≤d",{"2":{"151":1}}],["j=",{"2":{"99":3}}],["j$",{"2":{"42":1}}],["jordan",{"2":{"167":2,"169":2,"218":4,"219":1,"220":2,"221":1,"223":11,"229":2,"231":2,"243":1,"295":3,"296":1}}],["joins",{"2":{"106":2}}],["job",{"2":{"40":1}}],["johansson",{"2":{"4":2}}],["jl",{"2":{"38":23,"39":6,"43":1}}],["just",{"2":{"30":1,"43":1,"115":1,"117":1,"150":1,"151":2,"196":1,"267":2}}],["juliakissing",{"2":{"271":1}}],["juliakernel",{"2":{"267":1}}],["juliak3",{"2":{"251":1}}],["juliakummer",{"2":{"129":1}}],["juliauniformizer",{"2":{"227":1}}],["juliaunit",{"2":{"122":1,"146":2}}],["juliawitt",{"2":{"182":1,"284":1}}],["juliawildanger",{"2":{"120":1}}],["juliaoverlattice",{"2":{"266":1}}],["juliaorthogonal",{"2":{"180":1,"188":2,"200":1,"263":1,"288":1}}],["juliaorder",{"2":{"10":1,"14":1,"52":2,"138":1,"147":4,"150":5}}],["juliaoddity",{"2":{"169":1}}],["juliaquadratic",{"2":{"111":1,"120":1,"165":1,"174":2,"198":1,"279":4}}],["juliaquo",{"2":{"17":5,"148":1}}],["juliazzlocalgenus",{"2":{"167":1}}],["juliazzgenus",{"2":{"155":1}}],["juliazzmatrix",{"2":{"109":2}}],["juliazeta",{"2":{"152":1}}],["juliazero",{"2":{"22":1,"106":2}}],["juliavolume",{"2":{"291":1}}],["juliavalue",{"2":{"197":2}}],["juliavaluation",{"2":{"61":2,"111":1,"147":6}}],["juliavalence",{"2":{"107":1}}],["juliavcat",{"2":{"106":2}}],["juliavector",{"2":{"104":1}}],["julialang",{"2":{"275":1}}],["julialattice",{"2":{"250":1,"278":4}}],["julialocal",{"2":{"164":1,"236":1,"266":1,"295":1}}],["julialorenz",{"2":{"129":1}}],["julialeech",{"2":{"251":2}}],["julialevel",{"2":{"161":1,"169":1}}],["julialength",{"2":{"100":1,"221":1}}],["julialll",{"2":{"147":1,"150":1,"151":1,"270":1}}],["julialift",{"2":{"103":1,"199":1}}],["julia==",{"2":{"84":1,"132":1}}],["juliadual",{"2":{"264":1,"288":1}}],["juliadot",{"2":{"109":3}}],["juliadenominator",{"2":{"134":1,"137":1}}],["juliadensity",{"2":{"107":1}}],["juliadense",{"2":{"104":1}}],["juliadecomposition",{"2":{"127":1}}],["juliadets",{"2":{"223":1}}],["juliadet",{"2":{"107":2,"161":1,"169":1,"176":1,"223":2,"229":2,"255":1}}],["juliadefining",{"2":{"83":1,"121":2}}],["juliadegree",{"2":{"83":1,"122":1,"147":1,"152":1,"286":1}}],["juliadivisibility",{"2":{"260":1}}],["juliadivision",{"2":{"48":1}}],["juliadim",{"2":{"161":1,"169":1,"176":1}}],["juliadimension",{"2":{"26":2}}],["juliadifferent",{"2":{"152":1}}],["juliadiagonal",{"2":{"107":1,"108":1,"180":2,"282":1}}],["juliadisc",{"2":{"55":1}}],["juliadiscriminant",{"2":{"46":3,"83":1,"122":1,"132":4,"134":4,"152":1,"176":1,"205":1,"223":2,"286":1}}],["juliadirect",{"2":{"18":1,"160":1,"171":1,"186":4,"210":2,"242":2,"262":2,"290":4}}],["julianf",{"2":{"147":1,"151":1}}],["julianarrow",{"2":{"146":1}}],["julianumerator",{"2":{"137":1}}],["julianumber",{"2":{"14":2,"82":1,"87":1,"107":2,"120":2}}],["juliannz",{"2":{"107":1}}],["julianorms",{"2":{"223":1}}],["julianorm2",{"2":{"102":1}}],["julianormal",{"2":{"84":1,"124":1,"127":1,"208":1}}],["julianorm",{"2":{"79":2,"114":2,"129":1,"134":1,"138":5,"147":5,"151":1,"161":1,"169":1,"223":2,"236":1,"255":1,"291":1}}],["juliamukai",{"2":{"251":1}}],["juliamultiplicative",{"2":{"148":2}}],["juliamultiplicity",{"2":{"68":1}}],["juliamultiplicities",{"2":{"68":1}}],["juliamultiset",{"2":{"67":2}}],["juliamodulus",{"2":{"197":2}}],["juliamodular",{"2":{"61":1}}],["juliamod",{"2":{"103":3,"108":1,"148":1}}],["juliamass",{"2":{"165":1,"238":1,"256":1}}],["juliamap",{"2":{"108":1}}],["juliamatrix",{"2":{"75":1,"109":1}}],["juliamaximum",{"2":{"102":2,"103":1,"107":2}}],["juliamaximalorder",{"2":{"150":4}}],["juliamaximal",{"2":{"82":2,"266":1,"301":3}}],["juliamaxabs",{"2":{"63":1}}],["juliamax",{"2":{"63":1}}],["juliamset",{"2":{"67":1}}],["juliaminpoly",{"2":{"114":1,"134":1}}],["juliaminkowski",{"2":{"112":1,"134":1,"151":1}}],["juliaminimum",{"2":{"102":2,"107":1,"147":2,"271":1}}],["juliamin",{"2":{"63":1}}],["julia+",{"2":{"48":1,"151":1,"260":1,"288":1}}],["juliajordan",{"2":{"295":1}}],["juliaj",{"2":{"46":1}}],["juliajulia>",{"2":{"2":4,"17":4,"22":1,"24":1,"25":2,"26":3,"28":1,"29":3,"32":2,"33":1,"36":1,"43":2,"45":2,"46":2,"48":5,"51":1,"52":2,"53":2,"54":2,"55":1,"64":1,"67":3,"68":4,"86":2,"87":3,"88":1,"89":1,"90":1,"91":2,"92":1,"93":6,"94":1,"111":1,"120":6,"121":2,"122":2,"124":1,"128":3,"142":2,"146":2,"150":1,"196":2,"201":2,"206":1,"209":1,"249":1,"251":6,"253":1,"254":2,"259":5,"260":2,"266":2,"268":2,"272":1,"275":2}}],["juliabrown",{"2":{"209":1}}],["juliabiproduct",{"2":{"186":1,"210":1,"262":1,"290":1}}],["juliablock",{"2":{"106":1}}],["juliab",{"2":{"46":1}}],["juliabasis",{"2":{"23":1,"111":1,"121":2,"138":3,"147":4,"151":5,"254":1,"282":1}}],["juliabase",{"2":{"23":1,"46":4,"75":1,"83":2,"121":1,"176":1,"221":1,"236":1,"260":2,"286":2}}],["juliaade",{"2":{"259":1}}],["juliaadd",{"2":{"100":2,"108":2}}],["juliaambient",{"2":{"254":1,"282":1}}],["juliaany",{"2":{"150":1}}],["juliaautomorphism",{"2":{"126":2,"258":3,"297":2}}],["juliaalgebraic",{"2":{"111":1}}],["juliaabsolute",{"2":{"111":2,"114":3,"121":2,"122":2,"125":1,"134":2,"286":2}}],["juliaabelian",{"2":{"13":5,"54":1,"197":1}}],["juliaarray",{"2":{"109":1}}],["juliaa",{"2":{"46":1}}],["juliaglue",{"2":{"266":1}}],["juliagram",{"2":{"170":1,"176":1,"180":2,"197":2,"231":2,"254":1,"282":1,"286":1}}],["juliagroup",{"2":{"28":1}}],["juliagenerators",{"2":{"286":1}}],["juliagen",{"2":{"111":1,"151":1}}],["juliagenus",{"2":{"82":1,"157":1,"158":1,"168":2,"209":1,"240":1,"256":1}}],["juliagens",{"2":{"7":1,"25":2,"54":1,"111":1}}],["juliagetindex",{"2":{"7":1,"8":2,"100":1,"108":2}}],["juliacan",{"2":{"293":1}}],["juliacanonical",{"2":{"18":2}}],["juliaclose",{"2":{"272":1}}],["juliaclass",{"2":{"79":1,"122":1,"146":2}}],["juliacrt",{"2":{"148":1}}],["juliacyclotomic",{"2":{"120":1}}],["juliacharpoly",{"2":{"114":1,"134":1}}],["juliachange",{"2":{"101":1,"108":1}}],["juliacoinvariant",{"2":{"267":1}}],["juliacoxeter",{"2":{"259":1}}],["juliacover",{"2":{"197":1}}],["juliacodifferent",{"2":{"152":1}}],["juliacolon",{"2":{"145":1}}],["juliacoprime",{"2":{"144":1}}],["juliacoeff",{"2":{"111":1}}],["juliacoefficient",{"2":{"75":1,"286":1}}],["juliacoefficients",{"2":{"46":1,"111":1}}],["juliacoordinates",{"2":{"111":1,"132":1}}],["juliaconjugates",{"2":{"112":6,"134":2}}],["juliaconj",{"2":{"88":1}}],["juliaconductor",{"2":{"83":1}}],["juliacomponent",{"2":{"121":1}}],["juliacompositum",{"2":{"84":1,"124":1}}],["juliacomplex",{"2":{"86":1,"126":1,"128":1}}],["juliacompact",{"2":{"61":1}}],["juliac",{"2":{"46":1}}],["juliacenter",{"2":{"26":1}}],["juliatorquadmodule",{"2":{"196":1}}],["juliatorsion",{"2":{"14":1,"17":1,"111":1,"146":4,"195":1,"206":1}}],["juliat2",{"2":{"134":1}}],["juliatr",{"2":{"111":1,"134":1}}],["juliatranspose",{"2":{"106":1}}],["juliatransform",{"2":{"100":1,"108":1}}],["juliatrace",{"2":{"53":2,"151":1}}],["juliatensor",{"2":{"19":1}}],["juliairreducible",{"2":{"263":1}}],["juliaidempotents",{"2":{"147":2}}],["juliaideal",{"2":{"144":7}}],["juliaidentity",{"2":{"106":1}}],["juliainner",{"2":{"180":1,"198":1}}],["juliaindex",{"2":{"152":1}}],["juliain",{"2":{"145":1,"151":1,"240":2}}],["juliainteger",{"2":{"159":1,"249":1,"251":1}}],["juliaintegral",{"2":{"137":1}}],["juliaintersect",{"2":{"17":1,"84":1,"145":1,"260":1,"288":1}}],["juliainvariant",{"2":{"267":1}}],["juliainvariants",{"2":{"182":1}}],["juliainvolution",{"2":{"176":1,"286":1}}],["juliainv",{"2":{"136":1,"137":1}}],["juliainfinite",{"2":{"128":1}}],["juliainfinity",{"2":{"48":1}}],["juliainertia",{"2":{"127":1}}],["juliaiseven",{"2":{"161":1,"169":1,"255":1}}],["juliaisreal",{"2":{"128":1}}],["juliaiszero",{"2":{"107":1}}],["juliaisone",{"2":{"61":1,"107":1,"145":1}}],["juliaisfinite",{"2":{"14":1}}],["juliais",{"2":{"14":4,"15":1,"17":2,"24":3,"48":1,"64":1,"83":4,"84":3,"87":2,"93":5,"107":2,"113":5,"123":12,"124":1,"126":3,"128":1,"129":1,"145":3,"146":3,"147":3,"151":1,"152":3,"153":1,"154":2,"161":2,"163":4,"178":6,"182":2,"184":2,"190":1,"192":1,"201":2,"202":4,"203":1,"208":2,"209":1,"225":4,"236":1,"255":5,"257":3,"258":2,"260":4,"284":2,"293":6,"295":1,"299":3,"301":3}}],["juliapradical",{"2":{"151":1}}],["juliaprimitive",{"2":{"260":1,"288":1}}],["juliaprimes",{"2":{"161":1,"236":1}}],["juliaprime",{"2":{"84":1,"146":2,"169":1,"221":1}}],["juliaprincipal",{"2":{"124":1,"147":2}}],["juliapmaximal",{"2":{"151":1}}],["juliapoverorders",{"2":{"151":1}}],["juliapoverorder",{"2":{"151":1}}],["juliapower",{"2":{"146":3}}],["juliapicard",{"2":{"146":1}}],["juliapush",{"2":{"106":1}}],["juliapseudo",{"2":{"74":3,"75":2,"286":2}}],["juliapsubgroups",{"2":{"17":1}}],["juliaparent",{"2":{"7":1,"48":1,"132":1,"151":1}}],["juliahighest",{"2":{"259":1}}],["juliahilbert",{"2":{"80":1,"111":1}}],["juliahyperkaehler",{"2":{"251":1}}],["juliahyperbolic",{"2":{"251":1}}],["juliahyperelliptic",{"2":{"46":1}}],["juliahermitian",{"2":{"174":2,"244":2,"280":4}}],["juliahnf",{"2":{"107":4}}],["juliahadamard",{"2":{"107":1}}],["juliahasse",{"2":{"169":1,"182":1,"284":1}}],["juliahas",{"2":{"17":2,"147":3}}],["juliahcat",{"2":{"106":2}}],["juliahom",{"2":{"15":1,"19":1,"20":1}}],["juliashortest",{"2":{"271":1}}],["juliashort",{"2":{"271":2}}],["juliastable",{"2":{"211":1}}],["juliastructure",{"2":{"32":2,"33":1}}],["juliasymbol",{"2":{"169":1}}],["juliasylow",{"2":{"17":1}}],["juliasunit",{"2":{"146":3}}],["juliasubmodules",{"2":{"211":1}}],["juliasubfields",{"2":{"84":1,"124":1}}],["juliasubsets",{"2":{"70":4,"71":4,"72":1}}],["juliasubgroups",{"2":{"17":1}}],["juliasub",{"2":{"17":6,"106":1}}],["juliascales",{"2":{"223":1}}],["juliascale",{"2":{"108":1,"161":1,"169":1,"223":2,"236":1,"255":1,"291":1}}],["juliaswap",{"2":{"108":2}}],["juliasetindex",{"2":{"108":1}}],["juliasolve",{"2":{"107":1}}],["juliasparsity",{"2":{"107":1}}],["juliasparse",{"2":{"99":3,"104":1,"106":5,"109":1}}],["juliasimplified",{"2":{"125":1}}],["juliasimplify",{"2":{"61":2,"125":1}}],["juliasimple",{"2":{"125":1}}],["juliasignatures",{"2":{"236":1}}],["juliasignature",{"2":{"122":1,"151":1,"161":1,"169":1,"257":1}}],["juliasigns",{"2":{"93":1}}],["juliasign",{"2":{"93":1}}],["juliasaturate",{"2":{"17":1,"107":1}}],["juliasnf",{"2":{"16":1,"107":1,"203":1}}],["juliafractional",{"2":{"136":8}}],["juliafree",{"2":{"13":1}}],["juliafixed",{"2":{"126":1,"176":1,"286":2}}],["juliafind",{"2":{"16":1,"108":1}}],["juliafactor",{"2":{"61":5,"134":1,"144":2,"146":2}}],["juliafacelem",{"2":{"59":5}}],["juliaflat",{"2":{"18":1}}],["juliaembed",{"2":{"268":2}}],["juliaembedding",{"2":{"124":1}}],["juliaeuler",{"2":{"148":1}}],["juliaechelon",{"2":{"107":1}}],["juliaexcess",{"2":{"169":1}}],["juliaextend",{"2":{"92":1}}],["juliaexponent",{"2":{"14":1}}],["juliaevaluation",{"2":{"89":1}}],["juliaevaluate",{"2":{"60":4,"61":1}}],["juliaequationorder",{"2":{"150":1}}],["juliaequation",{"2":{"46":1}}],["juliaelem",{"2":{"132":1}}],["juliaelementary",{"2":{"14":1,"107":1}}],["juliaelliptic",{"2":{"45":2}}],["juliaroot",{"2":{"251":1,"259":2}}],["juliaring",{"2":{"80":1,"146":1,"151":1}}],["juliarational",{"2":{"165":1,"254":1,"282":1}}],["juliarationals",{"2":{"120":1}}],["juliaranks",{"2":{"223":1}}],["juliarank",{"2":{"161":1,"169":1,"176":1,"223":2,"236":1,"255":1,"286":1}}],["juliarand",{"2":{"7":2,"108":1,"134":1}}],["juliaramified",{"2":{"152":1}}],["juliaramification",{"2":{"127":1,"147":1}}],["juliaradical",{"2":{"120":1,"208":2}}],["juliaray",{"2":{"79":1,"80":4,"82":1}}],["juliarepresents",{"2":{"166":1,"172":1}}],["juliarepresentatives",{"2":{"165":1,"240":1}}],["juliarepresentative",{"2":{"165":1,"170":1,"199":1,"240":2}}],["juliarepresentation",{"2":{"111":1,"134":2}}],["juliarescale",{"2":{"165":1,"170":1,"207":1,"246":2,"253":1,"288":1}}],["juliaresidue",{"2":{"148":2}}],["juliarestrict",{"2":{"91":2,"180":1}}],["juliaregulator",{"2":{"122":1}}],["juliarelations",{"2":{"197":1}}],["juliarelative",{"2":{"122":1,"124":1}}],["juliarels",{"2":{"14":1}}],["juliareverse",{"2":{"108":1}}],["juliareal",{"2":{"86":1,"128":1}}],["juliareduced",{"2":{"152":1}}],["juliareduce",{"2":{"61":1,"107":1,"108":3}}],["julia>",{"2":{"2":10,"11":2,"13":2,"15":7,"17":16,"24":1,"25":3,"26":4,"29":3,"32":1,"33":1,"36":1,"45":2,"46":2,"48":9,"51":1,"52":5,"53":2,"54":5,"55":3,"64":3,"67":6,"68":9,"81":4,"82":7,"86":3,"87":3,"88":1,"89":3,"90":3,"91":6,"92":3,"93":13,"94":6,"111":4,"120":3,"121":4,"122":4,"124":2,"128":3,"142":11,"146":22,"150":2,"151":3,"175":5,"177":10,"179":8,"181":10,"183":9,"185":13,"187":6,"189":4,"191":7,"193":7,"196":7,"201":20,"206":3,"209":2,"220":11,"222":10,"224":15,"226":8,"228":8,"230":9,"232":12,"235":15,"237":14,"239":10,"241":15,"243":16,"245":7,"249":3,"251":30,"253":1,"254":2,"259":5,"260":14,"266":10,"268":5,"272":2,"275":7,"281":22,"283":15,"285":12,"287":21,"289":14,"292":10,"294":14,"296":9,"298":10,"300":11,"302":15}}],["julia",{"0":{"104":1},"2":{"2":1,"4":2,"7":2,"11":1,"13":2,"15":2,"17":1,"36":3,"42":2,"47":1,"59":1,"61":1,"68":2,"81":1,"82":1,"84":1,"89":1,"102":1,"104":1,"106":2,"109":7,"111":1,"124":1,"131":5,"142":1,"144":1,"146":1,"147":2,"151":6,"175":1,"177":1,"179":1,"181":1,"183":1,"185":1,"187":1,"189":1,"191":1,"193":1,"219":2,"220":1,"222":1,"224":1,"226":1,"228":1,"230":1,"232":1,"234":2,"235":1,"237":1,"239":1,"241":1,"243":1,"245":1,"260":1,"275":5,"281":3,"283":1,"285":1,"287":1,"288":3,"289":1,"292":1,"294":1,"296":1,"298":1,"300":1,"302":1}}],["jej=0",{"2":{"13":1}}],["j",{"2":{"13":1,"15":1,"17":1,"25":3,"32":2,"45":5,"46":2,"99":7,"100":3,"108":12,"132":2,"134":2,"169":1,"182":1,"274":2}}],["ub",{"2":{"271":4,"272":2}}],["u2",{"2":{"201":2}}],["u→o×",{"2":{"146":2}}],["u∈kr×n",{"2":{"73":1}}],["upperright",{"2":{"75":2}}],["upper",{"2":{"73":1,"75":2,"107":7,"108":4}}],["up",{"2":{"36":2,"112":1,"146":6,"184":1,"212":1,"251":1,"271":3,"281":1}}],["unsuccessful",{"2":{"129":1}}],["unspecified",{"2":{"64":1}}],["undefvarerror",{"2":{"187":1,"235":2}}],["undefined",{"2":{"120":1}}],["under",{"2":{"89":1,"112":1,"127":1,"134":1,"146":2,"211":1,"218":1,"227":1}}],["underlying",{"0":{"196":1},"2":{"68":1,"169":2,"195":1,"196":1,"197":1,"202":4,"203":2,"208":1,"255":1,"260":1,"286":1,"288":1}}],["unvariate",{"2":{"118":1}}],["until",{"2":{"107":1}}],["unlike",{"2":{"105":1}}],["unless",{"2":{"32":1,"40":1}}],["un",{"2":{"59":4}}],["uniformizer",{"0":{"227":1},"1":{"228":1},"2":{"227":1,"228":1,"229":1}}],["uniformly",{"2":{"7":2,"134":1}}],["universitext",{"2":{"274":1}}],["university",{"2":{"216":1,"274":1}}],["univariate",{"2":{"46":1,"115":1,"117":1,"120":1,"123":1}}],["unimodular",{"2":{"107":2,"163":2,"233":1,"251":3,"255":2,"259":1,"268":4}}],["union",{"2":{"68":4,"80":1,"111":2,"123":1,"163":2,"182":3,"190":1,"195":1,"202":2,"244":3,"246":2,"255":2,"260":2,"279":3,"284":3,"295":1}}],["unique",{"2":{"6":1,"14":1,"58":1,"61":2,"67":1,"68":2,"137":1,"143":1,"148":2,"149":1,"235":1,"241":1,"243":1,"245":1,"251":1,"286":1}}],["unitgroup",{"2":{"146":2,"153":1}}],["unitary",{"2":{"141":1,"149":1}}],["unity",{"2":{"82":1,"123":1}}],["units",{"2":{"58":1,"129":1,"146":16,"153":3}}],["unit",{"2":{"3":1,"58":1,"111":4,"113":4,"122":3,"134":1,"145":1,"146":11,"148":3,"153":3}}],["u⊂v",{"2":{"17":1}}],["u∩v",{"2":{"17":1}}],["u+v",{"2":{"17":1}}],["u",{"2":{"17":52,"73":2,"138":3,"146":10,"147":3,"167":2,"180":1,"184":7,"201":10,"251":1,"260":4,"268":1}}],["url",{"2":{"4":1}}],["usually",{"2":{"73":1,"83":1,"142":1}}],["usual",{"2":{"42":1,"100":1,"109":1,"133":1,"145":1}}],["users",{"2":{"212":1}}],["user",{"2":{"186":1,"290":1}}],["useful",{"2":{"61":1,"115":1,"204":1,"253":1}}],["uses",{"2":{"60":1,"61":1,"107":3,"129":1}}],["use",{"2":{"30":1,"40":1,"61":1,"83":1,"146":1,"150":1,"196":1,"235":1,"240":6,"259":1,"275":2,"288":1}}],["used",{"2":{"7":1,"14":1,"20":1,"61":1,"62":1,"75":2,"83":1,"120":7,"138":1,"139":1,"146":2,"147":1,"195":2,"258":3,"281":3,"286":1,"297":2,"299":2}}],["using",{"2":{"8":1,"18":1,"29":2,"36":1,"42":1,"46":1,"61":2,"80":1,"82":1,"83":1,"97":1,"107":3,"120":2,"125":2,"147":1,"148":1,"149":1,"151":1,"185":1,"275":3}}],["usage",{"2":{"186":1,"290":1}}],["usa",{"2":{"4":2}}],["us",{"2":{"4":1}}],["lherm",{"2":{"281":3,"283":4,"287":16,"292":4,"294":6,"302":7}}],["lquad2",{"2":{"285":4,"289":3,"300":3}}],["lquad",{"2":{"281":1,"283":3,"285":5,"289":6,"296":4,"298":4,"300":3}}],["lxxiv+703",{"2":{"274":1}}],["lb",{"2":{"271":4,"272":3}}],["lk3",{"2":{"268":3}}],["lg",{"2":{"267":3}}],["l⊗zp≅m⊗zp",{"2":{"258":1}}],["l⊗oee",{"2":{"215":1}}],["l=⨁i=1naixi",{"2":{"286":1}}],["l=⨁ili",{"2":{"263":1}}],["l=zrb",{"2":{"247":1}}],["l=k",{"2":{"111":2,"115":2,"120":1,"121":3}}],["l2",{"2":{"241":3}}],["ln",{"2":{"238":1,"251":3,"262":3,"290":3}}],["l1",{"2":{"238":1,"241":3,"262":3,"290":3}}],["lcm",{"2":{"145":1}}],["lmfdb",{"2":{"125":1}}],["lll",{"0":{"269":1,"270":2},"1":{"270":1,"271":1,"272":1},"2":{"125":2,"147":2,"150":2,"151":2,"270":2}}],["l→l",{"2":{"297":1}}],["l→li",{"2":{"262":6,"290":6}}],["l→k",{"2":{"124":1}}],["l→r",{"2":{"90":1}}],["l→c",{"2":{"85":1,"90":1,"124":1}}],["lp=⊥i=1tliwhere",{"2":{"218":1}}],["lp",{"2":{"79":2,"142":2,"144":4,"146":4,"218":1,"293":2,"295":1,"301":4}}],["lt",{"2":{"68":1,"89":1,"112":7,"134":2,"148":1,"151":1,"169":1,"182":1,"196":2,"218":2,"271":4,"272":2}}],["leech",{"2":{"251":6}}],["left",{"2":{"136":2,"144":1,"196":1,"286":1,"288":1}}],["less",{"2":{"112":2,"134":3,"151":1,"152":1}}],["let",{"2":{"73":1,"95":1,"105":1,"112":1,"141":1,"161":2,"165":1,"169":2,"176":1,"178":1,"182":1,"184":2,"190":2,"192":2,"208":1,"209":1,"214":2,"215":1,"218":3,"229":1,"233":3,"238":2,"286":1,"288":1,"291":1,"293":1,"297":1}}],["level",{"2":{"43":1,"82":1,"153":1,"161":2,"169":1}}],["least",{"2":{"40":1}}],["length",{"2":{"7":1,"45":1,"47":2,"48":1,"67":1,"68":1,"100":1,"111":1,"124":1,"221":1,"222":1,"235":1,"241":2,"259":1,"271":1,"279":1,"280":1,"295":1}}],["lower",{"2":{"136":2,"144":1}}],["lowerleft",{"2":{"75":2}}],["lorenz",{"2":{"129":2}}],["log⁡",{"2":{"112":2,"134":2}}],["log",{"2":{"55":3,"90":3,"112":5,"134":2,"152":2}}],["logarithms",{"2":{"97":1,"112":1}}],["logarithmic",{"0":{"90":1},"2":{"90":1}}],["logarithm",{"0":{"55":1},"2":{"55":1,"153":1}}],["long",{"0":{"40":1},"2":{"40":4,"42":2}}],["local",{"0":{"164":1,"167":1,"218":1,"219":1,"227":1,"295":1},"1":{"168":1,"169":1,"170":1,"171":1,"172":1,"219":1,"220":2,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":2,"229":1,"230":1,"231":1,"232":1,"296":1},"2":{"84":6,"111":1,"113":3,"155":2,"161":1,"164":2,"167":1,"168":2,"169":2,"170":4,"171":1,"172":1,"182":1,"216":1,"218":3,"219":2,"220":2,"221":3,"223":22,"225":4,"227":1,"229":4,"231":4,"233":1,"234":1,"235":1,"236":3,"240":3,"242":2,"243":2,"244":3,"245":16,"246":2,"251":13,"256":1,"266":2,"268":2,"295":1,"296":1}}],["locally",{"2":{"3":1,"151":1,"184":4,"185":3,"190":1,"192":3,"193":1,"258":2,"266":2,"293":1,"299":2,"300":1,"301":2}}],["located",{"2":{"34":1}}],["l",{"2":{"32":4,"67":3,"85":1,"91":5,"111":12,"113":3,"114":3,"115":3,"120":3,"121":13,"122":13,"123":16,"124":14,"125":5,"126":12,"127":5,"141":4,"157":2,"161":6,"165":2,"168":2,"169":6,"172":1,"182":4,"196":2,"205":6,"209":2,"215":10,"218":12,"219":2,"220":2,"224":2,"232":2,"233":15,"234":2,"235":2,"237":2,"238":14,"239":2,"240":11,"243":3,"247":6,"249":4,"251":33,"252":1,"253":4,"254":14,"255":29,"256":4,"257":8,"258":15,"259":14,"260":22,"262":9,"263":5,"264":2,"265":1,"266":12,"267":19,"268":2,"270":5,"271":12,"272":7,"281":1,"282":10,"284":8,"286":39,"288":25,"290":9,"291":20,"293":19,"295":10,"297":16,"299":12,"301":33}}],["li→l",{"2":{"262":6,"290":6}}],["li",{"2":{"165":1,"218":8,"238":2,"263":1,"295":1}}],["limit",{"2":{"146":4}}],["library",{"2":{"118":1}}],["like",{"2":{"107":1,"120":1}}],["lifting",{"2":{"103":1,"107":1}}],["lift",{"0":{"199":1},"2":{"103":1,"196":3,"199":3,"251":1}}],["line",{"2":{"107":1}}],["linearly",{"2":{"123":2}}],["linear",{"0":{"96":1},"1":{"97":1,"98":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1},"2":{"3":1,"6":1,"32":1,"73":1,"95":1,"97":3,"107":1,"123":1,"125":2,"131":1,"141":1,"182":1,"184":1,"214":1}}],["link",{"2":{"80":1}}],["live",{"2":{"58":1,"260":1}}],["lies",{"2":{"47":1,"48":1,"151":1,"260":2}}],["lists",{"2":{"67":1,"167":1,"169":1,"259":1,"295":1}}],["list",{"2":{"13":1,"29":1,"48":1,"49":2,"54":1,"67":2,"68":1,"79":1,"84":1,"111":1,"120":1,"126":3,"152":1,"159":1,"161":1,"165":2,"167":3,"236":1,"267":2,"271":1,"278":1,"279":1,"280":1,"286":1}}],["la",{"2":{"288":2,"293":1}}],["last",{"2":{"107":1}}],["lasvegas",{"2":{"107":1}}],["lazy",{"2":{"80":1}}],["larger",{"2":{"106":1,"108":1,"151":1}}],["largest",{"2":{"63":2,"80":2,"102":2,"103":1,"107":2,"111":1,"147":5,"152":1,"218":1,"227":1,"263":1,"288":1}}],["large",{"2":{"58":3,"79":1,"117":1,"120":1}}],["latest",{"2":{"275":1}}],["later",{"2":{"18":1}}],["latter",{"2":{"178":1}}],["lattices",{"0":{"155":1,"215":1,"217":1,"247":1,"248":1,"251":1,"259":1,"276":1,"277":1,"297":1,"301":1},"1":{"156":1,"157":1,"158":1,"159":1,"160":1,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"167":1,"168":1,"169":1,"170":1,"171":1,"172":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"242":1,"243":1,"244":1,"245":1,"246":1,"248":1,"249":2,"250":2,"251":2,"252":2,"253":2,"254":1,"255":1,"256":1,"257":1,"258":1,"260":1,"261":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1,"268":1,"269":1,"270":1,"271":1,"272":1,"277":1,"278":2,"279":2,"280":2,"281":2,"282":1,"283":1,"284":1,"285":1,"286":1,"287":1,"288":1,"289":1,"290":1,"291":1,"292":1,"293":1,"294":1,"295":1,"296":1,"297":1,"298":2,"299":1,"300":1,"301":1,"302":2},"2":{"3":1,"155":3,"159":1,"161":1,"163":4,"165":1,"170":1,"176":1,"195":1,"196":2,"204":1,"209":4,"212":4,"215":4,"216":2,"218":1,"219":1,"220":2,"221":3,"223":14,"225":4,"227":1,"229":3,"231":2,"234":1,"235":2,"236":5,"240":4,"242":2,"243":2,"244":2,"245":21,"246":2,"247":2,"251":6,"252":1,"253":1,"255":2,"258":1,"260":9,"262":3,"266":2,"268":2,"270":1,"274":1,"281":5,"284":2,"288":5,"290":4,"297":3,"299":3}}],["lattice",{"0":{"157":1,"205":1,"264":1,"279":1,"280":1},"1":{"281":1},"2":{"3":1,"122":1,"155":2,"157":1,"158":1,"161":2,"168":1,"169":4,"170":1,"195":1,"196":3,"201":2,"205":1,"209":3,"215":5,"218":3,"219":1,"220":1,"223":3,"224":1,"231":2,"232":1,"233":2,"234":1,"235":1,"236":4,"237":1,"238":4,"239":1,"240":5,"241":2,"243":1,"247":2,"249":5,"250":3,"251":51,"253":3,"254":5,"255":9,"256":2,"257":3,"258":2,"259":29,"260":14,"263":1,"264":2,"266":17,"267":14,"268":8,"270":2,"272":1,"278":13,"279":19,"280":13,"281":13,"282":5,"283":2,"284":4,"285":4,"286":16,"287":1,"288":17,"289":2,"291":4,"292":1,"293":9,"294":1,"295":6,"296":1,"297":3,"298":1,"300":2,"301":15,"302":7}}],["language",{"2":{"4":2,"78":2,"214":1,"215":1}}],["lying",{"2":{"2":1,"113":1,"146":1,"223":3,"244":1,"246":2}}],["40",{"2":{"285":1,"289":1,"300":1}}],["4^1",{"2":{"251":1}}],["48",{"2":{"298":1}}],["488",{"2":{"239":1}}],["48778768008944312042281",{"2":{"146":2}}],["4653462",{"2":{"239":1}}],["4>",{"2":{"235":1,"237":1,"243":1}}],["4197",{"2":{"239":1}}],["41",{"2":{"90":2}}],["41e",{"2":{"89":1}}],["4331",{"2":{"239":1}}],["4348",{"2":{"239":1}}],["43",{"2":{"55":2,"274":1}}],["426",{"2":{"281":1}}],["42",{"2":{"54":1,"146":1}}],["45",{"2":{"17":1,"183":1}}],["4",{"2":{"2":1,"11":2,"13":1,"15":1,"17":8,"45":2,"46":4,"48":1,"64":10,"67":11,"68":9,"82":1,"90":1,"120":1,"121":1,"139":1,"142":1,"146":4,"169":2,"196":4,"201":14,"209":2,"216":1,"220":2,"224":2,"232":5,"235":2,"237":4,"238":1,"239":1,"243":5,"245":2,"249":2,"251":4,"254":2,"259":29,"260":1,"266":16,"281":10,"283":5,"287":7,"292":2,"294":2,"302":15}}],["3345554",{"2":{"239":1}}],["337",{"2":{"216":1}}],["347",{"2":{"216":1}}],["346573590",{"2":{"90":1}}],["346573590279972654708616060729088284037750067180127627",{"2":{"90":1}}],["3780",{"2":{"239":1}}],["371",{"2":{"169":1}}],["370",{"2":{"169":1}}],["3^2",{"2":{"146":1}}],["3^1",{"2":{"146":1,"251":1}}],["32",{"2":{"89":1,"134":1}}],["35",{"2":{"68":1,"285":1,"289":1,"300":1}}],["30250",{"2":{"281":1}}],["3088",{"2":{"239":1}}],["3087611",{"2":{"4":2}}],["3087604",{"2":{"4":2}}],["3004",{"2":{"239":1}}],["30",{"2":{"17":2,"146":1,"245":1,"266":1,"274":1,"285":1,"289":1,"300":1}}],["39",{"2":{"4":1,"111":2,"121":1,"125":1,"146":2,"172":2,"180":1,"197":2,"219":1,"233":1,"238":1,"251":2,"286":3}}],["3",{"2":{"2":1,"11":2,"13":1,"15":3,"17":12,"25":2,"32":1,"33":2,"42":2,"45":5,"46":4,"47":1,"51":1,"67":5,"68":10,"86":2,"87":4,"88":1,"89":2,"91":2,"93":2,"94":1,"111":2,"120":4,"121":1,"129":1,"139":1,"146":20,"167":1,"172":1,"175":2,"177":3,"179":1,"181":1,"182":1,"185":1,"187":1,"191":1,"193":1,"196":1,"201":60,"206":5,"209":1,"218":1,"220":2,"224":3,"232":4,"235":3,"237":3,"239":6,"241":4,"243":3,"245":7,"251":6,"259":27,"260":7,"266":18,"268":2,"272":1,"275":1,"281":11,"283":8,"285":6,"287":12,"289":7,"292":1,"294":1,"296":2,"298":2,"300":4,"302":3}}],["sssr",{"2":{"274":1}}],["s+r⊆l",{"2":{"266":2}}],["s→t",{"2":{"203":1}}],["s2",{"2":{"171":1}}],["s1",{"2":{"171":1,"218":3}}],["sqrt",{"2":{"120":1}}],["squared",{"2":{"259":1,"271":1}}],["squares",{"2":{"182":1,"291":1}}],["square",{"2":{"60":2,"107":2,"174":2}}],["swap",{"2":{"108":4}}],["sloane",{"2":{"155":1,"274":1}}],["slp",{"2":{"107":1}}],["slices",{"2":{"106":1}}],["sf",{"2":{"107":3}}],["scales",{"2":{"223":2,"224":1}}],["scale",{"2":{"108":1,"159":8,"161":3,"169":6,"218":2,"220":2,"223":4,"233":1,"236":2,"243":1,"244":10,"251":1,"255":3,"291":3,"292":1,"293":3,"294":1,"295":1}}],["scaled",{"2":{"100":4,"108":4,"207":1}}],["scalars",{"2":{"100":1,"109":2,"180":5}}],["sctable",{"2":{"32":2}}],["srow",{"2":{"98":3,"99":3,"100":10,"101":2,"102":5,"103":9,"104":1,"105":1,"106":1,"107":4,"108":9,"109":4,"146":1}}],["src",{"2":{"34":1,"35":1,"38":3,"39":4}}],["sheaves",{"2":{"251":2}}],["sharing",{"2":{"84":1}}],["share",{"2":{"30":1}}],["shape",{"2":{"75":2}}],["shapes",{"2":{"17":3}}],["shortest",{"2":{"253":1,"271":2}}],["shortcut",{"2":{"79":1}}],["shortcuts",{"2":{"13":1}}],["short",{"0":{"269":1,"271":1},"1":{"270":1,"271":1,"272":1},"2":{"30":1,"49":1,"61":1,"141":1,"271":4}}],["shorthand",{"2":{"28":1}}],["should",{"2":{"18":2,"39":1,"58":1,"80":1,"120":2,"186":6,"201":2,"210":6,"262":6,"290":6}}],["show",{"2":{"17":2,"125":1}}],["springer",{"2":{"274":4}}],["spheres",{"2":{"271":1}}],["sphere",{"2":{"271":2,"274":1}}],["splitting",{"2":{"79":1,"84":1,"263":1}}],["split",{"2":{"61":2,"111":2,"137":2,"201":2,"225":3,"226":1,"233":1}}],["spans",{"2":{"284":2,"295":1}}],["spanned",{"2":{"250":1,"259":1,"278":3,"279":3,"280":3}}],["span",{"0":{"282":1},"1":{"283":1},"2":{"107":1,"180":1,"215":1,"233":1,"236":1,"247":1,"254":5,"257":3,"260":1,"282":12,"283":4,"284":2,"286":3,"293":3}}],["sparsity",{"2":{"107":2}}],["sparsematrixcsc",{"2":{"109":2}}],["sparse",{"0":{"96":1,"98":1,"103":1,"105":1},"1":{"97":1,"98":1,"99":2,"100":2,"101":2,"102":2,"103":2,"104":2,"105":1,"106":2,"107":2,"108":2,"109":2},"2":{"3":1,"97":3,"98":5,"99":6,"100":1,"101":1,"103":1,"104":2,"105":7,"106":16,"107":3,"108":11,"109":3,"117":1}}],["space",{"0":{"250":1,"278":1,"282":1},"1":{"283":1},"2":{"105":1,"121":1,"165":4,"174":12,"175":4,"176":11,"177":2,"178":9,"179":2,"180":10,"181":2,"182":2,"183":2,"185":4,"187":11,"188":2,"189":1,"190":2,"191":1,"192":3,"193":1,"195":1,"196":1,"199":1,"201":1,"214":6,"215":2,"218":1,"247":3,"249":1,"250":1,"251":3,"253":1,"254":7,"255":1,"258":1,"260":9,"266":1,"267":3,"270":1,"278":4,"279":8,"280":8,"282":4,"283":3,"286":2,"288":9,"289":2,"291":1,"297":1,"301":4,"302":1}}],["spaces",{"0":{"173":1,"174":1,"190":1,"192":1,"214":1},"1":{"174":1,"175":2,"176":1,"177":1,"178":1,"179":1,"180":1,"181":1,"182":1,"183":1,"184":1,"185":1,"186":1,"187":1,"188":1,"189":1,"190":1,"191":2,"192":1,"193":2},"2":{"38":2,"175":1,"176":1,"182":5,"184":3,"185":2,"186":6,"212":4,"214":6,"262":3,"290":3,"297":2,"299":2}}],["special",{"0":{"61":1,"251":1},"2":{"58":1,"106":1,"147":2,"212":1}}],["specify",{"2":{"74":1}}],["specifying",{"2":{"29":1,"95":1,"111":1,"140":1}}],["specifies",{"2":{"120":2}}],["specified",{"2":{"45":1,"46":1,"47":1,"49":1,"75":2,"80":1,"146":1,"249":2}}],["specifically",{"2":{"40":1,"78":1}}],["specific",{"2":{"17":2,"30":1,"49":1,"196":1}}],["speed",{"2":{"36":2}}],["solution",{"2":{"113":1}}],["solve",{"2":{"107":2,"196":1}}],["sometimes",{"2":{"214":1,"215":1,"290":1}}],["some",{"2":{"27":1,"73":5,"75":3,"78":1,"113":1,"120":2,"123":2,"131":1,"150":1,"163":2,"166":2,"170":1,"184":1,"185":1,"202":2,"251":2,"255":2,"260":1,"268":2,"274":1,"281":1}}],["so",{"2":{"17":1,"68":1,"78":1,"112":1,"141":1,"177":1,"271":3,"293":1}}],["sophisticated",{"2":{"17":1}}],["source",{"2":{"7":7,"8":2,"10":1,"13":6,"14":12,"15":2,"16":2,"17":21,"18":4,"19":2,"20":1,"22":1,"23":2,"24":3,"25":2,"26":3,"28":1,"32":2,"33":1,"38":1,"43":1,"45":2,"46":14,"48":5,"52":2,"53":2,"54":2,"55":1,"59":6,"60":4,"61":15,"63":3,"64":1,"67":3,"68":4,"70":4,"71":4,"72":1,"74":3,"75":5,"79":4,"80":6,"82":5,"83":10,"84":10,"86":2,"87":3,"88":1,"89":1,"91":2,"92":1,"93":7,"99":3,"100":5,"101":1,"102":6,"103":5,"104":3,"106":16,"107":27,"108":19,"109":12,"111":15,"112":7,"113":5,"114":7,"120":7,"121":8,"122":9,"123":12,"124":8,"125":4,"126":7,"127":4,"128":5,"129":4,"131":5,"132":8,"134":19,"136":9,"137":4,"138":9,"144":11,"145":7,"146":24,"147":37,"148":8,"150":12,"151":26,"152":11,"153":1,"154":2,"155":1,"157":1,"158":1,"159":1,"160":1,"161":11,"163":4,"164":1,"165":6,"166":1,"167":1,"168":2,"169":13,"170":3,"171":1,"172":1,"174":4,"176":8,"178":6,"180":7,"182":5,"184":2,"186":5,"188":2,"190":1,"192":1,"195":1,"196":1,"197":9,"198":2,"199":2,"200":1,"201":2,"202":4,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":3,"211":2,"221":3,"223":14,"225":4,"227":1,"229":2,"231":2,"236":8,"238":1,"240":6,"242":2,"244":2,"246":2,"249":1,"250":1,"251":8,"253":1,"254":4,"255":10,"256":2,"257":4,"258":5,"259":5,"260":12,"262":3,"263":2,"264":1,"266":4,"267":3,"268":2,"270":1,"271":5,"272":1,"278":4,"279":4,"280":4,"281":2,"282":5,"284":4,"286":15,"288":9,"290":5,"291":3,"293":7,"295":3,"297":2,"299":3,"301":6}}],["system",{"2":{"73":3,"103":3,"108":2,"259":2,"275":1}}],["syntax",{"2":{"28":1,"29":2}}],["sylow",{"2":{"17":3}}],["symmetric",{"2":{"103":2,"108":2,"169":1,"174":1,"214":1,"274":1}}],["sym",{"2":{"103":4,"108":2,"133":1}}],["symbols",{"0":{"159":1,"160":1,"167":1,"218":1,"219":1,"233":1,"234":1},"1":{"168":1,"169":1,"170":1,"171":1,"172":1,"219":1,"220":2,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"234":1,"235":2,"236":1,"237":1,"238":1,"239":1},"2":{"75":1,"155":2,"161":1,"167":1,"182":1,"233":1,"234":2,"235":2,"236":3,"242":2,"243":1,"244":2,"251":1}}],["symbol",{"0":{"164":1},"2":{"19":1,"20":1,"75":1,"111":3,"120":2,"155":2,"161":1,"164":3,"165":2,"167":5,"168":2,"169":1,"170":2,"186":2,"218":1,"219":3,"220":2,"221":3,"223":17,"225":4,"227":1,"229":3,"231":4,"233":1,"234":2,"235":1,"236":9,"240":7,"242":2,"243":2,"245":21,"246":4,"251":22,"259":3,"268":3,"290":2}}],["symbolic",{"2":{"4":1}}],["symposium",{"2":{"4":1}}],["small",{"2":{"28":1,"58":1,"61":3,"111":1,"125":1,"126":1,"146":3,"216":1}}],["smaller",{"2":{"25":2,"58":1,"125":1}}],["smallest",{"2":{"17":1,"63":1,"102":2,"107":1,"108":1,"111":1,"134":1,"137":1,"147":2,"151":1}}],["smatslp",{"2":{"107":1}}],["smat",{"2":{"17":2,"104":1,"105":2,"106":25,"107":38,"108":20,"109":12}}],["smith",{"0":{"203":1},"2":{"14":1,"16":1,"107":2,"195":1,"203":2}}],["s",{"0":{"165":1},"2":{"17":7,"59":2,"67":1,"68":15,"70":6,"71":6,"72":2,"79":2,"82":1,"95":1,"107":2,"113":1,"120":6,"121":1,"125":1,"129":2,"137":1,"138":5,"145":1,"146":6,"147":5,"151":8,"154":2,"167":3,"169":14,"170":2,"180":3,"200":2,"203":2,"218":1,"219":1,"233":2,"234":3,"238":1,"251":14,"263":2,"266":9,"268":6,"286":3,"291":1}}],["superlattice",{"2":{"295":1}}],["supermodule",{"2":{"295":1}}],["suppose",{"2":{"218":1,"238":1}}],["supports",{"2":{"155":1}}],["support",{"2":{"7":1,"16":1,"100":1,"109":1}}],["supported",{"2":{"5":1,"91":1,"95":1,"106":1,"145":1,"153":1,"155":1,"159":1}}],["supplemented",{"2":{"113":1}}],["supply",{"2":{"52":1}}],["supplied",{"2":{"32":1,"55":1,"120":2,"150":2,"279":4,"280":4}}],["surface",{"2":{"251":3}}],["surrounding",{"2":{"131":1}}],["sunits",{"2":{"146":1}}],["sunit",{"2":{"146":4,"153":3}}],["successful",{"2":{"113":1}}],["such",{"2":{"14":1,"15":1,"16":1,"25":1,"38":1,"46":3,"48":2,"61":1,"64":1,"73":1,"78":1,"85":1,"95":2,"107":1,"108":2,"111":2,"112":3,"113":1,"121":1,"127":1,"134":2,"135":1,"136":1,"137":2,"140":1,"145":1,"146":5,"147":7,"148":1,"151":3,"159":1,"167":1,"180":3,"182":1,"184":1,"190":1,"192":2,"196":1,"201":1,"203":1,"209":1,"218":1,"231":2,"260":2,"266":2,"270":1,"271":2,"272":1,"286":2,"293":4,"295":1,"297":1,"301":2}}],["suitable",{"2":{"82":1,"275":1}}],["suite",{"2":{"40":2,"42":1}}],["submodule",{"2":{"200":4,"215":1,"247":1,"263":3,"288":3,"295":1}}],["submodules",{"0":{"200":1,"211":1},"2":{"211":12}}],["submatrix",{"2":{"17":1,"106":1}}],["sublattices",{"0":{"263":1,"267":1},"2":{"259":3,"266":1,"295":1}}],["sublattice",{"2":{"195":1,"196":1,"259":4,"260":7,"267":1,"295":1}}],["subspace",{"2":{"188":2}}],["subsetitr",{"2":{"70":1,"71":1}}],["subsetsizeitr",{"2":{"70":1,"71":1,"72":1}}],["subsets",{"2":{"70":1,"71":1,"72":1}}],["subset",{"0":{"43":1},"2":{"25":2,"38":1,"43":1}}],["subrings",{"2":{"149":1}}],["subring",{"2":{"95":1,"139":1}}],["subfields",{"0":{"124":1},"2":{"82":1,"84":3,"124":6}}],["subfield",{"2":{"80":2,"82":6,"84":3,"91":2,"92":1,"114":1,"124":8,"175":2,"177":3,"179":1,"180":1,"181":1,"183":4,"185":1,"189":1,"191":1,"193":1,"245":1}}],["subtype",{"2":{"17":4,"211":2}}],["subtraction",{"2":{"15":1}}],["sub",{"0":{"65":1,"69":1,"70":1,"71":1,"72":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2},"2":{"17":8,"70":4,"71":4,"72":1,"106":1,"201":2}}],["subgroup",{"2":{"17":23,"79":2,"80":1,"127":6,"146":3}}],["subgroups",{"0":{"17":1},"2":{"16":1,"17":11}}],["sums",{"0":{"171":1},"2":{"18":1,"186":4,"209":1,"210":3,"262":3,"290":4}}],["sum",{"0":{"242":1},"1":{"243":1},"2":{"15":2,"18":2,"32":1,"68":2,"73":1,"112":1,"160":4,"171":3,"186":16,"192":1,"201":2,"210":8,"242":8,"243":2,"260":1,"262":8,"266":1,"268":1,"288":1,"290":14}}],["snf",{"2":{"14":2,"16":1,"107":3,"195":2,"203":3}}],["say",{"2":{"39":2,"178":2,"218":1,"233":1}}],["saturation",{"2":{"107":1}}],["saturate",{"2":{"17":1,"107":1,"288":1}}],["satisfied",{"2":{"134":1}}],["satisfies",{"2":{"32":1,"112":4,"134":2,"231":2,"271":2}}],["satisfying",{"2":{"301":3}}],["satisfy",{"2":{"89":2,"234":1}}],["said",{"2":{"12":1,"73":1,"155":1,"176":1,"178":1,"184":1,"190":1,"192":1,"293":2}}],["same",{"2":{"7":1,"17":2,"30":1,"36":1,"39":1,"67":1,"84":1,"91":1,"98":1,"106":1,"109":5,"120":2,"123":1,"139":1,"143":1,"144":1,"146":2,"149":1,"150":1,"155":1,"182":1,"184":3,"186":1,"218":1,"233":1,"238":1,"240":1,"242":1,"260":8,"270":3,"288":5,"295":1,"297":1,"301":1}}],["sample",{"0":{"0":1}}],["st",{"2":{"218":3}}],["style",{"2":{"107":1}}],["store",{"2":{"196":1}}],["stored",{"2":{"8":1,"281":1}}],["stops",{"2":{"79":1}}],["straight",{"2":{"107":1}}],["strictly",{"2":{"218":1}}],["strict",{"2":{"79":1,"146":1}}],["string",{"2":{"67":3,"120":4}}],["stronger",{"2":{"68":1}}],["str",{"2":{"67":2}}],["structureconstantalgebra",{"2":{"22":1,"26":1,"32":1,"33":1,"186":4,"290":4}}],["structure",{"0":{"31":1,"33":1,"38":1,"54":1},"1":{"32":1,"33":1,"39":1,"40":1},"2":{"22":2,"26":1,"30":1,"32":7,"33":4,"43":1,"58":1,"73":2,"81":1,"82":1,"84":1,"141":2,"143":1,"149":4,"196":1}}],["structural",{"0":{"16":1},"1":{"17":1,"18":1,"19":1,"20":1},"2":{"16":1}}],["still",{"2":{"61":1,"73":1,"185":1}}],["steps",{"2":{"275":1}}],["step",{"2":{"36":2}}],["stable",{"2":{"211":2,"251":2,"275":1}}],["stabilises",{"2":{"107":1}}],["statement",{"2":{"172":1}}],["started",{"0":{"275":1}}],["starting",{"2":{"108":2}}],["starts",{"2":{"80":1,"142":1}}],["stay",{"2":{"30":1}}],["standard",{"2":{"7":1,"9":1,"278":1}}],["si",{"2":{"218":1,"295":2}}],["side",{"2":{"196":1,"251":1}}],["sig",{"2":{"159":2}}],["sigma",{"2":{"126":1}}],["sign",{"2":{"62":1,"93":2,"120":1,"159":1,"271":3}}],["signs",{"0":{"62":1,"93":1},"2":{"62":2,"93":3}}],["signatures",{"2":{"209":1,"233":1,"234":5,"236":3,"237":1,"244":3,"251":6,"268":1}}],["signature",{"2":{"30":1,"95":1,"122":3,"151":2,"155":1,"159":1,"161":3,"169":3,"209":4,"235":1,"243":1,"251":1,"257":1,"268":1}}],["size",{"0":{"72":1},"2":{"70":1,"71":1,"72":1,"83":1,"146":1,"148":1,"279":3,"280":3}}],["simply",{"2":{"214":3,"215":1}}],["simplfies",{"2":{"61":1}}],["simplification",{"2":{"61":1}}],["simplified",{"2":{"60":1,"61":3,"125":1}}],["simplifies",{"2":{"49":1}}],["simplify",{"2":{"61":4,"125":1,"126":2}}],["simpler",{"2":{"125":1}}],["simplenumfieldelem",{"2":{"111":2}}],["simplenumfield",{"2":{"32":1,"111":1,"121":3,"122":2,"123":4,"124":4,"125":2,"126":5}}],["simple",{"0":{"118":1},"2":{"3":2,"26":1,"82":4,"94":7,"111":4,"113":1,"115":2,"117":10,"120":5,"121":6,"123":3,"124":5,"125":11,"131":1,"140":1,"143":1}}],["similar",{"2":{"39":1,"68":1,"73":1,"143":1,"153":1,"176":1}}],["similarly",{"2":{"17":1,"218":1,"234":1,"297":1}}],["situations",{"2":{"15":1}}],["single",{"2":{"14":1}}],["since",{"2":{"8":1,"30":1,"58":1,"73":1,"80":1,"130":1,"161":1,"186":1,"196":1,"218":1,"238":1}}],["sense",{"2":{"238":1}}],["sentence",{"2":{"67":2,"68":4}}],["sek",{"2":{"235":3,"241":2,"243":2,"245":3}}],["sesquilinear",{"2":{"214":1,"218":2}}],["session",{"2":{"36":1}}],["separable",{"2":{"214":1}}],["self",{"2":{"209":1}}],["selected",{"2":{"17":1}}],["several",{"2":{"117":3,"281":1}}],["second",{"2":{"64":2,"75":3,"107":1,"115":1,"123":1,"143":1,"163":4,"180":1,"202":4,"255":4,"259":1,"260":1,"293":3,"299":1,"301":7}}],["section",{"2":{"30":2,"148":1,"167":1,"175":1,"220":1,"235":1,"281":1,"285":1}}],["sections",{"2":{"22":1}}],["search",{"2":{"25":6}}],["ser",{"2":{"274":1}}],["server",{"2":{"153":1}}],["servers",{"2":{"40":1}}],["serving",{"2":{"17":1}}],["series",{"2":{"4":1}}],["seen",{"2":{"184":1,"254":1,"262":3,"279":3,"290":3}}],["see",{"2":{"14":1,"17":4,"22":1,"23":1,"33":1,"40":1,"62":1,"95":1,"141":1,"153":1,"155":1,"163":4,"175":1,"182":1,"201":4,"202":4,"204":1,"208":1,"247":1,"252":1,"255":4,"259":1,"265":1,"267":1,"271":3,"275":1}}],["sequence",{"2":{"7":1,"180":1,"218":1,"286":1}}],["semi",{"2":{"201":2,"208":3}}],["semisimple",{"2":{"3":1}}],["semsimple",{"2":{"3":1}}],["setindex",{"2":{"108":1}}],["setdiff",{"2":{"68":3}}],["sets",{"0":{"65":1,"66":1,"70":1,"71":1,"72":1},"1":{"66":1,"67":2,"68":2,"69":1,"70":1,"71":1,"72":1},"2":{"67":1,"68":3,"70":3,"71":3,"72":1}}],["setting",{"2":{"42":1,"45":1,"47":1,"82":1,"126":1,"195":1,"250":1,"258":3,"270":1,"272":1,"278":2,"279":2,"280":2,"297":2,"299":2}}],["set",{"0":{"65":1,"69":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2},"2":{"2":1,"19":1,"20":1,"42":1,"48":1,"67":5,"68":5,"70":2,"71":2,"72":1,"79":4,"80":1,"81":1,"82":2,"83":1,"84":2,"107":1,"108":1,"125":1,"129":1,"136":2,"143":1,"144":2,"146":6,"148":1,"150":7,"151":2,"159":1,"180":1,"195":1,"209":2,"233":2,"234":1,"238":1,"244":1,"258":6,"259":1,"286":3,"291":1,"297":5,"299":4}}],["effect",{"2":{"240":1,"251":1}}],["efficiency",{"2":{"143":1}}],["efficient",{"2":{"60":1,"61":1,"130":1,"146":1}}],["ep",{"2":{"218":1}}],["e=k",{"2":{"214":3,"215":1}}],["e=1moda",{"2":{"129":1}}],["etale",{"2":{"214":1}}],["e2",{"2":{"192":4,"260":2}}],["e→e",{"2":{"214":1,"215":1}}],["e→k",{"2":{"180":1}}],["e→a",{"2":{"54":1}}],["e×",{"2":{"176":1}}],["euler",{"2":{"148":1}}],["emb",{"2":{"94":3}}],["embs",{"2":{"93":8}}],["embed",{"2":{"185":1,"268":4}}],["embeds",{"2":{"184":2}}],["embedings",{"2":{"92":1}}],["embeddding",{"2":{"85":1}}],["embeddings",{"0":{"86":1,"89":1,"166":1,"172":1,"184":1,"261":1,"268":1},"1":{"185":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1,"268":1},"2":{"85":1,"86":9,"87":3,"88":1,"89":1,"91":2,"92":1,"93":8,"94":1,"95":3,"204":1}}],["embedding",{"0":{"85":1,"88":1,"90":1},"1":{"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1},"2":{"85":1,"86":6,"87":3,"88":1,"89":2,"90":4,"91":7,"92":6,"93":10,"94":8,"95":1,"112":1,"121":1,"124":6,"126":2,"128":7,"134":1,"182":1,"183":3,"184":1,"235":4,"237":1,"243":1,"268":3,"297":1}}],["employed",{"2":{"82":1}}],["empty",{"2":{"17":1,"48":1,"67":1,"106":1,"278":1,"279":1,"280":1}}],["echelon",{"2":{"75":2,"107":1,"143":1}}],["essentially",{"2":{"73":1,"75":2,"117":1,"118":1}}],["everything",{"2":{"124":2,"126":1}}],["every",{"2":{"112":5,"130":1,"134":2,"169":1}}],["even=true",{"2":{"268":2}}],["even=false",{"2":{"159":1}}],["even",{"2":{"13":1,"78":1,"79":1,"117":1,"159":2,"161":1,"167":1,"169":4,"205":1,"206":2,"209":2,"212":1,"251":2,"255":2,"268":2}}],["evaluating",{"0":{"89":1},"2":{"272":1}}],["evaluation",{"2":{"61":1,"89":2}}],["evaluated",{"2":{"61":1}}],["evaluates",{"2":{"60":4,"61":1}}],["evaluate",{"2":{"60":6,"61":1,"146":1}}],["equipped",{"2":{"205":2}}],["equivalence",{"0":{"182":1,"284":1},"1":{"183":1,"285":1}}],["equivalently",{"2":{"107":1}}],["equivalent",{"2":{"17":1,"251":2}}],["equals",{"2":{"174":3}}],["equal",{"2":{"53":1,"84":1,"95":1,"108":1,"115":1,"132":1,"149":1,"182":1,"208":1,"231":1,"244":4,"254":1,"266":2}}],["equationorder",{"2":{"150":1,"151":1}}],["equations",{"2":{"83":1}}],["equation",{"2":{"45":4,"46":3,"48":5,"49":2,"51":1,"54":3,"55":2,"82":1,"95":1,"125":1,"129":2,"140":1,"142":1,"150":3,"151":3,"152":4,"209":1}}],["ellcrviso",{"2":{"258":1}}],["ellipticcurvepoint",{"2":{"48":8,"52":1,"54":3,"55":2}}],["ellipticcurve",{"2":{"45":2,"46":13,"47":1,"48":3,"51":1,"52":1,"53":2,"54":2,"132":1,"134":1,"258":1}}],["elliptic",{"0":{"50":1,"56":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1},"2":{"45":10,"46":5,"48":12,"49":2,"51":3,"52":4,"53":4,"54":6,"55":3}}],["elsewhere",{"2":{"251":1}}],["elts",{"2":{"142":1}}],["eltype",{"2":{"67":1,"68":1}}],["elemenentary",{"2":{"255":1}}],["elementary",{"0":{"107":1,"202":1},"2":{"14":2,"17":2,"107":3,"152":1,"163":9,"202":7,"255":8}}],["element",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"2":1,"7":6,"8":2,"9":1,"11":2,"13":1,"15":3,"17":4,"23":1,"25":1,"29":5,"32":2,"48":1,"49":1,"54":2,"58":1,"59":4,"60":6,"61":2,"63":3,"67":1,"68":3,"70":1,"71":1,"73":2,"86":3,"89":1,"92":1,"93":6,"94":1,"95":1,"98":1,"105":1,"111":11,"113":3,"114":9,"117":1,"120":2,"121":6,"127":1,"128":3,"130":1,"131":9,"132":3,"134":6,"142":2,"143":1,"146":3,"147":2,"148":1,"152":1,"166":2,"176":2,"182":1,"190":1,"196":3,"224":4,"235":1,"237":1,"245":2,"246":2,"253":1,"272":3,"283":1,"287":4,"288":1,"293":1,"298":1,"302":3}}],["elements",{"0":{"6":1,"29":1,"58":1,"89":1,"130":1,"198":1},"1":{"7":1,"8":1,"9":1,"10":1,"11":1,"59":1,"60":1,"61":1,"62":1,"63":1,"131":1,"132":1,"133":1,"134":1},"2":{"2":3,"6":1,"7":1,"8":1,"11":1,"13":1,"15":1,"17":7,"27":1,"29":1,"58":9,"59":4,"60":1,"61":1,"62":2,"67":8,"68":10,"73":1,"75":2,"79":1,"95":1,"98":1,"99":1,"101":1,"105":1,"107":6,"108":3,"111":2,"112":6,"117":1,"121":2,"130":4,"131":4,"134":4,"136":1,"141":1,"142":1,"143":4,"146":8,"147":2,"150":2,"151":4,"152":1,"153":1,"178":1,"180":4,"196":7,"267":1,"279":2,"280":2}}],["elem",{"2":{"132":1,"146":11,"147":2,"153":3,"271":6}}],["easily",{"2":{"58":1}}],["easy",{"2":{"43":1,"117":1,"175":1}}],["each",{"2":{"13":3,"29":1,"61":1,"80":1,"82":1,"121":1,"167":1,"182":1,"233":2,"236":1,"244":1}}],["edition",{"2":{"274":1}}],["edit",{"2":{"35":1}}],["e",{"2":{"32":4,"46":27,"47":3,"48":16,"49":1,"51":4,"52":10,"53":10,"54":10,"55":3,"58":2,"60":4,"61":1,"67":3,"68":7,"80":1,"83":2,"84":1,"87":6,"88":3,"89":4,"90":5,"91":4,"92":5,"93":21,"107":3,"112":1,"122":1,"126":1,"129":1,"131":1,"132":3,"134":4,"139":1,"142":3,"144":1,"145":1,"146":3,"147":6,"152":1,"174":9,"175":2,"176":2,"177":2,"178":2,"179":2,"180":1,"181":3,"182":2,"184":6,"185":4,"187":4,"190":1,"191":2,"192":3,"193":2,"214":10,"215":3,"218":4,"219":3,"220":16,"221":3,"222":2,"223":13,"224":15,"225":4,"226":2,"227":2,"228":2,"229":2,"230":2,"231":6,"232":15,"233":6,"234":2,"235":17,"236":4,"237":15,"238":3,"239":6,"240":5,"241":3,"242":2,"243":17,"244":3,"245":5,"246":2,"247":1,"251":1,"258":3,"259":1,"266":2,"280":16,"281":21,"283":7,"286":1,"287":7,"288":6,"291":1,"292":7,"293":2,"294":7,"297":1,"298":1,"302":7}}],["eigenvalues",{"2":{"161":2}}],["ei",{"2":{"58":1}}],["ei∈z",{"2":{"58":1}}],["ei≠1",{"2":{"14":1}}],["ei∣ei+1",{"2":{"14":1}}],["either",{"2":{"7":1,"17":1,"29":1,"45":1,"47":1,"67":1,"80":1,"111":1,"131":1,"178":1,"206":1,"209":2,"219":2,"234":1,"301":2}}],["ekz",{"2":{"14":1}}],["ek",{"2":{"14":1}}],["e1z×⋯×z",{"2":{"14":1}}],["e1",{"2":{"14":1,"192":4,"214":1,"260":2}}],["ej",{"2":{"13":1}}],["encyclopedia",{"2":{"274":1}}],["encompassing",{"2":{"30":1}}],["encoded",{"2":{"16":1,"155":1}}],["enabled",{"2":{"240":2}}],["en",{"2":{"214":1}}],["enough",{"2":{"79":1}}],["ensure",{"2":{"79":1}}],["entries",{"2":{"67":1,"68":1,"93":1,"100":1,"103":4,"104":1,"107":1,"108":3,"111":1,"134":1,"146":1,"148":1,"151":1,"197":2,"206":1,"214":2,"251":1,"279":1,"280":1}}],["entry",{"2":{"13":1,"102":4,"103":1,"107":4,"108":1,"112":5,"134":2,"237":1,"240":1}}],["env",{"2":{"61":1}}],["environment",{"2":{"36":1,"42":1}}],["endowed",{"2":{"214":1}}],["endomorphisms",{"0":{"267":1},"2":{"211":1,"267":2}}],["endomorphism",{"2":{"53":2,"188":1,"267":7}}],["end",{"2":{"11":1,"17":3}}],["enumeration",{"0":{"159":1,"244":1},"1":{"245":1},"2":{"3":1,"16":1,"17":1,"38":2}}],["error",{"2":{"2":2,"129":1,"147":2,"152":2,"187":1,"209":1,"235":3,"254":1,"282":1}}],["except",{"2":{"266":1}}],["excess",{"2":{"169":4}}],["extra",{"2":{"107":2,"113":2}}],["extremely",{"2":{"58":1}}],["extensions`",{"2":{"187":1}}],["extensions",{"2":{"78":4,"84":1,"92":1,"95":1,"117":2,"120":1,"121":1,"141":1,"149":1,"187":1,"212":1}}],["extension",{"0":{"92":1,"280":1},"1":{"281":1},"2":{"73":1,"78":1,"79":2,"80":3,"82":6,"83":2,"84":2,"92":1,"111":4,"113":1,"114":1,"115":5,"117":5,"120":5,"121":3,"123":6,"124":5,"125":7,"141":1,"174":2,"182":1,"184":1,"190":1,"214":1,"215":1,"218":2,"219":1,"234":1,"240":1,"266":2,"297":1}}],["extending",{"2":{"84":1,"180":1,"218":1}}],["extended",{"2":{"2":5,"251":6}}],["extend",{"2":{"2":3,"92":2,"107":3}}],["existence",{"2":{"73":1}}],["exists",{"2":{"64":1,"113":1,"135":1,"178":1,"190":1,"192":1,"201":1,"209":1,"293":1}}],["exist",{"2":{"48":1,"108":1}}],["execute",{"2":{"36":1}}],["exp⁡",{"2":{"209":1}}],["exp⁡d",{"2":{"58":1}}],["expensive",{"2":{"144":1,"286":2}}],["experimental",{"2":{"30":1}}],["explicit",{"2":{"131":1}}],["expands",{"2":{"60":4}}],["expanded",{"2":{"59":4,"111":2}}],["exp",{"2":{"59":2,"63":6}}],["expressing",{"2":{"25":1}}],["exponents",{"2":{"58":3,"61":2}}],["exponent",{"2":{"14":2,"59":1,"60":2,"63":3,"80":2}}],["example",{"0":{"81":1,"94":1,"151":1,"187":1,"189":1,"191":1,"193":1,"228":1,"239":1},"2":{"12":1,"38":1,"43":1,"52":1,"92":1,"94":1,"97":1,"98":1,"105":1,"134":1,"150":1,"206":1,"266":2,"275":1}}],["examples",{"0":{"0":1,"48":1,"76":1,"142":1,"175":1,"177":1,"179":1,"181":1,"183":1,"185":1,"220":1,"222":1,"224":1,"226":1,"230":1,"232":1,"235":1,"237":1,"241":1,"243":1,"245":1,"281":1,"283":1,"285":1,"287":1,"289":1,"292":1,"294":1,"296":1,"298":1,"300":1,"302":1},"2":{"17":3,"22":1,"24":1,"25":2,"26":3,"28":1,"32":2,"33":1,"45":2,"46":2,"48":4,"52":2,"53":1,"54":1,"67":3,"68":4,"86":2,"87":3,"88":1,"89":1,"91":2,"93":5,"120":6,"121":2,"122":2,"124":1,"128":3,"175":1,"196":2,"201":2,"209":1,"220":1,"249":1,"251":5,"253":1,"254":2,"259":5,"260":2,"272":1,"281":1,"285":1}}],["d=±1",{"2":{"260":1}}],["dt",{"2":{"218":2}}],["d1",{"2":{"218":2}}],["dyadic",{"2":{"218":1,"225":3,"226":1,"233":1}}],["d→q",{"2":{"205":1}}],["d→gi",{"2":{"18":2}}],["d×d→q",{"2":{"205":1}}],["dual",{"0":{"264":1},"2":{"152":1,"205":1,"260":1,"264":2,"288":3,"293":1}}],["due",{"2":{"130":1,"135":1,"141":1,"146":1}}],["d∗a",{"2":{"137":1}}],["da",{"2":{"135":1,"137":1}}],["datum",{"2":{"233":1,"286":1}}],["dated",{"2":{"78":1}}],["database",{"2":{"281":2}}],["databases",{"2":{"281":1}}],["data",{"2":{"25":5,"61":1,"142":1,"146":3,"219":2}}],["drop",{"2":{"68":1,"106":1}}],["dn",{"2":{"61":1}}],["d",{"2":{"18":5,"32":5,"58":2,"59":4,"61":1,"67":4,"95":1,"100":1,"107":3,"108":1,"111":3,"120":1,"121":1,"122":2,"135":1,"137":3,"151":4,"167":4,"182":3,"196":9,"205":1,"209":2,"220":2,"224":2,"232":2,"235":2,"237":2,"239":2,"243":2,"251":1,"259":2,"260":2,"272":3,"274":1,"281":8,"283":4,"285":4,"287":2,"289":4,"292":2,"294":2,"296":2,"298":2,"300":4,"302":2}}],["di=−1",{"2":{"218":1}}],["di=1",{"2":{"218":1}}],["dim",{"2":{"161":1,"169":1,"176":1,"177":1}}],["dimensions",{"2":{"32":1}}],["dimensional",{"2":{"30":1,"32":1,"73":1,"109":1,"214":1}}],["dimension",{"2":{"14":1,"22":1,"26":7,"32":2,"161":1,"169":1,"174":2,"175":2,"176":3,"182":2,"187":1,"214":1,"254":1,"283":2,"286":1,"289":1}}],["di",{"2":{"121":1,"218":1,"219":1}}],["dichotomy",{"2":{"115":1}}],["dictionary",{"2":{"29":1,"59":1,"67":3,"68":1,"93":1,"144":1,"234":1,"236":1}}],["dictionaries",{"2":{"16":1}}],["dict",{"2":{"16":2,"29":1,"59":4,"61":5,"67":3,"68":2,"79":1,"93":2,"144":3,"146":1,"182":1,"183":1,"236":1,"237":1,"244":1,"245":2}}],["dixon",{"2":{"107":4}}],["diagonalization",{"0":{"180":1},"1":{"181":1},"2":{"167":1}}],["diagonal",{"2":{"75":2,"106":4,"107":5,"108":2,"148":1,"169":1,"178":1,"180":5,"181":2,"197":2,"206":1,"251":1,"282":2,"283":1}}],["digits",{"2":{"58":1}}],["distinction",{"2":{"212":1}}],["distributed",{"2":{"134":1}}],["distributivity",{"2":{"32":1}}],["display",{"2":{"196":1}}],["disable",{"2":{"120":2}}],["disabled",{"2":{"45":1,"47":1,"126":1,"240":1,"250":1,"270":1,"272":1,"278":2,"279":2,"280":2}}],["disjoint",{"2":{"68":2,"123":3}}],["discarded",{"2":{"146":2}}],["disc",{"2":{"55":2,"152":1,"176":1,"219":1}}],["discrete",{"0":{"55":1},"2":{"55":1,"97":1,"153":1}}],["discriminant",{"0":{"162":1,"194":1,"204":1,"265":1},"1":{"195":1,"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1,"204":1,"205":2,"206":2,"207":2,"208":2,"209":2,"210":2,"211":2},"2":{"45":1,"46":4,"61":1,"82":1,"83":3,"122":10,"132":5,"134":5,"150":4,"152":5,"162":1,"163":8,"176":3,"177":1,"196":2,"204":1,"205":6,"209":3,"218":3,"219":1,"223":6,"224":1,"255":8,"265":1,"266":1,"286":2,"287":1}}],["differents",{"2":{"152":1}}],["differently",{"2":{"139":1,"141":1}}],["different",{"2":{"30":2,"68":1,"95":1,"117":1,"120":1,"143":1,"152":3,"235":1,"288":1,"301":1}}],["difference",{"2":{"17":1,"68":2}}],["div",{"2":{"100":1,"109":1}}],["divide",{"2":{"152":1}}],["divides",{"2":{"129":1,"145":1,"151":1}}],["divided",{"2":{"107":2}}],["dividing",{"2":{"80":1,"146":2,"150":1,"233":2}}],["divisor",{"2":{"151":4,"152":1}}],["divisors",{"2":{"14":3,"17":2,"107":4,"144":2,"146":2,"150":1}}],["divisible",{"2":{"113":3,"146":3,"151":1,"169":1,"251":1}}],["divisibility",{"2":{"107":1,"260":3}}],["division",{"2":{"48":2}}],["divexact",{"2":{"17":1,"100":1,"109":1,"145":1}}],["directories",{"2":{"38":1}}],["directory",{"2":{"34":1,"38":1,"39":1,"43":2}}],["directly",{"2":{"35":1}}],["direct",{"0":{"18":1,"171":1},"2":{"13":1,"15":3,"16":1,"18":9,"73":1,"160":3,"171":2,"186":26,"201":2,"209":1,"210":20,"242":6,"243":2,"262":20,"268":1,"290":24}}],["dfg",{"2":{"5":1}}],["downloads",{"2":{"275":1}}],["don",{"2":{"233":1}}],["done",{"2":{"4":1,"125":1,"285":1}}],["dollar",{"2":{"120":1}}],["dot",{"2":{"109":9}}],["do",{"2":{"61":1,"98":1,"201":2,"275":1}}],["document",{"2":{"117":1}}],["documentation",{"0":{"34":1,"35":1,"36":1},"1":{"35":1,"36":1},"2":{"34":1,"35":1}}],["doctest",{"2":{"36":1}}],["doc",{"2":{"36":2}}],["docs>",{"2":{"36":1}}],["docs",{"2":{"34":1,"35":1,"36":2}}],["does",{"2":{"12":1,"60":2,"61":1,"83":1,"108":1,"146":1}}],["doi",{"2":{"4":2}}],["domain",{"2":{"2":2,"15":1,"73":1,"80":1,"127":3,"141":2,"149":1,"266":1}}],["de",{"2":{"281":2}}],["depth",{"2":{"258":18,"297":12,"299":12}}],["depend",{"2":{"146":1}}],["depending",{"2":{"60":1,"93":1,"139":1,"186":1,"223":5,"229":1,"258":3,"290":1,"297":2,"299":2}}],["depends",{"2":{"4":1,"196":1}}],["der",{"2":{"216":1,"274":1}}],["dealing",{"2":{"176":1}}],["deal",{"2":{"149":1}}],["deals",{"2":{"49":1,"73":1,"78":2,"97":1,"139":1,"212":1}}],["degenerate",{"2":{"155":1,"182":2,"188":1,"208":3}}],["deg⁡",{"2":{"146":2}}],["degree",{"0":{"280":1},"1":{"281":1},"2":{"81":1,"82":1,"83":2,"84":4,"95":1,"111":3,"113":1,"117":1,"120":5,"121":2,"122":7,"142":3,"146":8,"147":2,"149":1,"151":2,"152":2,"174":2,"177":2,"212":2,"214":1,"220":2,"235":1,"241":4,"243":2,"251":3,"253":1,"259":7,"260":3,"266":4,"268":1,"280":4,"281":8,"283":1,"285":2,"286":1,"287":6,"289":5,"302":3}}],["denominator",{"2":{"134":1,"135":1,"137":2,"161":1,"206":1}}],["denoted",{"2":{"259":1}}],["denotes",{"2":{"251":1}}],["denote",{"2":{"108":2}}],["density",{"2":{"107":2}}],["dense",{"2":{"104":2,"105":1,"106":2,"107":2,"109":3,"117":1}}],["decide",{"2":{"83":2,"185":1,"195":1}}],["decomposed",{"2":{"192":1}}],["decomposition",{"2":{"2":1,"84":2,"127":2,"142":1,"183":1,"185":1,"191":1,"193":1,"218":1,"220":1,"222":1,"224":1,"226":1,"228":1,"230":1,"232":1,"235":1,"237":1,"241":1,"243":1,"245":1,"285":1,"289":1,"294":1,"295":4,"296":2,"300":1,"302":1}}],["decom",{"2":{"61":2}}],["descibing",{"2":{"84":1}}],["describe",{"2":{"85":1}}],["described",{"2":{"30":1,"125":1}}],["describes",{"2":{"13":3,"30":1}}],["desired",{"2":{"75":2,"84":1,"195":1}}],["dedekind",{"2":{"73":1,"135":1,"141":1,"143":1,"149":1}}],["delete",{"2":{"68":3}}],["dets",{"2":{"223":1,"224":1}}],["details",{"2":{"141":1}}],["determinants",{"2":{"223":2,"229":1}}],["determinant",{"0":{"229":1},"1":{"230":1},"2":{"95":1,"107":4,"159":6,"161":1,"169":1,"176":3,"182":1,"216":1,"218":5,"219":1,"223":4,"229":5,"244":11,"255":1,"259":1}}],["determined",{"2":{"182":1,"251":1}}],["determines",{"2":{"22":1,"84":1,"186":1,"290":1}}],["determine",{"2":{"2":3,"64":1,"82":1,"84":1,"92":1,"182":1}}],["det",{"2":{"64":1,"95":2,"107":2,"132":1,"134":1,"161":1,"167":2,"169":1,"176":3,"177":1,"219":2,"220":3,"222":1,"223":2,"224":1,"226":1,"228":1,"229":2,"230":3,"235":1,"241":1,"243":2,"244":2,"251":2,"255":1}}],["developed",{"2":{"36":1}}],["development",{"2":{"5":1,"36":1}}],["deformation",{"2":{"251":3}}],["defect",{"2":{"111":3}}],["definite",{"0":{"297":1},"1":{"298":1},"2":{"161":3,"165":1,"178":12,"179":2,"216":1,"238":4,"240":1,"253":1,"257":9,"258":2,"259":2,"263":1,"270":1,"271":3,"272":1,"293":9,"294":1,"297":2,"298":1}}],["definitions",{"0":{"213":1},"1":{"214":1,"215":1},"2":{"149":1,"155":1,"213":1,"216":1}}],["definition",{"2":{"115":1,"125":1,"182":1,"218":1,"238":2}}],["defining",{"2":{"2":1,"33":1,"46":1,"80":2,"82":5,"83":4,"91":1,"120":6,"121":2,"122":2,"123":4,"125":3,"126":1,"129":3,"150":1,"175":2,"177":3,"222":2,"237":2,"283":2,"287":3}}],["define",{"2":{"59":1,"93":1,"120":2,"138":1,"147":1,"176":1,"218":1,"233":1,"238":1,"275":1,"286":2,"288":1,"291":1,"297":1}}],["defines",{"2":{"48":1,"73":1,"75":1,"80":1,"144":1,"150":4,"236":1,"288":1}}],["defined",{"0":{"267":1},"2":{"46":2,"48":1,"51":1,"60":1,"68":1,"75":3,"79":1,"80":1,"81":1,"82":2,"83":4,"87":1,"90":1,"91":1,"93":1,"94":2,"115":2,"120":3,"123":1,"125":1,"128":2,"133":1,"140":1,"146":3,"160":1,"161":3,"165":3,"169":2,"176":3,"187":1,"198":1,"207":2,"209":1,"218":3,"235":2,"240":1,"255":2,"271":1,"286":2,"288":2}}],["default",{"2":{"22":1,"45":1,"47":1,"75":2,"93":1,"120":2,"125":1,"126":1,"146":1,"159":3,"163":2,"180":1,"202":2,"209":2,"240":1,"250":1,"255":2,"258":7,"267":3,"270":1,"272":1,"278":2,"279":2,"280":2,"297":5,"299":5,"301":2}}],["deutsche",{"2":{"5":1}}],["hlb",{"2":{"281":2}}],["h3",{"2":{"187":1}}],["h2",{"2":{"185":3,"187":2}}],["hypothesis",{"2":{"146":1}}],["hyperkaehler",{"2":{"251":8}}],["hyperbolic",{"0":{"192":1},"1":{"193":1},"2":{"192":6,"193":1,"251":5,"260":1}}],["hyperelliptic",{"2":{"46":2}}],["hypellcrv",{"2":{"46":2,"132":1,"134":1}}],["http",{"2":{"125":1,"281":2}}],["https",{"2":{"4":1,"275":1}}],["hcat",{"2":{"106":2}}],["highest",{"2":{"259":3}}],["hilbert",{"2":{"80":2,"111":2,"182":1,"234":1}}],["hierarchy",{"2":{"38":1}}],["hnf",{"2":{"73":3,"75":4,"107":6,"136":6,"143":1,"144":3,"148":1}}],["huge",{"2":{"61":1}}],["h=h1⊗⋅⊗hn",{"2":{"19":1}}],["h=g",{"2":{"17":2}}],["h→g",{"2":{"17":3}}],["h+h",{"2":{"15":1}}],["h",{"2":{"15":8,"17":9,"19":1,"20":2,"46":1,"175":1,"177":10,"179":4,"181":4,"182":2,"185":5,"187":2,"191":2,"192":2,"193":2,"251":10,"259":1,"274":4}}],["holy",{"2":{"251":1}}],["holds",{"2":{"107":2,"113":1,"145":1}}],["hold",{"2":{"104":1,"174":2}}],["horizontally",{"2":{"106":2}}],["homomorpisms",{"2":{"20":1}}],["homomorphisms",{"2":{"15":1,"20":1,"196":1,"297":1}}],["homomorphism",{"2":{"15":1,"182":1,"297":2}}],["homology",{"2":{"16":1}}],["hom",{"0":{"20":1},"2":{"15":3,"16":2,"19":1,"20":1,"94":1}}],["hofmann",{"2":{"4":2}}],["however",{"2":{"61":1,"73":1,"106":1,"120":1,"149":1}}],["how",{"0":{"1":1},"2":{"120":2,"175":1,"251":1,"275":1}}],["habilitationsschrift",{"2":{"216":1}}],["half",{"2":{"208":2}}],["hand",{"2":{"130":1}}],["handle",{"2":{"58":1}}],["hadamard",{"2":{"107":1}}],["having",{"2":{"12":1,"17":1}}],["have",{"2":{"6":1,"9":1,"12":1,"13":3,"30":1,"45":1,"48":1,"58":1,"61":1,"67":1,"68":1,"80":1,"84":1,"98":1,"105":2,"106":1,"115":2,"117":1,"120":2,"129":1,"130":2,"141":1,"143":2,"151":2,"153":1,"201":2,"206":1,"208":1,"260":3,"288":2}}],["hart",{"2":{"4":2}}],["hasse",{"2":{"169":3,"182":4,"183":1,"284":2,"285":1}}],["has",{"2":{"2":1,"17":8,"61":1,"67":1,"74":1,"79":1,"80":1,"95":1,"113":1,"121":1,"129":1,"141":1,"146":1,"147":3,"149":1,"150":3,"151":1,"178":1,"182":1,"209":2,"223":3,"235":1,"236":1,"240":1,"244":1,"247":1,"251":1,"288":1,"297":1,"301":5}}],["heuristically",{"2":{"258":3,"297":2,"299":2}}],["hessian",{"2":{"169":1}}],["helper",{"2":{"153":1}}],["hence",{"2":{"79":1,"143":1,"149":1}}],["hermgenus",{"2":{"234":2,"236":8,"240":3,"242":3,"244":1,"245":1,"246":2}}],["hermlocalgenus",{"2":{"219":2,"221":3,"223":14,"225":4,"227":1,"229":2,"231":2,"234":1,"236":1,"240":2,"242":3,"244":1,"245":2,"246":2}}],["hermlat",{"2":{"219":2,"220":1,"222":1,"226":1,"228":1,"230":1,"234":1,"235":1,"238":1,"240":7,"241":1,"243":1,"280":4}}],["hermspace",{"2":{"174":2,"192":1}}],["hermitan",{"2":{"280":1}}],["hermite",{"2":{"75":2,"107":3}}],["hermitian",{"0":{"214":1,"215":1,"217":1,"280":1},"1":{"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"242":1,"243":1,"244":1,"245":1,"246":1,"281":1},"2":{"3":1,"174":5,"175":2,"177":2,"178":5,"179":2,"181":1,"184":1,"185":2,"186":3,"187":11,"191":1,"192":1,"193":1,"212":3,"214":10,"215":6,"216":3,"218":2,"219":2,"220":3,"221":3,"223":17,"224":1,"225":4,"227":1,"229":3,"231":4,"232":1,"233":1,"234":2,"235":3,"236":9,"237":1,"238":2,"239":1,"240":9,"241":2,"242":2,"243":3,"244":4,"245":23,"246":2,"250":2,"278":8,"280":12,"281":8,"283":2,"287":1,"290":3,"292":1,"294":1,"302":4}}],["herm",{"2":{"38":2}}],["here",{"2":{"38":1,"68":1,"78":1,"94":1,"95":1,"141":1,"143":1,"153":3,"175":1,"182":1,"196":1,"212":1,"216":1,"220":1,"234":1,"251":1,"275":1,"281":1}}],["hecke",{"0":{"4":1},"2":{"4":3,"5":1,"12":1,"36":4,"38":3,"42":4,"43":2,"58":1,"78":1,"79":12,"80":1,"83":1,"91":1,"92":1,"95":2,"115":1,"117":1,"120":1,"146":1,"149":2,"196":1,"209":1,"220":1,"224":1,"232":1,"235":3,"237":1,"239":1,"243":1,"244":6,"245":3,"251":1,"259":1,"275":5,"281":10,"283":1,"287":8,"292":1,"294":1,"302":10}}],["m∩e⊗n",{"2":{"288":1}}],["m∩qn",{"2":{"260":1}}],["m2",{"2":{"260":2}}],["mz=2nz+∑x∈nzφ",{"2":{"195":1}}],["mz",{"2":{"195":1,"197":1}}],["m−1",{"2":{"176":1,"218":1}}],["m⊗r≅n⊗r",{"2":{"155":1}}],["m⊗zp",{"2":{"155":1}}],["mfp",{"2":{"142":2}}],["m→l",{"2":{"125":1}}],["m→k",{"2":{"125":1}}],["mc",{"2":{"81":2,"82":2,"107":4,"146":6,"275":1}}],["mr",{"2":{"79":4}}],["m0=zk",{"2":{"79":1}}],["m0",{"2":{"79":3}}],["m0≤zk",{"2":{"79":1}}],["m∞=",{"2":{"79":1}}],["m∞",{"2":{"79":3}}],["m⊂v",{"2":{"73":1}}],["ms",{"2":{"146":2}}],["msubsetit",{"2":{"70":1,"71":1}}],["msets",{"2":{"67":1}}],["mset",{"2":{"17":3,"67":14,"68":20,"70":1,"71":1}}],["meara",{"2":{"172":2}}],["meanwhile",{"2":{"214":1}}],["mean",{"2":{"95":1}}],["means",{"2":{"67":1,"238":1,"251":1}}],["metric",{"2":{"147":1,"150":1,"151":1}}],["method",{"2":{"107":1}}],["methods",{"2":{"58":1,"97":1,"186":1,"212":1,"253":1}}],["mentioned",{"2":{"94":1,"153":1}}],["me",{"2":{"61":2}}],["mp=lp",{"2":{"295":1}}],["mp=q",{"2":{"55":1}}],["mpolyringelem",{"2":{"46":1}}],["mpolyring",{"2":{"46":1}}],["mq=p",{"2":{"48":1}}],["mukai",{"2":{"251":8}}],["mu",{"2":{"146":4}}],["mutable",{"2":{"105":1}}],["mult",{"2":{"68":2}}],["multivariate",{"2":{"117":1}}],["multiset",{"2":{"67":9,"68":6}}],["multi",{"0":{"65":1,"66":1,"70":1},"1":{"66":1,"67":2,"68":2,"69":1,"70":1,"71":1,"72":1},"2":{"67":4,"68":5,"70":1,"71":1}}],["multiply",{"2":{"60":2,"108":1}}],["multipliers",{"2":{"151":2}}],["multiplied",{"2":{"58":1}}],["multiplicities",{"2":{"68":4}}],["multiplicity",{"2":{"67":3,"68":6}}],["multiplicatively",{"2":{"144":1,"153":1}}],["multiplicative",{"2":{"58":1,"135":1,"148":2}}],["multiplication",{"2":{"17":2,"28":1,"100":1,"109":1,"111":1}}],["multiple",{"2":{"17":2,"52":1,"55":1,"83":1,"111":1,"129":1,"159":2}}],["much",{"2":{"68":1,"117":1}}],["must",{"2":{"39":3,"45":1,"46":1,"48":1,"80":1,"82":1,"93":2,"99":1,"104":1,"113":1,"122":1,"146":1,"165":1,"174":6,"251":1,"260":2,"279":1,"280":1,"284":2,"288":2}}],["mts",{"2":{"35":1}}],["mh",{"2":{"17":1}}],["mg",{"2":{"17":1}}],["m",{"2":{"13":16,"17":4,"48":1,"55":1,"67":4,"68":19,"73":2,"74":6,"75":5,"79":5,"80":9,"83":2,"106":4,"107":1,"108":3,"125":2,"127":9,"129":2,"136":10,"144":6,"148":2,"150":3,"151":4,"155":1,"167":5,"176":2,"180":4,"182":6,"188":4,"195":10,"196":8,"197":1,"201":2,"218":2,"231":6,"258":4,"260":26,"266":19,"274":1,"284":4,"288":12,"295":4,"299":10,"301":5}}],["miscaellenous",{"0":{"138":1,"147":1}}],["miscellaneous",{"0":{"63":1,"129":1,"134":1}}],["minpoly",{"2":{"114":3,"134":1}}],["minkowski",{"2":{"95":3,"112":2,"134":2,"147":1,"150":1,"151":3}}],["min",{"2":{"63":1,"159":5,"244":3}}],["minimal",{"2":{"17":1,"25":2,"107":1,"113":1,"114":2,"134":1,"150":1,"286":8,"301":2}}],["minimum",{"0":{"102":1},"2":{"2":1,"102":4,"107":1,"142":2,"146":8,"147":10,"222":1,"223":2,"237":2,"251":2,"271":3,"285":1,"292":1,"295":1}}],["mirrors",{"2":{"38":1,"43":1,"196":1}}],["might",{"2":{"30":1,"154":1}}],["mi",{"2":{"13":3,"74":3,"295":2}}],["m=∑aiωi",{"2":{"73":1}}],["m=",{"2":{"13":1}}],["move",{"2":{"196":1}}],["monomorphism",{"2":{"182":1,"297":1}}],["monic",{"2":{"129":1,"150":1}}],["monitored",{"2":{"82":1}}],["monte",{"2":{"107":1}}],["morphisms",{"0":{"126":1}}],["morphism",{"2":{"85":1,"91":1,"92":3,"124":2,"126":1,"184":1,"214":2}}],["moreover",{"2":{"68":1,"285":1,"293":1}}],["more",{"2":{"7":1,"12":1,"58":1,"78":2,"95":1,"98":1,"105":1,"130":1,"141":1,"146":2,"149":1,"153":1,"259":1}}],["modification",{"2":{"266":3}}],["modelled",{"2":{"98":1,"105":1}}],["modern",{"2":{"78":1}}],["mod",{"2":{"61":2,"81":1,"82":1,"103":3,"108":1,"133":2,"146":2,"148":1,"153":1,"169":1}}],["moduli",{"2":{"251":2}}],["modulus",{"2":{"80":1,"83":4,"195":5,"196":1,"197":4,"201":2,"209":2}}],["modular",{"2":{"61":3,"107":1,"218":1,"293":9,"294":2,"295":1}}],["module$",{"2":{"297":1}}],["module",{"0":{"260":1,"288":1},"1":{"289":1},"2":{"43":2,"73":4,"74":3,"75":3,"95":1,"129":2,"135":1,"139":1,"141":2,"143":2,"149":3,"195":4,"196":4,"197":8,"201":30,"202":4,"203":3,"206":21,"207":1,"208":1,"209":1,"247":1,"255":1,"260":2,"266":6,"286":1,"288":1}}],["modules",{"0":{"195":1,"202":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"12":1,"13":1,"73":3,"149":1,"196":2,"201":2,"208":1,"209":1,"210":3}}],["modulo",{"0":{"2":1},"2":{"2":1,"79":3,"80":2,"103":3,"107":2,"108":5,"146":3,"148":2,"182":1,"207":2}}],["mostly",{"2":{"13":1}}],["most",{"2":{"12":1,"118":1,"196":1,"216":1,"240":1,"260":1}}],["marcus",{"2":{"274":1}}],["markus",{"2":{"216":1,"281":2}}],["may",{"2":{"258":3,"295":1,"297":2,"299":2}}],["makes",{"2":{"238":1}}],["magma",{"2":{"216":1}}],["mass",{"0":{"238":1},"1":{"239":1},"2":{"165":3,"238":4,"239":1,"240":3,"256":2}}],["main",{"2":{"251":1}}],["maintaining",{"2":{"73":1}}],["mainly",{"2":{"15":1,"149":1,"213":1}}],["maximum",{"0":{"102":1},"2":{"102":2,"103":1,"107":2}}],["maximalorder",{"2":{"150":3}}],["maximal",{"0":{"301":1},"1":{"302":1},"2":{"2":2,"61":1,"73":1,"75":1,"79":2,"80":1,"81":1,"82":8,"83":1,"102":1,"113":1,"122":3,"125":2,"142":4,"143":1,"145":1,"146":4,"147":2,"149":4,"150":7,"151":1,"154":4,"169":1,"175":1,"177":2,"183":4,"184":1,"185":1,"191":1,"193":1,"220":3,"222":1,"224":1,"226":1,"228":1,"230":1,"232":1,"235":2,"237":1,"241":3,"243":3,"245":8,"251":1,"263":1,"266":3,"275":1,"281":4,"285":2,"286":1,"287":12,"289":5,"292":2,"294":1,"296":1,"300":1,"301":16,"302":19}}],["maxabs",{"2":{"63":1}}],["max",{"2":{"63":1,"159":5,"240":2,"244":5}}],["made",{"2":{"61":1,"143":1,"212":1}}],["manifold",{"2":{"251":1}}],["manifolds",{"2":{"251":2}}],["manipulation",{"0":{"108":1}}],["manual",{"0":{"57":1},"2":{"34":1,"57":1}}],["many",{"2":{"18":1,"58":2,"107":1,"120":1,"149":1,"216":1}}],["matspaceelem",{"2":{"296":2,"298":1}}],["matches",{"2":{"266":1}}],["match",{"2":{"209":1}}],["math",{"2":{"281":2}}],["mathbb",{"2":{"266":1}}],["mathematischen",{"2":{"274":1}}],["mathematics",{"2":{"274":3}}],["mathematically",{"2":{"58":1,"115":1,"117":1}}],["mathematik",{"2":{"216":1}}],["mathcal",{"2":{"152":2}}],["matd×d",{"2":{"151":1}}],["matn×m",{"2":{"105":1}}],["mat",{"2":{"74":3,"111":1,"138":2,"147":2,"151":2,"274":1}}],["matelem",{"2":{"64":3,"104":1,"106":1,"109":2,"111":1,"158":1,"170":1,"174":2,"176":1,"180":5,"188":2,"231":2,"249":1,"250":1,"258":1,"267":5,"278":1,"279":2,"280":2,"282":2,"286":2,"295":3,"297":1,"299":1}}],["matrices",{"0":{"64":1,"73":1,"105":1,"231":1},"1":{"74":1,"75":1,"76":1,"106":1,"107":1,"108":1,"109":1,"232":1},"2":{"64":1,"73":1,"97":1,"98":1,"105":6,"106":4,"109":1,"141":2,"214":2,"259":1,"260":1,"267":2,"295":2,"299":2}}],["matrixelem",{"2":{"109":2,"259":1}}],["matrixalgebra",{"2":{"22":1}}],["matrix",{"0":{"158":1,"206":1,"249":1},"2":{"7":1,"11":1,"13":4,"14":2,"15":2,"24":1,"25":2,"26":3,"30":1,"64":4,"73":5,"74":11,"75":4,"95":6,"104":1,"106":30,"107":9,"108":10,"109":12,"111":7,"134":6,"136":2,"138":4,"140":2,"142":1,"143":1,"144":1,"146":4,"147":4,"148":1,"150":4,"151":14,"152":1,"158":1,"161":1,"168":1,"169":2,"170":3,"174":8,"175":2,"176":5,"177":1,"178":2,"180":12,"181":2,"182":1,"187":2,"188":3,"189":1,"196":3,"197":6,"201":7,"206":5,"214":3,"218":1,"220":1,"222":1,"224":1,"231":8,"232":3,"233":1,"235":1,"236":1,"237":3,"239":1,"243":1,"247":2,"249":12,"250":1,"251":10,"253":1,"254":12,"255":1,"259":6,"260":9,"266":6,"267":3,"268":1,"270":2,"271":2,"272":2,"278":4,"279":15,"280":15,"281":4,"282":6,"283":6,"285":2,"286":12,"287":14,"289":11,"292":4,"294":1,"295":3,"296":2,"298":1,"300":2,"302":13}}],["matalgebraelem",{"2":{"25":1}}],["mapping",{"2":{"124":2,"126":1,"182":1}}],["mapclassgrp",{"2":{"80":2,"146":1}}],["maprayclassgrp",{"2":{"79":5,"80":2}}],["maps",{"0":{"15":1},"2":{"15":3,"17":1,"19":3,"80":1,"153":1,"186":1,"262":3,"266":1,"290":4}}],["map",{"2":{"2":15,"15":5,"17":20,"19":7,"20":6,"26":1,"32":3,"46":1,"54":3,"79":3,"80":6,"81":1,"95":1,"108":1,"112":2,"121":1,"124":8,"125":3,"126":5,"127":6,"134":2,"142":1,"146":20,"148":7,"153":2,"177":1,"180":1,"187":4,"201":6,"220":12,"224":12,"232":12,"235":12,"237":12,"239":3,"243":12,"251":1,"266":10,"281":15,"283":7,"285":6,"286":1,"287":5,"289":6,"292":4,"294":4,"296":3,"298":3,"300":6,"302":4}}],["rt",{"2":{"218":2}}],["rwth",{"2":{"216":1,"281":2}}],["r2",{"2":{"148":1}}],["r1",{"2":{"148":1,"218":2}}],["r+2≤i≤r+s",{"2":{"134":1}}],["r+1≤i≤r+s",{"2":{"95":1,"112":3}}],["ri",{"2":{"218":2}}],["rich",{"2":{"149":1}}],["riemann",{"2":{"146":1}}],["right",{"2":{"107":3,"251":1}}],["rincipal",{"2":{"61":1}}],["ringelement",{"2":{"207":1}}],["ringelem",{"2":{"100":1}}],["rings",{"0":{"148":1},"2":{"60":1,"97":1,"117":1}}],["ring",{"0":{"101":1},"2":{"2":2,"22":1,"23":2,"28":2,"32":2,"46":2,"58":2,"59":1,"75":2,"80":2,"81":1,"82":1,"83":2,"84":1,"95":1,"98":2,"99":3,"101":4,"105":3,"106":9,"108":5,"109":1,"120":2,"134":2,"139":1,"141":2,"142":1,"143":2,"146":3,"148":8,"149":1,"151":2,"167":1,"176":3,"177":1,"180":1,"196":1,"201":4,"206":4,"214":1,"215":3,"239":2,"251":1,"279":3,"281":2,"286":7,"287":2,"295":2,"301":3}}],["role",{"2":{"97":1}}],["root",{"0":{"259":1},"1":{"260":1,"261":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1,"268":1,"269":1,"270":1,"271":1,"272":1},"2":{"82":1,"196":1,"235":3,"251":2,"259":26,"260":2,"266":2,"268":2}}],["roots",{"2":{"79":1,"123":3,"259":1}}],["rows",{"0":{"98":1,"103":1},"1":{"99":1,"100":1,"101":1,"102":1,"103":1,"104":1},"2":{"7":1,"17":3,"73":1,"74":3,"98":4,"100":1,"105":5,"106":3,"107":5,"108":7,"136":1,"180":3,"247":1,"250":1,"278":1,"279":1,"280":1,"286":1}}],["row",{"2":{"7":1,"13":3,"73":1,"74":3,"99":9,"100":9,"101":1,"103":1,"104":6,"106":2,"107":6,"108":21,"109":1,"111":1,"143":1,"254":1,"260":1,"287":4,"289":12,"295":1}}],["running",{"0":{"41":1,"42":1,"43":1},"1":{"42":1,"43":1},"2":{"40":2,"281":1}}],["run",{"2":{"36":3,"40":2,"42":3,"43":4}}],["runtime",{"2":{"25":2}}],["ramify",{"2":{"233":1}}],["ramification",{"2":{"84":1,"123":1,"127":2,"147":2}}],["ramified",{"2":{"80":1,"123":9,"147":3,"150":4,"152":1,"183":1,"218":1,"225":3,"226":1,"233":1}}],["raise",{"2":{"209":1}}],["raises",{"2":{"129":1}}],["raised",{"2":{"58":1,"147":2,"254":1,"282":1}}],["radical",{"2":{"111":1,"120":3,"123":2,"151":2,"182":1,"201":4,"208":7}}],["radius",{"2":{"89":1,"112":9,"134":5,"151":1,"152":1}}],["ray",{"0":{"79":1,"80":1},"1":{"81":1},"2":{"78":2,"79":6,"80":16,"81":1,"82":4,"84":1}}],["rationally",{"2":{"284":4,"285":2}}],["rationalunion",{"2":{"159":3,"165":1,"170":1,"195":2,"209":2,"246":2,"251":2,"253":1,"260":1}}],["rationals",{"0":{"56":1},"2":{"49":1,"111":1,"114":2,"120":2,"121":1,"281":2,"283":1,"285":1,"287":1,"289":1,"292":1,"294":1,"296":1,"298":1,"300":1,"302":1}}],["rational",{"0":{"54":1,"282":1,"284":1},"1":{"283":1,"285":1},"2":{"28":1,"54":2,"64":1,"78":1,"82":1,"91":1,"107":2,"111":1,"115":3,"117":1,"120":1,"129":1,"147":1,"159":3,"165":1,"169":1,"175":1,"177":2,"207":1,"215":1,"222":1,"233":1,"236":1,"237":1,"247":1,"254":4,"255":1,"257":3,"282":11,"283":5,"284":4,"286":3,"287":2,"293":3}}],["range",{"2":{"16":1,"30":1}}],["ranks",{"2":{"223":2,"224":1,"266":1}}],["rank",{"2":{"13":1,"14":4,"95":1,"107":1,"122":3,"139":1,"143":1,"146":2,"149":1,"161":2,"167":2,"169":2,"176":5,"177":1,"178":1,"192":1,"196":1,"218":2,"220":2,"223":4,"224":1,"236":2,"237":1,"241":2,"243":1,"244":6,"245":6,"247":1,"250":1,"251":5,"253":1,"255":2,"258":3,"259":10,"260":3,"266":5,"268":1,"278":2,"279":2,"280":2,"281":6,"285":1,"286":2,"287":1,"297":2,"299":2,"302":3}}],["random",{"0":{"51":1},"2":{"7":2,"51":1,"108":1}}],["rand",{"2":{"7":2,"51":2,"108":1,"134":1}}],["r",{"2":{"17":2,"28":2,"32":4,"46":3,"53":2,"59":3,"68":4,"73":7,"75":3,"79":2,"84":6,"89":2,"95":3,"98":1,"99":6,"101":2,"104":2,"105":3,"106":16,"108":2,"120":2,"151":9,"152":6,"154":4,"196":2,"235":4,"241":4,"243":4,"245":4,"247":1,"251":4,"253":2,"259":4,"266":9,"295":1}}],["regarding",{"2":{"212":1,"218":1}}],["regulator",{"2":{"122":2}}],["regular",{"2":{"68":1,"176":2,"178":3,"179":2,"201":2,"208":5}}],["redo",{"2":{"146":2}}],["reducible",{"2":{"120":1}}],["reduced",{"2":{"125":1,"143":1,"147":1,"150":1,"151":1,"152":2,"270":1}}],["reduces",{"2":{"107":1,"108":3}}],["reduce",{"2":{"2":2,"61":1,"107":1,"108":3,"146":2}}],["reduction",{"0":{"2":1},"2":{"2":10,"103":3,"108":1}}],["recursively",{"2":{"115":1}}],["recall",{"2":{"112":3,"134":1}}],["recognizable",{"2":{"259":1}}],["recognition",{"2":{"259":9}}],["recomputation",{"2":{"146":1}}],["reconstruction",{"2":{"107":1}}],["record",{"2":{"32":1}}],["reverse",{"2":{"108":1}}],["required",{"2":{"153":1}}],["require",{"2":{"125":1,"141":1}}],["requires",{"2":{"82":1,"106":1,"109":1,"134":1,"141":1,"201":4,"234":1,"240":1}}],["requirements",{"2":{"30":1}}],["remove",{"2":{"68":2}}],["refining",{"2":{"61":2}}],["references",{"0":{"216":1}}],["reference",{"2":{"167":1,"169":1,"209":1}}],["referred",{"2":{"95":1,"117":2,"140":1,"214":2,"215":1}}],["refer",{"2":{"49":1,"58":1,"115":1,"117":1,"214":1,"215":3,"247":1,"297":1}}],["repl",{"2":{"281":1}}],["repeated",{"2":{"36":1}}],["represented",{"2":{"73":1,"118":1,"135":1,"141":2,"149":1,"184":7,"185":4,"258":2,"267":6,"297":2,"299":2}}],["represents",{"2":{"61":1,"166":3,"170":1,"172":2}}],["represent",{"2":{"58":1,"98":1,"105":1,"120":1,"155":1,"196":1}}],["representing",{"2":{"17":1,"74":3,"90":1,"95":1,"111":1,"169":1}}],["representatives",{"0":{"229":1,"240":1},"1":{"230":1,"241":1},"2":{"160":1,"165":3,"171":1,"186":1,"223":1,"238":2,"240":6,"241":2,"242":2,"252":1,"256":3,"290":1}}],["representative",{"0":{"165":1,"170":1},"2":{"6":1,"161":2,"165":5,"169":3,"170":3,"198":1,"199":3,"229":7,"230":2,"240":2,"241":2,"246":2,"252":1}}],["representations",{"0":{"166":1,"172":1},"2":{"130":1,"172":1}}],["representation",{"2":{"6":1,"14":2,"82":1,"95":1,"111":2,"117":1,"130":2,"134":4,"143":1,"184":2,"258":2,"267":8,"297":2,"299":2}}],["real",{"0":{"257":1},"2":{"32":1,"79":2,"83":1,"85":1,"86":5,"87":5,"89":2,"90":1,"91":1,"93":10,"95":1,"112":6,"120":1,"123":5,"128":7,"134":1,"146":1,"151":1,"175":2,"177":3,"178":1,"179":1,"181":1,"182":1,"183":4,"185":1,"189":1,"191":1,"193":1,"233":1,"236":1,"245":1}}],["relnumfieldorder",{"2":{"147":1,"151":5}}],["relnumfieldorderfractionalideal",{"2":{"137":2,"138":1,"147":2,"244":3,"287":2,"302":3}}],["relnumfieldorderideal",{"2":{"102":3,"137":1,"138":1,"147":7,"151":1,"244":3}}],["relnonsimplenumfield",{"2":{"79":1,"82":1,"117":2}}],["related",{"2":{"58":1,"146":1}}],["relation",{"2":{"11":1,"13":7,"14":1,"146":2,"295":1}}],["relations",{"2":{"11":1,"13":1,"14":3,"17":3,"197":1,"260":2}}],["relatively",{"2":{"218":1}}],["relative",{"0":{"141":1},"2":{"3":1,"80":2,"82":2,"83":2,"84":1,"111":1,"117":1,"122":2,"124":2,"139":2,"141":1,"149":2,"175":1,"177":3,"220":4,"222":1,"235":5,"237":1,"241":4,"243":4,"245":12,"281":4,"283":1,"287":16,"292":2,"302":12}}],["relsimplenumfieldembedding",{"2":{"235":1}}],["relsimplenumfieldelem",{"2":{"117":1,"220":1,"224":1,"232":1,"235":1,"237":1,"239":1,"243":1,"281":3,"283":1,"287":6,"292":1,"294":1,"302":7}}],["relsimplenumfield",{"2":{"79":1,"82":2,"117":5,"124":1,"235":2,"245":3}}],["rels",{"2":{"14":1}}],["returned",{"2":{"17":1,"19":1,"25":2,"75":1,"80":2,"84":2,"86":1,"107":1,"112":5,"113":1,"134":2,"144":1,"145":1,"146":1,"150":1,"151":1,"163":2,"202":2,"223":5,"240":1,"255":2,"272":1,"293":3,"295":1,"299":1}}],["return",{"2":{"7":1,"13":1,"14":12,"15":2,"16":1,"17":8,"18":4,"22":1,"23":2,"24":3,"25":2,"26":2,"28":1,"30":1,"32":2,"33":1,"45":1,"46":11,"47":1,"48":3,"51":1,"52":1,"53":2,"54":2,"55":1,"67":1,"68":6,"70":4,"71":4,"72":1,"75":1,"79":1,"82":1,"83":1,"86":2,"87":2,"89":2,"91":2,"93":7,"100":1,"103":1,"106":7,"107":8,"108":3,"109":7,"113":1,"120":1,"121":2,"122":2,"123":3,"124":3,"126":3,"127":6,"128":5,"132":1,"134":5,"138":1,"146":2,"147":1,"148":1,"150":1,"151":2,"152":2,"153":1,"157":1,"158":1,"159":4,"160":1,"161":11,"163":6,"164":1,"165":5,"166":1,"168":2,"169":13,"170":3,"171":1,"172":1,"176":8,"178":6,"180":7,"182":3,"184":2,"186":4,"188":2,"190":1,"192":1,"195":1,"197":7,"198":2,"200":1,"201":2,"202":6,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":3,"211":2,"221":3,"223":14,"225":4,"227":1,"229":2,"231":2,"236":8,"238":1,"240":6,"242":2,"244":2,"246":2,"249":1,"250":1,"251":8,"253":1,"254":4,"255":12,"256":2,"257":4,"258":5,"259":5,"260":12,"262":3,"263":2,"264":1,"266":4,"267":3,"268":2,"271":5,"272":1,"278":4,"279":4,"280":4,"282":5,"284":4,"286":14,"288":9,"290":4,"291":3,"293":7,"295":3,"297":2,"299":3,"301":6}}],["returns",{"2":{"7":5,"8":2,"10":1,"16":1,"17":4,"18":1,"26":1,"46":1,"48":1,"59":4,"74":3,"75":3,"79":2,"87":1,"88":1,"100":4,"102":6,"103":1,"106":1,"107":1,"108":1,"111":12,"112":2,"113":3,"114":7,"120":4,"121":7,"122":4,"123":6,"124":5,"125":2,"126":5,"127":1,"131":2,"132":6,"134":10,"137":3,"138":7,"144":3,"145":3,"146":8,"147":24,"148":4,"150":11,"151":20,"152":6,"153":1,"163":2,"182":3,"186":1,"197":2,"198":1,"199":2,"201":2,"202":2,"251":2,"255":2,"260":1,"278":1,"279":1,"280":1,"286":1,"290":1}}],["rescaling",{"0":{"207":1,"246":1,"253":1},"2":{"180":1,"288":1}}],["rescaled",{"2":{"165":1,"170":1,"201":2,"246":2,"251":1,"288":2,"293":1}}],["rescale",{"2":{"165":1,"170":1,"196":1,"201":2,"207":1,"246":2,"253":2,"268":1,"288":1,"289":1}}],["rest",{"2":{"117":1,"175":1,"220":1,"235":1,"285":1}}],["restricting",{"2":{"180":1}}],["restriction",{"0":{"91":1},"2":{"91":2,"126":1,"180":1}}],["restrict",{"2":{"91":4,"92":1,"94":2,"180":2,"211":2,"241":2,"243":2,"245":2}}],["restricts",{"2":{"91":1,"92":1}}],["restricted",{"2":{"12":1}}],["resulting",{"2":{"129":1}}],["result",{"2":{"79":1,"107":1,"111":1,"120":1,"134":1,"146":1,"151":1}}],["results",{"2":{"61":1,"153":1,"216":1}}],["reshape",{"2":{"32":1,"33":1}}],["respec",{"2":{"196":1}}],["respectively",{"2":{"112":2,"134":1,"185":1,"195":1,"218":1,"260":1,"299":2}}],["respective",{"2":{"67":1,"201":2,"223":1,"242":2,"266":1,"297":1}}],["respect",{"2":{"23":1,"27":1,"29":1,"55":1,"95":1,"108":1,"111":5,"114":1,"132":1,"138":1,"150":3,"151":3,"174":1,"180":3,"184":1,"209":1,"214":2,"251":1,"258":2,"260":2,"267":6,"270":1,"272":1,"297":2,"299":2}}],["responsibility",{"2":{"79":1}}],["resp",{"2":{"18":1,"178":2,"218":4,"250":2,"278":8,"293":3}}],["resolutions",{"2":{"16":1}}],["research",{"2":{"4":1,"5":1}}],["residue",{"2":{"2":3,"61":1,"103":3,"108":2,"142":2,"148":5,"152":3,"167":1,"251":1}}],["n=|vgvt|",{"2":{"271":2}}],["n=t",{"2":{"198":1}}],["ns",{"2":{"268":2}}],["n2",{"2":{"260":2}}],["n⊆e⊗m",{"2":{"288":1}}],["n⊆qm",{"2":{"260":1}}],["n⊆m",{"2":{"195":1,"260":1}}],["n∗j2",{"2":{"251":1}}],["nt",{"2":{"218":1}}],["n1",{"2":{"218":1}}],["nz",{"2":{"196":1,"197":1}}],["nz=φ",{"2":{"195":1}}],["nzas",{"2":{"195":1}}],["n→q",{"2":{"195":2}}],["n×m",{"2":{"195":1}}],["n×d",{"2":{"111":1}}],["n⊗zp",{"2":{"155":1}}],["nx",{"2":{"129":1}}],["nf",{"2":{"125":1,"132":2,"147":1,"151":3}}],["n−ibxi",{"2":{"120":1}}],["nlog⁡|n",{"2":{"112":1}}],["nnz",{"2":{"107":1}}],["nrows",{"2":{"104":1}}],["nrels",{"2":{"14":1}}],["ncring",{"2":{"99":1}}],["ncols",{"2":{"13":3}}],["nikulin",{"2":{"274":1}}],["niemeier",{"2":{"251":4}}],["nice",{"2":{"67":2,"68":4,"129":2}}],["ni",{"2":{"61":1,"218":2}}],["npm",{"2":{"36":1}}],["nauk",{"2":{"274":1}}],["named",{"2":{"120":2}}],["names",{"2":{"30":1}}],["nature",{"2":{"79":1}}],["naturally",{"2":{"91":1}}],["natural",{"2":{"27":1,"95":1,"140":1}}],["narrow",{"2":{"79":1,"146":2,"153":1}}],["naive",{"2":{"60":3}}],["navigate",{"2":{"36":1}}],["ng",{"2":{"17":2}}],["ngens",{"2":{"7":3}}],["n⋅g→g",{"2":{"17":2}}],["n⋅g",{"2":{"17":2}}],["n",{"2":{"13":5,"17":8,"42":3,"53":1,"55":2,"61":2,"67":1,"68":10,"79":3,"80":6,"82":1,"103":6,"104":4,"106":10,"107":2,"108":2,"111":3,"113":4,"120":5,"123":1,"129":6,"134":2,"137":1,"145":2,"155":1,"161":2,"165":1,"167":4,"169":1,"174":4,"176":1,"182":2,"195":6,"196":2,"197":3,"199":2,"201":2,"207":2,"208":3,"218":1,"251":25,"259":5,"260":15,"271":4,"274":1,"288":3,"291":1}}],["numerator",{"2":{"137":1,"146":1,"206":1}}],["numfieldordelem",{"2":{"133":1}}],["numfieldorderfractionalideal",{"2":{"288":1}}],["numfieldorderideal",{"2":{"145":3,"147":4,"288":1}}],["numfieldorderelem",{"2":{"131":4,"132":5,"133":8,"134":9,"145":1}}],["numfieldorder",{"2":{"131":3,"132":1,"150":2,"151":4,"152":2}}],["numfieldhom",{"2":{"91":1,"92":1,"123":1,"124":2,"125":1,"126":3,"176":1}}],["numfieldelem",{"2":{"89":1,"93":7,"111":15,"113":2,"114":9,"120":6,"121":4,"122":1,"127":1,"131":1,"132":1,"134":1,"145":1,"147":2,"150":2,"151":4,"227":1,"229":2,"288":2,"293":1}}],["numfieldemb",{"2":{"86":2,"87":3,"88":2,"89":2,"91":2,"92":1,"93":7}}],["numfield",{"2":{"86":2,"87":1,"91":1,"113":1,"114":1,"120":3,"121":4,"122":4,"123":5,"124":6,"125":2,"126":2,"127":1,"128":3,"150":1,"151":1,"174":4,"176":2,"219":1,"221":1,"236":1,"244":2,"280":4}}],["numpages",{"2":{"4":1}}],["numbers",{"2":{"58":1,"61":1,"78":1,"113":1,"115":2,"117":1,"120":1,"132":1,"134":1,"146":1,"149":1,"152":1,"155":1,"247":1}}],["number",{"0":{"2":1,"56":1,"117":1,"119":1,"120":1,"140":1,"141":1,"279":1},"1":{"120":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1},"2":{"3":2,"4":2,"14":3,"25":4,"32":1,"42":2,"49":1,"53":1,"58":2,"61":1,"62":1,"73":1,"78":3,"81":2,"82":8,"83":1,"84":1,"85":2,"87":3,"91":5,"93":5,"94":9,"95":4,"97":1,"98":1,"100":1,"105":2,"107":10,"111":17,"113":3,"114":11,"115":5,"117":3,"118":1,"120":25,"121":7,"122":11,"123":6,"124":1,"125":3,"126":6,"127":4,"128":2,"129":1,"130":1,"131":2,"132":1,"134":2,"135":1,"139":4,"141":2,"142":4,"145":1,"146":6,"147":2,"149":6,"150":6,"151":12,"152":2,"153":1,"159":3,"161":2,"163":4,"167":1,"174":2,"175":3,"177":6,"179":1,"181":1,"185":1,"191":1,"193":1,"202":4,"207":1,"212":1,"214":1,"216":2,"220":6,"221":1,"222":4,"224":2,"226":2,"228":2,"230":2,"232":2,"235":8,"237":4,"239":2,"241":6,"243":7,"245":7,"251":1,"255":4,"257":1,"259":5,"266":1,"271":4,"274":4,"275":2,"279":2,"280":6,"281":16,"283":5,"285":2,"286":1,"287":14,"288":1,"289":6,"292":2,"294":2,"296":1,"298":2,"300":1,"302":2}}],["ny",{"2":{"4":2}}],["neg",{"2":{"268":2}}],["negative",{"2":{"14":1,"58":1,"62":1,"93":7,"147":2,"159":1,"161":1,"178":5,"182":1,"233":1,"236":1,"257":4,"260":1,"293":3}}],["neighbor",{"2":{"251":1}}],["necessary",{"2":{"213":1,"218":1,"275":1}}],["necessarily",{"2":{"61":1}}],["needs",{"2":{"61":1}}],["neat",{"2":{"17":5}}],["neutral",{"2":{"7":1}}],["new",{"2":{"4":2,"25":1,"39":4,"101":1,"108":2,"148":1,"207":1,"274":2,"285":1}}],["nemo",{"2":{"4":3,"79":1,"118":1,"209":1}}],["next",{"2":{"2":1,"117":1}}],["no",{"2":{"48":1,"58":1,"80":1,"142":1,"196":1,"209":1,"216":1,"235":1,"240":1,"251":1,"301":2}}],["nonsimplenumfield",{"2":{"111":1,"121":3,"125":2}}],["nonzero",{"2":{"100":1,"107":1,"146":2}}],["nonethelss",{"2":{"281":1}}],["none",{"2":{"20":1,"186":1,"290":1}}],["non",{"2":{"3":1,"14":1,"17":1,"45":1,"58":2,"82":4,"94":7,"107":3,"111":1,"115":1,"117":4,"120":3,"121":3,"125":2,"134":1,"141":1,"143":1,"146":3,"147":2,"153":1,"155":2,"159":2,"167":1,"174":1,"178":1,"182":2,"188":1,"207":1,"214":1,"215":1,"218":2,"227":1,"238":1,"260":1,"271":5,"288":1}}],["nothing",{"2":{"32":1,"80":1,"195":2,"244":1,"272":1,"279":3,"280":3}}],["noted",{"2":{"58":1,"80":1}}],["note",{"2":{"8":1,"17":1,"26":1,"30":1,"36":1,"68":1,"82":1,"84":1,"85":1,"89":1,"98":1,"120":1,"145":1,"155":1,"161":1,"163":2,"172":1,"178":1,"180":1,"182":1,"184":1,"186":1,"202":2,"212":2,"218":2,"220":1,"233":1,"234":1,"238":1,"240":1,"255":2,"271":3,"281":1,"286":3,"288":1,"295":1}}],["not",{"2":{"2":4,"12":1,"20":1,"25":2,"40":1,"54":1,"58":3,"61":3,"67":1,"68":1,"73":3,"78":1,"83":1,"84":1,"87":1,"98":1,"107":1,"108":1,"111":1,"120":2,"122":2,"123":1,"124":1,"128":2,"141":3,"145":1,"146":3,"147":2,"149":1,"151":3,"163":2,"187":1,"201":4,"202":2,"229":1,"233":1,"235":2,"249":2,"254":1,"255":2,"272":1,"279":3,"280":3,"281":1,"282":1,"286":1,"295":1,"301":2}}],["now",{"2":{"2":1,"150":1,"180":1,"212":1,"268":1,"281":1,"285":1}}],["norms",{"2":{"107":1,"223":3,"224":1,"229":1}}],["norm2",{"2":{"102":1}}],["normliased",{"2":{"6":1}}],["normalized",{"2":{"167":1}}],["normalization",{"2":{"149":1}}],["normalising",{"2":{"143":1}}],["normalised",{"2":{"112":1}}],["normalise",{"2":{"112":3}}],["normalisation",{"2":{"75":2}}],["normalform",{"2":{"38":2}}],["normal",{"0":{"203":1},"2":{"2":1,"14":1,"15":1,"16":1,"82":1,"83":5,"84":9,"106":2,"107":5,"124":6,"126":1,"127":2,"137":1,"142":2,"146":8,"195":1,"203":2,"208":3,"222":1,"237":2,"285":1,"292":1}}],["norm",{"0":{"102":1},"2":{"2":1,"61":1,"79":8,"82":1,"84":6,"113":9,"114":7,"122":1,"129":1,"134":6,"138":6,"142":3,"146":14,"147":9,"151":1,"161":3,"169":3,"218":4,"220":2,"222":1,"223":11,"229":2,"236":2,"237":2,"243":1,"255":3,"266":1,"285":1,"291":3,"292":2,"301":11}}],["zassenhaus",{"2":{"274":1}}],["zmodh",{"2":{"251":1}}],["zeta",{"2":{"152":2}}],["zero",{"2":{"7":1,"22":3,"24":3,"29":4,"45":1,"58":1,"93":1,"106":6,"107":5,"112":1,"134":1,"143":1,"146":3,"153":1,"187":1,"207":1,"257":1,"271":4,"278":1,"279":1,"280":1,"288":1}}],["z^",{"2":{"146":1}}],["z^2",{"2":{"15":6}}],["zn",{"2":{"130":1}}],["zk",{"2":{"74":3,"82":2,"135":3,"143":3,"146":6}}],["zlattices",{"2":{"38":2}}],["zgenus",{"2":{"38":2}}],["zzlocalgenus",{"2":{"164":1,"167":1,"168":2,"169":13,"170":4,"171":3,"172":2}}],["zzlat",{"2":{"157":1,"165":2,"168":1,"170":1,"195":2,"197":2,"205":1,"247":3,"249":1,"251":6,"253":2,"254":3,"255":8,"256":4,"257":1,"258":2,"259":4,"260":13,"262":15,"263":5,"265":1,"266":6,"267":10,"268":2,"270":2,"271":5,"272":1,"279":6}}],["zzgenus",{"2":{"155":2,"157":1,"158":1,"159":1,"160":3,"161":12,"162":1,"163":4,"164":1,"165":7,"166":2,"209":1,"252":1}}],["zzpolyringelem",{"2":{"134":3}}],["zzmodmatrix",{"2":{"107":2}}],["zzmodringelem",{"2":{"103":1,"107":1,"169":3,"209":1}}],["zzmatrix",{"2":{"7":1,"8":1,"13":1,"14":1,"17":2,"109":4,"134":1,"136":2,"144":1,"147":1,"150":1,"151":1,"259":1}}],["zz",{"2":{"64":2,"109":1,"120":1,"134":1,"196":1,"209":1,"249":2,"251":4,"254":2}}],["zzring",{"2":{"58":2}}],["zzringelem|integer",{"2":{"151":1}}],["zzringelem",{"2":{"7":3,"8":2,"10":1,"11":1,"14":3,"17":13,"52":3,"53":1,"55":1,"58":1,"59":4,"60":2,"61":8,"98":1,"103":11,"105":1,"107":30,"108":10,"109":1,"111":1,"113":4,"120":1,"122":2,"123":1,"131":2,"132":1,"133":2,"134":3,"136":3,"137":1,"144":5,"145":1,"146":5,"147":14,"148":1,"150":5,"151":3,"152":4,"161":1,"163":4,"169":1,"202":4,"253":1,"255":4,"271":3,"272":2}}],["z",{"2":{"2":10,"12":2,"13":8,"17":9,"54":2,"58":1,"81":2,"82":1,"95":5,"107":1,"120":1,"136":1,"138":1,"139":1,"140":2,"142":5,"143":2,"146":6,"147":1,"149":3,"150":2,"151":5,"152":2,"155":3,"158":1,"159":1,"161":1,"163":4,"165":1,"167":1,"168":1,"170":1,"175":2,"177":2,"195":1,"196":9,"201":11,"205":1,"206":10,"209":1,"247":4,"249":1,"251":2,"255":6,"259":2,"260":4,"262":3,"266":3,"267":3,"270":1,"275":1,"279":3,"286":2}}],["18",{"2":{"268":1}}],["18802",{"2":{"53":1}}],["1979",{"2":{"274":1}}],["1999",{"2":{"274":1}}],["1997",{"2":{"274":1}}],["1993",{"2":{"274":1}}],["193",{"2":{"274":1}}],["19",{"2":{"235":3,"251":1,"268":2}}],["195",{"2":{"5":1}}],["111",{"2":{"274":1}}],["11",{"2":{"259":2}}],["113",{"2":{"216":1}}],["1145",{"2":{"4":2}}],["1+4ω",{"2":{"172":1}}],["1+i",{"2":{"146":2}}],["1+ζ7+ζ72",{"2":{"2":1}}],["1^10",{"2":{"251":1}}],["1^8",{"2":{"251":1}}],["1^22",{"2":{"251":1,"268":1}}],["1^26",{"2":{"251":1}}],["1^24",{"2":{"251":1}}],["1^",{"2":{"146":1,"251":2}}],["1=10",{"2":{"145":1}}],["1st",{"2":{"143":1}}],["1>",{"2":{"81":1,"82":2,"146":2,"220":4,"235":2,"241":4,"243":4,"245":12,"281":4,"287":36,"289":4,"292":7,"302":48}}],["144",{"2":{"146":1}}],["14",{"2":{"67":2,"289":1,"302":6}}],["1507194",{"2":{"239":2}}],["15",{"2":{"67":1,"68":2,"146":1,"155":1,"167":1,"201":1,"245":1,"266":2,"283":2}}],["157",{"2":{"4":2}}],["16",{"2":{"54":1,"209":1,"259":4,"268":1}}],["164",{"2":{"4":2}}],["126>",{"2":{"289":1}}],["128",{"2":{"90":1}}],["12",{"2":{"17":2,"259":20,"266":2}}],["1≤i",{"2":{"151":1,"214":1}}],["1≤i≤t",{"2":{"218":1}}],["1≤i≤d",{"2":{"148":1}}],["1≤i≤2s",{"2":{"95":1}}],["1≤i≤r",{"2":{"73":1,"95":1}}],["1≤i≤n",{"2":{"13":1,"218":1,"286":3}}],["1≤j≤n",{"2":{"121":1}}],["1≤j≤m",{"2":{"13":1}}],["177",{"2":{"274":1}}],["17",{"2":{"4":2,"52":1}}],["138",{"2":{"274":1}}],["13",{"2":{"2":1,"55":1,"146":1,"251":3}}],["10>",{"2":{"289":1}}],["1024",{"2":{"239":1}}],["1047",{"2":{"239":1}}],["1000",{"2":{"61":1}}],["100",{"2":{"52":3,"61":1}}],["101",{"2":{"52":2,"53":3,"54":3,"55":1}}],["10",{"2":{"2":1,"4":2,"81":1,"82":2,"90":1,"93":2,"112":2,"120":1,"142":1,"146":1,"201":1,"259":12,"266":1,"283":1,"285":1,"287":1,"289":2,"300":1}}],["1",{"2":{"2":8,"7":4,"11":3,"15":5,"17":27,"25":7,"26":3,"29":7,"32":4,"33":7,"36":1,"42":2,"45":5,"46":2,"48":21,"51":2,"52":3,"53":3,"54":7,"55":3,"58":1,"61":1,"64":4,"67":8,"68":14,"73":1,"81":2,"82":6,"86":6,"87":3,"88":1,"89":2,"90":2,"91":6,"92":1,"93":12,"94":20,"95":3,"104":2,"107":1,"108":1,"111":5,"120":2,"121":3,"124":1,"128":1,"129":1,"134":1,"139":1,"141":2,"142":9,"145":1,"146":55,"147":2,"150":1,"151":1,"152":1,"163":4,"165":1,"167":4,"169":2,"175":10,"177":9,"179":2,"180":1,"181":20,"182":1,"183":14,"185":9,"187":6,"189":5,"191":2,"193":2,"196":17,"201":30,"202":4,"206":6,"209":10,"212":1,"214":1,"218":1,"220":28,"222":7,"223":5,"224":12,"226":6,"228":6,"230":6,"232":6,"235":26,"237":9,"238":1,"239":8,"241":24,"243":34,"244":2,"245":48,"249":6,"251":128,"253":7,"254":2,"255":4,"258":6,"259":31,"260":17,"266":35,"268":36,"272":18,"275":1,"281":49,"283":23,"285":10,"287":179,"289":62,"292":40,"294":11,"296":14,"297":4,"298":22,"299":4,"300":6,"302":189}}],["+z",{"2":{"205":1}}],["+t",{"2":{"201":4}}],["+nz",{"2":{"198":1}}],["+4",{"2":{"17":1}}],["+2z",{"2":{"205":1}}],["+2",{"2":{"17":1}}],["+",{"2":{"2":18,"17":1,"29":2,"45":9,"46":12,"48":12,"51":2,"53":1,"54":10,"55":4,"68":3,"82":1,"86":2,"87":1,"89":3,"90":2,"91":2,"92":2,"93":2,"94":6,"100":1,"109":1,"111":3,"124":1,"128":1,"133":1,"145":1,"146":33,"147":2,"150":1,"151":1,"175":3,"177":4,"220":4,"224":1,"232":3,"235":7,"237":2,"239":11,"243":8,"245":1,"260":2,"281":5,"283":2,"287":25,"288":1,"289":1,"292":3,"294":1,"298":1,"302":13}}],["7>",{"2":{"285":1,"287":2,"289":2,"292":2}}],["728381",{"2":{"239":1}}],["765",{"2":{"239":1}}],["73205080756887729353",{"2":{"89":1}}],["73",{"2":{"86":5,"91":1,"93":2}}],["74",{"2":{"55":2}}],["7^4",{"2":{"2":1}}],["7^3",{"2":{"2":1}}],["7^5",{"2":{"2":2}}],["7^2",{"2":{"2":2}}],["77",{"2":{"2":2,"89":1}}],["7",{"2":{"2":7,"67":3,"68":2,"93":1,"146":3,"167":2,"175":4,"177":5,"179":1,"181":1,"183":6,"185":2,"187":1,"189":1,"191":2,"193":2,"235":1,"237":5,"239":1,"243":1,"251":3,"275":1,"281":3,"283":2,"285":6,"287":11,"289":3,"292":3,"294":2,"296":1,"298":1,"300":1,"302":2}}],["=lp",{"2":{"293":1}}],["=l",{"2":{"293":2}}],["=l1×",{"2":{"262":1,"290":1}}],["=l1⊕",{"2":{"262":2,"290":2}}],["=∑i=1n1",{"2":{"238":1}}],["=g",{"2":{"218":2,"233":1}}],["=ordp",{"2":{"218":1}}],["=rank",{"2":{"218":1}}],["=psi",{"2":{"218":1}}],["=t1×",{"2":{"210":1}}],["=t1⊕",{"2":{"210":2}}],["=1d∑x∈dexp⁡",{"2":{"209":1}}],["=1",{"2":{"192":1}}],["=ψ",{"2":{"192":1}}],["=0",{"2":{"190":1,"192":1,"208":1}}],["=v1×",{"2":{"186":1}}],["=v1⊕",{"2":{"186":2}}],["=φ",{"2":{"182":1,"184":1,"297":1}}],["=deg⁡",{"2":{"146":1}}],["=hom⁡",{"2":{"145":1}}],["=z",{"2":{"140":1}}],["=b",{"2":{"140":1}}],["=a",{"2":{"113":1,"129":1}}],["=σi+s",{"2":{"112":3,"134":1}}],["=q",{"2":{"95":1,"140":1}}],["=infplc",{"2":{"83":1}}],["=mα",{"2":{"95":1}}],["=m",{"2":{"73":1}}],["=>9",{"2":{"67":1}}],["=>",{"2":{"29":4,"67":5,"93":2,"146":4,"235":3,"237":1,"243":3,"245":2}}],["==2",{"2":{"174":2}}],["==",{"2":{"25":1,"29":2,"47":2,"48":1,"53":1,"64":1,"68":1,"84":1,"88":1,"89":1,"100":1,"104":1,"109":1,"111":1,"120":2,"132":1,"142":1,"145":1,"172":1,"196":1,"201":2,"209":4,"244":1,"249":2,"251":9,"258":1,"260":1,"266":1,"286":2,"295":3,"297":1,"299":1}}],["===",{"2":{"2":1}}],["=",{"2":{"2":9,"4":11,"11":2,"13":7,"15":4,"17":29,"18":1,"19":1,"20":1,"22":1,"24":1,"25":8,"26":4,"28":2,"29":4,"32":5,"33":4,"36":1,"42":3,"45":6,"46":3,"47":2,"48":12,"51":2,"52":4,"53":2,"54":7,"55":5,"61":3,"64":3,"67":3,"68":7,"79":4,"80":2,"81":4,"82":7,"86":4,"87":6,"88":2,"89":4,"90":2,"91":6,"92":3,"93":12,"94":5,"106":1,"107":6,"111":3,"112":2,"113":1,"120":14,"121":4,"122":4,"124":2,"125":1,"126":2,"128":3,"131":2,"134":2,"136":2,"138":2,"142":9,"144":3,"145":1,"146":18,"147":4,"148":1,"150":12,"151":4,"159":2,"167":12,"169":1,"174":4,"175":5,"177":4,"179":5,"180":1,"181":5,"183":5,"185":9,"186":2,"187":4,"189":3,"191":6,"193":6,"195":5,"196":10,"201":18,"205":1,"208":3,"209":4,"218":3,"219":2,"220":13,"222":8,"224":11,"226":8,"228":8,"230":8,"232":11,"235":16,"237":11,"239":12,"240":5,"241":12,"243":16,"244":2,"245":5,"249":3,"250":1,"251":32,"253":1,"254":2,"258":7,"259":6,"260":11,"266":10,"267":5,"268":4,"270":2,"271":12,"272":6,"275":5,"278":2,"279":5,"280":5,"281":34,"283":12,"285":11,"286":2,"287":8,"288":1,"289":11,"290":2,"291":2,"292":8,"294":10,"295":1,"296":7,"297":5,"298":8,"299":5,"300":11,"302":10}}],["ζm",{"2":{"129":2}}],["ζn",{"2":{"120":1}}],["ζ^2",{"2":{"2":1}}],["ζ",{"2":{"2":3}}],["ζ7",{"2":{"2":1}}],["ζ7+77",{"2":{"2":1}}],["kum",{"2":{"251":2}}],["kummer",{"2":{"82":1,"123":3,"129":1}}],["k3",{"2":{"251":8}}],["kp",{"2":{"218":1}}],["kp×",{"2":{"218":1}}],["kw",{"2":{"211":2}}],["kissing",{"2":{"271":2}}],["kir19",{"2":{"216":1}}],["kir16",{"2":{"182":1,"213":1,"216":1,"218":1,"238":1}}],["kirschmer",{"2":{"216":1,"281":4}}],["kind",{"2":{"186":1}}],["k×",{"2":{"176":3,"229":2}}],["k⋅a",{"2":{"134":1}}],["k⊃k",{"2":{"124":1}}],["kt",{"2":{"120":1,"175":1,"177":1,"179":1,"181":1,"185":1,"189":1,"191":1,"193":1,"220":1,"222":1,"224":1,"226":1,"228":1,"230":1,"232":1,"235":1,"237":1,"239":1,"241":1,"243":1,"245":1,"281":3,"283":1,"287":1,"292":1,"294":1,"298":1,"302":1}}],["ktok",{"2":{"91":2,"92":2}}],["k∈z≥1",{"2":{"111":1}}],["kannan",{"2":{"107":3}}],["ker⁡",{"2":{"267":1}}],["kernel",{"2":{"182":1,"196":1,"251":1,"260":1,"266":4,"267":1}}],["keep",{"2":{"175":1}}],["keepzrows",{"2":{"106":2}}],["key",{"2":{"97":1}}],["keys",{"2":{"67":1,"68":1,"144":3,"146":1,"234":1,"236":1}}],["keyword",{"2":{"42":1,"79":1,"84":3,"146":1,"211":2,"249":1}}],["k⟶rdα⟼",{"2":{"95":1}}],["k=q",{"2":{"95":2,"121":1,"140":1,"279":3}}],["k→r",{"2":{"95":1}}],["k→l",{"2":{"91":1,"124":1}}],["k→k",{"2":{"91":1,"92":2,"95":1}}],["k→c",{"2":{"89":1,"91":1,"92":2,"95":1,"124":1}}],["kronnecker",{"2":{"78":1}}],["kn",{"2":{"73":1}}],["knowledgeable",{"2":{"212":1}}],["knowledge",{"2":{"125":1}}],["known",{"2":{"55":1,"58":2,"124":1,"147":2,"149":1,"150":2,"247":1,"254":1,"282":1}}],["knows",{"2":{"40":1,"147":4}}],["know",{"2":{"17":1}}],["kx",{"2":{"2":1}}],["k",{"2":{"2":8,"22":2,"23":4,"24":2,"25":5,"26":3,"27":1,"28":1,"32":7,"45":3,"46":2,"58":3,"70":4,"71":4,"72":2,"73":5,"79":6,"80":2,"81":2,"82":15,"83":2,"84":1,"86":9,"87":6,"88":2,"89":3,"90":2,"91":14,"92":6,"93":12,"94":5,"95":9,"111":18,"113":4,"114":11,"115":2,"120":9,"121":16,"122":18,"123":22,"124":25,"125":7,"126":15,"127":12,"128":10,"129":7,"134":4,"135":1,"139":5,"140":4,"141":3,"142":8,"145":1,"146":6,"150":17,"151":4,"152":1,"174":4,"175":4,"176":1,"177":2,"178":4,"179":4,"180":3,"181":7,"182":3,"183":6,"184":3,"185":7,"189":5,"190":3,"191":3,"192":3,"193":3,"207":4,"208":2,"214":15,"215":2,"218":2,"219":2,"220":3,"221":2,"222":3,"223":17,"224":3,"225":4,"226":3,"227":1,"228":3,"229":2,"230":3,"231":4,"232":3,"233":5,"234":2,"235":3,"236":5,"237":3,"238":2,"239":2,"240":5,"241":5,"242":2,"243":5,"244":1,"245":5,"275":2,"279":16,"281":11,"283":7,"285":12,"286":1,"287":2,"288":4,"289":12,"291":1,"292":2,"293":1,"294":3,"296":7,"297":1,"298":7,"300":12,"302":3}}],["c1",{"2":{"151":1}}],["cm",{"2":{"122":1,"123":3,"178":1,"187":2}}],["cf",{"2":{"82":1,"83":1}}],["cilog⁡|x",{"2":{"112":1}}],["ci",{"2":{"74":2}}],["citation",{"2":{"4":1}}],["citing",{"0":{"4":1}}],["crt",{"2":{"61":1,"148":1}}],["creating",{"2":{"219":1}}],["creation",{"0":{"7":1,"13":1,"22":1,"28":1,"32":1,"45":1,"74":1,"99":1,"111":1,"120":1,"131":1,"136":1,"144":1,"150":1,"156":1,"168":1,"174":1,"219":1,"234":1,"248":1,"277":1},"1":{"112":1,"113":1,"114":1,"151":1,"157":1,"158":1,"159":1,"160":1,"175":1,"220":1,"235":1,"249":1,"250":1,"251":1,"252":1,"253":1,"278":1,"279":1,"280":1,"281":1},"2":{"7":1,"13":1}}],["created",{"2":{"15":2,"18":3,"67":1,"106":1,"111":1,"120":1,"142":1,"252":1}}],["creates",{"2":{"13":6,"80":1,"120":1,"136":6,"144":5,"270":1}}],["create",{"2":{"7":1,"13":1,"17":7,"29":1,"67":2,"74":1,"80":1,"83":1,"89":1,"101":1,"108":1,"120":2,"142":1,"174":4}}],["close",{"0":{"269":1,"272":1},"1":{"270":1,"271":1,"272":1},"2":{"272":3}}],["closure",{"2":{"49":1,"79":3,"82":3,"84":3,"124":3,"149":1,"260":5,"288":3}}],["clm",{"2":{"79":1}}],["claus",{"2":{"4":2}}],["classes",{"2":{"165":2,"238":1,"240":2,"256":1}}],["classgrpctx",{"2":{"146":1}}],["classgroup",{"2":{"81":1,"146":1,"153":1}}],["classfield",{"2":{"80":7,"82":9,"83":10,"84":20}}],["classifies",{"2":{"78":1}}],["classical",{"2":{"73":1}}],["class",{"0":{"77":1,"79":1,"80":1,"146":1},"1":{"78":1,"79":1,"80":1,"81":2,"82":1,"83":1,"84":1},"2":{"3":3,"61":1,"78":5,"79":13,"80":30,"81":3,"82":9,"83":3,"84":4,"97":1,"111":1,"120":2,"122":5,"134":1,"146":21,"153":2,"155":1,"176":1,"182":1,"186":1,"216":1,"218":2,"219":2,"229":5,"244":1,"275":2,"281":2,"290":1}}],["c6",{"2":{"46":1}}],["curvers",{"2":{"49":1}}],["curves",{"0":{"50":1,"56":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1},"2":{"49":1}}],["curve",{"2":{"45":12,"46":5,"48":16,"49":2,"51":3,"52":4,"53":4,"54":6,"55":3}}],["currently",{"2":{"14":1,"58":1,"68":1,"84":1,"141":1,"149":1}}],["current",{"2":{"14":3,"36":1}}],["ctoa",{"2":{"26":1}}],["c→a",{"2":{"26":1}}],["central",{"2":{"24":3,"83":3}}],["center",{"0":{"26":1},"2":{"5":1,"24":1,"26":11}}],["c2",{"2":{"17":1,"151":1}}],["c2×c4",{"2":{"17":1}}],["c4",{"2":{"17":1,"46":1}}],["cambridge",{"2":{"274":2}}],["cache",{"2":{"146":1,"165":1}}],["cached",{"2":{"28":1,"120":8,"150":4,"174":4,"239":2,"281":2}}],["caching",{"2":{"120":1}}],["cai+daj",{"2":{"108":1}}],["carlo",{"2":{"107":1}}],["cardinality",{"0":{"52":1},"2":{"147":1}}],["categorical",{"0":{"186":1,"210":1,"262":1,"290":1},"1":{"187":1}}],["cat",{"2":{"106":1}}],["ca+db",{"2":{"100":1}}],["ca+b",{"2":{"100":2}}],["calculus",{"2":{"97":1}}],["callable",{"2":{"108":1}}],["callers",{"2":{"79":1}}],["called",{"2":{"17":2,"18":1,"73":2,"78":1,"85":1,"95":5,"117":2,"140":1,"141":1,"146":1,"149":1,"169":2,"182":2,"184":1,"186":5,"210":3,"214":3,"215":3,"255":1,"260":1,"262":3,"290":4,"297":2}}],["call",{"2":{"17":1,"18":3,"73":1,"80":1,"95":2,"115":1,"186":6,"210":6,"214":1,"215":2,"218":2,"260":1,"262":6,"286":1,"290":7}}],["caputured",{"2":{"58":1}}],["cases",{"2":{"58":1,"61":1,"115":1,"178":1,"184":1,"214":1}}],["case",{"2":{"25":2,"39":1,"61":1,"79":1,"91":1,"95":1,"107":1,"115":1,"141":1,"145":1,"149":1,"150":2,"163":2,"176":1,"178":2,"183":1,"184":1,"201":2,"202":4,"212":1,"214":2,"240":1,"255":2,"260":1,"293":2,"299":1}}],["cannot",{"2":{"2":1,"84":1}}],["canonically",{"2":{"80":2}}],["canonical",{"2":{"2":1,"16":1,"18":4,"58":1,"80":1,"111":5,"121":2,"125":4,"148":1,"186":1,"203":1,"214":2,"286":1,"290":1}}],["can",{"2":{"2":3,"7":1,"11":1,"15":2,"20":1,"22":1,"29":2,"36":1,"38":1,"40":1,"42":3,"43":2,"45":1,"47":2,"52":1,"55":1,"58":4,"59":1,"60":1,"61":3,"62":1,"67":3,"68":2,"73":1,"75":2,"79":1,"82":1,"84":1,"89":1,"90":1,"92":1,"98":1,"106":2,"111":2,"113":1,"115":1,"117":1,"120":6,"126":1,"130":1,"142":1,"143":3,"146":2,"149":1,"150":2,"153":1,"180":1,"183":1,"184":2,"185":1,"186":3,"192":1,"195":1,"216":1,"234":1,"240":2,"250":1,"252":1,"253":1,"270":1,"272":1,"278":2,"279":2,"280":2,"281":2,"286":1,"288":2,"290":2,"293":1,"294":1}}],["c",{"2":{"17":2,"26":6,"46":6,"67":6,"68":5,"74":4,"79":2,"81":1,"82":1,"83":14,"84":5,"89":2,"100":3,"106":2,"108":7,"111":3,"112":2,"118":1,"124":1,"128":2,"132":2,"134":2,"146":9,"270":2,"275":2}}],["cyclic",{"2":{"13":2,"14":3,"82":2,"83":3}}],["cyclotomix",{"2":{"187":1}}],["cyclotomic",{"2":{"2":3,"78":1,"91":1,"92":3,"120":3,"175":2,"177":3,"179":1,"181":1,"183":4,"185":1,"189":1,"191":1,"193":1,"245":1}}],["cyclomotic",{"2":{"2":1}}],["choosing",{"2":{"219":1,"234":1}}],["choose",{"2":{"143":1}}],["chosen",{"2":{"7":2,"220":1,"258":3,"297":2,"299":2}}],["check=true",{"2":{"266":1}}],["checkisunit",{"2":{"113":2}}],["checking",{"2":{"83":1}}],["checked",{"2":{"45":1,"47":1,"111":1,"113":1,"120":1,"124":1,"131":2,"144":1,"148":1,"150":5,"151":2,"250":1,"271":3,"272":1,"278":2,"279":2,"280":2}}],["checks",{"2":{"32":1,"83":1,"113":1,"151":1,"154":1}}],["check",{"2":{"32":2,"45":2,"47":2,"83":2,"120":5,"123":1,"131":4,"144":2,"148":2,"150":9,"195":1,"219":1,"250":2,"271":3,"272":2,"278":4,"279":4,"280":4}}],["cham",{"2":{"274":1}}],["changing",{"2":{"106":1,"108":1}}],["changed",{"2":{"107":1}}],["change",{"0":{"101":1},"2":{"30":1,"46":6,"101":1,"108":1,"151":2}}],["charpoly",{"2":{"114":3,"134":2}}],["char",{"2":{"67":1,"68":7}}],["characteristic",{"2":{"2":3,"45":1,"114":2,"134":1,"142":1}}],["chapter",{"2":{"49":1,"73":1,"78":1,"97":1,"139":1,"141":1,"149":1,"155":1,"167":1,"212":1,"214":1,"215":1}}],["coinvariant",{"2":{"267":2}}],["coxeter",{"2":{"251":1,"259":4}}],["cover",{"0":{"199":1},"2":{"197":1,"199":1}}],["corollary",{"2":{"209":1}}],["core",{"2":{"149":1}}],["correctness",{"2":{"146":2}}],["correct",{"2":{"79":1,"107":1,"172":1}}],["corresponds",{"2":{"218":1,"242":2,"259":1}}],["correspond",{"2":{"17":2,"27":1,"106":2,"233":1}}],["corresponding",{"2":{"15":1,"17":2,"22":1,"29":2,"39":3,"79":1,"83":2,"86":5,"87":1,"89":1,"90":2,"91":2,"92":2,"93":2,"94":8,"106":3,"121":1,"128":10,"134":1,"136":1,"143":1,"183":6,"186":1,"188":1,"233":1,"234":1,"235":7,"236":1,"237":2,"243":1,"251":2,"259":2,"262":3,"286":3,"290":3}}],["course",{"2":{"274":1}}],["couple",{"2":{"153":1}}],["counterparts",{"2":{"105":1}}],["could",{"2":{"18":1,"177":1}}],["cohen",{"2":{"73":1,"75":2,"274":2}}],["coords",{"2":{"47":4,"48":3}}],["coordinate",{"2":{"29":2,"32":1}}],["coordinates",{"2":{"23":2,"47":3,"48":1,"111":7,"132":1,"196":1,"259":1,"286":1}}],["coerces",{"2":{"131":3}}],["coercing",{"2":{"101":1,"108":1}}],["coercion",{"2":{"46":1,"131":1,"196":1}}],["coeff",{"2":{"111":1,"151":2}}],["coefficient",{"2":{"75":2,"102":1,"107":1,"111":1,"117":1,"131":2,"132":1,"134":1,"147":2,"148":1,"151":1,"286":3,"287":1,"288":1}}],["coefficients",{"2":{"2":2,"7":1,"45":1,"46":3,"49":1,"58":1,"111":3,"113":1,"130":1,"141":1,"231":2}}],["copies",{"2":{"186":1}}],["copy",{"2":{"33":1,"68":1,"138":2,"147":2}}],["coprimes",{"2":{"61":1}}],["coprime",{"2":{"17":1,"60":1,"61":18,"79":2,"80":1,"137":1,"144":4,"146":3,"147":2,"151":1}}],["co",{"2":{"16":1,"152":1}}],["codifferent",{"2":{"152":2}}],["codomain",{"2":{"15":1,"17":1,"80":1,"266":1}}],["code",{"0":{"0":1},"2":{"61":4,"79":1,"107":1}}],["colon",{"2":{"145":1}}],["col",{"2":{"108":2}}],["cols",{"2":{"108":2}}],["collects",{"2":{"256":1}}],["collecting",{"2":{"213":1}}],["collections",{"2":{"68":3,"290":1}}],["collection",{"2":{"16":1,"155":2,"186":4,"210":3,"234":1,"262":3,"290":3}}],["collect",{"2":{"68":1,"146":1}}],["collaborative",{"2":{"5":1}}],["column",{"2":{"7":1,"107":1,"108":3}}],["columns",{"2":{"7":1,"17":1,"73":1,"98":1,"105":1,"106":1,"107":3,"108":1,"279":2,"280":2}}],["coming",{"2":{"143":1}}],["come",{"2":{"117":1}}],["comes",{"2":{"115":1,"203":1,"205":1}}],["commands",{"2":{"281":1}}],["common",{"2":{"30":1,"73":1,"139":1}}],["commutative",{"2":{"24":4,"97":1,"105":1}}],["complicated",{"2":{"141":1}}],["completion",{"2":{"182":1,"190":1,"192":2,"218":2,"219":1,"223":3,"231":2,"240":2,"242":1,"284":1,"293":1,"295":2,"301":3}}],["completions",{"2":{"155":1,"184":2,"233":1,"266":1,"285":1,"295":2,"299":1}}],["completely",{"2":{"182":1}}],["complete",{"2":{"117":1,"146":1,"165":1}}],["complex",{"0":{"85":1,"86":1,"89":1},"1":{"86":1,"87":1,"88":1,"89":1,"90":1,"91":1,"92":1,"93":1,"94":1},"2":{"85":2,"86":9,"87":3,"88":1,"89":2,"90":2,"91":5,"92":4,"93":8,"94":9,"95":2,"112":6,"123":4,"126":2,"128":11,"134":1,"183":3,"233":1,"235":4,"237":1,"243":1}}],["complexes",{"2":{"16":1}}],["complements",{"2":{"68":1}}],["complement",{"2":{"17":9,"68":1,"188":4,"189":1,"267":1}}],["compare",{"2":{"260":1}}],["compared",{"2":{"58":1}}],["compact",{"2":{"61":1}}],["compose",{"2":{"187":2}}],["compositum",{"2":{"82":1,"84":3,"124":2}}],["composition",{"2":{"15":1}}],["component",{"2":{"8":1,"18":2,"121":2,"167":4,"169":1}}],["components",{"2":{"7":3,"8":1,"196":1,"263":3}}],["computing",{"0":{"268":1},"2":{"60":1,"61":1,"82":1,"83":1,"91":1,"150":1,"216":1,"286":2}}],["computed",{"2":{"20":1,"61":4,"79":1,"80":4,"92":1,"107":2,"146":1,"186":1,"223":1,"271":3,"290":1}}],["compute",{"2":{"19":2,"20":1,"46":2,"48":1,"52":1,"82":3,"83":1,"84":1,"107":2,"111":1,"112":4,"124":1,"132":1,"134":2,"146":4,"165":1,"270":1,"275":1}}],["computes",{"2":{"17":1,"20":1,"25":1,"60":4,"61":2,"79":2,"107":2,"111":1,"122":1,"125":1,"129":1,"134":2,"136":1,"137":1,"144":1,"145":1,"146":6,"147":5,"151":1,"152":1}}],["computer",{"2":{"4":2,"58":1}}],["computational",{"2":{"274":2}}],["computation",{"2":{"4":1,"61":1,"82":1,"97":1,"107":1,"146":1,"154":1,"240":1}}],["computations",{"0":{"16":1},"1":{"17":1,"18":1,"19":1,"20":1},"2":{"3":1,"4":1}}],["combinations",{"2":{"131":1}}],["combination",{"2":{"6":1}}],["congruent",{"2":{"169":1}}],["conway",{"2":{"155":1,"274":1}}],["concatenation",{"2":{"107":1}}],["concatenates",{"2":{"106":2}}],["concatenated",{"2":{"106":1}}],["concretely",{"2":{"2":1}}],["conj",{"2":{"88":2}}],["conjugation",{"2":{"123":1,"126":3}}],["conjugated",{"0":{"88":1},"2":{"86":1}}],["conjugates",{"0":{"112":1},"2":{"86":3,"112":14,"134":4}}],["conjugate",{"2":{"64":3,"88":1}}],["conjugacy",{"0":{"64":1}}],["condition",{"2":{"107":1}}],["conditions",{"2":{"67":1,"159":1}}],["conductor",{"2":{"80":1,"83":8,"84":1,"142":1}}],["conversely",{"2":{"286":1}}],["conversions",{"0":{"82":1}}],["conversion",{"0":{"60":1,"104":1,"125":1},"2":{"109":1}}],["converting",{"2":{"153":1}}],["convert",{"2":{"104":2}}],["convention",{"2":{"161":1}}],["conventions",{"0":{"95":1},"2":{"30":1,"73":1,"139":1}}],["convenience",{"2":{"89":1}}],["continuity",{"2":{"218":1}}],["continuous",{"2":{"40":1,"190":1}}],["context",{"2":{"186":1,"214":1,"215":1,"290":1}}],["controls",{"2":{"120":3}}],["contrast",{"2":{"105":1,"214":1}}],["containment",{"2":{"295":1}}],["contain",{"2":{"141":1,"151":1}}],["contained",{"2":{"78":1,"82":2,"111":1,"131":2,"134":1,"137":1,"145":1,"147":5,"154":3,"180":2,"293":1}}],["contains",{"2":{"17":1,"79":1,"111":1,"123":1,"150":1,"151":1,"152":1,"182":2}}],["containing",{"2":{"15":1,"17":1,"39":1,"59":1,"73":1,"121":1,"124":1,"129":2,"134":1,"150":1,"151":2,"227":1,"259":1}}],["config",{"2":{"35":1}}],["consequence",{"2":{"105":1}}],["consuming",{"2":{"32":1,"120":1}}],["consists",{"2":{"67":1,"295":1}}],["consisting",{"2":{"25":1,"120":1,"124":2,"126":1,"147":2,"233":1,"259":1,"267":1,"286":1}}],["considered",{"2":{"84":1,"132":1,"134":1,"138":2,"147":2}}],["consider",{"2":{"4":1}}],["const",{"2":{"151":2}}],["constant",{"0":{"31":1,"33":1},"1":{"32":1,"33":1},"2":{"22":2,"26":1,"30":1,"32":9,"33":5}}],["constructing",{"2":{"219":1,"234":2}}],["construction",{"0":{"59":1,"86":1,"106":1},"2":{"28":1,"80":2}}],["constructions",{"0":{"186":1,"210":1,"262":1,"290":1},"1":{"187":1},"2":{"16":1,"251":1}}],["constructor",{"2":{"106":1}}],["constructors",{"0":{"67":1},"2":{"106":1,"120":1,"175":1}}],["constructs",{"2":{"99":3,"106":3,"111":1,"120":1}}],["construct",{"2":{"45":1,"58":1,"108":1,"186":1,"220":1,"235":1,"290":1}}],["constructed",{"2":{"15":1,"29":1,"82":1,"89":1,"90":1,"95":1,"120":1,"121":2,"131":1,"140":1,"150":1,"251":1}}],["bn",{"2":{"260":1}}],["bn==a",{"2":{"145":1}}],["bm",{"2":{"260":1}}],["bbm=bn",{"2":{"260":1}}],["b=",{"2":{"214":1}}],["br",{"2":{"209":1}}],["brown",{"2":{"209":5}}],["b+m∈m",{"2":{"198":1}}],["bd",{"2":{"148":1}}],["b1",{"2":{"148":1}}],["b∈k",{"2":{"123":2}}],["b∈matd×d",{"2":{"95":1,"140":1}}],["b^2",{"2":{"111":1}}],["block",{"2":{"106":2,"169":1,"218":4,"223":7,"229":1,"231":2}}],["blocks",{"2":{"98":1,"106":1,"167":2,"219":1,"220":2,"221":1,"223":4,"229":1,"243":1}}],["back",{"2":{"180":1,"281":1}}],["bacher",{"2":{"258":9,"297":6,"299":6}}],["bachem",{"2":{"107":3}}],["bach",{"2":{"146":3}}],["bad",{"2":{"146":2,"218":2,"220":1,"233":1}}],["balls",{"2":{"151":1}}],["ball",{"2":{"89":2}}],["bass",{"2":{"152":3}}],["bashhecke",{"2":{"36":1}}],["basically",{"2":{"196":1}}],["basics",{"0":{"21":1,"44":1},"1":{"22":1,"23":1,"24":1,"25":1,"26":1,"45":1,"46":1,"47":1,"48":1}}],["basic",{"0":{"13":1,"23":1,"46":1,"100":1,"121":1,"132":1,"150":1},"1":{"151":1},"2":{"118":1}}],["basis",{"2":{"2":1,"23":2,"25":4,"27":1,"32":1,"58":2,"61":2,"73":2,"81":1,"82":1,"95":6,"107":1,"111":10,"121":10,"125":2,"127":3,"130":1,"131":1,"132":1,"136":3,"138":7,"140":5,"142":5,"143":1,"144":1,"146":6,"147":10,"148":1,"150":9,"151":26,"178":1,"180":4,"181":1,"188":3,"192":1,"195":1,"196":2,"214":3,"218":1,"220":2,"222":1,"235":1,"237":2,"241":2,"243":2,"245":6,"247":2,"249":2,"250":4,"251":3,"254":2,"258":1,"259":2,"260":5,"267":3,"270":2,"272":1,"278":5,"279":5,"280":5,"281":4,"282":2,"283":1,"285":1,"286":17,"287":24,"288":1,"289":4,"292":5,"295":3,"296":1,"297":1,"302":27}}],["based",{"2":{"82":1,"107":1,"172":1,"216":1}}],["bases",{"2":{"23":1,"288":1,"299":3}}],["base",{"0":{"101":1},"2":{"2":1,"23":1,"46":7,"48":1,"55":1,"58":2,"59":3,"60":1,"61":4,"75":1,"82":2,"83":5,"84":5,"91":3,"98":2,"101":2,"105":2,"106":2,"108":2,"109":1,"111":1,"114":2,"115":3,"121":2,"122":1,"123":2,"134":2,"144":4,"146":6,"149":1,"176":2,"177":1,"180":2,"214":1,"215":2,"221":1,"222":1,"235":3,"236":1,"237":1,"244":1,"246":2,"286":3,"287":2,"293":1,"295":2}}],["bf",{"2":{"61":1}}],["bibliography",{"0":{"274":1}}],["bigger",{"2":{"251":1}}],["bijection",{"2":{"214":2}}],["bijective",{"2":{"201":2,"266":1}}],["bilinear",{"2":{"161":2,"163":2,"169":2,"180":1,"195":2,"196":2,"197":8,"201":4,"205":1,"206":4,"208":4,"209":2,"214":1,"274":1}}],["bi⋅bj",{"2":{"151":1}}],["binding",{"2":{"118":1}}],["bivariate",{"2":{"46":2}}],["biproduct",{"2":{"18":2,"186":7,"187":1,"210":7,"262":7,"290":7}}],["biproducts",{"2":{"18":1,"186":4,"210":3,"262":3,"290":4}}],["b8",{"2":{"46":1}}],["b6",{"2":{"46":1}}],["b4",{"2":{"46":1}}],["b2",{"2":{"46":1,"201":2}}],["bu",{"2":{"260":3}}],["build",{"2":{"36":3}}],["building",{"0":{"36":1},"2":{"98":1}}],["but",{"2":{"2":1,"8":1,"58":1,"61":2,"68":1,"73":1,"84":1,"109":5,"149":1,"150":1,"288":1}}],["bogomolov",{"2":{"251":2}}],["bound",{"2":{"146":7}}],["bound2",{"2":{"107":2}}],["bounded",{"2":{"7":1,"61":1,"146":2,"244":2}}],["both",{"2":{"17":1,"115":1,"125":1,"141":1,"151":1,"184":1,"186":1,"201":4,"214":1,"240":1,"260":1,"270":1,"272":1,"290":1}}],["bool=true",{"2":{"268":1}}],["boolean",{"2":{"120":1,"159":1}}],["bool",{"2":{"14":5,"15":1,"17":5,"24":2,"25":2,"28":1,"32":1,"33":1,"45":1,"47":1,"48":1,"61":2,"64":1,"79":4,"82":1,"83":2,"84":3,"86":1,"87":2,"93":5,"106":1,"107":3,"113":5,"120":3,"123":12,"124":2,"125":1,"126":4,"128":1,"131":2,"132":1,"136":2,"138":2,"144":2,"145":5,"146":7,"147":8,"148":1,"150":9,"151":3,"152":3,"154":2,"161":3,"163":4,"166":1,"169":1,"172":1,"174":4,"178":6,"182":2,"184":2,"190":1,"192":1,"195":2,"201":6,"202":4,"203":1,"208":2,"209":1,"219":1,"225":4,"236":1,"240":2,"250":1,"251":1,"255":6,"257":3,"258":3,"260":6,"267":5,"268":2,"270":1,"271":3,"272":1,"278":2,"279":2,"280":2,"284":2,"286":1,"293":7,"295":1,"297":1,"299":4,"301":3}}],["booktitle",{"2":{"4":1}}],["b",{"2":{"7":2,"25":5,"46":2,"59":20,"61":3,"64":4,"67":5,"84":10,"91":2,"94":1,"95":2,"100":4,"106":11,"107":4,"108":4,"109":4,"111":6,"120":6,"132":3,"134":3,"136":7,"137":1,"145":6,"146":10,"161":6,"169":6,"175":2,"177":2,"179":2,"181":2,"185":2,"187":1,"191":2,"193":2,"195":1,"196":2,"198":4,"201":2,"208":3,"214":2,"220":10,"222":2,"224":8,"226":2,"228":2,"230":2,"232":8,"235":9,"237":8,"239":10,"241":4,"243":10,"245":1,"247":2,"249":3,"254":2,"260":1,"270":1,"272":1,"278":4,"279":5,"280":5,"281":11,"283":3,"287":31,"292":5,"294":3,"298":2,"302":15}}],["berlin",{"2":{"274":1}}],["beauville",{"2":{"251":2}}],["before",{"2":{"235":1}}],["beta",{"2":{"125":1}}],["between",{"2":{"15":2,"17":1,"196":1,"201":1,"214":1,"244":1,"262":3,"290":3,"295":1}}],["belong",{"2":{"99":1}}],["below",{"2":{"40":1}}],["behaviour",{"2":{"68":1,"120":1}}],["because",{"2":{"43":1}}],["being",{"2":{"9":1,"115":1,"120":1,"141":1,"144":1,"148":1,"150":1,"218":1,"240":1}}],["be",{"2":{"2":2,"7":1,"12":1,"15":2,"20":1,"22":1,"29":1,"36":1,"38":1,"39":4,"40":1,"42":3,"45":1,"47":2,"55":1,"58":3,"60":1,"61":5,"62":1,"67":1,"68":1,"73":3,"75":4,"79":2,"80":3,"82":3,"84":3,"89":2,"90":1,"92":1,"93":2,"95":1,"98":1,"105":1,"106":2,"107":2,"111":3,"112":1,"113":3,"114":2,"115":1,"117":2,"120":9,"121":1,"122":1,"124":1,"125":1,"126":1,"129":2,"130":1,"131":4,"134":1,"141":2,"143":5,"146":8,"149":2,"150":2,"152":1,"153":1,"155":1,"161":2,"165":2,"169":2,"174":4,"176":6,"178":2,"182":1,"184":5,"186":2,"190":3,"192":4,"195":3,"201":2,"208":1,"209":3,"214":2,"215":1,"216":1,"218":4,"229":1,"233":4,"234":1,"238":3,"240":3,"244":1,"250":2,"251":1,"252":1,"253":1,"270":1,"272":2,"278":4,"279":8,"280":8,"281":2,"284":2,"285":1,"286":2,"288":4,"290":1,"291":4,"293":3,"295":3,"297":2}}],["begin",{"2":{"2":1,"213":1}}],["by",{"0":{"267":1},"2":{"2":3,"5":1,"7":1,"17":10,"29":2,"30":1,"42":1,"45":2,"46":4,"47":2,"49":3,"58":2,"59":1,"60":2,"61":9,"63":1,"68":3,"75":2,"78":1,"79":5,"80":4,"82":4,"83":1,"84":3,"87":1,"90":1,"91":1,"93":1,"94":2,"95":2,"98":1,"100":1,"101":1,"103":1,"105":1,"107":2,"108":3,"109":2,"111":1,"113":1,"115":1,"117":3,"118":2,"120":4,"123":1,"125":2,"126":2,"128":2,"131":1,"136":2,"140":1,"143":3,"144":3,"145":1,"146":12,"147":1,"150":2,"151":1,"152":1,"161":2,"163":2,"165":3,"167":1,"169":2,"170":1,"180":4,"184":7,"185":4,"195":1,"196":2,"197":2,"202":2,"206":1,"207":1,"209":3,"213":1,"214":1,"215":3,"218":2,"219":2,"229":1,"234":2,"236":1,"240":3,"244":2,"246":2,"250":3,"251":5,"254":1,"255":4,"258":3,"259":4,"267":1,"270":2,"271":1,"272":1,"278":7,"279":7,"280":7,"281":1,"288":2,"291":1,"297":2,"299":3,"301":2}}],["qld",{"2":{"281":2}}],["qmodnzelem",{"2":{"198":2}}],["qmodnz",{"2":{"197":2}}],["qf",{"2":{"195":2}}],["q2",{"2":{"183":4,"185":3}}],["q×",{"2":{"148":1}}],["q⊗m∩zn",{"2":{"107":1}}],["qx",{"2":{"81":1,"82":1,"94":1,"111":1,"120":1,"121":2,"122":2,"124":1,"142":1,"150":1,"151":1,"220":1,"222":1,"224":1,"226":1,"228":1,"230":1,"232":1,"235":1,"237":1,"239":1,"241":1,"243":1,"275":1,"281":1}}],["q+1−n",{"2":{"53":1}}],["qg",{"2":{"28":1,"29":8}}],["qqfield",{"2":{"165":2,"180":1}}],["qqfieldelem",{"2":{"25":1,"33":1,"48":1,"60":2,"61":3,"67":2,"111":2,"114":1,"122":1,"138":2,"147":1,"150":2,"151":1,"161":4,"165":1,"169":4,"195":2,"196":1,"197":2,"199":2,"238":1,"255":3,"256":1,"260":1,"271":5,"272":3}}],["qqmatrix",{"2":{"25":1,"136":1,"150":2,"151":1,"165":2,"168":1,"197":2,"206":1,"251":1,"254":2,"260":4}}],["qq",{"2":{"22":2,"24":1,"25":2,"26":4,"28":1,"29":1,"32":3,"33":1,"45":1,"46":2,"48":5,"81":2,"82":1,"94":1,"111":1,"120":6,"121":2,"122":3,"124":1,"142":4,"146":4,"150":1,"151":2,"159":8,"201":7,"206":4,"220":1,"222":1,"224":1,"226":1,"228":1,"230":1,"232":1,"235":1,"237":1,"239":1,"241":1,"243":1,"249":2,"259":1,"260":1,"266":3,"272":1,"275":1,"281":3,"283":1,"285":1,"287":1,"289":5}}],["quick",{"2":{"275":1}}],["quickly",{"2":{"89":1}}],["quadlat",{"2":{"279":4}}],["quadspacecls",{"2":{"186":3,"290":3}}],["quadspace",{"2":{"165":2,"174":2,"180":1,"182":3,"254":1}}],["quadbin",{"2":{"38":2}}],["quad",{"2":{"38":2,"39":2,"43":2}}],["quadform",{"2":{"38":6,"39":6,"43":3}}],["quadratic",{"0":{"195":1,"214":1,"215":1,"250":1,"253":1,"279":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"3":1,"32":2,"43":1,"86":7,"87":4,"88":1,"89":1,"90":2,"91":2,"93":8,"94":3,"111":2,"120":5,"128":8,"165":3,"167":1,"169":1,"172":1,"174":6,"175":2,"176":1,"178":5,"179":2,"180":1,"181":1,"182":2,"183":2,"184":1,"185":2,"186":3,"189":1,"195":8,"196":6,"197":10,"198":2,"201":37,"202":4,"203":3,"204":1,"205":1,"206":20,"207":2,"208":8,"209":7,"210":3,"212":2,"214":6,"215":5,"216":2,"247":3,"249":1,"250":2,"253":1,"254":3,"255":1,"260":2,"266":6,"278":8,"279":13,"281":6,"283":2,"284":2,"285":4,"289":3,"290":3,"296":1,"298":1,"300":2}}],["quaternion",{"2":{"30":1}}],["quomap",{"2":{"80":1}}],["quo",{"2":{"17":7,"79":3,"80":5,"148":2}}],["quot",{"2":{"19":2,"20":4,"42":8,"60":4,"61":4,"111":2,"112":2,"125":6,"186":12,"290":12}}],["quotype",{"2":{"17":4,"211":4}}],["quotient",{"0":{"148":1},"2":{"17":8,"79":1,"80":5,"82":1,"111":1,"117":1,"118":1,"129":1,"146":1,"148":2,"195":1,"211":2}}],["quotients",{"0":{"17":1},"2":{"78":2,"117":1,"196":1}}],["q",{"2":{"2":1,"12":1,"14":1,"48":2,"55":4,"58":1,"61":5,"78":2,"80":3,"83":2,"84":3,"95":5,"114":2,"115":3,"117":2,"120":1,"121":1,"122":1,"123":1,"125":2,"139":1,"140":1,"148":4,"151":1,"175":1,"179":4,"180":1,"181":4,"183":6,"185":5,"189":2,"195":1,"196":4,"197":2,"201":10,"206":13,"208":2,"209":4}}],["2πi8br",{"2":{"209":1}}],["2z",{"2":{"196":2,"201":5,"205":1,"206":4,"209":1}}],["2i",{"2":{"172":1}}],["2im",{"2":{"95":8}}],["2>",{"2":{"146":8,"289":2}}],["24206243073821420343184",{"2":{"146":2}}],["24",{"2":{"128":5,"251":4}}],["2log⁡",{"2":{"112":2,"134":2}}],["2re",{"2":{"95":5}}],["2s",{"2":{"95":1}}],["26",{"2":{"94":2,"283":1}}],["2168244",{"2":{"239":2}}],["21",{"2":{"89":1,"146":1,"251":2}}],["2^m",{"2":{"167":1}}],["2^4",{"2":{"146":1}}],["2^",{"2":{"89":1,"112":9,"134":5,"151":1}}],["2^2",{"2":{"52":1}}],["2000",{"2":{"274":1}}],["2018",{"2":{"274":1}}],["2019",{"2":{"216":1}}],["2016",{"2":{"216":1}}],["2017",{"2":{"4":3}}],["20",{"2":{"68":2,"146":1,"251":2,"266":1,"285":1,"289":1,"300":1}}],["25>",{"2":{"289":1}}],["25",{"2":{"67":1,"183":1,"285":1,"289":2,"300":1}}],["22",{"2":{"54":1,"268":1}}],["22>",{"2":{"2":1}}],["2×2×2",{"2":{"33":1}}],["2nd",{"2":{"17":1}}],["28>",{"2":{"287":2}}],["28",{"2":{"2":1}}],["290",{"2":{"274":1}}],["29",{"2":{"2":9}}],["238",{"2":{"274":1}}],["236067977",{"2":{"93":2}}],["23",{"2":{"2":2,"54":1,"251":2}}],["23+55ζ75",{"2":{"2":1}}],["2",{"0":{"102":1,"280":1},"1":{"281":1},"2":{"2":4,"11":4,"13":5,"15":6,"17":35,"24":1,"26":3,"29":6,"32":7,"33":6,"45":4,"46":4,"47":1,"48":21,"51":3,"52":2,"53":4,"54":10,"55":3,"59":1,"61":2,"67":8,"68":23,"81":3,"82":4,"86":2,"88":1,"90":3,"92":1,"93":7,"94":1,"107":1,"111":5,"113":1,"120":2,"121":3,"122":4,"124":1,"128":7,"132":1,"134":1,"139":1,"142":18,"143":1,"146":55,"150":1,"151":2,"161":2,"169":2,"172":1,"175":2,"176":2,"177":4,"181":6,"182":1,"183":1,"187":1,"189":1,"192":1,"196":11,"201":30,"206":6,"209":6,"212":1,"214":2,"218":1,"220":14,"222":11,"224":10,"226":4,"228":4,"230":5,"232":5,"235":12,"237":11,"238":1,"239":7,"241":6,"243":14,"245":18,"249":10,"251":38,"253":3,"254":9,"259":53,"260":4,"266":23,"268":17,"272":6,"275":2,"280":4,"281":13,"283":15,"285":7,"287":52,"289":9,"292":6,"294":1,"296":7,"298":4,"300":7,"302":22}}],["izv",{"2":{"274":1}}],["ir",{"2":{"266":2,"268":1}}],["irreducibility",{"2":{"120":2}}],["irreducible",{"2":{"95":1,"115":1,"120":1,"134":1,"259":4,"263":2}}],["illustrate",{"2":{"251":1}}],["iπq",{"2":{"209":1}}],["ignored",{"2":{"159":1}}],["i2",{"2":{"148":1}}],["i1",{"2":{"148":1}}],["i→o",{"2":{"148":1}}],["ij",{"2":{"99":3}}],["i∈rn∣xi=0",{"2":{"98":1}}],["i∈v",{"2":{"8":1}}],["ie",{"2":{"61":3,"78":1,"84":1,"146":4}}],["i^int",{"2":{"146":1}}],["i^k",{"2":{"59":1}}],["i^",{"2":{"58":1}}],["imag",{"2":{"112":3,"134":1}}],["imaginary",{"2":{"85":1,"86":4,"87":5,"94":2,"128":1}}],["images",{"2":{"15":1,"17":1,"195":2}}],["image",{"2":{"15":1,"17":2,"89":1,"112":1,"134":1}}],["im",{"2":{"85":1,"89":1}}],["improve",{"2":{"258":3,"297":2,"299":2}}],["impossible",{"2":{"141":1}}],["important",{"2":{"58":1,"97":1,"98":1}}],["implements",{"2":{"251":1}}],["implementation",{"2":{"216":1}}],["implemented",{"2":{"30":1,"54":1,"105":1,"149":1,"212":1,"216":1}}],["implicit",{"2":{"214":2}}],["implicitly",{"2":{"84":2,"95":1,"140":1}}],["i",{"2":{"7":2,"8":3,"15":1,"18":2,"25":4,"32":2,"58":1,"59":2,"60":4,"61":3,"67":3,"68":6,"73":3,"80":6,"83":2,"86":3,"92":2,"94":15,"98":1,"99":3,"100":2,"107":4,"108":23,"111":6,"112":2,"121":2,"122":1,"126":2,"128":1,"132":3,"134":3,"136":6,"138":6,"144":2,"145":1,"146":22,"147":13,"148":9,"151":6,"152":1,"172":1,"182":3,"184":2,"214":1,"215":1,"218":3,"223":6,"229":1,"231":1,"233":1,"235":1,"238":1,"247":1,"251":1,"258":1,"259":3,"268":2,"288":1,"293":1,"295":3}}],["idempotents",{"2":{"147":2,"148":1}}],["identical",{"2":{"120":3}}],["identity",{"2":{"9":1,"106":2,"107":1,"123":1,"126":1,"174":2,"214":1,"249":2,"251":1,"279":3,"280":3}}],["idel",{"2":{"78":1}}],["idealp",{"2":{"244":1}}],["ideals",{"0":{"135":1,"143":1},"1":{"136":1,"137":1,"138":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"3":2,"58":1,"61":3,"73":2,"74":3,"75":3,"79":3,"80":1,"81":1,"102":1,"134":1,"135":2,"137":1,"141":1,"142":1,"143":6,"144":2,"146":26,"147":4,"151":3,"153":1,"233":2,"236":1,"286":6,"287":1,"288":1}}],["ideal",{"0":{"2":1},"2":{"2":2,"59":3,"61":7,"73":2,"79":2,"83":3,"102":1,"113":1,"123":1,"127":3,"129":3,"135":3,"136":25,"137":2,"138":3,"141":1,"143":2,"144":24,"145":4,"146":7,"147":11,"148":4,"149":1,"151":1,"152":4,"161":2,"169":2,"184":1,"192":2,"218":3,"219":2,"220":2,"221":1,"223":9,"225":4,"227":2,"231":2,"236":2,"240":1,"242":1,"243":1,"244":1,"246":1,"255":2,"260":1,"285":1,"286":2,"287":13,"288":1,"291":3,"292":2,"293":5,"295":4,"299":1,"301":3,"302":12}}],["id",{"2":{"7":1}}],["iff",{"2":{"107":1}}],["if",{"2":{"4":1,"17":3,"18":2,"19":1,"20":1,"25":2,"32":1,"39":2,"40":1,"43":1,"46":2,"48":2,"49":1,"55":1,"61":1,"64":1,"68":1,"73":3,"78":2,"79":4,"80":2,"82":1,"83":5,"84":7,"85":1,"86":1,"87":2,"89":1,"92":1,"95":3,"106":1,"107":7,"108":1,"113":3,"115":1,"120":8,"121":1,"123":13,"124":2,"125":1,"126":4,"129":3,"131":5,"134":1,"136":2,"139":1,"140":2,"144":3,"145":3,"146":9,"147":4,"148":2,"150":8,"151":2,"154":2,"155":1,"159":1,"161":2,"163":2,"166":2,"167":2,"169":4,"176":1,"178":3,"182":1,"184":1,"186":6,"190":1,"192":1,"195":2,"196":1,"201":4,"202":2,"205":1,"206":1,"207":1,"208":3,"209":2,"210":6,"214":1,"215":1,"218":4,"233":1,"235":1,"238":1,"240":1,"241":1,"243":1,"244":1,"245":1,"249":2,"250":1,"251":4,"254":1,"255":3,"258":4,"259":1,"260":2,"262":6,"267":3,"272":2,"278":5,"279":7,"280":4,"282":1,"286":2,"290":6,"293":5,"295":4,"297":3,"299":4,"301":3}}],["inherits",{"2":{"195":1}}],["inj",{"2":{"187":3}}],["injective",{"2":{"17":1}}],["injections",{"2":{"18":3,"186":7,"210":4,"262":6,"290":7}}],["injection",{"2":{"17":6,"18":3,"124":2}}],["inner",{"0":{"180":1},"1":{"181":1},"2":{"180":2,"181":1,"198":2,"251":2}}],["ingredients",{"2":{"97":1}}],["inert",{"2":{"225":3,"226":1}}],["inertia",{"2":{"84":1,"127":2,"147":1,"182":1,"233":1,"236":1,"257":1}}],["inegtral",{"2":{"163":1}}],["inefficient",{"2":{"8":1}}],["infp",{"2":{"235":2}}],["infplc",{"2":{"79":1,"80":1,"81":1,"82":1,"83":3,"128":6,"182":4,"183":1,"190":1,"234":1,"235":2,"236":1,"237":1,"244":1,"245":1,"284":3,"295":1}}],["information",{"2":{"95":1,"146":1,"150":2,"153":1,"177":1}}],["inf",{"2":{"79":1,"80":1,"83":2,"111":1,"240":1}}],["infinity",{"2":{"48":3}}],["infinite",{"0":{"128":1},"2":{"7":1,"79":1,"80":1,"84":1,"111":1,"128":11,"183":3,"233":1,"234":1,"235":5,"236":2,"237":1,"241":1,"243":2,"245":1}}],["init",{"2":{"61":1}}],["inplace",{"2":{"103":3,"106":2,"107":1,"108":7}}],["input",{"2":{"60":1,"111":1,"144":1,"259":2,"266":1,"272":1,"281":1}}],["inproceedings",{"2":{"4":1}}],["ins",{"2":{"268":3}}],["install",{"2":{"275":1}}],["installed",{"2":{"275":1}}],["instances",{"2":{"68":1}}],["instance",{"2":{"68":1,"177":1,"183":1,"260":1}}],["instructions",{"2":{"275":1}}],["instead",{"2":{"40":1,"62":1,"107":1}}],["inside",{"0":{"278":1},"2":{"40":1,"188":1,"249":1,"250":1,"254":1,"260":1,"278":2,"279":4,"280":4,"288":4,"297":1}}],["increasing",{"2":{"218":1}}],["increase",{"2":{"25":2}}],["inctions",{"2":{"210":2}}],["including",{"2":{"40":1}}],["include",{"2":{"285":1}}],["included",{"2":{"39":2,"67":1}}],["includes",{"2":{"32":1}}],["inclusion",{"2":{"15":1,"17":2,"26":1,"266":1}}],["inducing",{"2":{"267":3}}],["induced",{"2":{"15":1,"196":1}}],["indicating",{"2":{"75":2}}],["indicated",{"2":{"30":1}}],["indefinite",{"0":{"270":1},"2":{"178":1,"240":1,"270":1}}],["independent",{"2":{"73":1,"141":1,"153":3}}],["indexed",{"2":{"143":1}}],["index",{"2":{"17":3,"95":2,"97":1,"100":1,"108":5,"125":1,"146":3,"147":3,"150":2,"151":11,"152":2,"182":1,"211":3,"233":1,"236":1,"251":1,"286":1,"291":1}}],["invertable",{"2":{"146":2}}],["invertible",{"2":{"64":1,"107":1,"145":3,"146":1}}],["inverses",{"2":{"151":1}}],["inverse",{"2":{"136":1,"138":1,"145":1,"146":1,"147":1,"148":1,"151":1,"152":1,"153":1,"161":1}}],["inversion",{"2":{"108":1}}],["inv",{"2":{"91":1,"92":1,"136":1,"137":1,"138":2,"147":2,"151":4,"244":2}}],["involution",{"2":{"126":3,"176":2,"177":1,"214":4,"215":2,"218":1,"227":1,"286":3,"287":1}}],["involved",{"2":{"60":1,"78":1}}],["invoke",{"2":{"43":1}}],["invoked",{"2":{"42":1}}],["invoking",{"2":{"2":1}}],["invariant",{"2":{"17":1,"45":4,"46":3,"169":4,"182":7,"183":2,"209":6,"218":1,"227":1,"267":3,"284":6,"285":2}}],["invariants",{"0":{"10":1,"14":1,"83":1,"114":1,"122":1,"152":1,"208":1,"223":1,"255":1,"257":1,"291":1},"1":{"224":1,"256":1,"257":1,"292":1},"2":{"46":8,"167":1,"176":1,"182":3,"183":1,"218":1,"234":1,"256":1}}],["introduced",{"2":{"73":1}}],["introduction",{"0":{"12":1,"30":1,"49":1,"78":1,"97":1,"115":1,"139":1,"212":1},"1":{"13":1,"14":1,"140":1,"141":1,"142":1,"213":1,"214":1,"215":1,"216":1},"2":{"141":1}}],["int64",{"2":{"67":3,"68":5,"93":1,"142":1,"146":1,"183":2,"224":4,"237":1,"245":1,"259":1}}],["into",{"2":{"18":1,"60":1,"61":1,"73":1,"75":2,"79":1,"101":1,"107":1,"108":1,"126":1,"128":2,"131":3,"134":1,"136":1,"153":1,"184":2,"185":1,"201":2,"233":1,"266":1,"268":2,"295":1}}],["int",{"2":{"7":1,"8":2,"13":2,"14":3,"17":1,"18":2,"25":2,"26":2,"48":1,"53":2,"61":4,"67":3,"68":2,"70":2,"71":2,"72":1,"79":2,"84":4,"89":2,"93":2,"99":4,"100":3,"104":2,"106":6,"107":8,"108":17,"111":4,"112":7,"120":3,"121":1,"122":3,"123":1,"129":4,"133":3,"134":4,"144":1,"145":4,"146":6,"147":3,"151":4,"152":1,"159":1,"161":3,"169":5,"174":2,"176":2,"182":4,"209":4,"211":5,"221":1,"223":17,"229":1,"231":1,"234":1,"236":2,"244":6,"251":3,"255":1,"257":3,"258":8,"259":1,"268":2,"271":1,"272":1,"284":2,"286":2,"293":1,"295":1,"297":5,"299":4}}],["intended",{"2":{"253":1}}],["intermediate",{"2":{"153":1}}],["interpreted",{"2":{"149":1}}],["interaction",{"2":{"139":1}}],["interesting",{"2":{"58":1}}],["interface",{"2":{"30":1,"139":1,"153":1}}],["intersect",{"2":{"17":1,"68":2,"84":1,"145":1,"251":2,"260":1,"288":1,"289":1}}],["intersection",{"2":{"17":2,"84":1,"251":1,"260":1,"288":1}}],["internal",{"2":{"281":1}}],["internals",{"0":{"116":1},"1":{"117":1,"118":1}}],["internally",{"2":{"6":1,"8":1,"105":1,"117":1,"118":1}}],["international",{"2":{"4":1}}],["integration",{"2":{"40":1}}],["integrality",{"2":{"150":1}}],["integral",{"0":{"64":1,"103":1,"157":1,"301":1},"1":{"302":1},"2":{"2":3,"61":2,"64":2,"79":1,"107":1,"113":4,"129":2,"135":2,"137":2,"141":2,"143":1,"147":1,"149":1,"150":1,"155":1,"159":1,"161":3,"163":3,"172":1,"204":1,"205":1,"209":1,"236":3,"244":2,"255":7,"256":1,"259":2,"260":1,"266":6,"268":2,"270":1,"293":5,"294":1,"301":24,"302":5}}],["integer",{"0":{"155":1,"247":1,"248":1},"1":{"156":1,"157":1,"158":1,"159":1,"160":1,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"167":1,"168":1,"169":1,"170":1,"171":1,"172":1,"248":1,"249":2,"250":2,"251":2,"252":2,"253":2,"254":1,"255":1,"256":1,"257":1,"258":1},"2":{"13":1,"17":4,"58":1,"59":2,"103":1,"107":1,"108":1,"109":1,"113":1,"120":1,"123":1,"129":1,"131":2,"134":3,"135":1,"137":1,"143":1,"144":4,"146":3,"147":3,"151":2,"155":1,"159":3,"163":2,"170":1,"195":1,"196":2,"201":4,"202":2,"204":1,"206":4,"209":2,"247":2,"249":3,"251":14,"252":1,"253":2,"254":3,"255":3,"256":1,"259":10,"260":4,"266":4,"268":4,"272":1,"274":1,"293":3}}],["integerunion",{"2":{"13":4,"17":1,"55":1,"120":1,"131":1,"134":1,"168":2}}],["integers",{"2":{"2":1,"7":1,"14":1,"58":1,"61":1,"67":2,"84":1,"95":1,"98":1,"105":1,"108":1,"111":1,"139":1,"141":1,"149":1,"150":1,"159":1,"167":1,"169":1,"218":1,"245":15,"247":1,"258":1}}],["in",{"0":{"250":1},"2":{"3":3,"4":1,"6":1,"7":1,"14":3,"15":1,"16":1,"17":14,"19":1,"25":7,"30":3,"32":1,"34":1,"36":2,"38":2,"39":5,"42":1,"43":1,"45":1,"58":11,"59":2,"60":1,"61":10,"63":3,"67":1,"68":12,"73":5,"74":3,"78":2,"79":2,"80":2,"82":5,"84":4,"91":1,"93":3,"95":5,"97":3,"98":1,"103":2,"105":1,"106":1,"107":5,"108":1,"111":6,"113":5,"115":4,"117":5,"120":3,"123":1,"125":1,"130":6,"131":4,"132":2,"134":4,"135":2,"136":6,"137":1,"139":1,"141":8,"143":6,"144":5,"145":6,"146":17,"147":13,"149":8,"150":5,"151":4,"152":1,"153":1,"154":1,"155":2,"161":1,"163":2,"165":2,"166":2,"167":3,"172":1,"176":2,"178":3,"180":2,"184":5,"186":2,"188":1,"190":2,"195":2,"196":1,"198":1,"201":2,"202":4,"203":2,"208":2,"209":2,"211":1,"214":10,"215":2,"218":4,"223":5,"225":3,"229":3,"231":2,"233":4,"234":1,"235":1,"238":5,"240":6,"241":4,"243":1,"245":1,"246":2,"247":1,"251":2,"253":1,"255":3,"256":1,"260":16,"266":1,"267":1,"268":4,"270":1,"271":2,"274":4,"278":2,"279":2,"280":2,"281":2,"286":2,"288":5,"290":1,"291":1,"293":3,"295":2,"301":6}}],["its",{"2":{"82":1,"83":1,"111":1,"121":1,"146":1,"147":2,"155":2,"163":1,"165":1,"176":8,"196":1,"203":1,"208":1,"223":1,"229":2,"231":2,"236":1,"238":1,"247":1,"255":4,"256":1,"259":1,"274":1,"275":1,"293":1}}],["itself",{"2":{"26":1,"155":1,"297":1}}],["itrs",{"2":{"68":5}}],["iter",{"2":{"67":3}}],["iterated",{"2":{"18":2}}],["iterate",{"2":{"11":1,"68":1}}],["iterators",{"0":{"65":1,"69":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2}}],["iterator",{"0":{"11":1},"2":{"17":2,"67":3,"68":1,"70":3,"71":3,"72":1,"211":2,"271":6}}],["ith",{"2":{"13":1,"18":2,"223":5,"229":1,"231":2}}],["it",{"2":{"2":1,"10":1,"14":2,"16":1,"17":1,"18":1,"25":2,"29":1,"43":1,"45":1,"46":1,"47":1,"58":2,"61":1,"78":1,"79":2,"80":1,"82":2,"83":1,"93":1,"97":1,"98":1,"105":1,"108":1,"111":1,"113":1,"120":1,"123":1,"124":1,"129":1,"131":2,"134":1,"136":2,"141":1,"142":1,"144":2,"146":1,"147":3,"149":2,"150":4,"151":4,"163":4,"165":1,"178":1,"195":1,"198":1,"201":6,"202":2,"203":1,"205":1,"218":2,"223":1,"229":1,"236":1,"240":1,"242":2,"244":1,"247":1,"251":2,"255":2,"270":1,"271":3,"272":1,"281":1,"290":1,"293":3,"301":1}}],["iseven",{"2":{"161":1,"169":1,"255":1}}],["isempty",{"2":{"68":1}}],["isbasis=false",{"2":{"251":1}}],["isbasis",{"2":{"150":3}}],["isreal",{"2":{"128":1,"235":2,"241":2,"243":2,"245":2}}],["issubset",{"2":{"17":1,"68":1}}],["issac",{"2":{"4":2}}],["isotropic",{"0":{"190":1},"1":{"191":1},"2":{"190":4,"191":1,"295":3,"296":1}}],["isometries",{"0":{"258":1},"2":{"297":1}}],["isometric",{"2":{"155":1,"180":2,"182":7,"183":2,"201":9,"203":1,"208":1,"238":2,"258":6,"266":1,"284":6,"285":2,"299":9,"300":2}}],["isometry",{"0":{"201":1,"299":1},"1":{"300":1},"2":{"165":2,"182":2,"186":1,"201":11,"203":1,"238":1,"240":2,"251":1,"256":1,"290":1,"297":1,"299":5}}],["isomorphic",{"2":{"15":3,"16":2,"17":2,"54":1,"80":3,"125":2,"126":6,"211":3,"266":1}}],["isomorphisms",{"2":{"16":1}}],["isomorphism",{"2":{"15":1,"16":3,"18":2,"80":1,"124":1,"125":3,"126":1,"146":2,"148":1}}],["isolated",{"2":{"17":1}}],["isone",{"2":{"9":1,"61":2,"64":1,"82":1,"107":1,"145":1}}],["iszero",{"2":{"9":1,"107":1}}],["is",{"2":{"2":1,"5":2,"6":1,"7":1,"8":1,"9":1,"10":2,"12":2,"13":5,"14":16,"15":1,"16":3,"17":25,"18":1,"19":2,"20":2,"24":9,"25":8,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"38":1,"39":2,"42":2,"43":1,"45":2,"46":7,"47":1,"48":3,"49":3,"53":2,"54":1,"55":2,"57":1,"58":4,"59":1,"60":1,"61":6,"62":3,"64":4,"68":4,"73":8,"75":1,"78":7,"79":14,"80":12,"82":7,"83":13,"84":13,"85":2,"86":2,"87":7,"89":3,"91":3,"92":1,"93":17,"94":1,"95":19,"97":2,"98":5,"102":1,"104":1,"105":5,"106":4,"107":28,"108":4,"111":8,"112":1,"113":16,"115":4,"117":2,"118":2,"120":8,"121":2,"122":2,"123":38,"124":9,"125":6,"126":6,"127":1,"128":3,"129":5,"130":2,"131":4,"132":1,"134":8,"135":2,"136":7,"137":2,"139":5,"140":6,"141":6,"142":3,"143":3,"144":8,"145":10,"146":21,"147":27,"148":4,"149":6,"150":14,"151":23,"152":9,"153":1,"154":4,"155":2,"159":3,"160":1,"161":12,"163":26,"165":1,"166":1,"167":3,"169":13,"172":2,"174":2,"176":6,"178":21,"179":6,"180":7,"182":12,"183":2,"184":6,"185":4,"187":2,"190":4,"191":1,"192":4,"193":1,"195":3,"196":5,"198":1,"201":8,"202":16,"203":3,"205":3,"206":1,"207":2,"208":7,"209":9,"212":1,"214":10,"215":4,"218":9,"220":1,"223":12,"225":8,"226":4,"229":1,"231":4,"236":4,"238":6,"240":3,"244":4,"247":3,"249":4,"250":3,"251":10,"254":4,"255":32,"257":6,"258":8,"259":5,"260":13,"266":5,"267":10,"268":2,"270":1,"271":11,"272":4,"275":3,"278":11,"279":9,"280":6,"281":1,"282":2,"284":2,"285":3,"286":9,"288":1,"290":1,"291":1,"293":25,"294":4,"295":4,"296":1,"297":6,"298":1,"299":13,"300":2,"301":23,"302":3}}],["tgmtt=gl",{"2":{"299":1}}],["tvmtt=vl",{"2":{"299":1}}],["t→ti",{"2":{"210":6}}],["t→u",{"2":{"201":2}}],["tn",{"2":{"210":3}}],["t1",{"2":{"210":3}}],["t=m",{"2":{"197":2}}],["t+1",{"2":{"175":1,"177":1,"179":1,"181":1,"185":1,"191":1,"193":1}}],["t^2",{"2":{"175":2,"177":2,"179":1,"181":1,"185":1,"191":1,"193":1,"220":1,"222":2,"224":1,"226":1,"228":1,"230":1,"232":1,"235":1,"237":2,"239":1,"241":1,"243":1,"245":1,"281":3,"283":2,"287":2,"292":1,"294":1,"298":1,"302":1}}],["t^3",{"2":{"120":1}}],["tutorials",{"0":{"273":1}}],["turns",{"2":{"136":1}}],["tuple",{"2":{"25":1,"46":8,"73":1,"84":1,"99":2,"100":1,"120":1,"124":2,"142":1,"147":2,"151":2,"182":2,"183":1,"209":2,"218":1,"251":1,"257":3,"259":1,"266":1,"271":2,"272":3,"286":1,"287":1,"302":3}}],["tuples",{"2":{"19":1,"124":1,"234":1,"271":2,"272":1}}],["t2",{"2":{"134":2,"151":1,"201":2}}],["t∈k",{"2":{"113":1,"129":1}}],["twice",{"2":{"67":1}}],["two",{"2":{"2":1,"17":1,"48":1,"49":1,"64":1,"98":1,"109":1,"111":1,"115":1,"120":1,"123":1,"124":1,"130":1,"142":2,"146":8,"151":1,"155":1,"171":1,"175":1,"176":1,"184":3,"186":1,"195":1,"208":1,"218":1,"219":1,"220":1,"222":1,"233":1,"234":1,"235":1,"237":2,"242":2,"259":1,"260":2,"281":1,"285":1,"288":1,"290":1,"292":1,"297":1}}],["typo",{"2":{"172":1}}],["typically",{"2":{"58":1,"73":1,"107":1}}],["types",{"0":{"104":1,"117":1},"2":{"30":1,"38":1,"60":1,"94":1,"95":1,"117":2,"259":2}}],["type",{"0":{"67":1,"196":1},"2":{"6":1,"7":1,"12":1,"13":8,"15":1,"17":1,"22":1,"30":1,"58":4,"59":3,"67":4,"82":2,"84":5,"89":2,"95":2,"98":4,"105":4,"106":3,"109":1,"112":6,"115":1,"117":2,"118":1,"120":1,"131":6,"134":3,"135":1,"143":3,"151":1,"152":1,"186":3,"210":3,"219":2,"220":1,"222":1,"226":1,"228":1,"230":1,"234":1,"235":2,"241":1,"243":1,"247":1,"251":3,"259":7,"262":3,"271":6,"279":3,"290":3,"295":4}}],["ti→t",{"2":{"210":6}}],["tied",{"2":{"146":1}}],["tip",{"2":{"120":1}}],["times",{"2":{"106":4,"108":2,"122":1,"218":1}}],["time",{"2":{"32":1,"40":1,"120":1}}],["title",{"2":{"4":1}}],["talk",{"2":{"214":1}}],["tamely",{"2":{"123":6}}],["ta",{"2":{"107":3}}],["ta=e",{"2":{"107":1}}],["ta=bt",{"2":{"64":1}}],["taken",{"2":{"184":1,"216":1,"295":1}}],["take",{"2":{"40":1}}],["takes",{"2":{"36":1}}],["table",{"0":{"33":1},"2":{"28":1,"33":4}}],["tasks",{"2":{"146":1}}],["task",{"2":{"19":2,"20":3,"186":3,"290":3}}],["targeted",{"2":{"7":1}}],["texts",{"2":{"274":2}}],["terms",{"2":{"198":1,"229":1,"247":1}}],["terminology",{"2":{"73":1,"139":1,"213":1}}],["terminal",{"2":{"36":1}}],["tend",{"2":{"120":1}}],["tensors",{"2":{"19":1}}],["tensor",{"0":{"19":1},"2":{"16":2,"18":1,"19":5}}],["technical",{"2":{"75":2}}],["tested",{"2":{"120":1,"184":1}}],["testtt",{"2":{"113":1}}],["testlong=1",{"2":{"42":1}}],["tests",{"0":{"39":1,"40":1,"41":1,"42":1,"43":1},"1":{"42":1,"43":1},"2":{"17":1,"38":1,"39":1,"40":2,"42":2,"43":3,"61":1,"83":1,"84":3,"107":2,"123":2,"129":1,"145":1,"146":3,"154":1,"178":1}}],["testing",{"0":{"37":1},"1":{"38":1,"39":1,"40":1,"41":1,"42":1,"43":1},"2":{"15":1,"125":1,"146":1}}],["test",{"2":{"9":1,"38":3,"39":7,"40":6,"42":7,"43":4,"120":1,"250":1,"278":2,"279":2,"280":2}}],["t",{"2":{"13":6,"22":1,"46":22,"60":9,"64":6,"67":10,"68":9,"70":5,"71":5,"72":1,"98":2,"99":4,"100":14,"102":10,"104":2,"105":2,"106":5,"107":12,"108":15,"109":29,"111":4,"113":2,"120":4,"129":1,"132":2,"134":2,"138":5,"147":5,"150":1,"151":3,"153":2,"167":3,"175":3,"177":3,"179":2,"181":2,"184":6,"185":2,"186":18,"188":5,"189":2,"191":2,"193":2,"196":1,"197":15,"200":2,"201":24,"202":14,"203":5,"207":1,"208":16,"209":10,"210":9,"211":4,"220":2,"222":2,"224":2,"226":2,"228":2,"230":2,"232":2,"233":1,"235":2,"237":2,"239":2,"241":2,"243":2,"245":3,"281":6,"283":2,"287":2,"290":18,"292":2,"294":2,"298":2,"299":1,"302":2}}],["tr∘φ",{"2":{"180":1}}],["trk",{"2":{"151":1}}],["treated",{"2":{"139":1}}],["try",{"2":{"113":1,"129":1}}],["tr",{"2":{"111":3,"132":1,"134":4,"180":1}}],["trans",{"2":{"107":3}}],["transpose",{"2":{"106":3,"107":1,"251":1}}],["transformations",{"2":{"107":1,"258":2,"297":2}}],["transformation",{"2":{"75":1,"108":1}}],["transform",{"2":{"75":2,"100":1,"107":5,"108":1,"180":2}}],["transforms",{"2":{"73":1,"75":2}}],["trace",{"2":{"53":6,"111":2,"134":2,"151":2,"152":2,"167":1,"180":1}}],["trigger",{"2":{"146":1,"154":1}}],["tries",{"2":{"108":1,"125":1,"126":1,"151":1}}],["triangular",{"2":{"73":1,"75":2,"107":5,"108":4}}],["triple",{"2":{"25":1,"251":1}}],["trivial",{"2":{"9":1,"14":3,"17":1,"107":1,"120":1,"123":1,"134":1,"145":1,"174":1,"182":1,"202":2,"208":1,"214":1,"227":1}}],["trr",{"2":{"5":1}}],["true",{"2":{"2":1,"17":5,"25":5,"28":1,"29":2,"32":1,"33":1,"45":1,"47":1,"48":3,"53":1,"64":2,"79":3,"82":2,"86":1,"87":4,"88":1,"89":1,"93":3,"106":1,"107":3,"113":2,"120":7,"123":3,"124":2,"125":1,"126":4,"131":4,"138":2,"142":2,"145":2,"146":6,"147":2,"148":2,"150":7,"159":1,"163":2,"174":4,"179":5,"183":2,"185":3,"187":2,"191":1,"195":3,"196":1,"201":8,"202":2,"208":1,"226":2,"240":2,"241":3,"249":2,"250":1,"251":6,"255":2,"258":2,"260":3,"266":2,"267":8,"268":1,"270":1,"271":3,"272":1,"278":2,"279":2,"280":2,"285":2,"286":2,"294":3,"296":1,"297":2,"298":1,"299":1,"300":1}}],["throughout",{"2":{"214":1}}],["throw",{"2":{"2":1}}],["three",{"2":{"186":1,"266":1,"295":1}}],["than",{"2":{"78":1,"83":1,"130":1,"134":1,"151":1,"251":1,"288":1}}],["that",{"2":{"2":2,"7":1,"10":1,"12":2,"13":3,"14":5,"15":1,"16":1,"17":6,"18":3,"19":1,"20":1,"24":1,"25":3,"26":1,"38":1,"40":1,"46":3,"48":1,"55":1,"58":2,"59":1,"61":2,"68":1,"73":2,"75":1,"79":2,"80":2,"82":1,"83":3,"84":2,"85":1,"87":1,"89":1,"93":1,"95":3,"97":1,"98":2,"104":1,"105":1,"106":1,"107":7,"108":4,"111":5,"112":6,"113":5,"118":1,"120":2,"121":3,"123":8,"124":1,"127":1,"129":1,"130":1,"131":2,"134":6,"135":1,"136":4,"137":2,"138":1,"140":1,"141":1,"143":1,"144":1,"145":1,"146":6,"147":16,"148":1,"149":4,"150":1,"151":13,"152":4,"155":1,"159":1,"161":1,"163":6,"166":1,"172":1,"174":2,"178":4,"180":4,"182":2,"184":1,"186":1,"190":1,"192":2,"196":3,"201":4,"202":2,"203":1,"208":1,"212":1,"218":4,"220":1,"231":4,"233":2,"234":1,"238":3,"240":1,"251":2,"255":6,"260":3,"266":3,"270":1,"271":8,"272":1,"281":1,"286":5,"288":1,"293":4,"295":2,"297":1,"299":3,"301":3}}],["though",{"2":{"79":1,"117":1,"212":1}}],["those",{"2":{"58":1,"74":1,"84":3,"149":1,"186":1,"233":1,"272":1}}],["thorough",{"2":{"25":6}}],["third",{"2":{"274":1}}],["think",{"2":{"58":1,"196":1}}],["things",{"2":{"36":1}}],["this",{"2":{"6":1,"7":2,"8":2,"13":1,"16":1,"17":3,"20":1,"25":2,"28":1,"30":2,"32":1,"36":1,"39":3,"43":1,"45":1,"47":1,"49":2,"52":1,"53":1,"55":1,"57":1,"58":3,"60":1,"61":2,"73":1,"75":3,"78":2,"79":4,"80":3,"82":2,"83":2,"84":2,"91":2,"94":1,"97":1,"107":2,"108":4,"111":9,"113":1,"114":6,"117":4,"118":1,"120":4,"121":5,"122":3,"123":3,"124":1,"125":3,"126":4,"127":1,"129":1,"131":3,"139":1,"141":1,"143":1,"145":1,"146":1,"149":2,"150":2,"151":6,"152":2,"154":1,"161":9,"163":2,"165":6,"169":7,"170":2,"175":1,"182":1,"184":1,"186":1,"197":2,"198":1,"199":2,"202":2,"209":1,"212":1,"214":3,"215":2,"220":1,"229":1,"234":1,"235":1,"238":1,"250":1,"251":2,"253":1,"255":2,"260":1,"263":1,"268":1,"270":1,"271":1,"272":1,"278":2,"279":2,"280":2,"281":1,"285":1,"288":1,"290":1,"291":1,"293":1,"299":1,"301":3}}],["th",{"2":{"7":1,"8":2,"53":1,"73":2,"79":1,"107":4,"108":11,"111":1,"113":1,"120":1,"121":1,"122":1,"123":1,"129":3,"137":1,"145":1}}],["thus",{"2":{"2":1,"17":1,"58":1,"73":1,"107":1,"117":2,"141":1,"146":1,"151":1,"196":1}}],["theoretically",{"2":{"212":1}}],["theorem",{"2":{"78":1,"146":1,"172":1}}],["theory",{"0":{"77":1,"127":1},"1":{"78":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1},"2":{"3":1,"4":2,"58":1,"73":1,"78":2,"82":1,"97":1,"129":1,"204":1,"274":3}}],["their",{"2":{"58":1,"67":1,"105":1,"143":1,"155":1,"184":1,"186":3,"201":2,"210":3,"242":2,"262":3,"274":1,"290":4,"297":1}}],["them",{"2":{"58":1,"73":1,"196":1,"201":2,"244":1,"247":1}}],["these",{"2":{"30":1,"120":1,"175":1,"176":1,"238":1,"281":1}}],["then",{"2":{"20":1,"39":2,"61":2,"68":1,"79":2,"80":3,"82":1,"84":3,"89":1,"95":3,"106":1,"107":3,"112":3,"113":1,"121":1,"125":1,"134":2,"136":2,"139":1,"140":2,"141":1,"144":3,"146":2,"148":1,"150":2,"151":2,"152":1,"169":1,"196":1,"205":1,"206":1,"207":1,"208":1,"218":1,"238":2,"250":1,"251":1,"259":1,"260":1,"272":2,"278":4,"279":3,"286":1,"293":1,"299":1}}],["they",{"2":{"15":1,"17":1,"18":1,"61":1,"67":1,"98":1,"105":1,"120":1,"130":3,"135":1,"150":2,"153":2,"155":1,"186":4,"201":4,"204":1,"208":1,"210":3,"238":1,"262":3,"290":4}}],["therefore",{"2":{"18":1,"186":3,"210":3,"214":1,"215":1,"262":3,"290":3}}],["there",{"2":{"13":1,"17":1,"64":1,"73":1,"106":1,"113":1,"135":1,"139":1,"149":2,"153":1,"172":1,"178":1,"190":1,"192":1,"196":1,"201":1,"209":1,"212":1,"214":1,"219":1,"234":1,"293":2,"295":1}}],["the",{"0":{"35":1,"36":1,"41":1,"161":1,"196":1,"199":1,"207":1,"253":1,"256":1},"1":{"42":1,"43":1,"162":1,"163":1,"164":1},"2":{"2":18,"4":3,"5":4,"6":1,"7":11,"8":5,"9":1,"10":2,"11":1,"12":1,"13":11,"14":15,"15":3,"16":1,"17":57,"18":11,"19":4,"20":2,"22":6,"23":4,"24":3,"25":8,"26":5,"27":2,"28":3,"29":5,"30":9,"32":6,"33":2,"34":3,"35":2,"36":3,"38":5,"39":4,"40":4,"42":7,"43":4,"45":3,"46":18,"47":2,"48":6,"49":6,"51":1,"52":4,"53":8,"54":3,"55":3,"57":1,"58":22,"59":9,"60":16,"61":24,"62":1,"63":6,"64":2,"67":6,"68":21,"73":13,"74":11,"75":18,"78":5,"79":36,"80":32,"82":14,"83":21,"84":23,"86":2,"87":4,"88":1,"89":8,"90":1,"91":3,"93":7,"95":23,"97":2,"98":6,"99":5,"100":5,"101":1,"102":7,"103":5,"104":1,"105":6,"106":16,"107":48,"108":24,"109":14,"111":40,"112":19,"113":8,"114":11,"115":12,"117":8,"118":4,"120":37,"121":12,"122":27,"123":17,"124":9,"125":4,"126":6,"127":8,"128":4,"129":4,"130":7,"131":13,"132":11,"133":1,"134":36,"135":3,"136":12,"137":7,"138":13,"139":5,"140":6,"141":5,"143":13,"144":18,"145":4,"146":59,"147":46,"148":22,"149":16,"150":30,"151":50,"152":23,"153":7,"154":3,"155":6,"157":2,"158":1,"159":5,"160":3,"161":21,"163":9,"164":1,"165":7,"166":2,"167":11,"168":4,"169":28,"170":1,"171":2,"172":1,"174":11,"175":2,"176":24,"177":2,"178":14,"180":34,"182":19,"183":2,"184":6,"185":1,"186":24,"188":4,"190":3,"192":6,"195":13,"196":10,"197":19,"198":2,"199":3,"200":2,"201":2,"202":8,"203":1,"204":1,"205":6,"206":3,"207":3,"208":10,"209":17,"210":12,"211":5,"213":2,"214":15,"215":9,"216":3,"218":29,"219":7,"220":2,"221":1,"223":41,"227":3,"229":8,"231":4,"233":13,"234":10,"235":1,"236":12,"238":10,"240":16,"242":6,"244":3,"245":15,"246":5,"247":4,"249":7,"250":3,"251":23,"253":2,"254":11,"255":19,"256":5,"257":7,"258":20,"259":25,"260":30,"262":15,"263":3,"264":2,"266":12,"267":18,"268":3,"270":3,"271":11,"272":1,"275":3,"278":13,"279":33,"280":27,"281":6,"282":13,"284":16,"285":5,"286":44,"288":35,"290":22,"291":15,"293":18,"295":17,"297":17,"299":21,"301":19}}],["topics",{"2":{"274":1}}],["touching",{"2":{"271":1}}],["torquadmodulemap",{"2":{"201":2,"203":1,"208":3,"210":8,"211":1,"266":4}}],["torquadmoduleelem",{"2":{"198":3,"199":2}}],["torquadmodule",{"2":{"195":1,"196":1,"197":9,"200":3,"201":4,"202":4,"203":3,"205":1,"206":1,"207":2,"208":8,"209":3,"210":15,"211":2}}],["torsion",{"0":{"195":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"14":5,"17":2,"38":2,"111":3,"113":3,"141":1,"146":10,"153":1,"195":3,"196":2,"201":6,"202":4,"203":3,"206":6,"207":1,"208":2,"209":3,"210":3}}],["totient",{"2":{"148":1}}],["totally",{"2":{"62":1,"93":3,"123":6,"178":3,"183":1,"293":4,"294":1}}],["too",{"2":{"117":1}}],["tol",{"2":{"112":12,"134":9,"151":2}}],["together",{"2":{"17":10,"18":3,"32":1,"73":2,"111":1,"121":1,"124":2,"125":2,"146":1,"148":2,"155":1,"180":1,"186":3,"196":1,"210":3,"214":1,"247":1,"262":3,"290":3}}],["tommy",{"2":{"4":2}}],["to",{"0":{"1":1,"35":1,"104":1,"199":1},"2":{"2":8,"6":1,"7":2,"9":1,"12":2,"13":1,"15":3,"16":1,"17":8,"18":2,"19":2,"20":4,"23":2,"27":2,"29":2,"35":2,"36":3,"39":3,"42":1,"43":3,"49":2,"53":1,"54":1,"55":1,"58":6,"61":2,"68":2,"73":2,"74":2,"75":1,"78":1,"79":6,"80":7,"82":3,"83":3,"84":3,"86":5,"89":2,"90":1,"91":4,"92":4,"93":2,"94":8,"95":3,"98":1,"99":1,"103":3,"104":2,"105":2,"106":10,"107":5,"108":8,"109":1,"111":4,"112":1,"113":2,"114":1,"115":2,"117":4,"120":5,"121":1,"124":5,"125":3,"126":4,"128":10,"129":2,"130":2,"132":1,"135":1,"136":1,"138":2,"140":1,"141":3,"142":2,"143":4,"146":12,"147":1,"149":2,"150":4,"151":4,"153":1,"155":1,"159":1,"174":4,"175":1,"176":6,"177":1,"178":1,"180":8,"182":3,"183":6,"184":2,"186":7,"188":1,"190":2,"192":1,"195":1,"196":3,"199":1,"200":1,"203":1,"204":1,"209":3,"210":6,"211":5,"212":1,"214":7,"215":6,"218":6,"229":1,"231":1,"233":2,"234":1,"235":7,"237":2,"238":2,"240":1,"242":2,"243":1,"244":5,"246":1,"247":2,"250":2,"251":9,"253":1,"254":1,"258":11,"259":1,"260":2,"262":6,"263":1,"266":3,"267":6,"270":1,"271":3,"272":2,"275":4,"278":4,"279":4,"280":4,"281":4,"285":1,"286":2,"287":1,"288":4,"290":7,"291":3,"293":2,"297":13,"299":9}}],["www",{"2":{"281":2}}],["writes",{"2":{"61":2,"111":1,"145":1}}],["written",{"2":{"58":1}}],["wrt",{"2":{"2":1,"58":2,"130":1,"142":2,"146":8,"150":1,"222":1,"237":2,"285":1,"292":1}}],["work",{"2":{"142":1,"175":1,"204":1,"214":1}}],["works",{"2":{"43":1,"60":1,"94":1,"176":1,"268":1,"270":1}}],["words",{"2":{"25":1}}],["would",{"2":{"39":1}}],["w",{"2":{"25":5,"180":3,"188":4,"260":1}}],["warning",{"2":{"54":1}}],["ways",{"2":{"115":1,"219":1,"234":1}}],["way",{"2":{"38":1,"82":1,"106":1,"149":1,"281":1}}],["was",{"2":{"18":2,"67":1,"75":1,"138":1,"147":1,"207":1}}],["wants",{"2":{"18":2,"43":1,"186":6,"210":6,"262":6,"290":6}}],["want",{"2":{"2":2}}],["while",{"2":{"30":1,"68":1,"73":1,"78":1,"117":3,"176":1,"178":1,"281":1}}],["which",{"2":{"2":2,"12":1,"16":1,"25":2,"30":1,"39":1,"45":1,"46":2,"47":1,"48":1,"49":2,"68":1,"92":1,"93":1,"95":3,"98":1,"111":2,"120":1,"124":1,"125":1,"126":1,"132":1,"134":2,"135":1,"139":1,"140":1,"143":2,"144":2,"146":3,"147":1,"150":3,"151":3,"170":1,"176":2,"178":1,"180":1,"182":1,"186":1,"209":1,"211":1,"214":1,"216":1,"233":6,"235":1,"236":1,"240":1,"251":2,"254":1,"281":2,"285":1,"286":2,"290":2,"295":1,"301":3}}],["whose",{"2":{"17":1,"67":2,"95":1,"159":1,"169":1,"180":1,"209":3,"211":2,"223":3,"236":1,"240":1,"247":1,"251":2,"286":1,"301":2}}],["whole",{"2":{"2":1,"42":1}}],["whether",{"2":{"14":5,"15":1,"24":4,"45":1,"47":1,"64":1,"93":7,"111":1,"113":6,"120":3,"123":9,"128":2,"132":1,"139":1,"144":1,"145":1,"147":6,"150":4,"151":2,"152":3,"153":1,"161":1,"163":8,"172":1,"178":7,"182":2,"184":4,"185":1,"190":1,"192":1,"201":2,"202":4,"203":1,"208":1,"223":5,"225":4,"229":1,"236":1,"240":2,"255":10,"257":3,"258":3,"260":6,"272":1,"284":2,"293":7,"295":1,"299":3,"301":3}}],["when",{"2":{"2":1,"40":1,"58":1,"79":1,"111":2,"146":1,"169":1,"218":1}}],["whereas",{"2":{"197":1}}],["where",{"2":{"2":1,"7":1,"8":1,"13":1,"16":1,"17":1,"42":2,"53":1,"58":1,"61":4,"67":1,"70":1,"71":1,"74":3,"78":1,"80":3,"82":1,"95":2,"98":1,"99":3,"102":1,"105":1,"106":2,"107":1,"108":3,"109":4,"111":1,"115":2,"120":1,"121":2,"122":1,"125":1,"129":1,"130":1,"137":1,"138":1,"145":1,"147":4,"151":1,"161":1,"167":2,"176":1,"180":1,"182":1,"184":2,"186":6,"188":2,"190":1,"195":1,"196":1,"207":1,"218":3,"223":3,"240":1,"244":1,"247":1,"251":2,"259":1,"260":1,"266":1,"271":2,"272":1,"286":1,"290":6,"293":1,"299":2}}],["wissenschaften",{"2":{"274":1}}],["wise",{"2":{"153":1}}],["witt",{"2":{"182":2,"183":1,"284":2,"285":1}}],["without",{"2":{"61":1,"82":1,"107":1}}],["within",{"2":{"5":1,"12":1,"36":1}}],["with",{"2":{"2":1,"4":1,"7":5,"11":1,"13":5,"14":1,"16":1,"17":16,"18":3,"23":1,"25":4,"26":1,"27":1,"28":1,"29":1,"32":3,"36":1,"40":1,"42":2,"45":5,"47":1,"48":6,"49":2,"51":1,"54":3,"55":3,"64":1,"67":8,"68":9,"73":3,"75":4,"78":2,"79":1,"80":2,"81":1,"82":4,"84":1,"91":1,"93":1,"95":2,"97":2,"99":3,"105":1,"106":2,"107":5,"108":3,"111":9,"112":2,"114":1,"118":2,"120":3,"121":2,"123":1,"124":2,"125":3,"126":2,"131":2,"132":1,"134":2,"136":2,"138":1,"139":1,"140":2,"141":1,"142":7,"144":1,"145":1,"146":11,"148":3,"149":1,"150":5,"151":6,"152":1,"158":1,"159":1,"161":2,"163":4,"168":1,"169":2,"174":5,"175":4,"176":2,"177":3,"180":6,"184":1,"186":9,"188":2,"196":4,"201":8,"202":4,"203":1,"204":1,"205":2,"206":1,"207":1,"208":1,"209":2,"210":9,"212":1,"214":8,"216":2,"220":2,"222":2,"231":4,"234":1,"235":1,"236":4,"237":3,"241":2,"243":2,"244":2,"245":6,"247":1,"249":2,"251":9,"253":2,"254":2,"255":4,"258":2,"259":6,"260":8,"262":9,"266":6,"267":6,"268":1,"270":3,"272":2,"278":1,"279":6,"280":6,"281":6,"283":4,"285":1,"287":28,"288":2,"289":17,"290":9,"292":4,"295":1,"297":2,"299":4,"301":5,"302":24}}],["wildanger",{"2":{"120":2,"146":1}}],["wil",{"2":{"84":1}}],["william",{"2":{"4":2}}],["will",{"2":{"2":2,"13":3,"25":2,"30":1,"40":3,"58":1,"61":1,"68":5,"75":2,"79":1,"82":1,"84":2,"89":2,"106":1,"108":1,"111":1,"113":2,"114":2,"117":3,"120":2,"121":1,"129":1,"131":4,"134":1,"141":1,"143":1,"146":9,"151":1,"152":1,"175":1,"195":3,"214":1,"220":1,"235":2,"247":1,"272":1,"275":1,"279":3,"280":3,"281":1,"285":1,"295":2}}],["wide",{"2":{"16":1,"30":1}}],["weakly",{"2":{"123":3}}],["weighted",{"2":{"112":1}}],["weierstrass",{"2":{"45":1,"46":2,"49":2}}],["weber",{"2":{"78":1}}],["well",{"2":{"15":1,"19":2,"106":1,"109":1,"137":1,"142":1,"146":1,"149":2,"155":1,"186":1,"195":1,"259":1,"266":1,"290":1}}],["we",{"2":{"2":8,"7":1,"9":1,"49":1,"58":1,"67":1,"73":3,"79":2,"85":1,"89":1,"95":3,"112":3,"115":4,"117":2,"129":1,"134":1,"139":1,"141":1,"142":1,"143":2,"149":1,"151":1,"175":1,"176":1,"178":2,"185":1,"196":5,"213":1,"214":5,"215":4,"218":6,"220":1,"233":2,"235":2,"238":1,"247":1,"251":1,"260":1,"286":2,"291":1,"297":2}}],["xviii+203",{"2":{"274":1}}],["xvi+578",{"2":{"274":1}}],["x↦φ",{"2":{"205":1}}],["x↦log⁡",{"2":{"90":1}}],["xk∈po",{"2":{"151":2}}],["xk=1",{"2":{"111":1}}],["x∈l",{"2":{"255":1}}],["x∈v∣φ",{"2":{"288":1}}],["x∈vp",{"2":{"190":1}}],["x∈v",{"2":{"184":1}}],["x∈k",{"2":{"151":1}}],["x∈k|xb⊆a",{"2":{"145":1}}],["x∈o∣∃k∈z≥0",{"2":{"151":2}}],["x≡r2modi2",{"2":{"148":1}}],["x≡r1modi1",{"2":{"148":1}}],["x≡ymodi",{"2":{"148":1}}],["x∩y",{"2":{"145":1}}],["x−1",{"2":{"120":1}}],["x¯n",{"2":{"111":1}}],["x¯1",{"2":{"111":1}}],["xn−b",{"2":{"123":2}}],["xn−a",{"2":{"120":1}}],["xn+∑i=0n−1",{"2":{"120":1}}],["xn=1",{"2":{"113":1}}],["xn",{"2":{"111":1,"115":2,"120":2}}],["x1",{"2":{"111":1,"115":2,"120":2}}],["xa=bd",{"2":{"107":1}}],["xs",{"2":{"106":2}}],["xj",{"2":{"99":3}}],["xiv+499",{"2":{"274":1}}],["xii+534",{"2":{"274":1}}],["xinl",{"2":{"255":1}}],["xi⊆i",{"2":{"151":1}}],["xi",{"2":{"98":1,"99":1,"286":4}}],["x=∑i=1dxiωi∈o",{"2":{"151":1}}],["x=",{"2":{"73":1}}],["x2−d",{"2":{"120":1}}],["x26",{"2":{"64":2,"235":2,"241":2,"243":2,"245":2}}],["x2+",{"2":{"2":1}}],["x3c",{"2":{"2":1,"13":3,"15":1,"19":1,"51":1,"52":1,"53":1,"54":2,"67":1,"81":1,"82":3,"109":1,"120":1,"142":3,"146":12,"150":2,"184":2,"186":6,"188":2,"195":1,"220":6,"222":1,"235":4,"237":2,"241":4,"243":7,"245":12,"281":4,"285":1,"287":40,"289":12,"290":6,"292":9,"302":48}}],["x^4",{"2":{"124":1}}],["x^8",{"2":{"124":1}}],["x^2",{"2":{"2":3,"45":1,"46":2,"81":1,"82":3,"87":1,"90":1,"91":2,"94":3,"111":1,"120":3,"121":3,"122":2,"142":1,"151":1,"220":1,"222":2,"224":1,"226":1,"228":1,"230":1,"232":1,"235":1,"237":2,"239":1,"241":1,"243":1,"275":1}}],["x^3",{"2":{"2":3,"45":3,"46":3,"48":5,"51":1,"54":3,"55":2,"67":1,"94":1,"150":1}}],["x+",{"2":{"2":1}}],["x",{"2":{"2":7,"7":7,"8":4,"13":2,"17":3,"29":4,"45":6,"46":4,"48":5,"51":1,"54":4,"55":2,"60":5,"61":14,"67":1,"68":10,"73":1,"81":2,"82":2,"89":6,"90":1,"91":1,"93":3,"94":2,"95":2,"107":1,"109":6,"111":14,"112":28,"113":4,"115":3,"120":8,"121":6,"122":4,"124":2,"129":2,"132":2,"134":13,"140":3,"142":4,"144":13,"145":5,"146":3,"147":6,"148":3,"150":2,"151":4,"153":1,"161":2,"169":2,"182":3,"184":4,"186":12,"190":2,"195":2,"196":2,"205":4,"208":5,"209":1,"210":12,"214":3,"215":1,"220":2,"222":2,"224":2,"226":2,"228":2,"230":2,"232":2,"235":2,"237":2,"239":2,"241":2,"243":2,"251":2,"255":6,"262":12,"272":6,"275":2,"281":3,"283":1,"287":2,"288":1,"290":12,"291":3,"297":3}}],["f^4+f^3+f^2+f+1",{"2":{"266":1}}],["f^2+f+1",{"2":{"266":1}}],["f+1",{"2":{"260":1}}],["fp",{"2":{"142":1}}],["f2",{"2":{"126":1}}],["f1",{"2":{"111":1,"115":2,"120":2,"121":1}}],["f∈z",{"2":{"140":1}}],["f∈q",{"2":{"95":1}}],["f∈k",{"2":{"2":1,"115":1,"120":1}}],["fn∈k",{"2":{"115":1}}],["fn",{"2":{"89":2,"111":1,"115":1,"120":2}}],["flavour",{"2":{"288":1}}],["flat",{"2":{"18":2}}],["float64",{"2":{"107":2,"151":2,"152":1}}],["fl",{"2":{"64":1,"142":1}}],["fxied",{"2":{"58":1}}],["fqpolyrepfieldelem",{"2":{"61":1}}],["fqfieldelem",{"2":{"54":2,"142":1}}],["fq",{"2":{"53":2}}],["far",{"2":{"139":1}}],["fakefracfldmat",{"2":{"138":1,"147":1,"151":1}}],["fakefmpqmat",{"2":{"134":1,"138":1}}],["family",{"2":{"132":1,"134":1}}],["famous",{"2":{"78":1}}],["failure",{"2":{"129":2}}],["faster",{"2":{"60":1,"83":1,"117":1}}],["fast",{"2":{"58":1,"130":1}}],["fact",{"2":{"61":1,"95":1,"143":1}}],["factors",{"2":{"61":2,"144":1,"146":1}}],["factorised",{"2":{"61":1}}],["factorisation",{"2":{"61":9}}],["factorization",{"2":{"52":1,"79":1,"134":2,"144":1}}],["factored",{"0":{"58":1},"1":{"59":1,"60":1,"61":1,"62":1,"63":1},"2":{"58":5,"59":3,"60":5,"61":3,"62":1,"63":3,"113":1,"146":6,"147":1}}],["factor",{"2":{"52":1,"61":7,"134":1,"144":3,"146":6,"180":1}}],["facelem",{"2":{"58":4,"59":11,"60":5,"61":25,"63":3,"112":1,"146":2,"147":1}}],["fac",{"2":{"52":4,"61":1,"134":4,"146":11,"147":2,"153":3}}],["false",{"2":{"17":4,"24":1,"25":2,"32":1,"36":1,"45":1,"47":1,"48":2,"79":2,"82":1,"83":1,"86":2,"93":1,"106":1,"107":3,"113":2,"120":4,"123":1,"124":2,"125":1,"126":4,"136":2,"142":1,"144":2,"145":1,"146":7,"150":2,"159":1,"179":1,"185":1,"193":1,"219":1,"226":2,"239":2,"240":2,"250":1,"251":1,"260":1,"270":1,"272":2,"278":2,"279":2,"280":2,"281":2,"286":2,"294":2,"299":1,"300":1,"302":3}}],["follows",{"2":{"73":1,"89":1,"92":1,"213":1}}],["follow",{"2":{"73":1,"139":1}}],["following",{"2":{"30":1,"42":1,"68":1,"73":1,"89":1,"115":1,"120":2,"148":1,"175":1,"177":1,"186":1,"209":2,"275":1,"281":2,"288":1,"290":1}}],["found",{"2":{"38":1,"125":1,"216":1}}],["forschungsgemeinschaft",{"2":{"5":1}}],["for",{"0":{"103":1,"217":1,"297":1},"1":{"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"242":1,"243":1,"244":1,"245":1,"246":1,"298":1},"2":{"4":2,"7":1,"9":1,"11":1,"13":1,"17":13,"18":2,"25":3,"28":1,"29":1,"30":3,"32":1,"33":1,"34":1,"38":1,"40":1,"43":2,"49":2,"52":1,"58":2,"59":2,"60":1,"61":3,"62":1,"67":2,"68":8,"70":1,"71":1,"73":2,"75":3,"78":3,"79":3,"80":2,"82":5,"83":2,"84":3,"85":1,"89":1,"94":1,"95":2,"97":1,"98":4,"105":2,"107":6,"108":1,"112":3,"113":1,"120":3,"121":2,"122":1,"123":2,"125":1,"129":2,"134":3,"135":1,"139":1,"141":2,"142":1,"143":3,"144":2,"146":14,"147":4,"148":3,"149":1,"150":2,"151":3,"152":1,"153":3,"155":3,"163":4,"167":4,"169":1,"172":1,"175":1,"177":1,"178":1,"180":3,"182":2,"183":2,"184":1,"186":5,"195":1,"197":2,"198":1,"199":3,"202":2,"204":1,"209":4,"210":3,"212":1,"214":3,"215":1,"216":1,"218":5,"219":1,"220":3,"221":3,"223":13,"225":4,"227":2,"229":3,"231":2,"233":1,"234":2,"235":4,"236":4,"240":5,"241":1,"242":2,"243":3,"244":2,"245":22,"251":6,"253":1,"255":5,"256":2,"258":1,"259":1,"260":4,"262":3,"268":3,"271":2,"275":2,"285":2,"288":2,"290":5,"297":2}}],["format",{"2":{"281":1}}],["formally",{"2":{"58":1}}],["formal",{"2":{"4":1,"80":3,"82":1,"84":2}}],["former",{"2":{"178":1}}],["formula",{"2":{"83":1,"234":1}}],["form",{"0":{"203":1,"207":1,"253":1},"2":{"14":1,"16":1,"17":2,"58":2,"59":1,"61":2,"73":1,"75":4,"95":1,"98":1,"105":1,"106":1,"107":7,"113":1,"121":1,"123":2,"143":1,"146":5,"147":1,"150":1,"161":2,"163":6,"167":2,"169":5,"180":4,"195":3,"196":1,"197":14,"201":4,"203":2,"205":2,"206":5,"207":3,"208":7,"209":8,"218":2,"251":3,"253":1}}],["forms",{"2":{"3":1,"43":1,"146":1,"172":1,"195":1,"208":1,"216":1,"247":1,"274":1,"281":2}}],["fujiki",{"2":{"251":2}}],["full",{"2":{"107":3,"178":1,"196":1,"250":1,"278":2,"279":2,"280":2}}],["further",{"2":{"61":1,"73":1}}],["fundamental",{"2":{"58":1,"146":2,"259":6}}],["functors",{"2":{"16":1}}],["functions",{"0":{"61":1,"68":1},"2":{"16":1,"17":1,"30":3,"62":1,"68":2,"74":1,"111":2,"120":2,"149":1,"153":3,"290":1}}],["functionality",{"0":{"103":1},"2":{"12":1,"30":2,"39":1,"49":1,"85":1,"94":1,"196":1}}],["function",{"2":{"2":1,"7":3,"8":2,"25":1,"75":1,"79":1,"89":7,"95":1,"108":4,"111":7,"114":4,"120":2,"121":4,"122":2,"123":4,"124":3,"125":3,"126":5,"127":1,"131":3,"134":1,"146":3,"148":1,"150":1,"151":6,"152":2,"163":2,"178":1,"196":1,"202":2,"255":2,"278":1,"279":1,"280":1,"281":1}}],["future",{"2":{"30":1,"150":1}}],["features",{"0":{"3":1},"2":{"49":1}}],["fbar",{"2":{"2":2}}],["fi",{"2":{"121":1}}],["fixed",{"2":{"84":1,"98":1,"105":1,"126":2,"149":1,"176":4,"177":1,"180":2,"184":2,"190":1,"214":3,"215":3,"267":2,"286":4,"287":2,"291":1,"301":3}}],["fix",{"2":{"73":1}}],["filter",{"2":{"68":2,"272":2}}],["file",{"2":{"35":1,"38":1,"39":5}}],["files",{"0":{"35":1},"2":{"34":1,"35":1}}],["first",{"2":{"22":1,"60":1,"104":1,"113":1,"259":1}}],["finitly",{"2":{"141":1}}],["finite",{"0":{"50":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1},"2":{"10":1,"11":1,"14":4,"17":2,"18":3,"30":1,"49":1,"51":1,"52":2,"60":1,"67":3,"73":1,"79":1,"84":1,"95":1,"115":2,"117":3,"141":1,"146":1,"184":2,"186":7,"195":1,"196":2,"201":18,"202":4,"205":1,"206":4,"210":6,"214":1,"238":1,"262":6,"266":6,"290":7}}],["finitely",{"2":{"6":1,"11":1,"12":2,"13":1,"17":4,"18":1,"73":1,"214":1,"215":1,"247":1}}],["fingengrpabmap",{"2":{"79":4}}],["fingengrpab",{"2":{"79":4}}],["fingenabgrouphom",{"2":{"15":1,"16":1,"17":11,"18":4,"80":1}}],["fingenabgroup",{"2":{"7":9,"13":13,"14":12,"15":6,"16":2,"17":41,"18":5,"19":6,"20":3,"54":1,"79":2,"146":5,"148":4,"197":1}}],["fingenabgroupelem",{"2":{"6":1,"7":7,"8":2,"10":1,"13":1,"17":9,"146":1}}],["finfieldelem",{"2":{"51":1,"52":1,"53":2,"54":2}}],["finding",{"2":{"82":1}}],["finds",{"2":{"63":3,"107":3,"129":1,"146":1,"151":1}}],["find",{"2":{"16":1,"17":1,"84":2,"107":2,"108":3,"113":1,"117":1,"125":1,"126":1,"129":1,"146":4,"147":2,"148":1,"151":1}}],["finally",{"2":{"2":1,"68":1,"215":1,"281":1}}],["fieker",{"2":{"4":2}}],["fieldelem",{"2":{"45":1,"46":2,"111":2,"132":1,"134":1,"176":2,"180":5,"182":1,"246":2}}],["field",{"0":{"77":1,"119":1,"279":1},"1":{"78":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1},"2":{"2":10,"3":1,"22":2,"23":1,"28":1,"32":3,"45":2,"46":8,"48":1,"51":1,"52":2,"58":2,"62":1,"73":1,"78":4,"79":2,"80":21,"81":4,"82":23,"83":10,"84":8,"85":1,"86":7,"87":8,"88":1,"89":1,"90":2,"91":12,"92":3,"93":13,"94":11,"95":3,"108":2,"111":18,"113":3,"114":13,"115":9,"117":5,"118":1,"120":38,"121":10,"122":8,"123":10,"124":1,"125":6,"126":9,"127":4,"128":10,"129":1,"130":4,"131":5,"132":1,"134":2,"135":1,"139":3,"140":2,"141":1,"142":7,"143":1,"145":1,"146":11,"147":2,"148":4,"149":5,"150":6,"151":11,"152":2,"153":1,"174":2,"175":5,"176":5,"177":11,"179":1,"180":2,"181":1,"183":3,"184":2,"185":1,"187":2,"190":1,"191":1,"193":1,"214":5,"215":3,"220":6,"221":2,"222":6,"224":2,"226":2,"228":2,"230":2,"232":2,"235":12,"236":2,"237":6,"239":2,"241":6,"243":7,"244":1,"245":7,"246":2,"254":1,"275":2,"279":8,"280":4,"281":12,"283":6,"285":2,"286":8,"287":18,"288":1,"289":6,"291":1,"292":2,"294":2,"296":1,"298":2,"300":1,"302":2}}],["fields",{"0":{"2":1,"50":1,"56":1,"80":1,"117":1,"118":1,"120":1,"140":1,"141":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1,"81":1},"2":{"3":2,"49":3,"58":1,"61":1,"78":5,"84":1,"85":1,"94":1,"95":2,"97":1,"117":8,"120":6,"123":1,"124":2,"139":3,"141":2,"142":1,"143":1,"149":5,"172":1,"212":1,"216":2,"218":1,"274":1}}],["fr",{"2":{"121":1}}],["fraction",{"2":{"141":1}}],["fractional",{"0":{"135":1},"1":{"136":1,"137":1,"138":1},"2":{"59":1,"73":1,"135":2,"136":16,"137":1,"138":2,"141":1,"147":2,"260":1,"286":1,"287":13,"288":1,"291":1,"292":2,"293":2,"302":12}}],["frakp",{"2":{"2":2}}],["frobenius",{"0":{"53":1},"2":{"53":8,"80":1}}],["from",{"0":{"104":1,"157":1,"158":1,"160":1,"205":1,"206":1,"249":1,"252":1},"2":{"2":2,"15":2,"18":1,"20":1,"45":3,"61":1,"67":2,"79":2,"80":1,"106":2,"109":1,"115":1,"120":2,"124":2,"126":2,"127":3,"143":1,"146":2,"177":1,"182":1,"216":1,"251":1,"287":1,"297":2,"299":1,"301":1}}],["frequently",{"2":{"58":1,"73":1,"120":1}}],["fredrik",{"2":{"4":2}}],["free",{"2":{"3":1,"13":2,"14":3,"15":2,"16":1,"73":1,"74":1,"95":1,"139":1,"141":1,"143":1,"149":1,"279":1,"280":1}}],["f",{"2":{"2":6,"16":2,"17":1,"46":3,"52":2,"79":3,"84":1,"87":4,"88":2,"89":4,"91":7,"92":6,"95":1,"107":2,"108":3,"111":1,"115":1,"120":4,"121":2,"126":2,"140":2,"146":10,"147":6,"148":1,"180":1,"182":3,"203":1,"239":2,"260":1,"266":4,"267":3,"275":2,"281":2,"297":3}}],["f=x3+",{"2":{"2":1}}],["f=ok",{"2":{"2":2}}],["f¯∈f",{"2":{"2":1}}],["gm",{"2":{"299":1}}],["gc",{"2":{"270":1}}],["gcd",{"2":{"61":1,"145":1}}],["gb=",{"2":{"214":1}}],["g2",{"2":{"160":2,"166":3,"172":2,"186":1,"220":1,"224":8,"232":3,"235":1,"237":5,"242":6,"243":4,"290":1}}],["good",{"2":{"218":1}}],["gorenstein",{"2":{"152":4}}],["going",{"2":{"79":1,"285":1}}],["g∘f",{"2":{"91":1}}],["galois",{"0":{"127":1},"2":{"84":1,"127":1}}],["glue",{"2":{"266":10}}],["gl",{"2":{"107":1,"299":1}}],["globally",{"2":{"185":1}}],["global",{"0":{"233":1,"234":1},"1":{"234":1,"235":2,"236":1,"237":1,"238":1,"239":1},"2":{"78":1,"233":1,"234":2,"235":1,"236":8,"240":4,"242":2,"244":1,"246":2}}],["glz",{"2":{"64":3}}],["gf",{"2":{"45":2,"51":1,"52":2,"53":2,"54":3,"55":1,"142":1}}],["gt",{"2":{"42":2,"79":1,"89":1,"108":1,"135":1,"146":2,"151":1,"196":4,"208":1,"218":1}}],["guarenteed",{"2":{"146":1}}],["guaranteed",{"2":{"25":2,"79":1,"89":1}}],["guides",{"0":{"1":1}}],["g=g1⊗⋯⊗gn",{"2":{"19":1}}],["g1",{"2":{"160":2,"166":3,"172":2,"186":1,"218":1,"220":1,"222":4,"226":5,"228":2,"230":3,"235":3,"241":9,"242":6,"243":5,"290":1}}],["g1×⋯×gn",{"2":{"19":1}}],["g1⊗⋯⊗gn",{"2":{"19":2}}],["g→o×",{"2":{"146":1}}],["g→h",{"2":{"17":5}}],["g→a⊕b⊕c",{"2":{"18":1}}],["g→a",{"2":{"16":2}}],["gi→hi",{"2":{"19":1}}],["gi→hj",{"2":{"15":1}}],["gi",{"2":{"18":1,"19":1,"218":2,"295":2}}],["give",{"2":{"117":1,"146":2}}],["gives",{"2":{"73":1}}],["given",{"0":{"72":1,"278":1},"2":{"2":1,"6":1,"7":2,"13":1,"14":1,"15":1,"16":1,"17":4,"18":3,"19":2,"23":2,"25":2,"26":2,"29":1,"32":3,"33":1,"45":1,"46":3,"49":1,"52":2,"61":1,"64":1,"67":1,"68":2,"79":6,"80":4,"82":2,"83":1,"84":4,"89":1,"90":1,"91":3,"92":3,"93":3,"95":1,"100":1,"107":3,"108":7,"111":10,"113":1,"114":5,"117":2,"120":6,"121":5,"122":2,"123":4,"124":2,"125":4,"126":4,"127":4,"131":3,"146":4,"150":1,"151":3,"153":1,"159":1,"163":4,"165":1,"167":1,"169":1,"170":1,"180":3,"184":2,"186":3,"188":2,"190":1,"195":1,"196":1,"197":2,"202":4,"203":2,"206":1,"208":1,"209":2,"210":3,"218":1,"221":3,"223":14,"225":4,"227":1,"229":3,"231":2,"234":2,"236":6,"238":1,"240":3,"242":2,"244":1,"246":2,"247":1,"250":1,"251":2,"254":1,"255":4,"258":2,"259":2,"260":2,"262":3,"266":3,"267":3,"270":1,"271":1,"278":4,"279":4,"280":4,"281":1,"286":2,"288":1,"290":4,"295":1,"297":2,"301":6}}],["giving",{"2":{"4":1,"59":1,"84":1,"130":1,"159":1}}],["g≅z",{"2":{"14":1}}],["grundlehren",{"2":{"274":1}}],["graduate",{"2":{"274":2}}],["gram=zz",{"2":{"253":1,"259":2}}],["gram=2",{"2":{"251":1}}],["gram=matrix",{"2":{"209":1}}],["gram",{"0":{"158":1,"231":1,"249":1},"1":{"232":1},"2":{"158":1,"161":1,"168":1,"170":2,"174":7,"175":2,"176":4,"177":1,"178":2,"180":7,"181":2,"182":1,"196":2,"197":4,"201":4,"206":5,"214":2,"218":1,"220":1,"224":1,"231":6,"232":3,"233":1,"235":1,"236":1,"237":1,"239":1,"243":1,"249":8,"251":6,"253":1,"254":6,"255":1,"259":8,"260":3,"266":4,"268":1,"270":1,"271":2,"279":22,"280":22,"281":4,"282":2,"283":5,"285":2,"286":2,"287":2,"289":3,"292":1,"294":1,"295":1,"296":1,"298":1,"299":2,"300":2,"302":1}}],["grptogrp",{"2":{"127":3}}],["grp",{"2":{"127":3}}],["grpgentonfmorset",{"2":{"126":1}}],["grpabfingemmap",{"2":{"17":1}}],["grpab",{"2":{"12":1,"16":1,"146":4}}],["grh",{"2":{"123":1,"146":8}}],["groupalgebra",{"2":{"28":1}}],["groups",{"0":{"79":1,"194":1,"204":1},"1":{"195":1,"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1,"204":1,"205":2,"206":2,"207":2,"208":2,"209":2,"210":2,"211":2},"2":{"3":2,"12":2,"13":7,"15":3,"16":1,"17":2,"18":2,"19":2,"78":3,"80":1,"97":1,"120":1,"153":1,"202":2,"204":1,"216":1,"266":1,"274":1}}],["group",{"0":{"20":1,"27":1,"54":1,"146":1,"162":1,"265":1},"1":{"28":1,"29":1},"2":{"3":1,"6":1,"7":1,"11":5,"12":1,"13":20,"14":3,"15":5,"16":3,"17":15,"18":4,"20":2,"27":1,"28":8,"29":8,"30":1,"54":6,"58":1,"78":1,"79":30,"80":13,"81":1,"82":3,"83":3,"84":1,"122":3,"123":1,"126":3,"127":10,"134":1,"135":1,"146":56,"148":8,"153":11,"162":1,"163":8,"195":2,"196":6,"197":3,"201":4,"202":12,"203":2,"205":6,"206":4,"209":2,"211":5,"238":1,"240":1,"255":12,"258":8,"265":1,"275":2,"297":7,"298":2}}],["geometric",{"2":{"274":1}}],["getting",{"0":{"275":1}}],["get",{"2":{"23":1,"79":1,"107":1,"177":1,"183":1,"229":1,"281":1}}],["getindex",{"2":{"7":1,"8":2,"100":1,"108":2}}],["genordidl",{"2":{"138":1,"147":1,"151":1}}],["gengrp",{"2":{"126":1}}],["genusrep",{"2":{"38":2}}],["genus",{"0":{"159":1,"160":1,"161":1,"167":1,"209":1,"218":1,"219":1,"233":1,"234":1,"240":1,"252":1,"256":1},"1":{"162":1,"163":1,"164":1,"168":1,"169":1,"170":1,"171":1,"172":1,"219":1,"220":2,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"234":1,"235":2,"236":1,"237":1,"238":1,"239":1,"241":1},"2":{"38":4,"39":2,"43":2,"82":1,"155":7,"157":2,"158":2,"160":1,"161":10,"163":6,"165":9,"166":2,"167":4,"168":4,"169":5,"170":4,"171":1,"209":5,"218":2,"219":4,"220":4,"221":3,"222":1,"223":17,"224":1,"225":4,"226":1,"227":1,"228":1,"229":3,"230":1,"231":4,"232":1,"233":3,"234":5,"235":5,"236":11,"237":1,"238":6,"240":9,"241":3,"242":4,"243":6,"244":2,"245":21,"246":4,"251":19,"252":1,"256":5,"268":5}}],["gen",{"2":{"15":7,"111":1,"146":2,"147":2,"151":1}}],["genera",{"0":{"155":1,"156":1,"163":1,"217":1,"242":1,"244":1},"1":{"156":1,"157":2,"158":2,"159":2,"160":2,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"167":1,"168":1,"169":1,"170":1,"171":1,"172":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"242":1,"243":2,"244":1,"245":2,"246":1},"2":{"155":2,"159":7,"163":2,"209":2,"244":4,"245":2,"268":1}}],["generalized",{"2":{"95":1,"109":3,"146":1,"151":1,"286":1}}],["generally",{"2":{"58":1}}],["general",{"2":{"12":1,"16":1,"25":2,"58":3,"59":1,"73":1,"74":1,"78":1,"80":1,"82":1,"117":1,"120":1,"141":2,"146":2,"149":1,"204":1,"214":1,"215":1}}],["generator",{"2":{"120":3,"143":1,"146":7,"147":6,"227":1,"255":2,"260":1,"285":1,"292":1}}],["generators",{"0":{"25":1},"2":{"6":1,"7":1,"11":1,"13":4,"14":3,"15":1,"17":3,"25":5,"54":1,"141":1,"148":3,"195":2,"258":5,"278":1,"286":7,"287":2,"297":3,"298":1}}],["generating",{"2":{"73":2,"286":2}}],["generate",{"2":{"73":1}}],["generates",{"2":{"25":2}}],["generated",{"2":{"6":1,"11":1,"12":1,"17":9,"61":4,"73":1,"79":1,"136":2,"141":1,"143":1,"144":4,"145":1,"146":3,"147":1,"150":1,"152":1,"161":1,"169":1,"214":1,"215":1,"247":1,"255":2,"291":1}}],["generically",{"2":{"61":1}}],["generic",{"2":{"12":1,"28":1,"74":3,"296":2,"298":1}}],["gensl",{"2":{"251":2}}],["gens",{"2":{"7":1,"17":8,"25":5,"54":3,"111":1,"195":3,"201":2,"220":2,"224":2,"232":2,"235":2,"237":2,"239":2,"243":2,"278":4,"279":5,"280":5,"281":8,"283":4,"285":4,"287":2,"289":4,"292":2,"294":2,"296":2,"298":2,"300":4,"302":2}}],["g",{"2":{"7":6,"11":4,"13":1,"14":14,"15":17,"16":5,"17":68,"18":10,"19":2,"20":2,"25":5,"27":2,"28":3,"29":9,"58":1,"84":1,"91":3,"92":2,"107":2,"108":10,"126":2,"131":1,"139":1,"146":1,"161":14,"163":10,"164":1,"165":8,"170":3,"174":3,"201":2,"218":6,"221":7,"223":41,"225":8,"227":2,"229":8,"231":8,"233":2,"236":17,"238":2,"239":2,"240":16,"246":9,"259":2,"267":9,"268":4,"271":2,"281":6,"283":2,"287":2,"292":2,"294":2,"298":2,"302":2}}],["pv",{"2":{"293":1}}],["pvlp",{"2":{"293":1}}],["p=7∗ok",{"2":{"285":1}}],["p=29",{"2":{"2":1}}],["pdf",{"2":{"216":2}}],["pp",{"2":{"169":1}}],["pmaximal",{"2":{"151":2}}],["pmatrix",{"2":{"151":2}}],["pmat",{"2":{"73":1,"74":4,"75":7,"150":1,"151":1,"278":1,"279":1,"280":1,"286":1}}],["phi",{"2":{"148":2,"201":10,"253":1}}],["p^",{"2":{"196":2}}],["p^m",{"2":{"167":1}}],["p^2",{"2":{"142":1}}],["p^e",{"2":{"134":1}}],["p−j=0",{"2":{"108":1}}],["p−subgroup",{"2":{"17":1}}],["p≠0",{"2":{"108":1}}],["pi",{"2":{"111":1,"147":5}}],["pivot",{"2":{"107":1}}],["picard",{"2":{"80":1,"146":4,"153":1}}],["pid",{"2":{"58":1,"73":1}}],["psi",{"2":{"218":1}}],["pseudo",{"0":{"73":1},"1":{"74":1,"75":1,"76":1},"2":{"73":12,"74":7,"75":4,"82":1,"141":2,"150":1,"151":6,"220":2,"235":1,"241":2,"243":2,"245":6,"258":1,"278":2,"279":2,"280":2,"281":2,"286":11,"287":23,"288":2,"289":8,"292":4,"297":1,"299":2,"302":27}}],["psubgroups",{"2":{"17":2}}],["performance",{"2":{"258":3,"297":2,"299":2}}],["performant",{"2":{"105":1}}],["per",{"2":{"45":1,"47":1,"86":1}}],["pkg",{"2":{"42":2,"275":2}}],["plane",{"2":{"192":1,"251":5,"260":1}}],["planes",{"2":{"192":1}}],["play",{"2":{"142":1}}],["plays",{"2":{"97":1}}],["places",{"0":{"128":1},"2":{"79":3,"80":1,"83":1,"84":2,"128":12,"146":1,"184":2,"233":2,"234":2,"235":1,"236":2,"241":1,"243":1,"245":1,"301":1}}],["place",{"2":{"36":1,"111":1,"128":5,"182":1,"183":3,"190":2,"233":1,"235":7,"236":1,"237":1,"243":1,"284":3,"295":1}}],["plc",{"2":{"79":1,"83":2,"128":2}}],["please",{"2":{"4":1,"275":1}}],["push",{"2":{"17":1,"68":1,"106":1}}],["pure",{"2":{"17":10,"19":1,"123":1}}],["publisher",{"2":{"4":1}}],["pohst",{"2":{"274":1}}],["po",{"2":{"151":2}}],["poverorders",{"2":{"151":1}}],["poverorder",{"2":{"151":2}}],["polredabs",{"2":{"125":2}}],["poly",{"2":{"120":1}}],["polyringelem",{"2":{"46":2,"79":2,"114":4,"120":1,"121":2}}],["polyring",{"2":{"46":1}}],["polynomial",{"2":{"2":3,"46":3,"79":1,"81":1,"82":3,"91":2,"95":1,"107":1,"113":1,"114":4,"115":1,"117":1,"120":9,"121":2,"122":2,"123":5,"125":2,"126":1,"129":3,"130":1,"134":2,"142":2,"150":1,"151":1,"175":2,"177":3,"222":2,"237":2,"239":2,"281":2,"283":2,"287":3}}],["polynomials",{"0":{"2":1},"2":{"46":4,"82":2,"115":1,"117":2,"120":3,"121":2,"150":1}}],["pop",{"2":{"68":3}}],["point",{"2":{"47":2,"48":7,"51":2,"52":3,"54":3,"55":2,"80":1,"153":1}}],["points",{"0":{"47":1,"51":1,"54":1},"1":{"48":1},"2":{"48":6,"53":1,"54":2}}],["pointwise",{"2":{"15":1,"148":1}}],["pos",{"2":{"268":2}}],["posinf",{"2":{"111":1}}],["positivity",{"0":{"62":1,"93":1},"2":{"62":1}}],["positive",{"2":{"13":1,"62":2,"67":2,"84":1,"93":15,"103":1,"129":1,"134":1,"137":1,"146":1,"161":1,"178":5,"179":1,"253":1,"255":2,"257":4,"258":3,"263":1,"272":1,"293":7,"294":2,"297":2,"299":2}}],["position",{"2":{"7":1}}],["possible",{"2":{"29":1,"46":1,"61":1,"75":2,"82":1,"139":1,"142":1,"145":1,"211":2,"229":1,"290":1}}],["possibly",{"2":{"25":2,"138":2,"147":2}}],["powermod",{"2":{"133":1}}],["powers",{"2":{"58":1,"61":1,"229":1}}],["power",{"2":{"17":1,"53":1,"58":1,"60":1,"61":1,"82":2,"95":2,"111":2,"122":1,"129":1,"145":6,"146":3,"150":3,"151":2}}],["potentially",{"2":{"7":1,"120":1}}],["packings",{"2":{"274":1}}],["packing",{"2":{"271":1}}],["packages",{"2":{"4":2}}],["pass",{"2":{"113":1}}],["passed",{"2":{"61":1,"79":1}}],["pairwise",{"2":{"144":1,"186":1,"238":1}}],["pair",{"2":{"16":1,"67":1,"126":1,"155":1,"159":3,"209":4}}],["pairs",{"2":{"15":1,"29":1,"59":1,"86":1,"124":1,"286":1}}],["parity",{"2":{"209":15}}],["pari",{"2":{"125":1}}],["pariwise",{"2":{"61":3}}],["parameters",{"2":{"258":3,"297":2,"299":2}}],["parameter",{"2":{"120":3,"251":2}}],["parametried",{"2":{"117":1}}],["parametrized",{"2":{"58":1,"78":1,"98":1,"105":1,"131":1}}],["parallel",{"2":{"42":1}}],["parentof",{"2":{"143":1}}],["parent",{"2":{"7":2,"48":2,"58":1,"61":1,"111":2,"120":1,"132":1,"151":2,"199":1}}],["partial=false",{"2":{"208":1}}],["partial",{"2":{"61":3}}],["particularly",{"2":{"204":1}}],["particular",{"2":{"40":1,"68":1,"98":1,"150":1,"212":1,"214":1,"218":1,"238":1}}],["part",{"2":{"5":1,"75":3,"182":1,"196":1}}],["pages",{"2":{"4":2}}],["pradical",{"2":{"151":3}}],["practical",{"2":{"78":1}}],["press",{"2":{"274":1}}],["prescribed",{"2":{"84":1}}],["preserves",{"2":{"75":2}}],["present>",{"2":{"142":1}}],["presentation",{"2":{"58":1,"61":3,"117":1,"143":1}}],["presented",{"2":{"12":1,"13":1}}],["precision",{"2":{"112":1}}],["precisely",{"2":{"98":1,"105":1,"146":1}}],["prec",{"2":{"61":2,"89":4}}],["preimages",{"2":{"20":1}}],["preimage",{"2":{"15":1,"19":1}}],["predicates",{"0":{"9":1,"24":1,"113":1,"123":1,"154":1,"178":1,"225":1,"293":1},"1":{"124":1,"179":1,"226":1,"294":1},"2":{"9":1}}],["primary",{"0":{"163":1,"202":1},"2":{"130":1,"163":7,"202":5,"255":7}}],["primitive=true",{"2":{"268":1}}],["primitive",{"2":{"111":1,"117":1,"120":1,"121":3,"204":1,"260":13,"266":3,"268":4,"288":2}}],["primes",{"2":{"17":1,"61":1,"80":1,"84":1,"107":3,"146":1,"150":4,"152":2,"155":1,"161":2,"236":1,"237":1}}],["prime",{"0":{"2":1},"2":{"2":7,"17":1,"45":1,"61":1,"82":2,"84":2,"107":2,"111":1,"113":2,"123":2,"127":3,"134":1,"142":2,"144":3,"146":13,"147":9,"148":2,"151":5,"152":1,"155":1,"163":8,"167":3,"168":2,"169":2,"183":2,"184":1,"185":1,"191":1,"192":2,"193":1,"202":8,"218":2,"219":2,"220":4,"221":2,"222":2,"223":12,"224":1,"225":4,"226":1,"227":1,"228":1,"230":1,"231":2,"232":1,"233":3,"235":1,"236":1,"237":1,"240":2,"241":1,"242":1,"243":2,"244":2,"245":1,"246":1,"255":8,"266":1,"285":2,"289":1,"293":2,"294":1,"295":2,"296":1,"299":1,"300":1,"301":3,"302":1}}],["princ",{"2":{"147":2}}],["principal",{"2":{"61":3,"124":3,"134":1,"136":2,"141":1,"142":2,"144":5,"146":18,"147":4,"285":1,"292":1}}],["prints",{"2":{"281":1}}],["printed",{"2":{"120":2}}],["printing",{"2":{"120":3}}],["println",{"2":{"11":1}}],["proper",{"2":{"301":3}}],["property",{"2":{"33":1,"80":1,"135":1,"148":1,"184":1,"301":3}}],["properties",{"0":{"23":1,"46":1,"87":1,"107":1,"121":1,"132":1,"150":1,"295":1},"1":{"151":1,"296":1}}],["prompt",{"2":{"275":1}}],["proven",{"2":{"107":1}}],["provide",{"2":{"89":1}}],["provided",{"2":{"30":1,"91":1,"118":2,"120":2,"137":1,"272":1}}],["program",{"2":{"107":1}}],["programming",{"2":{"4":2}}],["progress",{"2":{"82":1,"153":1}}],["probabilistic",{"2":{"79":1,"82":1,"123":1}}],["proj",{"2":{"61":2,"187":3}}],["projective",{"2":{"47":1,"49":1,"73":1}}],["projections",{"2":{"18":3,"186":7,"210":6,"262":6,"290":7}}],["projection",{"2":{"17":5,"18":3,"80":1,"146":1,"148":2,"188":3,"196":1,"208":1}}],["project",{"2":{"5":1,"48":1,"61":1}}],["processing",{"2":{"153":1}}],["processes",{"2":{"42":2}}],["process",{"2":{"36":1,"60":1}}],["proceedings",{"2":{"4":2}}],["prod",{"2":{"25":2,"58":1,"59":1,"134":1,"186":2,"290":2}}],["producs",{"0":{"19":1}}],["product",{"2":{"13":1,"18":6,"19":4,"60":1,"61":2,"107":1,"109":7,"146":2,"180":3,"181":1,"182":1,"186":10,"198":6,"210":8,"234":1,"251":2,"262":8,"290":10}}],["products",{"0":{"18":1,"180":1},"1":{"181":1},"2":{"13":1,"15":1,"16":1,"18":3,"58":1,"61":1,"109":1,"186":4,"210":3,"262":3,"290":4}}],["p",{"2":{"2":10,"17":13,"47":1,"48":9,"52":5,"55":5,"59":2,"61":5,"75":6,"84":6,"107":3,"108":1,"111":6,"112":5,"113":3,"123":6,"127":9,"128":4,"134":1,"142":3,"144":3,"146":8,"147":23,"148":2,"151":19,"155":1,"161":2,"163":14,"164":2,"167":2,"168":4,"169":12,"172":1,"182":7,"183":5,"184":3,"185":3,"190":5,"191":2,"192":4,"193":2,"196":3,"202":12,"218":13,"219":4,"220":3,"221":2,"222":2,"223":24,"224":2,"225":8,"226":2,"227":2,"228":2,"230":2,"231":4,"232":2,"233":3,"235":2,"237":1,"240":2,"241":2,"242":2,"243":3,"244":5,"245":2,"246":1,"255":14,"258":2,"266":6,"274":5,"284":6,"285":4,"289":2,"293":4,"294":2,"295":10,"296":4,"299":2,"300":2,"301":15,"302":4}}],["aφ",{"2":{"288":1}}],["akad",{"2":{"274":1}}],["again",{"2":{"215":1,"297":1}}],["agrees",{"2":{"301":1}}],["agree",{"2":{"18":1,"176":1,"186":3,"210":3,"240":2,"262":3,"290":3}}],["a+n∈m",{"2":{"199":2}}],["a∩z",{"2":{"147":2}}],["a∩o",{"2":{"102":1,"147":2}}],["ae",{"2":{"146":1}}],["a∗b⊊order",{"2":{"145":1}}],["a∗o",{"2":{"59":1}}],["a∈k",{"2":{"113":1,"288":1}}],["a∈k∗",{"2":{"79":1}}],["a⋅b",{"2":{"109":4}}],["a⋅at",{"2":{"102":1}}],["aachen",{"2":{"216":1,"281":2}}],["aai+baj",{"2":{"108":1}}],["aa+bb",{"2":{"100":1}}],["a=a1×⋯×ak",{"2":{"186":1,"290":1}}],["a=re",{"2":{"145":1}}],["a=nd−1",{"2":{"137":1}}],["a=",{"2":{"108":1,"146":2}}],["a=∏aini",{"2":{"61":1}}],["avoiding",{"2":{"146":1}}],["avoided",{"2":{"107":1}}],["available",{"2":{"17":1,"49":2,"60":1,"68":3,"74":1,"149":1,"153":1,"281":1}}],["aj→aj+c⋅ai",{"2":{"108":2}}],["aj",{"2":{"100":1,"108":1,"169":1,"182":1}}],["am",{"2":{"260":1}}],["among",{"2":{"149":1,"271":1}}],["amounts",{"2":{"84":1}}],["ambient",{"0":{"278":1,"282":1},"1":{"283":1},"2":{"93":1,"131":2,"132":1,"134":2,"148":1,"151":10,"152":2,"176":1,"196":1,"199":1,"215":1,"218":1,"247":2,"250":1,"251":1,"254":4,"258":3,"260":9,"262":3,"266":1,"267":11,"270":3,"278":4,"279":3,"280":3,"282":3,"283":1,"286":2,"288":6,"289":1,"290":3,"297":4,"299":4,"301":3,"302":1}}],["amp",{"0":{"62":1,"93":1},"2":{"62":1,"165":2,"169":2}}],["a>",{"2":{"82":1,"142":2,"220":2,"222":1,"235":1,"237":1,"243":2}}],["a−1",{"2":{"79":1}}],["automatically",{"2":{"281":1}}],["automorphism",{"2":{"80":3,"83":1,"126":4,"127":3,"174":1,"182":1,"238":1,"240":1,"258":5,"297":6,"298":2}}],["automorphisms",{"0":{"297":1},"1":{"298":1},"2":{"78":1,"84":2,"126":2}}],["auto",{"2":{"240":3}}],["aut",{"2":{"238":1}}],["author",{"2":{"4":1,"281":2}}],["aω",{"2":{"73":1}}],["appended",{"2":{"106":1}}],["appends",{"2":{"106":1}}],["appearance",{"2":{"120":1}}],["appearing",{"2":{"91":1}}],["appears",{"2":{"91":1,"271":3}}],["appropriate",{"2":{"67":1}}],["apply",{"2":{"39":1,"149":1,"253":1}}],["applying",{"2":{"2":1,"108":1}}],["applies",{"2":{"108":1}}],["applied",{"2":{"2":2,"82":1}}],["applicable",{"2":{"78":1}}],["applications",{"2":{"30":1,"58":1,"274":2}}],["ai⊂k",{"2":{"141":1}}],["aij",{"2":{"108":2}}],["aij=xj",{"2":{"99":3}}],["aiωi|i",{"2":{"73":1}}],["ai",{"2":{"58":2,"61":1,"73":4,"99":3,"100":1,"108":6,"121":1,"141":1,"148":1,"169":1,"180":1,"182":1,"286":4}}],["affine",{"2":{"47":1}}],["a6",{"2":{"46":3,"49":2}}],["a4x",{"2":{"46":1}}],["a4",{"2":{"46":2,"49":2}}],["a3y",{"2":{"46":1}}],["a3",{"2":{"46":2,"49":1}}],["a2x^2",{"2":{"46":1}}],["a2",{"2":{"46":2,"49":1,"120":1,"121":3}}],["a1i1⋯adid",{"2":{"121":1}}],["a1=a2=a3=0",{"2":{"49":1}}],["a1xy",{"2":{"46":1}}],["a1",{"2":{"46":2,"49":1,"120":1,"121":4,"148":1,"180":4,"182":1}}],["a→q×",{"2":{"148":1}}],["a→i",{"2":{"80":1}}],["a→l",{"2":{"32":1}}],["a→g",{"2":{"16":1}}],["advanced",{"2":{"274":1}}],["ade",{"2":{"259":10}}],["admitting",{"2":{"251":1}}],["admits",{"2":{"19":1,"240":2}}],["ad∈z≥1",{"2":{"148":1}}],["ad−1",{"2":{"121":1}}],["adic",{"2":{"107":1,"111":1,"144":1,"147":5,"161":1,"167":1,"169":3,"223":3,"242":1,"245":15,"258":1,"295":1}}],["added",{"2":{"39":3,"58":1,"98":1}}],["adds",{"2":{"39":2,"112":1}}],["add",{"2":{"35":1,"43":1,"48":1,"100":2,"105":1,"106":1,"107":1,"108":4,"275":1}}],["additive",{"2":{"209":1}}],["additionally",{"2":{"107":1}}],["additional",{"2":{"25":1,"105":1,"113":1,"135":1,"150":2}}],["addition",{"2":{"7":1,"15":1,"82":1}}],["adding",{"0":{"35":1,"39":1,"40":1},"2":{"42":1}}],["address",{"2":{"4":1}}],["a⊕b",{"2":{"18":1}}],["a⊗zq",{"2":{"14":1}}],["attributes",{"0":{"161":1,"169":1,"176":1,"197":1,"221":1,"236":1,"254":1,"286":1},"1":{"162":1,"163":1,"164":1,"177":1,"222":1,"237":1,"287":1}}],["at",{"0":{"89":1},"2":{"7":3,"40":1,"48":1,"61":2,"80":2,"84":2,"93":6,"111":1,"113":1,"126":1,"146":1,"147":1,"149":1,"151":1,"152":1,"155":1,"164":1,"168":2,"182":3,"184":3,"190":2,"192":2,"218":2,"219":1,"221":1,"223":9,"225":4,"227":1,"231":4,"233":2,"234":1,"236":2,"240":4,"242":1,"244":1,"246":1,"251":7,"266":3,"268":1,"275":1,"284":3,"285":1,"293":2,"295":3,"299":1,"301":9}}],["archiv",{"2":{"216":1}}],["arr",{"2":{"131":4}}],["arranges",{"2":{"61":1}}],["arrays",{"2":{"59":1,"106":1}}],["array",{"2":{"7":1,"17":1,"32":2,"33":2,"48":1,"79":1,"105":1,"107":2,"108":1,"109":3,"112":4,"121":1,"134":2,"144":1,"146":3,"153":1}}],["arithmetic",{"0":{"109":1,"133":1,"137":1,"145":1,"153":1},"2":{"117":1,"118":1,"130":1,"133":1,"149":1}}],["artin",{"2":{"80":1}}],["arbmatrix",{"2":{"151":1}}],["arbfieldelem",{"2":{"112":6,"134":5,"151":1,"152":2}}],["arb",{"2":{"61":1,"112":5,"134":4}}],["arbitrary",{"2":{"27":1,"49":1,"85":1,"214":1,"215":1}}],["args",{"2":{"42":2}}],["arguments",{"2":{"120":1,"146":1,"159":1,"167":1,"211":2}}],["argument",{"2":{"22":1,"42":1,"55":1,"64":2,"75":2,"79":1,"84":1,"209":2}}],["are",{"2":{"2":1,"6":2,"8":1,"12":2,"13":2,"15":3,"16":1,"17":2,"18":1,"30":2,"34":1,"38":1,"58":5,"61":2,"67":4,"68":3,"73":2,"74":4,"75":2,"78":1,"79":1,"84":3,"93":1,"95":3,"98":2,"105":2,"106":2,"107":1,"108":1,"113":1,"115":1,"117":5,"120":2,"123":3,"126":2,"130":2,"131":1,"132":1,"133":1,"134":1,"135":2,"137":1,"139":1,"140":1,"141":1,"142":1,"143":2,"144":2,"145":2,"146":5,"147":2,"148":1,"149":5,"150":3,"151":1,"153":3,"155":3,"159":1,"175":1,"178":1,"180":2,"182":2,"184":1,"186":7,"196":3,"197":2,"201":3,"204":1,"208":1,"210":3,"211":3,"212":2,"214":3,"215":1,"216":2,"218":2,"219":1,"223":3,"229":2,"233":5,"234":1,"238":2,"240":1,"247":1,"251":2,"258":4,"260":1,"262":3,"266":1,"271":3,"272":2,"281":2,"284":2,"285":1,"286":2,"290":6,"295":1,"297":2,"299":5}}],["asymptotically",{"2":{"130":1}}],["asked",{"2":{"40":1}}],["associated",{"2":{"68":2,"163":4,"178":1,"195":1,"214":1,"218":1,"236":1,"246":1,"251":3}}],["associativity",{"2":{"32":1}}],["associative",{"2":{"3":2,"30":1,"32":1,"33":1}}],["asscciated",{"2":{"67":1}}],["assumes",{"2":{"61":1,"79":1,"83":1,"107":1,"123":1,"124":1}}],["assume",{"2":{"39":1,"140":1,"260":1}}],["assumed",{"2":{"10":1,"14":2,"16":1,"107":1,"108":1,"123":1,"134":1,"136":2,"144":1,"147":1,"150":1,"151":2,"271":3}}],["assuming",{"2":{"17":1,"113":1,"124":2,"146":1,"152":1}}],["as",{"2":{"6":1,"7":1,"12":1,"13":1,"14":1,"15":4,"16":2,"17":3,"18":4,"19":3,"20":1,"22":1,"25":3,"27":1,"32":2,"42":1,"46":5,"49":1,"55":1,"58":4,"60":1,"61":4,"67":1,"68":1,"73":2,"74":1,"75":5,"79":3,"80":2,"82":1,"84":4,"89":1,"90":1,"91":3,"92":1,"93":1,"94":1,"95":2,"104":1,"105":2,"106":2,"109":10,"111":1,"112":5,"115":2,"117":3,"118":1,"120":4,"121":3,"124":3,"126":1,"127":3,"130":4,"131":1,"132":1,"134":7,"135":1,"137":1,"138":2,"139":4,"140":2,"141":3,"142":1,"143":1,"144":2,"146":5,"147":2,"148":3,"149":3,"150":2,"151":2,"153":1,"155":2,"161":2,"163":2,"165":1,"167":1,"169":2,"176":3,"184":1,"186":7,"187":2,"192":1,"195":3,"196":3,"202":2,"209":2,"210":6,"211":5,"212":1,"214":4,"215":5,"218":1,"223":1,"235":1,"236":1,"240":2,"247":2,"251":1,"252":1,"255":4,"259":2,"262":9,"263":1,"266":2,"270":1,"279":3,"281":2,"283":1,"285":1,"287":1,"288":1,"289":1,"290":10,"292":1,"294":1,"296":1,"297":1,"298":1,"300":1,"302":1}}],["al",{"2":{"288":4,"293":2}}],["alpha",{"2":{"142":2,"180":1}}],["already",{"2":{"136":2,"144":1,"150":2}}],["almost",{"2":{"98":1}}],["along",{"2":{"92":1,"208":1,"281":1}}],["alias",{"2":{"68":1,"199":1,"288":1}}],["algassrelord",{"2":{"138":1,"147":1,"150":1}}],["algassrelordidl",{"2":{"138":1,"147":1}}],["algassabsord",{"2":{"138":1,"147":1,"148":2,"150":2}}],["algassabsordidl",{"2":{"138":1,"147":1,"148":2}}],["algerbaic",{"2":{"58":1}}],["algebrae",{"2":{"244":1}}],["algebraic",{"2":{"4":1,"61":2,"97":1,"111":2,"132":1,"134":1,"274":2}}],["algebras",{"0":{"22":1,"27":1,"31":1},"1":{"28":1,"29":1,"32":1,"33":1},"2":{"3":3,"22":1,"30":7,"186":2,"290":2}}],["algebra",{"0":{"96":1},"1":{"97":1,"98":1,"99":1,"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1,"109":1},"2":{"3":1,"4":2,"22":6,"23":2,"24":3,"25":6,"26":7,"27":1,"28":5,"29":4,"32":12,"33":3,"97":3,"176":1,"180":1,"184":2,"186":1,"214":1,"244":1,"286":1,"290":1,"293":1}}],["algssrelord",{"2":{"46":1,"132":1,"134":1}}],["algorithmic",{"2":{"274":1}}],["algorithms",{"2":{"78":1,"97":1,"216":1}}],["algorithm",{"2":{"17":1,"60":1,"61":1,"73":1,"79":2,"82":3,"107":5,"147":1,"151":1}}],["allowed",{"2":{"113":1,"251":1}}],["allowing",{"2":{"58":1}}],["allows",{"2":{"20":1,"61":2,"146":1}}],["allow",{"2":{"15":2,"117":1,"153":1}}],["all",{"0":{"42":1},"2":{"13":1,"17":7,"20":1,"42":1,"43":2,"58":1,"61":2,"68":3,"70":4,"71":4,"72":1,"73":1,"78":1,"79":2,"82":1,"84":3,"92":2,"93":6,"94":1,"98":1,"101":1,"103":4,"106":1,"107":3,"108":4,"123":2,"124":1,"126":1,"128":3,"129":1,"133":1,"134":1,"137":1,"143":1,"144":1,"145":1,"146":3,"149":1,"151":4,"152":1,"153":1,"155":1,"159":1,"178":3,"182":1,"184":1,"206":1,"218":2,"233":1,"244":2,"255":1,"260":1,"266":1,"271":2,"272":1,"281":1,"285":1,"297":1,"301":1}}],["alternatively",{"2":{"13":1}}],["also",{"2":{"7":1,"14":1,"15":1,"17":8,"18":1,"20":1,"23":1,"29":1,"39":1,"43":1,"68":1,"74":1,"89":1,"106":3,"111":1,"117":1,"130":1,"143":2,"146":2,"149":2,"152":1,"153":2,"159":1,"163":2,"169":1,"184":1,"186":1,"201":1,"202":2,"215":1,"238":1,"247":1,"251":1,"255":2,"259":1,"271":3,"272":1,"288":1,"290":2}}],["always",{"2":{"6":1,"82":1,"95":2,"143":1,"149":1,"161":2,"169":1,"176":1,"214":1}}],["action",{"2":{"227":1}}],["act",{"2":{"211":2}}],["actually",{"2":{"60":4,"61":1,"80":1,"82":1,"117":1,"131":1}}],["actual",{"2":{"20":1}}],["acbfield",{"2":{"112":1}}],["acbfieldelem",{"2":{"89":2,"112":6,"134":2}}],["access",{"0":{"8":1,"108":1},"2":{"68":1,"117":1,"247":1,"281":1}}],["acknowledgement",{"0":{"5":1}}],["acm",{"2":{"4":4}}],["anti",{"2":{"201":10}}],["anticnumerfield",{"2":{"129":1}}],["antic",{"2":{"118":1}}],["ans",{"2":{"146":4}}],["another",{"2":{"115":1,"288":1}}],["anonymous",{"2":{"89":2}}],["annotated",{"2":{"40":1,"42":1}}],["any",{"2":{"25":2,"61":1,"67":3,"68":1,"73":2,"91":1,"95":1,"98":1,"106":1,"122":1,"131":2,"141":1,"143":1,"146":1,"149":1,"150":1,"165":1,"170":1,"214":1,"218":2,"223":2,"231":2,"236":3,"238":1,"246":2,"271":1,"286":2,"288":2,"295":3,"297":2}}],["an",{"0":{"157":1},"2":{"2":1,"7":3,"9":1,"12":1,"16":4,"17":10,"20":1,"22":1,"23":1,"25":2,"26":1,"29":1,"32":1,"33":1,"45":2,"48":1,"49":1,"52":2,"54":1,"55":1,"58":2,"61":2,"64":1,"67":1,"68":4,"70":3,"71":3,"72":1,"73":2,"75":1,"79":4,"82":2,"83":1,"85":1,"89":2,"90":2,"91":2,"92":3,"94":2,"95":5,"97":1,"100":1,"104":1,"105":1,"106":1,"107":5,"108":8,"109":2,"111":7,"113":2,"114":4,"115":2,"117":2,"120":3,"121":3,"123":1,"124":5,"125":3,"126":5,"127":2,"129":5,"131":4,"132":2,"134":5,"135":4,"138":2,"139":2,"140":2,"141":2,"142":1,"143":2,"144":1,"145":3,"146":11,"147":5,"148":2,"150":5,"151":2,"152":1,"153":2,"159":2,"163":2,"169":1,"170":1,"176":2,"178":1,"180":6,"182":4,"184":2,"190":1,"192":1,"196":2,"199":1,"201":3,"202":2,"203":1,"205":1,"209":3,"211":5,"214":3,"215":1,"246":2,"247":1,"250":1,"251":3,"254":1,"255":5,"256":2,"266":1,"267":1,"270":1,"271":2,"272":1,"278":4,"282":1,"293":4,"295":2,"297":3,"299":1}}],["and",{"0":{"0":1,"17":1,"52":1,"56":1,"65":1,"67":1,"102":1,"104":1,"150":1,"166":1,"180":1,"202":1,"213":1,"214":1,"215":1,"269":1,"270":1,"282":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"151":1,"181":1,"214":1,"215":1,"270":1,"271":1,"272":1,"283":1},"2":{"2":5,"3":6,"4":7,"5":1,"6":1,"7":3,"9":1,"11":2,"13":5,"14":1,"15":5,"16":8,"17":13,"18":3,"19":1,"22":1,"25":1,"26":1,"29":1,"32":2,"36":2,"38":2,"48":1,"49":3,"54":1,"58":4,"59":1,"60":2,"61":5,"62":1,"67":2,"68":5,"73":5,"74":3,"75":2,"78":4,"79":6,"80":4,"82":2,"84":5,"85":1,"89":1,"91":2,"92":3,"93":3,"95":3,"97":2,"99":1,"100":1,"105":2,"106":5,"107":9,"108":10,"111":1,"112":3,"113":3,"117":3,"120":6,"121":1,"123":8,"124":8,"125":1,"126":7,"127":3,"129":3,"131":3,"132":1,"134":2,"135":1,"137":1,"139":4,"140":1,"141":5,"142":1,"143":2,"144":2,"145":3,"146":10,"148":4,"149":1,"150":1,"151":3,"153":2,"155":3,"160":1,"161":1,"163":4,"174":4,"176":1,"178":1,"180":2,"182":5,"183":1,"184":7,"185":1,"186":10,"188":2,"190":2,"192":2,"195":4,"196":4,"198":1,"201":6,"202":2,"206":1,"208":2,"209":3,"210":9,"212":3,"213":1,"214":5,"215":4,"216":3,"218":7,"219":1,"227":1,"233":2,"234":2,"236":1,"238":3,"240":3,"241":2,"242":4,"244":3,"246":2,"247":2,"250":1,"251":7,"253":1,"255":4,"258":5,"259":13,"260":11,"262":9,"266":11,"267":3,"268":1,"270":1,"271":8,"272":1,"274":5,"275":1,"278":3,"279":4,"280":4,"281":5,"284":2,"285":2,"286":3,"288":5,"290":10,"295":4,"297":5,"299":10,"301":10,"302":3}}],["ab",{"2":{"251":3}}],["abuse",{"2":{"214":1,"215":1}}],["abgrp",{"2":{"196":1}}],["about",{"2":{"177":1,"214":1}}],["above",{"2":{"2":1,"39":1,"84":1,"143":1,"146":1,"183":1,"244":1}}],["ab=o",{"2":{"137":1}}],["ab=ok",{"2":{"136":1}}],["abelian",{"2":{"3":1,"6":1,"7":1,"11":5,"12":3,"13":16,"15":7,"16":4,"17":14,"18":2,"29":1,"54":3,"78":5,"79":6,"80":3,"82":9,"83":2,"123":3,"146":2,"153":2,"195":2,"196":4,"197":2,"201":4,"202":8,"203":2,"205":1,"206":4,"211":6,"251":1}}],["absalgassmor",{"2":{"186":4,"290":4}}],["absordquoring",{"2":{"148":2}}],["absolute",{"0":{"118":1,"140":1},"2":{"3":1,"63":1,"94":1,"95":4,"103":1,"107":1,"111":4,"114":4,"115":1,"117":2,"121":3,"122":3,"123":3,"125":2,"131":1,"134":4,"139":2,"140":1,"141":1,"143":1,"149":2,"271":2,"286":2,"287":2}}],["absnonsimplenumfieldelem",{"2":{"120":1,"121":1}}],["absnonsimplenumfieldembedding",{"2":{"94":1}}],["absnonsimplenumfield",{"2":{"117":2}}],["absnumfieldorderset",{"2":{"151":1}}],["absnumfieldorderfractionalideal",{"2":{"136":7,"137":3,"138":4,"147":3,"151":1,"291":1}}],["absnumfieldorderfractionalidealset",{"2":{"61":4}}],["absnumfieldorderelem",{"2":{"84":2,"131":1,"132":1,"133":2,"134":6,"136":1,"144":1,"151":1}}],["absnumfieldorder",{"2":{"80":1,"131":3,"136":7,"138":1,"144":1,"146":1,"147":1,"150":5,"151":6,"152":3,"154":3}}],["absnumfieldorderidealset",{"2":{"58":1,"61":5,"143":1,"144":1}}],["absnumfieldorderideal",{"2":{"58":1,"61":13,"74":2,"79":2,"80":2,"83":4,"84":2,"102":1,"111":2,"123":1,"127":3,"129":1,"136":4,"137":2,"138":1,"143":2,"144":19,"145":12,"146":12,"147":32,"148":7,"151":3,"152":2,"153":3,"182":4,"184":1,"190":1,"192":1,"219":2,"221":1,"236":1,"244":1,"284":3,"286":1,"295":3,"299":1,"301":3}}],["abs",{"2":{"64":1,"90":3,"103":1,"107":1,"112":12,"134":9,"151":2,"159":4}}],["abssimplenumfieldembedding",{"2":{"81":1,"82":1,"86":3,"92":1,"93":1,"128":3,"183":1,"235":1,"237":1,"245":1}}],["abssimplenumfieldelem",{"2":{"2":1,"58":1,"59":1,"61":30,"74":6,"79":5,"81":1,"82":3,"83":4,"95":1,"102":1,"111":6,"112":8,"113":3,"117":2,"120":3,"121":1,"123":1,"127":3,"129":3,"136":1,"138":2,"142":3,"143":1,"144":8,"145":3,"146":18,"147":27,"148":6,"150":2,"151":3,"152":1,"153":3,"181":2,"182":4,"184":1,"190":1,"192":1,"219":2,"220":1,"221":1,"224":1,"232":1,"235":3,"236":1,"237":1,"239":1,"243":1,"244":1,"245":3,"281":6,"283":3,"284":2,"285":3,"286":1,"287":9,"289":6,"292":1,"294":1,"295":3,"296":3,"298":2,"299":1,"300":2,"301":3,"302":10}}],["abssimplenumfieldorderquoringelem",{"2":{"148":1}}],["abssimplenumfieldorderquoring",{"2":{"148":7}}],["abssimplenumfieldorderideal",{"2":{"142":1,"146":4,"183":1,"237":1,"245":3}}],["abssimplenumfieldorderelem",{"2":{"74":2,"131":1,"134":2,"144":8,"146":4,"147":8,"148":4,"151":1}}],["abssimplenumfieldorderfractionalideal",{"2":{"61":5,"74":3,"135":1,"136":2,"145":6,"146":2,"223":2,"236":2,"286":1,"287":2,"291":2,"293":1,"302":3}}],["abssimplenumfieldorder",{"2":{"59":1,"123":1,"134":2,"136":1,"144":12,"146":13,"147":3,"148":3,"150":5,"151":17,"152":6,"153":6}}],["abssimplenumfield",{"2":{"58":1,"59":1,"61":28,"74":2,"79":3,"80":1,"81":1,"82":4,"83":4,"95":1,"102":1,"111":2,"112":1,"113":1,"117":4,"118":1,"120":3,"122":3,"123":6,"124":11,"125":4,"126":5,"127":6,"128":3,"129":3,"134":1,"138":1,"143":1,"144":7,"145":3,"146":12,"147":24,"148":6,"150":4,"151":2,"152":1,"153":3,"182":4,"183":1,"184":1,"190":1,"192":1,"219":2,"221":1,"236":1,"237":1,"244":1,"245":1,"284":2,"286":1,"295":3,"299":1,"301":3}}],["abstractlat",{"2":{"250":1,"254":1,"255":2,"257":3,"258":4,"260":8,"264":2,"266":2,"278":4,"282":5,"284":6,"286":15,"288":22,"290":9,"291":3,"293":7,"295":3,"297":2,"299":6,"301":11}}],["abstractly",{"2":{"219":1,"234":1}}],["abstractspacemor",{"2":{"186":8,"187":2,"188":1,"262":8,"290":8}}],["abstractspaceres",{"2":{"180":1}}],["abstractspace",{"2":{"176":8,"178":6,"180":7,"182":4,"184":2,"186":9,"188":2,"190":1,"250":1,"254":1,"278":4,"282":2,"301":1}}],["abstractstring",{"2":{"120":1}}],["abstractset",{"2":{"67":1}}],["abstractalgebra",{"0":{"104":1},"2":{"104":1,"296":2,"298":1}}],["abstractassociativealgebra",{"2":{"22":1,"23":2,"24":3,"25":2,"26":3,"30":1,"150":2}}],["abstractunitrange",{"2":{"17":2,"106":2}}],["abstractmatrix",{"2":{"13":2,"109":1}}],["abstract",{"2":{"12":1,"20":1,"79":1,"82":1,"148":1}}],["abstractvector",{"2":{"8":1,"13":1,"109":3}}],["a",{"0":{"2":1,"43":1,"72":1,"158":1,"205":1,"206":1,"240":1,"249":1,"250":1,"252":1,"278":1,"279":1,"280":1},"1":{"241":1,"281":1},"2":{"2":3,"4":1,"6":3,"7":11,"8":1,"10":2,"11":1,"12":1,"13":4,"14":15,"15":5,"16":8,"17":24,"18":9,"19":3,"20":1,"22":1,"23":7,"24":9,"25":20,"26":14,"27":1,"29":17,"30":2,"32":5,"33":5,"38":2,"39":6,"40":2,"43":1,"46":7,"48":1,"49":1,"51":2,"52":4,"54":5,"55":1,"58":2,"59":5,"60":2,"61":33,"63":6,"64":5,"67":16,"68":13,"70":1,"71":1,"73":16,"74":3,"75":5,"78":1,"79":7,"80":12,"81":4,"82":19,"83":11,"84":25,"85":3,"86":2,"87":3,"88":1,"89":4,"90":3,"91":14,"92":8,"93":35,"94":3,"95":3,"98":1,"100":8,"101":2,"102":12,"103":10,"104":8,"105":4,"106":27,"107":75,"108":60,"109":26,"111":50,"112":2,"113":17,"114":31,"115":5,"117":9,"118":1,"120":18,"121":15,"122":7,"123":6,"124":10,"125":11,"126":11,"127":15,"129":4,"130":3,"131":8,"132":6,"134":28,"135":4,"136":10,"137":6,"138":12,"139":3,"140":2,"141":5,"142":7,"143":4,"144":18,"145":13,"146":35,"147":74,"148":5,"149":6,"150":23,"151":14,"153":5,"155":5,"158":3,"159":5,"161":6,"163":8,"165":6,"167":19,"168":3,"169":8,"170":4,"172":1,"174":2,"175":2,"176":2,"177":2,"178":1,"179":2,"180":6,"181":2,"182":5,"183":1,"184":3,"185":2,"186":10,"188":5,"189":1,"190":4,"191":2,"192":3,"193":2,"195":5,"196":17,"198":5,"199":7,"201":12,"202":8,"203":3,"206":1,"207":1,"209":1,"210":9,"212":3,"214":12,"215":7,"218":8,"219":3,"220":14,"221":4,"222":4,"223":32,"224":14,"225":8,"226":3,"227":3,"228":4,"229":6,"230":5,"231":6,"232":20,"233":1,"234":4,"235":15,"236":8,"237":16,"238":4,"239":18,"240":6,"241":3,"243":15,"244":1,"245":3,"246":8,"247":4,"250":2,"251":8,"252":1,"255":6,"258":5,"259":10,"260":9,"262":9,"263":1,"266":7,"267":7,"268":4,"270":1,"274":2,"275":6,"278":7,"279":11,"280":8,"281":4,"282":1,"283":1,"285":1,"286":15,"287":1,"288":10,"289":2,"290":9,"291":2,"292":1,"293":8,"294":1,"295":9,"296":1,"297":6,"298":1,"299":2,"300":1,"301":17,"302":1}}],["og10",{"2":{"251":2}}],["og6",{"2":{"251":2}}],["oe",{"2":{"215":2,"218":1,"223":3,"225":3,"227":1,"244":1,"286":1,"288":1,"291":2,"293":2,"297":1}}],["old",{"2":{"207":1}}],["oddity",{"2":{"167":1,"169":4}}],["odd",{"2":{"167":2,"169":1,"209":2,"251":1,"259":2}}],["o→o",{"2":{"148":1}}],["occur",{"2":{"113":1}}],["other",{"0":{"160":1},"2":{"109":1,"130":1,"149":1,"150":1,"178":1,"185":1,"271":1}}],["otherwise",{"2":{"17":1,"18":1,"48":1,"64":1,"85":1,"113":1,"123":1,"124":2,"126":3,"146":2,"151":1,"195":1,"218":1,"258":1,"267":3,"297":1,"301":3}}],["obvious",{"2":{"60":1}}],["objects",{"2":{"67":1,"68":2,"98":1,"105":1,"146":1,"153":1,"186":3,"210":3,"262":3,"290":3}}],["object",{"2":{"58":1,"90":1,"108":1,"111":1,"120":1}}],["obtained",{"2":{"103":1,"107":1,"146":2,"153":1,"180":1,"288":1}}],["obtaining",{"2":{"60":1}}],["obtain",{"2":{"2":1,"18":2,"20":1,"29":1,"61":2,"79":1,"186":7,"210":6,"262":6,"275":1,"290":6}}],["o",{"2":{"46":2,"54":4,"58":1,"59":1,"80":2,"95":8,"102":1,"123":2,"131":14,"132":2,"134":6,"136":16,"138":4,"139":1,"140":3,"141":3,"144":21,"146":34,"147":10,"148":8,"150":7,"151":52,"152":19,"167":2,"172":2}}],["operatinos",{"2":{"133":1}}],["operation",{"2":{"15":1,"16":1,"75":2}}],["operations",{"0":{"75":1,"84":1,"100":1,"110":1,"119":1,"188":1,"260":1,"288":1},"1":{"111":1,"112":1,"113":1,"114":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1,"126":1,"127":1,"128":1,"129":1,"189":1,"289":1},"2":{"15":1,"16":1,"100":1,"107":1,"109":1,"130":1,"137":1,"145":1,"260":1}}],["operate",{"2":{"73":1}}],["options",{"2":{"42":1}}],["optionally",{"2":{"52":1}}],["optional",{"2":{"22":1,"55":1,"75":2,"84":3}}],["op",{"2":{"16":2}}],["output",{"2":{"111":2,"152":1,"161":1,"163":2,"180":1,"202":2,"236":1,"250":1,"255":2,"259":2,"266":1,"272":1,"278":4,"279":3,"301":7}}],["outputs",{"2":{"8":1}}],["outside",{"2":{"36":1}}],["outer",{"2":{"16":1}}],["oscar",{"2":{"5":1}}],["original",{"2":{"186":1}}],["orthogonality",{"0":{"188":1},"1":{"189":1}}],["orthogonal",{"0":{"200":1,"263":1},"2":{"178":1,"180":3,"181":1,"186":1,"188":3,"189":1,"192":1,"200":2,"263":3,"267":1,"288":2}}],["ord",{"2":{"151":1}}],["ordered",{"2":{"70":1,"71":1,"95":1,"167":1}}],["ordering",{"2":{"27":1}}],["orders",{"0":{"52":1,"140":1,"141":1,"149":1},"1":{"150":1,"151":1,"152":1,"153":1,"154":1},"2":{"3":4,"95":1,"130":1,"139":3,"141":1,"142":1,"143":2,"146":1,"149":6,"151":2,"152":1}}],["order",{"2":{"2":4,"10":3,"13":1,"14":2,"17":5,"28":1,"52":9,"53":1,"55":1,"61":1,"73":1,"75":1,"79":3,"81":1,"82":3,"83":1,"92":2,"95":3,"102":1,"111":4,"112":3,"113":1,"122":4,"125":2,"130":3,"131":2,"132":2,"134":4,"137":1,"138":3,"139":1,"140":3,"141":3,"142":6,"143":1,"146":15,"147":11,"148":1,"149":6,"150":29,"151":9,"152":7,"154":2,"175":1,"177":2,"183":4,"184":1,"185":1,"191":1,"193":1,"211":3,"220":3,"222":1,"224":1,"226":1,"228":1,"230":1,"232":1,"235":2,"237":1,"241":3,"243":3,"244":2,"245":8,"258":3,"275":1,"281":4,"285":2,"286":2,"287":12,"289":5,"292":2,"294":1,"295":1,"296":1,"297":3,"298":1,"300":1,"302":13}}],["orbit",{"2":{"127":1}}],["or",{"2":{"7":1,"13":1,"17":3,"18":2,"22":1,"29":1,"30":2,"36":1,"42":1,"45":1,"47":1,"59":1,"60":4,"64":1,"67":1,"73":1,"79":1,"80":4,"91":1,"93":2,"95":1,"111":1,"115":2,"120":5,"128":2,"129":1,"131":2,"139":2,"141":2,"142":1,"145":1,"146":5,"149":2,"150":2,"167":2,"178":1,"185":2,"186":4,"206":1,"209":2,"214":3,"219":2,"223":5,"229":2,"233":2,"234":2,"251":4,"267":2,"281":2,"290":4,"293":1,"301":2}}],["organized",{"2":{"38":1}}],["org",{"2":{"4":1,"125":1,"275":1}}],["once",{"2":{"142":1,"215":1,"275":1}}],["only",{"2":{"43":1,"78":1,"80":1,"84":4,"86":1,"107":2,"120":2,"123":2,"125":1,"131":2,"146":5,"149":1,"159":3,"180":1,"182":1,"208":1,"211":5,"212":1,"218":1,"260":1,"268":1,"271":3,"272":1}}],["onto",{"2":{"18":1,"61":1,"146":1,"188":1,"196":1}}],["ones",{"2":{"84":1,"106":1,"218":1}}],["one",{"2":{"7":1,"11":1,"13":3,"18":5,"29":1,"32":3,"39":2,"40":3,"43":3,"52":1,"58":1,"59":1,"68":3,"73":1,"74":1,"86":1,"97":1,"113":1,"115":1,"120":1,"126":1,"142":1,"143":1,"159":4,"176":1,"177":1,"180":2,"182":1,"183":1,"186":14,"187":1,"195":1,"201":2,"209":2,"210":12,"238":1,"259":2,"262":12,"267":2,"271":3,"281":2,"286":1,"288":3,"290":14,"297":1}}],["on",{"2":{"4":3,"18":1,"22":1,"42":2,"43":1,"47":1,"48":7,"51":1,"52":1,"53":3,"54":1,"60":3,"68":1,"70":2,"71":2,"72":1,"73":2,"82":1,"93":1,"95":1,"106":1,"107":2,"130":1,"139":1,"141":1,"146":2,"153":1,"172":1,"180":1,"186":1,"195":1,"196":1,"208":2,"209":2,"216":1,"223":5,"229":1,"251":4,"258":3,"267":1,"275":1,"290":1,"297":2,"299":2}}],["ok→f",{"2":{"2":1}}],["ok",{"2":{"2":9,"95":1,"139":1,"141":4,"151":4,"183":3,"184":1,"185":2,"191":2,"192":2,"193":2,"215":1,"218":1,"219":2,"220":2,"221":1,"222":2,"223":9,"224":2,"225":4,"226":2,"227":1,"228":2,"230":2,"231":2,"232":2,"233":1,"235":2,"236":1,"237":2,"240":1,"241":2,"242":1,"243":2,"244":1,"275":2,"285":2,"289":2,"291":1,"293":1,"294":2,"296":2,"300":2,"301":3,"302":2}}],["overlapping",{"2":{"271":1}}],["overlattice",{"2":{"266":3,"301":6}}],["overlattices",{"0":{"266":1}}],["overorder",{"2":{"151":3}}],["overorders",{"2":{"151":2}}],["overall",{"2":{"30":1}}],["overgroup",{"2":{"17":1}}],["over",{"0":{"2":1,"50":1,"56":1,"279":1,"280":1},"1":{"51":1,"52":1,"53":1,"54":1,"55":1,"281":1},"2":{"2":1,"7":1,"11":1,"22":2,"25":2,"26":3,"28":2,"32":3,"46":3,"48":1,"49":2,"51":1,"52":2,"53":2,"68":1,"81":1,"82":4,"83":7,"84":5,"91":1,"97":1,"98":2,"99":2,"105":1,"106":6,"108":3,"111":5,"114":4,"120":6,"121":1,"122":2,"123":2,"141":1,"142":3,"146":6,"149":1,"151":1,"167":1,"172":1,"174":4,"175":4,"176":3,"177":5,"178":1,"182":2,"184":3,"190":1,"192":3,"196":1,"201":4,"206":4,"212":1,"214":5,"215":1,"216":2,"218":4,"219":1,"220":4,"221":2,"222":2,"223":15,"225":4,"227":1,"229":2,"231":4,"233":2,"235":2,"236":3,"237":2,"238":2,"240":5,"241":4,"242":2,"243":4,"244":2,"245":21,"247":2,"254":1,"258":1,"266":1,"279":11,"280":8,"281":8,"283":5,"284":1,"285":2,"286":4,"287":9,"288":5,"289":10,"291":1,"293":1,"297":1}}],["oft",{"2":{"197":1}}],["offset",{"2":{"107":1}}],["off",{"2":{"75":2,"197":1}}],["of",{"0":{"2":1,"22":1,"43":1,"54":1,"64":1,"72":1,"86":1,"101":1,"117":1,"120":1,"140":1,"141":1,"155":1,"156":1,"159":1,"161":1,"174":1,"219":1,"234":1,"240":1,"242":1,"244":1,"248":1,"277":1},"1":{"156":1,"157":2,"158":2,"159":2,"160":2,"161":1,"162":2,"163":2,"164":2,"165":1,"166":1,"167":1,"168":1,"169":1,"170":1,"171":1,"172":1,"175":1,"220":1,"235":1,"241":1,"243":1,"245":1,"249":1,"250":1,"251":1,"252":1,"253":1,"278":1,"279":1,"280":1,"281":1},"2":{"2":11,"3":2,"4":2,"5":1,"6":2,"7":10,"8":2,"10":1,"11":1,"12":3,"13":11,"14":14,"15":4,"16":2,"17":39,"18":1,"19":1,"20":1,"22":2,"23":2,"24":1,"25":7,"26":8,"27":2,"28":3,"29":3,"30":4,"32":4,"33":1,"36":1,"38":1,"40":1,"42":2,"43":1,"45":1,"46":10,"47":1,"48":6,"49":2,"51":1,"52":4,"53":10,"54":8,"55":5,"58":9,"59":3,"60":2,"61":14,"62":1,"67":6,"68":13,"70":6,"71":6,"72":2,"73":8,"74":4,"75":6,"78":8,"79":19,"80":13,"81":6,"82":14,"83":10,"84":10,"85":2,"86":7,"87":1,"88":1,"89":4,"90":1,"91":10,"92":7,"93":7,"94":10,"95":20,"97":2,"98":5,"100":2,"102":6,"103":7,"104":1,"105":7,"106":4,"107":46,"108":18,"109":2,"111":40,"112":17,"113":7,"114":18,"115":6,"117":8,"118":1,"120":16,"121":6,"122":24,"123":7,"124":11,"125":3,"126":9,"127":16,"128":8,"129":3,"131":13,"132":9,"134":28,"135":2,"136":11,"137":2,"138":12,"139":8,"140":6,"141":3,"142":7,"143":6,"144":10,"145":1,"146":49,"147":32,"148":12,"149":13,"150":13,"151":43,"152":15,"153":6,"154":1,"155":5,"157":1,"158":1,"159":5,"160":2,"161":19,"163":4,"165":9,"166":2,"167":16,"168":2,"169":16,"170":5,"171":2,"172":1,"174":1,"175":5,"176":15,"177":6,"178":3,"180":18,"182":12,"183":11,"184":4,"186":14,"187":1,"188":4,"190":3,"192":7,"195":6,"196":14,"197":14,"198":3,"199":1,"200":1,"201":4,"202":6,"203":1,"204":2,"205":2,"206":2,"208":5,"209":12,"210":6,"211":4,"212":3,"214":15,"215":10,"216":4,"218":20,"219":6,"220":5,"221":3,"223":45,"225":4,"227":4,"229":12,"231":8,"233":15,"234":5,"235":7,"236":13,"238":10,"240":9,"241":6,"242":8,"243":5,"244":3,"245":12,"246":8,"247":3,"250":2,"251":13,"252":1,"253":1,"254":8,"255":10,"256":4,"257":5,"258":13,"259":21,"260":16,"262":6,"263":3,"264":1,"266":17,"267":13,"268":5,"270":2,"271":8,"272":2,"274":6,"275":2,"278":4,"279":20,"280":21,"281":16,"282":14,"283":6,"284":6,"285":4,"286":37,"287":18,"288":12,"289":10,"290":10,"291":9,"292":2,"293":9,"295":16,"297":14,"299":11,"301":17,"302":15}}]],"serializationVersion":2}';export{e as default}; diff --git a/dev/assets/chunks/VPLocalSearchBox.CNXTXHa7.js b/dev/assets/chunks/VPLocalSearchBox.D8p_TdYF.js similarity index 99% rename from dev/assets/chunks/VPLocalSearchBox.CNXTXHa7.js rename to dev/assets/chunks/VPLocalSearchBox.D8p_TdYF.js index f636a1debd..c28ae1b165 100644 --- a/dev/assets/chunks/VPLocalSearchBox.CNXTXHa7.js +++ b/dev/assets/chunks/VPLocalSearchBox.D8p_TdYF.js @@ -1,4 +1,4 @@ -var Ft=Object.defineProperty;var Ot=(a,e,t)=>e in a?Ft(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Ae=(a,e,t)=>Ot(a,typeof e!="symbol"?e+"":e,t);import{V as Ct,p as ie,h as me,aj as tt,ak as Rt,al as At,q as $e,am as Mt,d as Lt,D as xe,an as st,ao as Dt,ap as zt,s as Pt,aq as jt,v as Me,P as he,O as _e,ar as Vt,as as $t,W as Bt,R as Wt,$ as Kt,o as H,b as Jt,j as _,a0 as Ut,k as L,at as qt,au as Gt,av as Ht,c as Z,n as nt,e as Se,C as it,F as rt,a as fe,t as pe,aw as Qt,ax as at,ay as Yt,a8 as Zt,ae as Xt,az as es,_ as ts}from"./framework.aA4m3-Wc.js";import{u as ss,c as ns}from"./theme.DD6X4sQ1.js";const is={root:()=>Ct(()=>import("./@localSearchIndexroot.BzPtGbyX.js"),[])};/*! +var Ft=Object.defineProperty;var Ot=(a,e,t)=>e in a?Ft(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Ae=(a,e,t)=>Ot(a,typeof e!="symbol"?e+"":e,t);import{V as Ct,p as ie,h as me,aj as tt,ak as Rt,al as At,q as $e,am as Mt,d as Lt,D as xe,an as st,ao as Dt,ap as zt,s as Pt,aq as jt,v as Me,P as he,O as _e,ar as Vt,as as $t,W as Bt,R as Wt,$ as Kt,o as H,b as Jt,j as _,a0 as Ut,k as L,at as qt,au as Gt,av as Ht,c as Z,n as nt,e as Se,C as it,F as rt,a as fe,t as pe,aw as Qt,ax as at,ay as Yt,a8 as Zt,ae as Xt,az as es,_ as ts}from"./framework.aA4m3-Wc.js";import{u as ss,c as ns}from"./theme.BzTVG02o.js";const is={root:()=>Ct(()=>import("./@localSearchIndexroot.BZvKEvJ0.js"),[])};/*! * tabbable 6.2.0 * @license MIT, https://github.com/focus-trap/tabbable/blob/master/LICENSE */var mt=["input:not([inert])","select:not([inert])","textarea:not([inert])","a[href]:not([inert])","button:not([inert])","[tabindex]:not(slot):not([inert])","audio[controls]:not([inert])","video[controls]:not([inert])",'[contenteditable]:not([contenteditable="false"]):not([inert])',"details>summary:first-of-type:not([inert])","details:not([inert])"],Ne=mt.join(","),gt=typeof Element>"u",ae=gt?function(){}:Element.prototype.matches||Element.prototype.msMatchesSelector||Element.prototype.webkitMatchesSelector,Fe=!gt&&Element.prototype.getRootNode?function(a){var e;return a==null||(e=a.getRootNode)===null||e===void 0?void 0:e.call(a)}:function(a){return a==null?void 0:a.ownerDocument},Oe=function a(e,t){var s;t===void 0&&(t=!0);var n=e==null||(s=e.getAttribute)===null||s===void 0?void 0:s.call(e,"inert"),r=n===""||n==="true",i=r||t&&e&&a(e.parentNode);return i},rs=function(e){var t,s=e==null||(t=e.getAttribute)===null||t===void 0?void 0:t.call(e,"contenteditable");return s===""||s==="true"},bt=function(e,t,s){if(Oe(e))return[];var n=Array.prototype.slice.apply(e.querySelectorAll(Ne));return t&&ae.call(e,Ne)&&n.unshift(e),n=n.filter(s),n},yt=function a(e,t,s){for(var n=[],r=Array.from(e);r.length;){var i=r.shift();if(!Oe(i,!1))if(i.tagName==="SLOT"){var o=i.assignedElements(),l=o.length?o:i.children,c=a(l,!0,s);s.flatten?n.push.apply(n,c):n.push({scopeParent:i,candidates:c})}else{var h=ae.call(i,Ne);h&&s.filter(i)&&(t||!e.includes(i))&&n.push(i);var m=i.shadowRoot||typeof s.getShadowRoot=="function"&&s.getShadowRoot(i),f=!Oe(m,!1)&&(!s.shadowRootFilter||s.shadowRootFilter(i));if(m&&f){var b=a(m===!0?i.children:m.children,!0,s);s.flatten?n.push.apply(n,b):n.push({scopeParent:i,candidates:b})}else r.unshift.apply(r,i.children)}}return n},wt=function(e){return!isNaN(parseInt(e.getAttribute("tabindex"),10))},re=function(e){if(!e)throw new Error("No node provided");return e.tabIndex<0&&(/^(AUDIO|VIDEO|DETAILS)$/.test(e.tagName)||rs(e))&&!wt(e)?0:e.tabIndex},as=function(e,t){var s=re(e);return s<0&&t&&!wt(e)?0:s},os=function(e,t){return e.tabIndex===t.tabIndex?e.documentOrder-t.documentOrder:e.tabIndex-t.tabIndex},xt=function(e){return e.tagName==="INPUT"},ls=function(e){return xt(e)&&e.type==="hidden"},cs=function(e){var t=e.tagName==="DETAILS"&&Array.prototype.slice.apply(e.children).some(function(s){return s.tagName==="SUMMARY"});return t},us=function(e,t){for(var s=0;ssummary:first-of-type"),i=r?e.parentElement:e;if(ae.call(i,"details:not([open]) *"))return!0;if(!s||s==="full"||s==="legacy-full"){if(typeof n=="function"){for(var o=e;e;){var l=e.parentElement,c=Fe(e);if(l&&!l.shadowRoot&&n(l)===!0)return ot(e);e.assignedSlot?e=e.assignedSlot:!l&&c!==e.ownerDocument?e=c.host:e=l}e=o}if(ps(e))return!e.getClientRects().length;if(s!=="legacy-full")return!0}else if(s==="non-zero-area")return ot(e);return!1},ms=function(e){if(/^(INPUT|BUTTON|SELECT|TEXTAREA)$/.test(e.tagName))for(var t=e.parentElement;t;){if(t.tagName==="FIELDSET"&&t.disabled){for(var s=0;s=0)},bs=function a(e){var t=[],s=[];return e.forEach(function(n,r){var i=!!n.scopeParent,o=i?n.scopeParent:n,l=as(o,i),c=i?a(n.candidates):o;l===0?i?t.push.apply(t,c):t.push(o):s.push({documentOrder:r,tabIndex:l,item:n,isScope:i,content:c})}),s.sort(os).reduce(function(n,r){return r.isScope?n.push.apply(n,r.content):n.push(r.content),n},[]).concat(t)},ys=function(e,t){t=t||{};var s;return t.getShadowRoot?s=yt([e],t.includeContainer,{filter:Be.bind(null,t),flatten:!1,getShadowRoot:t.getShadowRoot,shadowRootFilter:gs}):s=bt(e,t.includeContainer,Be.bind(null,t)),bs(s)},ws=function(e,t){t=t||{};var s;return t.getShadowRoot?s=yt([e],t.includeContainer,{filter:Ce.bind(null,t),flatten:!0,getShadowRoot:t.getShadowRoot}):s=bt(e,t.includeContainer,Ce.bind(null,t)),s},oe=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return ae.call(e,Ne)===!1?!1:Be(t,e)},xs=mt.concat("iframe").join(","),Le=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return ae.call(e,xs)===!1?!1:Ce(t,e)};/*! diff --git a/dev/assets/chunks/theme.DD6X4sQ1.js b/dev/assets/chunks/theme.BzTVG02o.js similarity index 99% rename from dev/assets/chunks/theme.DD6X4sQ1.js rename to dev/assets/chunks/theme.BzTVG02o.js index f032bd46fd..78c459dd77 100644 --- a/dev/assets/chunks/theme.DD6X4sQ1.js +++ b/dev/assets/chunks/theme.BzTVG02o.js @@ -1,2 +1,2 @@ -const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.CNXTXHa7.js","assets/chunks/framework.aA4m3-Wc.js"])))=>i.map(i=>d[i]); -import{d as b,o as a,c as d,r as u,n as I,a as j,t as N,b as k,w as f,e as _,T as de,_ as $,u as Se,i as je,f as ze,g as ve,h as P,j as p,k as i,l as z,m as re,p as T,q as D,s as Z,v as F,x as pe,y as fe,z as Ke,A as We,B as K,F as M,C as E,D as Le,E as x,G as g,H,I as Te,J as ee,K as G,L as q,M as qe,N as we,O as ie,P as he,Q as Ne,R as te,S as Je,U as Ye,V as Xe,W as Ie,X as me,Y as Qe,Z as Ze,$ as xe,a0 as et,a1 as Me,a2 as tt,a3 as nt}from"./framework.aA4m3-Wc.js";const st=b({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(o){return(e,t)=>(a(),d("span",{class:I(["VPBadge",e.type])},[u(e.$slots,"default",{},()=>[j(N(e.text),1)])],2))}}),ot={key:0,class:"VPBackdrop"},at=b({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(o){return(e,t)=>(a(),k(de,{name:"fade"},{default:f(()=>[e.show?(a(),d("div",ot)):_("",!0)]),_:1}))}}),rt=$(at,[["__scopeId","data-v-b06cdb19"]]),L=Se;function it(o,e){let t,s=!1;return()=>{t&&clearTimeout(t),s?t=setTimeout(o,e):(o(),(s=!0)&&setTimeout(()=>s=!1,e))}}function le(o){return/^\//.test(o)?o:`/${o}`}function _e(o){const{pathname:e,search:t,hash:s,protocol:n}=new URL(o,"http://a.com");if(je(o)||o.startsWith("#")||!n.startsWith("http")||!ze(e))return o;const{site:r}=L(),l=e.endsWith("/")||e.endsWith(".html")?o:o.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,r.value.cleanUrls?"":".html")}${t}${s}`);return ve(l)}function Y({correspondingLink:o=!1}={}){const{site:e,localeIndex:t,page:s,theme:n,hash:r}=L(),l=P(()=>{var c,h;return{label:(c=e.value.locales[t.value])==null?void 0:c.label,link:((h=e.value.locales[t.value])==null?void 0:h.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:P(()=>Object.entries(e.value.locales).flatMap(([c,h])=>l.value.label===h.label?[]:{text:h.label,link:lt(h.link||(c==="root"?"/":`/${c}/`),n.value.i18nRouting!==!1&&o,s.value.relativePath.slice(l.value.link.length-1),!e.value.cleanUrls)+r.value})),currentLang:l}}function lt(o,e,t,s){return e?o.replace(/\/$/,"")+le(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,s?".html":"")):o}const ct={class:"NotFound"},ut={class:"code"},dt={class:"title"},vt={class:"quote"},pt={class:"action"},ft=["href","aria-label"],ht=b({__name:"NotFound",setup(o){const{theme:e}=L(),{currentLang:t}=Y();return(s,n)=>{var r,l,v,c,h;return a(),d("div",ct,[p("p",ut,N(((r=i(e).notFound)==null?void 0:r.code)??"404"),1),p("h1",dt,N(((l=i(e).notFound)==null?void 0:l.title)??"PAGE NOT FOUND"),1),n[0]||(n[0]=p("div",{class:"divider"},null,-1)),p("blockquote",vt,N(((v=i(e).notFound)==null?void 0:v.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),p("div",pt,[p("a",{class:"link",href:i(ve)(i(t).link),"aria-label":((c=i(e).notFound)==null?void 0:c.linkLabel)??"go to home"},N(((h=i(e).notFound)==null?void 0:h.linkText)??"Take me home"),9,ft)])])}}}),mt=$(ht,[["__scopeId","data-v-951cab6c"]]);function Ce(o,e){if(Array.isArray(o))return X(o);if(o==null)return[];e=le(e);const t=Object.keys(o).sort((n,r)=>r.split("/").length-n.split("/").length).find(n=>e.startsWith(le(n))),s=t?o[t]:[];return Array.isArray(s)?X(s):X(s.items,s.base)}function _t(o){const e=[];let t=0;for(const s in o){const n=o[s];if(n.items){t=e.push(n);continue}e[t]||e.push({items:[]}),e[t].items.push(n)}return e}function bt(o){const e=[];function t(s){for(const n of s)n.text&&n.link&&e.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&t(n.items)}return t(o),e}function ce(o,e){return Array.isArray(e)?e.some(t=>ce(o,t)):z(o,e.link)?!0:e.items?ce(o,e.items):!1}function X(o,e){return[...o].map(t=>{const s={...t},n=s.base||e;return n&&s.link&&(s.link=n+s.link),s.items&&(s.items=X(s.items,n)),s})}function R(){const{frontmatter:o,page:e,theme:t}=L(),s=re("(min-width: 960px)"),n=T(!1),r=P(()=>{const A=t.value.sidebar,w=e.value.relativePath;return A?Ce(A,w):[]}),l=T(r.value);D(r,(A,w)=>{JSON.stringify(A)!==JSON.stringify(w)&&(l.value=r.value)});const v=P(()=>o.value.sidebar!==!1&&l.value.length>0&&o.value.layout!=="home"),c=P(()=>h?o.value.aside==null?t.value.aside==="left":o.value.aside==="left":!1),h=P(()=>o.value.layout==="home"?!1:o.value.aside!=null?!!o.value.aside:t.value.aside!==!1),y=P(()=>v.value&&s.value),m=P(()=>v.value?_t(l.value):[]);function V(){n.value=!0}function S(){n.value=!1}function C(){n.value?S():V()}return{isOpen:n,sidebar:l,sidebarGroups:m,hasSidebar:v,hasAside:h,leftAside:c,isSidebarEnabled:y,open:V,close:S,toggle:C}}function kt(o,e){let t;Z(()=>{t=o.value?document.activeElement:void 0}),F(()=>{window.addEventListener("keyup",s)}),pe(()=>{window.removeEventListener("keyup",s)});function s(n){n.key==="Escape"&&o.value&&(e(),t==null||t.focus())}}function gt(o){const{page:e,hash:t}=L(),s=T(!1),n=P(()=>o.value.collapsed!=null),r=P(()=>!!o.value.link),l=T(!1),v=()=>{l.value=z(e.value.relativePath,o.value.link)};D([e,o,t],v),F(v);const c=P(()=>l.value?!0:o.value.items?ce(e.value.relativePath,o.value.items):!1),h=P(()=>!!(o.value.items&&o.value.items.length));Z(()=>{s.value=!!(n.value&&o.value.collapsed)}),fe(()=>{(l.value||c.value)&&(s.value=!1)});function y(){n.value&&(s.value=!s.value)}return{collapsed:s,collapsible:n,isLink:r,isActiveLink:l,hasActiveLink:c,hasChildren:h,toggle:y}}function $t(){const{hasSidebar:o}=R(),e=re("(min-width: 960px)"),t=re("(min-width: 1280px)");return{isAsideEnabled:P(()=>!t.value&&!e.value?!1:o.value?t.value:e.value)}}const ue=[];function Ae(o){return typeof o.outline=="object"&&!Array.isArray(o.outline)&&o.outline.label||o.outlineTitle||"On this page"}function be(o){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const s=Number(t.tagName[1]);return{element:t,title:yt(t),link:"#"+t.id,level:s}});return Pt(e,o)}function yt(o){let e="";for(const t of o.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function Pt(o,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[s,n]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;return Lt(o,s,n)}function Vt(o,e){const{isAsideEnabled:t}=$t(),s=it(r,100);let n=null;F(()=>{requestAnimationFrame(r),window.addEventListener("scroll",s)}),Ke(()=>{l(location.hash)}),pe(()=>{window.removeEventListener("scroll",s)});function r(){if(!t.value)return;const v=window.scrollY,c=window.innerHeight,h=document.body.offsetHeight,y=Math.abs(v+c-h)<1,m=ue.map(({element:S,link:C})=>({link:C,top:St(S)})).filter(({top:S})=>!Number.isNaN(S)).sort((S,C)=>S.top-C.top);if(!m.length){l(null);return}if(v<1){l(null);return}if(y){l(m[m.length-1].link);return}let V=null;for(const{link:S,top:C}of m){if(C>v+We()+4)break;V=S}l(V)}function l(v){n&&n.classList.remove("active"),v==null?n=null:n=o.value.querySelector(`a[href="${decodeURIComponent(v)}"]`);const c=n;c?(c.classList.add("active"),e.value.style.top=c.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function St(o){let e=0;for(;o!==document.body;){if(o===null)return NaN;e+=o.offsetTop,o=o.offsetParent}return e}function Lt(o,e,t){ue.length=0;const s=[],n=[];return o.forEach(r=>{const l={...r,children:[]};let v=n[n.length-1];for(;v&&v.level>=l.level;)n.pop(),v=n[n.length-1];if(l.element.classList.contains("ignore-header")||v&&"shouldIgnore"in v){n.push({level:l.level,shouldIgnore:!0});return}l.level>t||l.level{const n=K("VPDocOutlineItem",!0);return a(),d("ul",{class:I(["VPDocOutlineItem",t.root?"root":"nested"])},[(a(!0),d(M,null,E(t.headers,({children:r,link:l,title:v})=>(a(),d("li",null,[p("a",{class:"outline-link",href:l,onClick:e,title:v},N(v),9,Tt),r!=null&&r.length?(a(),k(n,{key:0,headers:r},null,8,["headers"])):_("",!0)]))),256))],2)}}}),Ee=$(wt,[["__scopeId","data-v-3f927ebe"]]),Nt={class:"content"},It={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},Mt=b({__name:"VPDocAsideOutline",setup(o){const{frontmatter:e,theme:t}=L(),s=Le([]);x(()=>{s.value=be(e.value.outline??t.value.outline)});const n=T(),r=T();return Vt(n,r),(l,v)=>(a(),d("nav",{"aria-labelledby":"doc-outline-aria-label",class:I(["VPDocAsideOutline",{"has-outline":s.value.length>0}]),ref_key:"container",ref:n},[p("div",Nt,[p("div",{class:"outline-marker",ref_key:"marker",ref:r},null,512),p("div",It,N(i(Ae)(i(t))),1),g(Ee,{headers:s.value,root:!0},null,8,["headers"])])],2))}}),Ct=$(Mt,[["__scopeId","data-v-b38bf2ff"]]),At={class:"VPDocAsideCarbonAds"},Et=b({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(o){const e=()=>null;return(t,s)=>(a(),d("div",At,[g(i(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),Bt={class:"VPDocAside"},Ht=b({__name:"VPDocAside",setup(o){const{theme:e}=L();return(t,s)=>(a(),d("div",Bt,[u(t.$slots,"aside-top",{},void 0,!0),u(t.$slots,"aside-outline-before",{},void 0,!0),g(Ct),u(t.$slots,"aside-outline-after",{},void 0,!0),s[0]||(s[0]=p("div",{class:"spacer"},null,-1)),u(t.$slots,"aside-ads-before",{},void 0,!0),i(e).carbonAds?(a(),k(Et,{key:0,"carbon-ads":i(e).carbonAds},null,8,["carbon-ads"])):_("",!0),u(t.$slots,"aside-ads-after",{},void 0,!0),u(t.$slots,"aside-bottom",{},void 0,!0)]))}}),Ot=$(Ht,[["__scopeId","data-v-6d7b3c46"]]);function Dt(){const{theme:o,page:e}=L();return P(()=>{const{text:t="Edit this page",pattern:s=""}=o.value.editLink||{};let n;return typeof s=="function"?n=s(e.value):n=s.replace(/:path/g,e.value.filePath),{url:n,text:t}})}function Ft(){const{page:o,theme:e,frontmatter:t}=L();return P(()=>{var h,y,m,V,S,C,A,w;const s=Ce(e.value.sidebar,o.value.relativePath),n=bt(s),r=Rt(n,B=>B.link.replace(/[?#].*$/,"")),l=r.findIndex(B=>z(o.value.relativePath,B.link)),v=((h=e.value.docFooter)==null?void 0:h.prev)===!1&&!t.value.prev||t.value.prev===!1,c=((y=e.value.docFooter)==null?void 0:y.next)===!1&&!t.value.next||t.value.next===!1;return{prev:v?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((m=r[l-1])==null?void 0:m.docFooterText)??((V=r[l-1])==null?void 0:V.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((S=r[l-1])==null?void 0:S.link)},next:c?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((C=r[l+1])==null?void 0:C.docFooterText)??((A=r[l+1])==null?void 0:A.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((w=r[l+1])==null?void 0:w.link)}}})}function Rt(o,e){const t=new Set;return o.filter(s=>{const n=e(s);return t.has(n)?!1:t.add(n)})}const O=b({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(o){const e=o,t=P(()=>e.tag??(e.href?"a":"span")),s=P(()=>e.href&&Te.test(e.href)||e.target==="_blank");return(n,r)=>(a(),k(H(t.value),{class:I(["VPLink",{link:n.href,"vp-external-link-icon":s.value,"no-icon":n.noIcon}]),href:n.href?i(_e)(n.href):void 0,target:n.target??(s.value?"_blank":void 0),rel:n.rel??(s.value?"noreferrer":void 0)},{default:f(()=>[u(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),Ut={class:"VPLastUpdated"},Gt=["datetime"],jt=b({__name:"VPDocFooterLastUpdated",setup(o){const{theme:e,page:t,lang:s}=L(),n=P(()=>new Date(t.value.lastUpdated)),r=P(()=>n.value.toISOString()),l=T("");return F(()=>{Z(()=>{var v,c,h;l.value=new Intl.DateTimeFormat((c=(v=e.value.lastUpdated)==null?void 0:v.formatOptions)!=null&&c.forceLocale?s.value:void 0,((h=e.value.lastUpdated)==null?void 0:h.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(n.value)})}),(v,c)=>{var h;return a(),d("p",Ut,[j(N(((h=i(e).lastUpdated)==null?void 0:h.text)||i(e).lastUpdatedText||"Last updated")+": ",1),p("time",{datetime:r.value},N(l.value),9,Gt)])}}}),zt=$(jt,[["__scopeId","data-v-475f71b8"]]),Kt={key:0,class:"VPDocFooter"},Wt={key:0,class:"edit-info"},qt={key:0,class:"edit-link"},Jt={key:1,class:"last-updated"},Yt={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Xt={class:"pager"},Qt=["innerHTML"],Zt=["innerHTML"],xt={class:"pager"},en=["innerHTML"],tn=["innerHTML"],nn=b({__name:"VPDocFooter",setup(o){const{theme:e,page:t,frontmatter:s}=L(),n=Dt(),r=Ft(),l=P(()=>e.value.editLink&&s.value.editLink!==!1),v=P(()=>t.value.lastUpdated),c=P(()=>l.value||v.value||r.value.prev||r.value.next);return(h,y)=>{var m,V,S,C;return c.value?(a(),d("footer",Kt,[u(h.$slots,"doc-footer-before",{},void 0,!0),l.value||v.value?(a(),d("div",Wt,[l.value?(a(),d("div",qt,[g(O,{class:"edit-link-button",href:i(n).url,"no-icon":!0},{default:f(()=>[y[0]||(y[0]=p("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),j(" "+N(i(n).text),1)]),_:1},8,["href"])])):_("",!0),v.value?(a(),d("div",Jt,[g(zt)])):_("",!0)])):_("",!0),(m=i(r).prev)!=null&&m.link||(V=i(r).next)!=null&&V.link?(a(),d("nav",Yt,[y[1]||(y[1]=p("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),p("div",Xt,[(S=i(r).prev)!=null&&S.link?(a(),k(O,{key:0,class:"pager-link prev",href:i(r).prev.link},{default:f(()=>{var A;return[p("span",{class:"desc",innerHTML:((A=i(e).docFooter)==null?void 0:A.prev)||"Previous page"},null,8,Qt),p("span",{class:"title",innerHTML:i(r).prev.text},null,8,Zt)]}),_:1},8,["href"])):_("",!0)]),p("div",xt,[(C=i(r).next)!=null&&C.link?(a(),k(O,{key:0,class:"pager-link next",href:i(r).next.link},{default:f(()=>{var A;return[p("span",{class:"desc",innerHTML:((A=i(e).docFooter)==null?void 0:A.next)||"Next page"},null,8,en),p("span",{class:"title",innerHTML:i(r).next.text},null,8,tn)]}),_:1},8,["href"])):_("",!0)])])):_("",!0)])):_("",!0)}}}),sn=$(nn,[["__scopeId","data-v-4f9813fa"]]),on={class:"container"},an={class:"aside-container"},rn={class:"aside-content"},ln={class:"content"},cn={class:"content-container"},un={class:"main"},dn=b({__name:"VPDoc",setup(o){const{theme:e}=L(),t=ee(),{hasSidebar:s,hasAside:n,leftAside:r}=R(),l=P(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(v,c)=>{const h=K("Content");return a(),d("div",{class:I(["VPDoc",{"has-sidebar":i(s),"has-aside":i(n)}])},[u(v.$slots,"doc-top",{},void 0,!0),p("div",on,[i(n)?(a(),d("div",{key:0,class:I(["aside",{"left-aside":i(r)}])},[c[0]||(c[0]=p("div",{class:"aside-curtain"},null,-1)),p("div",an,[p("div",rn,[g(Ot,null,{"aside-top":f(()=>[u(v.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":f(()=>[u(v.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":f(()=>[u(v.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[u(v.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[u(v.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[u(v.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):_("",!0),p("div",ln,[p("div",cn,[u(v.$slots,"doc-before",{},void 0,!0),p("main",un,[g(h,{class:I(["vp-doc",[l.value,i(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),g(sn,null,{"doc-footer-before":f(()=>[u(v.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),u(v.$slots,"doc-after",{},void 0,!0)])])]),u(v.$slots,"doc-bottom",{},void 0,!0)],2)}}}),vn=$(dn,[["__scopeId","data-v-83890dd9"]]),pn=b({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(o){const e=o,t=P(()=>e.href&&Te.test(e.href)),s=P(()=>e.tag||(e.href?"a":"button"));return(n,r)=>(a(),k(H(s.value),{class:I(["VPButton",[n.size,n.theme]]),href:n.href?i(_e)(n.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:f(()=>[j(N(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),fn=$(pn,[["__scopeId","data-v-906d7fb4"]]),hn=["src","alt"],mn=b({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(o){return(e,t)=>{const s=K("VPImage",!0);return e.image?(a(),d(M,{key:0},[typeof e.image=="string"||"src"in e.image?(a(),d("img",G({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:i(ve)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,hn)):(a(),d(M,{key:1},[g(s,G({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),g(s,G({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):_("",!0)}}}),Q=$(mn,[["__scopeId","data-v-35a7d0b8"]]),_n={class:"container"},bn={class:"main"},kn={key:0,class:"name"},gn=["innerHTML"],$n=["innerHTML"],yn=["innerHTML"],Pn={key:0,class:"actions"},Vn={key:0,class:"image"},Sn={class:"image-container"},Ln=b({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(o){const e=q("hero-image-slot-exists");return(t,s)=>(a(),d("div",{class:I(["VPHero",{"has-image":t.image||i(e)}])},[p("div",_n,[p("div",bn,[u(t.$slots,"home-hero-info-before",{},void 0,!0),u(t.$slots,"home-hero-info",{},()=>[t.name?(a(),d("h1",kn,[p("span",{innerHTML:t.name,class:"clip"},null,8,gn)])):_("",!0),t.text?(a(),d("p",{key:1,innerHTML:t.text,class:"text"},null,8,$n)):_("",!0),t.tagline?(a(),d("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,yn)):_("",!0)],!0),u(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(a(),d("div",Pn,[(a(!0),d(M,null,E(t.actions,n=>(a(),d("div",{key:n.link,class:"action"},[g(fn,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):_("",!0),u(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||i(e)?(a(),d("div",Vn,[p("div",Sn,[s[0]||(s[0]=p("div",{class:"image-bg"},null,-1)),u(t.$slots,"home-hero-image",{},()=>[t.image?(a(),k(Q,{key:0,class:"image-src",image:t.image},null,8,["image"])):_("",!0)],!0)])])):_("",!0)])],2))}}),Tn=$(Ln,[["__scopeId","data-v-955009fc"]]),wn=b({__name:"VPHomeHero",setup(o){const{frontmatter:e}=L();return(t,s)=>i(e).hero?(a(),k(Tn,{key:0,class:"VPHomeHero",name:i(e).hero.name,text:i(e).hero.text,tagline:i(e).hero.tagline,image:i(e).hero.image,actions:i(e).hero.actions},{"home-hero-info-before":f(()=>[u(t.$slots,"home-hero-info-before")]),"home-hero-info":f(()=>[u(t.$slots,"home-hero-info")]),"home-hero-info-after":f(()=>[u(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":f(()=>[u(t.$slots,"home-hero-actions-after")]),"home-hero-image":f(()=>[u(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):_("",!0)}}),Nn={class:"box"},In={key:0,class:"icon"},Mn=["innerHTML"],Cn=["innerHTML"],An=["innerHTML"],En={key:4,class:"link-text"},Bn={class:"link-text-value"},Hn=b({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(o){return(e,t)=>(a(),k(O,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:f(()=>[p("article",Nn,[typeof e.icon=="object"&&e.icon.wrap?(a(),d("div",In,[g(Q,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(a(),k(Q,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(a(),d("div",{key:2,class:"icon",innerHTML:e.icon},null,8,Mn)):_("",!0),p("h2",{class:"title",innerHTML:e.title},null,8,Cn),e.details?(a(),d("p",{key:3,class:"details",innerHTML:e.details},null,8,An)):_("",!0),e.linkText?(a(),d("div",En,[p("p",Bn,[j(N(e.linkText)+" ",1),t[0]||(t[0]=p("span",{class:"vpi-arrow-right link-text-icon"},null,-1))])])):_("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),On=$(Hn,[["__scopeId","data-v-f5e9645b"]]),Dn={key:0,class:"VPFeatures"},Fn={class:"container"},Rn={class:"items"},Un=b({__name:"VPFeatures",props:{features:{}},setup(o){const e=o,t=P(()=>{const s=e.features.length;if(s){if(s===2)return"grid-2";if(s===3)return"grid-3";if(s%3===0)return"grid-6";if(s>3)return"grid-4"}else return});return(s,n)=>s.features?(a(),d("div",Dn,[p("div",Fn,[p("div",Rn,[(a(!0),d(M,null,E(s.features,r=>(a(),d("div",{key:r.title,class:I(["item",[t.value]])},[g(On,{icon:r.icon,title:r.title,details:r.details,link:r.link,"link-text":r.linkText,rel:r.rel,target:r.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):_("",!0)}}),Gn=$(Un,[["__scopeId","data-v-d0a190d7"]]),jn=b({__name:"VPHomeFeatures",setup(o){const{frontmatter:e}=L();return(t,s)=>i(e).features?(a(),k(Gn,{key:0,class:"VPHomeFeatures",features:i(e).features},null,8,["features"])):_("",!0)}}),zn=b({__name:"VPHomeContent",setup(o){const{width:e}=qe({initialWidth:0,includeScrollbar:!1});return(t,s)=>(a(),d("div",{class:"vp-doc container",style:we(i(e)?{"--vp-offset":`calc(50% - ${i(e)/2}px)`}:{})},[u(t.$slots,"default",{},void 0,!0)],4))}}),Kn=$(zn,[["__scopeId","data-v-7a48a447"]]),Wn={class:"VPHome"},qn=b({__name:"VPHome",setup(o){const{frontmatter:e}=L();return(t,s)=>{const n=K("Content");return a(),d("div",Wn,[u(t.$slots,"home-hero-before",{},void 0,!0),g(wn,null,{"home-hero-info-before":f(()=>[u(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[u(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[u(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[u(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[u(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),u(t.$slots,"home-hero-after",{},void 0,!0),u(t.$slots,"home-features-before",{},void 0,!0),g(jn),u(t.$slots,"home-features-after",{},void 0,!0),i(e).markdownStyles!==!1?(a(),k(Kn,{key:0},{default:f(()=>[g(n)]),_:1})):(a(),k(n,{key:1}))])}}}),Jn=$(qn,[["__scopeId","data-v-cbb6ec48"]]),Yn={},Xn={class:"VPPage"};function Qn(o,e){const t=K("Content");return a(),d("div",Xn,[u(o.$slots,"page-top"),g(t),u(o.$slots,"page-bottom")])}const Zn=$(Yn,[["render",Qn]]),xn=b({__name:"VPContent",setup(o){const{page:e,frontmatter:t}=L(),{hasSidebar:s}=R();return(n,r)=>(a(),d("div",{class:I(["VPContent",{"has-sidebar":i(s),"is-home":i(t).layout==="home"}]),id:"VPContent"},[i(e).isNotFound?u(n.$slots,"not-found",{key:0},()=>[g(mt)],!0):i(t).layout==="page"?(a(),k(Zn,{key:1},{"page-top":f(()=>[u(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":f(()=>[u(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):i(t).layout==="home"?(a(),k(Jn,{key:2},{"home-hero-before":f(()=>[u(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":f(()=>[u(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[u(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[u(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[u(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[u(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":f(()=>[u(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":f(()=>[u(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":f(()=>[u(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):i(t).layout&&i(t).layout!=="doc"?(a(),k(H(i(t).layout),{key:3})):(a(),k(vn,{key:4},{"doc-top":f(()=>[u(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":f(()=>[u(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":f(()=>[u(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":f(()=>[u(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":f(()=>[u(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":f(()=>[u(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":f(()=>[u(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[u(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[u(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[u(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":f(()=>[u(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),es=$(xn,[["__scopeId","data-v-91765379"]]),ts={class:"container"},ns=["innerHTML"],ss=["innerHTML"],os=b({__name:"VPFooter",setup(o){const{theme:e,frontmatter:t}=L(),{hasSidebar:s}=R();return(n,r)=>i(e).footer&&i(t).footer!==!1?(a(),d("footer",{key:0,class:I(["VPFooter",{"has-sidebar":i(s)}])},[p("div",ts,[i(e).footer.message?(a(),d("p",{key:0,class:"message",innerHTML:i(e).footer.message},null,8,ns)):_("",!0),i(e).footer.copyright?(a(),d("p",{key:1,class:"copyright",innerHTML:i(e).footer.copyright},null,8,ss)):_("",!0)])],2)):_("",!0)}}),as=$(os,[["__scopeId","data-v-c970a860"]]);function rs(){const{theme:o,frontmatter:e}=L(),t=Le([]),s=P(()=>t.value.length>0);return x(()=>{t.value=be(e.value.outline??o.value.outline)}),{headers:t,hasLocalNav:s}}const is={class:"menu-text"},ls={class:"header"},cs={class:"outline"},us=b({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(o){const e=o,{theme:t}=L(),s=T(!1),n=T(0),r=T(),l=T();function v(m){var V;(V=r.value)!=null&&V.contains(m.target)||(s.value=!1)}D(s,m=>{if(m){document.addEventListener("click",v);return}document.removeEventListener("click",v)}),ie("Escape",()=>{s.value=!1}),x(()=>{s.value=!1});function c(){s.value=!s.value,n.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function h(m){m.target.classList.contains("outline-link")&&(l.value&&(l.value.style.transition="none"),he(()=>{s.value=!1}))}function y(){s.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(m,V)=>(a(),d("div",{class:"VPLocalNavOutlineDropdown",style:we({"--vp-vh":n.value+"px"}),ref_key:"main",ref:r},[m.headers.length>0?(a(),d("button",{key:0,onClick:c,class:I({open:s.value})},[p("span",is,N(i(Ae)(i(t))),1),V[0]||(V[0]=p("span",{class:"vpi-chevron-right icon"},null,-1))],2)):(a(),d("button",{key:1,onClick:y},N(i(t).returnToTopLabel||"Return to top"),1)),g(de,{name:"flyout"},{default:f(()=>[s.value?(a(),d("div",{key:0,ref_key:"items",ref:l,class:"items",onClick:h},[p("div",ls,[p("a",{class:"top-link",href:"#",onClick:y},N(i(t).returnToTopLabel||"Return to top"),1)]),p("div",cs,[g(Ee,{headers:m.headers},null,8,["headers"])])],512)):_("",!0)]),_:1})],4))}}),ds=$(us,[["__scopeId","data-v-bc9dc845"]]),vs={class:"container"},ps=["aria-expanded"],fs={class:"menu-text"},hs=b({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(o){const{theme:e,frontmatter:t}=L(),{hasSidebar:s}=R(),{headers:n}=rs(),{y:r}=Ne(),l=T(0);F(()=>{l.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),x(()=>{n.value=be(t.value.outline??e.value.outline)});const v=P(()=>n.value.length===0),c=P(()=>v.value&&!s.value),h=P(()=>({VPLocalNav:!0,"has-sidebar":s.value,empty:v.value,fixed:c.value}));return(y,m)=>i(t).layout!=="home"&&(!c.value||i(r)>=l.value)?(a(),d("div",{key:0,class:I(h.value)},[p("div",vs,[i(s)?(a(),d("button",{key:0,class:"menu","aria-expanded":y.open,"aria-controls":"VPSidebarNav",onClick:m[0]||(m[0]=V=>y.$emit("open-menu"))},[m[1]||(m[1]=p("span",{class:"vpi-align-left menu-icon"},null,-1)),p("span",fs,N(i(e).sidebarMenuLabel||"Menu"),1)],8,ps)):_("",!0),g(ds,{headers:i(n),navHeight:l.value},null,8,["headers","navHeight"])])],2)):_("",!0)}}),ms=$(hs,[["__scopeId","data-v-070ab83d"]]);function _s(){const o=T(!1);function e(){o.value=!0,window.addEventListener("resize",n)}function t(){o.value=!1,window.removeEventListener("resize",n)}function s(){o.value?t():e()}function n(){window.outerWidth>=768&&t()}const r=ee();return D(()=>r.path,t),{isScreenOpen:o,openScreen:e,closeScreen:t,toggleScreen:s}}const bs={},ks={class:"VPSwitch",type:"button",role:"switch"},gs={class:"check"},$s={key:0,class:"icon"};function ys(o,e){return a(),d("button",ks,[p("span",gs,[o.$slots.default?(a(),d("span",$s,[u(o.$slots,"default",{},void 0,!0)])):_("",!0)])])}const Ps=$(bs,[["render",ys],["__scopeId","data-v-4a1c76db"]]),Vs=b({__name:"VPSwitchAppearance",setup(o){const{isDark:e,theme:t}=L(),s=q("toggle-appearance",()=>{e.value=!e.value}),n=T("");return fe(()=>{n.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(r,l)=>(a(),k(Ps,{title:n.value,class:"VPSwitchAppearance","aria-checked":i(e),onClick:i(s)},{default:f(()=>l[0]||(l[0]=[p("span",{class:"vpi-sun sun"},null,-1),p("span",{class:"vpi-moon moon"},null,-1)])),_:1},8,["title","aria-checked","onClick"]))}}),ke=$(Vs,[["__scopeId","data-v-e40a8bb6"]]),Ss={key:0,class:"VPNavBarAppearance"},Ls=b({__name:"VPNavBarAppearance",setup(o){const{site:e}=L();return(t,s)=>i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(a(),d("div",Ss,[g(ke)])):_("",!0)}}),Ts=$(Ls,[["__scopeId","data-v-af096f4a"]]),ge=T();let Be=!1,ae=0;function ws(o){const e=T(!1);if(te){!Be&&Ns(),ae++;const t=D(ge,s=>{var n,r,l;s===o.el.value||(n=o.el.value)!=null&&n.contains(s)?(e.value=!0,(r=o.onFocus)==null||r.call(o)):(e.value=!1,(l=o.onBlur)==null||l.call(o))});pe(()=>{t(),ae--,ae||Is()})}return Je(e)}function Ns(){document.addEventListener("focusin",He),Be=!0,ge.value=document.activeElement}function Is(){document.removeEventListener("focusin",He)}function He(){ge.value=document.activeElement}const Ms={class:"VPMenuLink"},Cs=["innerHTML"],As=b({__name:"VPMenuLink",props:{item:{}},setup(o){const{page:e}=L();return(t,s)=>(a(),d("div",Ms,[g(O,{class:I({active:i(z)(i(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Cs)]),_:1},8,["class","href","target","rel","no-icon"])]))}}),ne=$(As,[["__scopeId","data-v-acbfed09"]]),Es={class:"VPMenuGroup"},Bs={key:0,class:"title"},Hs=b({__name:"VPMenuGroup",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),d("div",Es,[e.text?(a(),d("p",Bs,N(e.text),1)):_("",!0),(a(!0),d(M,null,E(e.items,s=>(a(),d(M,null,["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):_("",!0)],64))),256))]))}}),Os=$(Hs,[["__scopeId","data-v-48c802d0"]]),Ds={class:"VPMenu"},Fs={key:0,class:"items"},Rs=b({__name:"VPMenu",props:{items:{}},setup(o){return(e,t)=>(a(),d("div",Ds,[e.items?(a(),d("div",Fs,[(a(!0),d(M,null,E(e.items,s=>(a(),d(M,{key:JSON.stringify(s)},["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):"component"in s?(a(),k(H(s.component),G({key:1,ref_for:!0},s.props),null,16)):(a(),k(Os,{key:2,text:s.text,items:s.items},null,8,["text","items"]))],64))),128))])):_("",!0),u(e.$slots,"default",{},void 0,!0)]))}}),Us=$(Rs,[["__scopeId","data-v-7dd3104a"]]),Gs=["aria-expanded","aria-label"],js={key:0,class:"text"},zs=["innerHTML"],Ks={key:1,class:"vpi-more-horizontal icon"},Ws={class:"menu"},qs=b({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(o){const e=T(!1),t=T();ws({el:t,onBlur:s});function s(){e.value=!1}return(n,r)=>(a(),d("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:r[1]||(r[1]=l=>e.value=!0),onMouseleave:r[2]||(r[2]=l=>e.value=!1)},[p("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":n.label,onClick:r[0]||(r[0]=l=>e.value=!e.value)},[n.button||n.icon?(a(),d("span",js,[n.icon?(a(),d("span",{key:0,class:I([n.icon,"option-icon"])},null,2)):_("",!0),n.button?(a(),d("span",{key:1,innerHTML:n.button},null,8,zs)):_("",!0),r[3]||(r[3]=p("span",{class:"vpi-chevron-down text-icon"},null,-1))])):(a(),d("span",Ks))],8,Gs),p("div",Ws,[g(Us,{items:n.items},{default:f(()=>[u(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),$e=$(qs,[["__scopeId","data-v-04f5c5e9"]]),Js=["href","aria-label","innerHTML"],Ys=b({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(o){const e=o,t=T();F(async()=>{var r;await he();const n=(r=t.value)==null?void 0:r.children[0];n instanceof HTMLElement&&n.className.startsWith("vpi-social-")&&(getComputedStyle(n).maskImage||getComputedStyle(n).webkitMaskImage)==="none"&&n.style.setProperty("--icon",`url('https://api.iconify.design/simple-icons/${e.icon}.svg')`)});const s=P(()=>typeof e.icon=="object"?e.icon.svg:``);return(n,r)=>(a(),d("a",{ref_key:"el",ref:t,class:"VPSocialLink no-icon",href:n.link,"aria-label":n.ariaLabel??(typeof n.icon=="string"?n.icon:""),target:"_blank",rel:"noopener",innerHTML:s.value},null,8,Js))}}),Xs=$(Ys,[["__scopeId","data-v-d26d30cb"]]),Qs={class:"VPSocialLinks"},Zs=b({__name:"VPSocialLinks",props:{links:{}},setup(o){return(e,t)=>(a(),d("div",Qs,[(a(!0),d(M,null,E(e.links,({link:s,icon:n,ariaLabel:r})=>(a(),k(Xs,{key:s,icon:n,link:s,ariaLabel:r},null,8,["icon","link","ariaLabel"]))),128))]))}}),ye=$(Zs,[["__scopeId","data-v-ee7a9424"]]),xs={key:0,class:"group translations"},eo={class:"trans-title"},to={key:1,class:"group"},no={class:"item appearance"},so={class:"label"},oo={class:"appearance-action"},ao={key:2,class:"group"},ro={class:"item social-links"},io=b({__name:"VPNavBarExtra",setup(o){const{site:e,theme:t}=L(),{localeLinks:s,currentLang:n}=Y({correspondingLink:!0}),r=P(()=>s.value.length&&n.value.label||e.value.appearance||t.value.socialLinks);return(l,v)=>r.value?(a(),k($e,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:f(()=>[i(s).length&&i(n).label?(a(),d("div",xs,[p("p",eo,N(i(n).label),1),(a(!0),d(M,null,E(i(s),c=>(a(),k(ne,{key:c.link,item:c},null,8,["item"]))),128))])):_("",!0),i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(a(),d("div",to,[p("div",no,[p("p",so,N(i(t).darkModeSwitchLabel||"Appearance"),1),p("div",oo,[g(ke)])])])):_("",!0),i(t).socialLinks?(a(),d("div",ao,[p("div",ro,[g(ye,{class:"social-links-list",links:i(t).socialLinks},null,8,["links"])])])):_("",!0)]),_:1})):_("",!0)}}),lo=$(io,[["__scopeId","data-v-925effce"]]),co=["aria-expanded"],uo=b({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(o){return(e,t)=>(a(),d("button",{type:"button",class:I(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=s=>e.$emit("click"))},t[1]||(t[1]=[p("span",{class:"container"},[p("span",{class:"top"}),p("span",{class:"middle"}),p("span",{class:"bottom"})],-1)]),10,co))}}),vo=$(uo,[["__scopeId","data-v-5dea55bf"]]),po=["innerHTML"],fo=b({__name:"VPNavBarMenuLink",props:{item:{}},setup(o){const{page:e}=L();return(t,s)=>(a(),k(O,{class:I({VPNavBarMenuLink:!0,active:i(z)(i(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,tabindex:"0"},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,po)]),_:1},8,["class","href","target","rel","no-icon"]))}}),ho=$(fo,[["__scopeId","data-v-956ec74c"]]),Oe=b({__name:"VPNavBarMenuGroup",props:{item:{}},setup(o){const e=o,{page:t}=L(),s=r=>"component"in r?!1:"link"in r?z(t.value.relativePath,r.link,!!e.item.activeMatch):r.items.some(s),n=P(()=>s(e.item));return(r,l)=>(a(),k($e,{class:I({VPNavBarMenuGroup:!0,active:i(z)(i(t).relativePath,r.item.activeMatch,!!r.item.activeMatch)||n.value}),button:r.item.text,items:r.item.items},null,8,["class","button","items"]))}}),mo={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},_o=b({__name:"VPNavBarMenu",setup(o){const{theme:e}=L();return(t,s)=>i(e).nav?(a(),d("nav",mo,[s[0]||(s[0]=p("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),(a(!0),d(M,null,E(i(e).nav,n=>(a(),d(M,{key:JSON.stringify(n)},["link"in n?(a(),k(ho,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(H(n.component),G({key:1,ref_for:!0},n.props),null,16)):(a(),k(Oe,{key:2,item:n},null,8,["item"]))],64))),128))])):_("",!0)}}),bo=$(_o,[["__scopeId","data-v-e6d46098"]]);function ko(o){const{localeIndex:e,theme:t}=L();function s(n){var C,A,w;const r=n.split("."),l=(C=t.value.search)==null?void 0:C.options,v=l&&typeof l=="object",c=v&&((w=(A=l.locales)==null?void 0:A[e.value])==null?void 0:w.translations)||null,h=v&&l.translations||null;let y=c,m=h,V=o;const S=r.pop();for(const B of r){let U=null;const W=V==null?void 0:V[B];W&&(U=V=W);const se=m==null?void 0:m[B];se&&(U=m=se);const oe=y==null?void 0:y[B];oe&&(U=y=oe),W||(V=U),se||(m=U),oe||(y=U)}return(y==null?void 0:y[S])??(m==null?void 0:m[S])??(V==null?void 0:V[S])??""}return s}const go=["aria-label"],$o={class:"DocSearch-Button-Container"},yo={class:"DocSearch-Button-Placeholder"},Pe=b({__name:"VPNavBarSearchButton",setup(o){const t=ko({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(s,n)=>(a(),d("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":i(t)("button.buttonAriaLabel")},[p("span",$o,[n[0]||(n[0]=p("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1)),p("span",yo,N(i(t)("button.buttonText")),1)]),n[1]||(n[1]=p("span",{class:"DocSearch-Button-Keys"},[p("kbd",{class:"DocSearch-Button-Key"}),p("kbd",{class:"DocSearch-Button-Key"},"K")],-1))],8,go))}}),Po={class:"VPNavBarSearch"},Vo={id:"local-search"},So={key:1,id:"docsearch"},Lo=b({__name:"VPNavBarSearch",setup(o){const e=Ye(()=>Xe(()=>import("./VPLocalSearchBox.CNXTXHa7.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:s}=L(),n=T(!1),r=T(!1);F(()=>{});function l(){n.value||(n.value=!0,setTimeout(v,16))}function v(){const m=new Event("keydown");m.key="k",m.metaKey=!0,window.dispatchEvent(m),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||v()},16)}function c(m){const V=m.target,S=V.tagName;return V.isContentEditable||S==="INPUT"||S==="SELECT"||S==="TEXTAREA"}const h=T(!1);ie("k",m=>{(m.ctrlKey||m.metaKey)&&(m.preventDefault(),h.value=!0)}),ie("/",m=>{c(m)||(m.preventDefault(),h.value=!0)});const y="local";return(m,V)=>{var S;return a(),d("div",Po,[i(y)==="local"?(a(),d(M,{key:0},[h.value?(a(),k(i(e),{key:0,onClose:V[0]||(V[0]=C=>h.value=!1)})):_("",!0),p("div",Vo,[g(Pe,{onClick:V[1]||(V[1]=C=>h.value=!0)})])],64)):i(y)==="algolia"?(a(),d(M,{key:1},[n.value?(a(),k(i(t),{key:0,algolia:((S=i(s).search)==null?void 0:S.options)??i(s).algolia,onVnodeBeforeMount:V[2]||(V[2]=C=>r.value=!0)},null,8,["algolia"])):_("",!0),r.value?_("",!0):(a(),d("div",So,[g(Pe,{onClick:l})]))],64)):_("",!0)])}}}),To=b({__name:"VPNavBarSocialLinks",setup(o){const{theme:e}=L();return(t,s)=>i(e).socialLinks?(a(),k(ye,{key:0,class:"VPNavBarSocialLinks",links:i(e).socialLinks},null,8,["links"])):_("",!0)}}),wo=$(To,[["__scopeId","data-v-164c457f"]]),No=["href","rel","target"],Io=["innerHTML"],Mo={key:2},Co=b({__name:"VPNavBarTitle",setup(o){const{site:e,theme:t}=L(),{hasSidebar:s}=R(),{currentLang:n}=Y(),r=P(()=>{var c;return typeof t.value.logoLink=="string"?t.value.logoLink:(c=t.value.logoLink)==null?void 0:c.link}),l=P(()=>{var c;return typeof t.value.logoLink=="string"||(c=t.value.logoLink)==null?void 0:c.rel}),v=P(()=>{var c;return typeof t.value.logoLink=="string"||(c=t.value.logoLink)==null?void 0:c.target});return(c,h)=>(a(),d("div",{class:I(["VPNavBarTitle",{"has-sidebar":i(s)}])},[p("a",{class:"title",href:r.value??i(_e)(i(n).link),rel:l.value,target:v.value},[u(c.$slots,"nav-bar-title-before",{},void 0,!0),i(t).logo?(a(),k(Q,{key:0,class:"logo",image:i(t).logo},null,8,["image"])):_("",!0),i(t).siteTitle?(a(),d("span",{key:1,innerHTML:i(t).siteTitle},null,8,Io)):i(t).siteTitle===void 0?(a(),d("span",Mo,N(i(e).title),1)):_("",!0),u(c.$slots,"nav-bar-title-after",{},void 0,!0)],8,No)],2))}}),Ao=$(Co,[["__scopeId","data-v-0f4f798b"]]),Eo={class:"items"},Bo={class:"title"},Ho=b({__name:"VPNavBarTranslations",setup(o){const{theme:e}=L(),{localeLinks:t,currentLang:s}=Y({correspondingLink:!0});return(n,r)=>i(t).length&&i(s).label?(a(),k($e,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:i(e).langMenuLabel||"Change language"},{default:f(()=>[p("div",Eo,[p("p",Bo,N(i(s).label),1),(a(!0),d(M,null,E(i(t),l=>(a(),k(ne,{key:l.link,item:l},null,8,["item"]))),128))])]),_:1},8,["label"])):_("",!0)}}),Oo=$(Ho,[["__scopeId","data-v-c80d9ad0"]]),Do={class:"wrapper"},Fo={class:"container"},Ro={class:"title"},Uo={class:"content"},Go={class:"content-body"},jo=b({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(o){const e=o,{y:t}=Ne(),{hasSidebar:s}=R(),{frontmatter:n}=L(),r=T({});return fe(()=>{r.value={"has-sidebar":s.value,home:n.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(l,v)=>(a(),d("div",{class:I(["VPNavBar",r.value])},[p("div",Do,[p("div",Fo,[p("div",Ro,[g(Ao,null,{"nav-bar-title-before":f(()=>[u(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[u(l.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),p("div",Uo,[p("div",Go,[u(l.$slots,"nav-bar-content-before",{},void 0,!0),g(Lo,{class:"search"}),g(bo,{class:"menu"}),g(Oo,{class:"translations"}),g(Ts,{class:"appearance"}),g(wo,{class:"social-links"}),g(lo,{class:"extra"}),u(l.$slots,"nav-bar-content-after",{},void 0,!0),g(vo,{class:"hamburger",active:l.isScreenOpen,onClick:v[0]||(v[0]=c=>l.$emit("toggle-screen"))},null,8,["active"])])])])]),v[1]||(v[1]=p("div",{class:"divider"},[p("div",{class:"divider-line"})],-1))],2))}}),zo=$(jo,[["__scopeId","data-v-822684d1"]]),Ko={key:0,class:"VPNavScreenAppearance"},Wo={class:"text"},qo=b({__name:"VPNavScreenAppearance",setup(o){const{site:e,theme:t}=L();return(s,n)=>i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(a(),d("div",Ko,[p("p",Wo,N(i(t).darkModeSwitchLabel||"Appearance"),1),g(ke)])):_("",!0)}}),Jo=$(qo,[["__scopeId","data-v-ffb44008"]]),Yo=["innerHTML"],Xo=b({__name:"VPNavScreenMenuLink",props:{item:{}},setup(o){const e=q("close-screen");return(t,s)=>(a(),k(O,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:i(e)},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Yo)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),Qo=$(Xo,[["__scopeId","data-v-735512b8"]]),Zo=["innerHTML"],xo=b({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(o){const e=q("close-screen");return(t,s)=>(a(),k(O,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:i(e)},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Zo)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),De=$(xo,[["__scopeId","data-v-372ae7c0"]]),ea={class:"VPNavScreenMenuGroupSection"},ta={key:0,class:"title"},na=b({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),d("div",ea,[e.text?(a(),d("p",ta,N(e.text),1)):_("",!0),(a(!0),d(M,null,E(e.items,s=>(a(),k(De,{key:s.text,item:s},null,8,["item"]))),128))]))}}),sa=$(na,[["__scopeId","data-v-4b8941ac"]]),oa=["aria-controls","aria-expanded"],aa=["innerHTML"],ra=["id"],ia={key:0,class:"item"},la={key:1,class:"item"},ca={key:2,class:"group"},ua=b({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(o){const e=o,t=T(!1),s=P(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function n(){t.value=!t.value}return(r,l)=>(a(),d("div",{class:I(["VPNavScreenMenuGroup",{open:t.value}])},[p("button",{class:"button","aria-controls":s.value,"aria-expanded":t.value,onClick:n},[p("span",{class:"button-text",innerHTML:r.text},null,8,aa),l[0]||(l[0]=p("span",{class:"vpi-plus button-icon"},null,-1))],8,oa),p("div",{id:s.value,class:"items"},[(a(!0),d(M,null,E(r.items,v=>(a(),d(M,{key:JSON.stringify(v)},["link"in v?(a(),d("div",ia,[g(De,{item:v},null,8,["item"])])):"component"in v?(a(),d("div",la,[(a(),k(H(v.component),G({ref_for:!0},v.props,{"screen-menu":""}),null,16))])):(a(),d("div",ca,[g(sa,{text:v.text,items:v.items},null,8,["text","items"])]))],64))),128))],8,ra)],2))}}),Fe=$(ua,[["__scopeId","data-v-875057a5"]]),da={key:0,class:"VPNavScreenMenu"},va=b({__name:"VPNavScreenMenu",setup(o){const{theme:e}=L();return(t,s)=>i(e).nav?(a(),d("nav",da,[(a(!0),d(M,null,E(i(e).nav,n=>(a(),d(M,{key:JSON.stringify(n)},["link"in n?(a(),k(Qo,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(H(n.component),G({key:1,ref_for:!0},n.props,{"screen-menu":""}),null,16)):(a(),k(Fe,{key:2,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):_("",!0)}}),pa=b({__name:"VPNavScreenSocialLinks",setup(o){const{theme:e}=L();return(t,s)=>i(e).socialLinks?(a(),k(ye,{key:0,class:"VPNavScreenSocialLinks",links:i(e).socialLinks},null,8,["links"])):_("",!0)}}),fa={class:"list"},ha=b({__name:"VPNavScreenTranslations",setup(o){const{localeLinks:e,currentLang:t}=Y({correspondingLink:!0}),s=T(!1);function n(){s.value=!s.value}return(r,l)=>i(e).length&&i(t).label?(a(),d("div",{key:0,class:I(["VPNavScreenTranslations",{open:s.value}])},[p("button",{class:"title",onClick:n},[l[0]||(l[0]=p("span",{class:"vpi-languages icon lang"},null,-1)),j(" "+N(i(t).label)+" ",1),l[1]||(l[1]=p("span",{class:"vpi-chevron-down icon chevron"},null,-1))]),p("ul",fa,[(a(!0),d(M,null,E(i(e),v=>(a(),d("li",{key:v.link,class:"item"},[g(O,{class:"link",href:v.link},{default:f(()=>[j(N(v.text),1)]),_:2},1032,["href"])]))),128))])],2)):_("",!0)}}),ma=$(ha,[["__scopeId","data-v-362991c2"]]),_a={class:"container"},ba=b({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(o){const e=T(null),t=Ie(te?document.body:null);return(s,n)=>(a(),k(de,{name:"fade",onEnter:n[0]||(n[0]=r=>t.value=!0),onAfterLeave:n[1]||(n[1]=r=>t.value=!1)},{default:f(()=>[s.open?(a(),d("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[p("div",_a,[u(s.$slots,"nav-screen-content-before",{},void 0,!0),g(va,{class:"menu"}),g(ma,{class:"translations"}),g(Jo,{class:"appearance"}),g(pa,{class:"social-links"}),u(s.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):_("",!0)]),_:3}))}}),ka=$(ba,[["__scopeId","data-v-833aabba"]]),ga={key:0,class:"VPNav"},$a=b({__name:"VPNav",setup(o){const{isScreenOpen:e,closeScreen:t,toggleScreen:s}=_s(),{frontmatter:n}=L(),r=P(()=>n.value.navbar!==!1);return me("close-screen",t),Z(()=>{te&&document.documentElement.classList.toggle("hide-nav",!r.value)}),(l,v)=>r.value?(a(),d("header",ga,[g(zo,{"is-screen-open":i(e),onToggleScreen:i(s)},{"nav-bar-title-before":f(()=>[u(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[u(l.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":f(()=>[u(l.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":f(()=>[u(l.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),g(ka,{open:i(e)},{"nav-screen-content-before":f(()=>[u(l.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":f(()=>[u(l.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):_("",!0)}}),ya=$($a,[["__scopeId","data-v-f1e365da"]]),Pa=["role","tabindex"],Va={key:1,class:"items"},Sa=b({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(o){const e=o,{collapsed:t,collapsible:s,isLink:n,isActiveLink:r,hasActiveLink:l,hasChildren:v,toggle:c}=gt(P(()=>e.item)),h=P(()=>v.value?"section":"div"),y=P(()=>n.value?"a":"div"),m=P(()=>v.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),V=P(()=>n.value?void 0:"button"),S=P(()=>[[`level-${e.depth}`],{collapsible:s.value},{collapsed:t.value},{"is-link":n.value},{"is-active":r.value},{"has-active":l.value}]);function C(w){"key"in w&&w.key!=="Enter"||!e.item.link&&c()}function A(){e.item.link&&c()}return(w,B)=>{const U=K("VPSidebarItem",!0);return a(),k(H(h.value),{class:I(["VPSidebarItem",S.value])},{default:f(()=>[w.item.text?(a(),d("div",G({key:0,class:"item",role:V.value},Ze(w.item.items?{click:C,keydown:C}:{},!0),{tabindex:w.item.items&&0}),[B[1]||(B[1]=p("div",{class:"indicator"},null,-1)),w.item.link?(a(),k(O,{key:0,tag:y.value,class:"link",href:w.item.link,rel:w.item.rel,target:w.item.target},{default:f(()=>[(a(),k(H(m.value),{class:"text",innerHTML:w.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),k(H(m.value),{key:1,class:"text",innerHTML:w.item.text},null,8,["innerHTML"])),w.item.collapsed!=null&&w.item.items&&w.item.items.length?(a(),d("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:A,onKeydown:Qe(A,["enter"]),tabindex:"0"},B[0]||(B[0]=[p("span",{class:"vpi-chevron-right caret-icon"},null,-1)]),32)):_("",!0)],16,Pa)):_("",!0),w.item.items&&w.item.items.length?(a(),d("div",Va,[w.depth<5?(a(!0),d(M,{key:0},E(w.item.items,W=>(a(),k(U,{key:W.text,item:W,depth:w.depth+1},null,8,["item","depth"]))),128)):_("",!0)])):_("",!0)]),_:1},8,["class"])}}}),La=$(Sa,[["__scopeId","data-v-196b2e5f"]]),Ta=b({__name:"VPSidebarGroup",props:{items:{}},setup(o){const e=T(!0);let t=null;return F(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),xe(()=>{t!=null&&(clearTimeout(t),t=null)}),(s,n)=>(a(!0),d(M,null,E(s.items,r=>(a(),d("div",{key:r.text,class:I(["group",{"no-transition":e.value}])},[g(La,{item:r,depth:0},null,8,["item"])],2))),128))}}),wa=$(Ta,[["__scopeId","data-v-9e426adc"]]),Na={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},Ia=b({__name:"VPSidebar",props:{open:{type:Boolean}},setup(o){const{sidebarGroups:e,hasSidebar:t}=R(),s=o,n=T(null),r=Ie(te?document.body:null);D([s,n],()=>{var v;s.open?(r.value=!0,(v=n.value)==null||v.focus()):r.value=!1},{immediate:!0,flush:"post"});const l=T(0);return D(e,()=>{l.value+=1},{deep:!0}),(v,c)=>i(t)?(a(),d("aside",{key:0,class:I(["VPSidebar",{open:v.open}]),ref_key:"navEl",ref:n,onClick:c[0]||(c[0]=et(()=>{},["stop"]))},[c[2]||(c[2]=p("div",{class:"curtain"},null,-1)),p("nav",Na,[c[1]||(c[1]=p("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),u(v.$slots,"sidebar-nav-before",{},void 0,!0),(a(),k(wa,{items:i(e),key:l.value},null,8,["items"])),u(v.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):_("",!0)}}),Ma=$(Ia,[["__scopeId","data-v-18756405"]]),Ca=b({__name:"VPSkipLink",setup(o){const e=ee(),t=T();D(()=>e.path,()=>t.value.focus());function s({target:n}){const r=document.getElementById(decodeURIComponent(n.hash).slice(1));if(r){const l=()=>{r.removeAttribute("tabindex"),r.removeEventListener("blur",l)};r.setAttribute("tabindex","-1"),r.addEventListener("blur",l),r.focus(),window.scrollTo(0,0)}}return(n,r)=>(a(),d(M,null,[p("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),p("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:s}," Skip to content ")],64))}}),Aa=$(Ca,[["__scopeId","data-v-c3508ec8"]]),Ea=b({__name:"Layout",setup(o){const{isOpen:e,open:t,close:s}=R(),n=ee();D(()=>n.path,s),kt(e,s);const{frontmatter:r}=L(),l=Me(),v=P(()=>!!l["home-hero-image"]);return me("hero-image-slot-exists",v),(c,h)=>{const y=K("Content");return i(r).layout!==!1?(a(),d("div",{key:0,class:I(["Layout",i(r).pageClass])},[u(c.$slots,"layout-top",{},void 0,!0),g(Aa),g(rt,{class:"backdrop",show:i(e),onClick:i(s)},null,8,["show","onClick"]),g(ya,null,{"nav-bar-title-before":f(()=>[u(c.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[u(c.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":f(()=>[u(c.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":f(()=>[u(c.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":f(()=>[u(c.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":f(()=>[u(c.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),g(ms,{open:i(e),onOpenMenu:i(t)},null,8,["open","onOpenMenu"]),g(Ma,{open:i(e)},{"sidebar-nav-before":f(()=>[u(c.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":f(()=>[u(c.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),g(es,null,{"page-top":f(()=>[u(c.$slots,"page-top",{},void 0,!0)]),"page-bottom":f(()=>[u(c.$slots,"page-bottom",{},void 0,!0)]),"not-found":f(()=>[u(c.$slots,"not-found",{},void 0,!0)]),"home-hero-before":f(()=>[u(c.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":f(()=>[u(c.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[u(c.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[u(c.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[u(c.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[u(c.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":f(()=>[u(c.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":f(()=>[u(c.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":f(()=>[u(c.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":f(()=>[u(c.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":f(()=>[u(c.$slots,"doc-before",{},void 0,!0)]),"doc-after":f(()=>[u(c.$slots,"doc-after",{},void 0,!0)]),"doc-top":f(()=>[u(c.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":f(()=>[u(c.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":f(()=>[u(c.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":f(()=>[u(c.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":f(()=>[u(c.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[u(c.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[u(c.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[u(c.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),g(as),u(c.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),k(y,{key:1}))}}}),Ba=$(Ea,[["__scopeId","data-v-a9a9e638"]]),Ha={Layout:Ba,enhanceApp:({app:o})=>{o.component("Badge",st)}},Oa=b({__name:"VersionPicker",props:{screenMenu:{type:Boolean}},setup(o){const e=T([]),t=T("Versions"),s=T(!1);Se();const n=()=>typeof window<"u"&&(window.location.hostname==="localhost"||window.location.hostname==="127.0.0.1"),r=()=>{if(typeof window>"u")return"";const{origin:c,pathname:h}=window.location;if(c.includes("github.io")){const y=h.split("/").filter(Boolean),m=y.length>0?`/${y[0]}`:"";return`${c}${m}`}else return c},l=()=>new Promise(c=>{if(n()){c(!1);return}const h=setInterval(()=>{window.DOC_VERSIONS&&window.DOCUMENTER_CURRENT_VERSION&&(clearInterval(h),c(!0))},100);setTimeout(()=>{clearInterval(h),c(!1)},5e3)});return F(async()=>{if(!(typeof window>"u")){try{if(n()){const c=["dev"];e.value=c.map(h=>({text:h,link:"/"})),t.value="dev"}else{const c=await l(),h=P(()=>r());if(c&&window.DOC_VERSIONS&&window.DOCUMENTER_CURRENT_VERSION)e.value=window.DOC_VERSIONS.map(y=>({text:y,link:`${h.value}/${y}/`})),t.value=window.DOCUMENTER_CURRENT_VERSION;else{const y=["dev"];e.value=y.map(m=>({text:m,link:`${h.value}/${m}/`})),t.value="dev"}}}catch(c){console.warn("Error loading versions:",c);const h=["dev"],y=P(()=>r());e.value=h.map(m=>({text:m,link:`${y.value}/${m}/`})),t.value="dev"}s.value=!0}}),(c,h)=>s.value?(a(),d(M,{key:0},[!c.screenMenu&&e.value.length>0?(a(),k(Oe,{key:0,item:{text:t.value,items:e.value},class:"VPVersionPicker"},null,8,["item"])):c.screenMenu&&e.value.length>0?(a(),k(Fe,{key:1,text:t.value,items:e.value,class:"VPVersionPicker"},null,8,["text","items"])):_("",!0)],64)):_("",!0)}}),Da=$(Oa,[["__scopeId","data-v-27f608c1"]]),Fa=o=>{if(typeof document>"u")return{stabilizeScrollPosition:n=>async(...r)=>n(...r)};const e=document.documentElement;return{stabilizeScrollPosition:s=>async(...n)=>{const r=s(...n),l=o.value;if(!l)return r;const v=l.offsetTop-e.scrollTop;return await he(),e.scrollTop=l.offsetTop-v,r}}},Re="vitepress:tabSharedState",J=typeof localStorage<"u"?localStorage:null,Ue="vitepress:tabsSharedState",Ra=()=>{const o=J==null?void 0:J.getItem(Ue);if(o)try{return JSON.parse(o)}catch{}return{}},Ua=o=>{J&&J.setItem(Ue,JSON.stringify(o))},Ga=o=>{const e=tt({});D(()=>e.content,(t,s)=>{t&&s&&Ua(t)},{deep:!0}),o.provide(Re,e)},ja=(o,e)=>{const t=q(Re);if(!t)throw new Error("[vitepress-plugin-tabs] TabsSharedState should be injected");F(()=>{t.content||(t.content=Ra())});const s=T(),n=P({get(){var c;const l=e.value,v=o.value;if(l){const h=(c=t.content)==null?void 0:c[l];if(h&&v.includes(h))return h}else{const h=s.value;if(h)return h}return v[0]},set(l){const v=e.value;v?t.content&&(t.content[v]=l):s.value=l}});return{selected:n,select:l=>{n.value=l}}};let Ve=0;const za=()=>(Ve++,""+Ve);function Ka(){const o=Me();return P(()=>{var s;const t=(s=o.default)==null?void 0:s.call(o);return t?t.filter(n=>typeof n.type=="object"&&"__name"in n.type&&n.type.__name==="PluginTabsTab"&&n.props).map(n=>{var r;return(r=n.props)==null?void 0:r.label}):[]})}const Ge="vitepress:tabSingleState",Wa=o=>{me(Ge,o)},qa=()=>{const o=q(Ge);if(!o)throw new Error("[vitepress-plugin-tabs] TabsSingleState should be injected");return o},Ja={class:"plugin-tabs"},Ya=["id","aria-selected","aria-controls","tabindex","onClick"],Xa=b({__name:"PluginTabs",props:{sharedStateKey:{}},setup(o){const e=o,t=Ka(),{selected:s,select:n}=ja(t,nt(e,"sharedStateKey")),r=T(),{stabilizeScrollPosition:l}=Fa(r),v=l(n),c=T([]),h=m=>{var C;const V=t.value.indexOf(s.value);let S;m.key==="ArrowLeft"?S=V>=1?V-1:t.value.length-1:m.key==="ArrowRight"&&(S=V(a(),d("div",Ja,[p("div",{ref_key:"tablist",ref:r,class:"plugin-tabs--tab-list",role:"tablist",onKeydown:h},[(a(!0),d(M,null,E(i(t),S=>(a(),d("button",{id:`tab-${S}-${i(y)}`,ref_for:!0,ref_key:"buttonRefs",ref:c,key:S,role:"tab",class:"plugin-tabs--tab","aria-selected":S===i(s),"aria-controls":`panel-${S}-${i(y)}`,tabindex:S===i(s)?0:-1,onClick:()=>i(v)(S)},N(S),9,Ya))),128))],544),u(m.$slots,"default")]))}}),Qa=["id","aria-labelledby"],Za=b({__name:"PluginTabsTab",props:{label:{}},setup(o){const{uid:e,selected:t}=qa();return(s,n)=>i(t)===s.label?(a(),d("div",{key:0,id:`panel-${s.label}-${i(e)}`,class:"plugin-tabs--content",role:"tabpanel",tabindex:"0","aria-labelledby":`tab-${s.label}-${i(e)}`},[u(s.$slots,"default",{},void 0,!0)],8,Qa)):_("",!0)}}),xa=$(Za,[["__scopeId","data-v-9b0d03d2"]]),er=o=>{Ga(o),o.component("PluginTabs",Xa),o.component("PluginTabsTab",xa)},nr={extends:Ha,enhanceApp({app:o,router:e,siteData:t}){er(o),o.component("VersionPicker",Da)}};export{nr as R,ko as c,L as u}; +const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.D8p_TdYF.js","assets/chunks/framework.aA4m3-Wc.js"])))=>i.map(i=>d[i]); +import{d as b,o as a,c as d,r as u,n as I,a as j,t as N,b as k,w as f,e as _,T as de,_ as $,u as Se,i as je,f as ze,g as ve,h as P,j as p,k as i,l as z,m as re,p as T,q as D,s as Z,v as F,x as pe,y as fe,z as Ke,A as We,B as K,F as M,C as E,D as Le,E as x,G as g,H,I as Te,J as ee,K as G,L as q,M as qe,N as we,O as ie,P as he,Q as Ne,R as te,S as Je,U as Ye,V as Xe,W as Ie,X as me,Y as Qe,Z as Ze,$ as xe,a0 as et,a1 as Me,a2 as tt,a3 as nt}from"./framework.aA4m3-Wc.js";const st=b({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(o){return(e,t)=>(a(),d("span",{class:I(["VPBadge",e.type])},[u(e.$slots,"default",{},()=>[j(N(e.text),1)])],2))}}),ot={key:0,class:"VPBackdrop"},at=b({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(o){return(e,t)=>(a(),k(de,{name:"fade"},{default:f(()=>[e.show?(a(),d("div",ot)):_("",!0)]),_:1}))}}),rt=$(at,[["__scopeId","data-v-b06cdb19"]]),L=Se;function it(o,e){let t,s=!1;return()=>{t&&clearTimeout(t),s?t=setTimeout(o,e):(o(),(s=!0)&&setTimeout(()=>s=!1,e))}}function le(o){return/^\//.test(o)?o:`/${o}`}function _e(o){const{pathname:e,search:t,hash:s,protocol:n}=new URL(o,"http://a.com");if(je(o)||o.startsWith("#")||!n.startsWith("http")||!ze(e))return o;const{site:r}=L(),l=e.endsWith("/")||e.endsWith(".html")?o:o.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,r.value.cleanUrls?"":".html")}${t}${s}`);return ve(l)}function Y({correspondingLink:o=!1}={}){const{site:e,localeIndex:t,page:s,theme:n,hash:r}=L(),l=P(()=>{var c,h;return{label:(c=e.value.locales[t.value])==null?void 0:c.label,link:((h=e.value.locales[t.value])==null?void 0:h.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:P(()=>Object.entries(e.value.locales).flatMap(([c,h])=>l.value.label===h.label?[]:{text:h.label,link:lt(h.link||(c==="root"?"/":`/${c}/`),n.value.i18nRouting!==!1&&o,s.value.relativePath.slice(l.value.link.length-1),!e.value.cleanUrls)+r.value})),currentLang:l}}function lt(o,e,t,s){return e?o.replace(/\/$/,"")+le(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,s?".html":"")):o}const ct={class:"NotFound"},ut={class:"code"},dt={class:"title"},vt={class:"quote"},pt={class:"action"},ft=["href","aria-label"],ht=b({__name:"NotFound",setup(o){const{theme:e}=L(),{currentLang:t}=Y();return(s,n)=>{var r,l,v,c,h;return a(),d("div",ct,[p("p",ut,N(((r=i(e).notFound)==null?void 0:r.code)??"404"),1),p("h1",dt,N(((l=i(e).notFound)==null?void 0:l.title)??"PAGE NOT FOUND"),1),n[0]||(n[0]=p("div",{class:"divider"},null,-1)),p("blockquote",vt,N(((v=i(e).notFound)==null?void 0:v.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),p("div",pt,[p("a",{class:"link",href:i(ve)(i(t).link),"aria-label":((c=i(e).notFound)==null?void 0:c.linkLabel)??"go to home"},N(((h=i(e).notFound)==null?void 0:h.linkText)??"Take me home"),9,ft)])])}}}),mt=$(ht,[["__scopeId","data-v-951cab6c"]]);function Ce(o,e){if(Array.isArray(o))return X(o);if(o==null)return[];e=le(e);const t=Object.keys(o).sort((n,r)=>r.split("/").length-n.split("/").length).find(n=>e.startsWith(le(n))),s=t?o[t]:[];return Array.isArray(s)?X(s):X(s.items,s.base)}function _t(o){const e=[];let t=0;for(const s in o){const n=o[s];if(n.items){t=e.push(n);continue}e[t]||e.push({items:[]}),e[t].items.push(n)}return e}function bt(o){const e=[];function t(s){for(const n of s)n.text&&n.link&&e.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&t(n.items)}return t(o),e}function ce(o,e){return Array.isArray(e)?e.some(t=>ce(o,t)):z(o,e.link)?!0:e.items?ce(o,e.items):!1}function X(o,e){return[...o].map(t=>{const s={...t},n=s.base||e;return n&&s.link&&(s.link=n+s.link),s.items&&(s.items=X(s.items,n)),s})}function R(){const{frontmatter:o,page:e,theme:t}=L(),s=re("(min-width: 960px)"),n=T(!1),r=P(()=>{const A=t.value.sidebar,w=e.value.relativePath;return A?Ce(A,w):[]}),l=T(r.value);D(r,(A,w)=>{JSON.stringify(A)!==JSON.stringify(w)&&(l.value=r.value)});const v=P(()=>o.value.sidebar!==!1&&l.value.length>0&&o.value.layout!=="home"),c=P(()=>h?o.value.aside==null?t.value.aside==="left":o.value.aside==="left":!1),h=P(()=>o.value.layout==="home"?!1:o.value.aside!=null?!!o.value.aside:t.value.aside!==!1),y=P(()=>v.value&&s.value),m=P(()=>v.value?_t(l.value):[]);function V(){n.value=!0}function S(){n.value=!1}function C(){n.value?S():V()}return{isOpen:n,sidebar:l,sidebarGroups:m,hasSidebar:v,hasAside:h,leftAside:c,isSidebarEnabled:y,open:V,close:S,toggle:C}}function kt(o,e){let t;Z(()=>{t=o.value?document.activeElement:void 0}),F(()=>{window.addEventListener("keyup",s)}),pe(()=>{window.removeEventListener("keyup",s)});function s(n){n.key==="Escape"&&o.value&&(e(),t==null||t.focus())}}function gt(o){const{page:e,hash:t}=L(),s=T(!1),n=P(()=>o.value.collapsed!=null),r=P(()=>!!o.value.link),l=T(!1),v=()=>{l.value=z(e.value.relativePath,o.value.link)};D([e,o,t],v),F(v);const c=P(()=>l.value?!0:o.value.items?ce(e.value.relativePath,o.value.items):!1),h=P(()=>!!(o.value.items&&o.value.items.length));Z(()=>{s.value=!!(n.value&&o.value.collapsed)}),fe(()=>{(l.value||c.value)&&(s.value=!1)});function y(){n.value&&(s.value=!s.value)}return{collapsed:s,collapsible:n,isLink:r,isActiveLink:l,hasActiveLink:c,hasChildren:h,toggle:y}}function $t(){const{hasSidebar:o}=R(),e=re("(min-width: 960px)"),t=re("(min-width: 1280px)");return{isAsideEnabled:P(()=>!t.value&&!e.value?!1:o.value?t.value:e.value)}}const ue=[];function Ae(o){return typeof o.outline=="object"&&!Array.isArray(o.outline)&&o.outline.label||o.outlineTitle||"On this page"}function be(o){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const s=Number(t.tagName[1]);return{element:t,title:yt(t),link:"#"+t.id,level:s}});return Pt(e,o)}function yt(o){let e="";for(const t of o.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function Pt(o,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[s,n]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;return Lt(o,s,n)}function Vt(o,e){const{isAsideEnabled:t}=$t(),s=it(r,100);let n=null;F(()=>{requestAnimationFrame(r),window.addEventListener("scroll",s)}),Ke(()=>{l(location.hash)}),pe(()=>{window.removeEventListener("scroll",s)});function r(){if(!t.value)return;const v=window.scrollY,c=window.innerHeight,h=document.body.offsetHeight,y=Math.abs(v+c-h)<1,m=ue.map(({element:S,link:C})=>({link:C,top:St(S)})).filter(({top:S})=>!Number.isNaN(S)).sort((S,C)=>S.top-C.top);if(!m.length){l(null);return}if(v<1){l(null);return}if(y){l(m[m.length-1].link);return}let V=null;for(const{link:S,top:C}of m){if(C>v+We()+4)break;V=S}l(V)}function l(v){n&&n.classList.remove("active"),v==null?n=null:n=o.value.querySelector(`a[href="${decodeURIComponent(v)}"]`);const c=n;c?(c.classList.add("active"),e.value.style.top=c.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function St(o){let e=0;for(;o!==document.body;){if(o===null)return NaN;e+=o.offsetTop,o=o.offsetParent}return e}function Lt(o,e,t){ue.length=0;const s=[],n=[];return o.forEach(r=>{const l={...r,children:[]};let v=n[n.length-1];for(;v&&v.level>=l.level;)n.pop(),v=n[n.length-1];if(l.element.classList.contains("ignore-header")||v&&"shouldIgnore"in v){n.push({level:l.level,shouldIgnore:!0});return}l.level>t||l.level{const n=K("VPDocOutlineItem",!0);return a(),d("ul",{class:I(["VPDocOutlineItem",t.root?"root":"nested"])},[(a(!0),d(M,null,E(t.headers,({children:r,link:l,title:v})=>(a(),d("li",null,[p("a",{class:"outline-link",href:l,onClick:e,title:v},N(v),9,Tt),r!=null&&r.length?(a(),k(n,{key:0,headers:r},null,8,["headers"])):_("",!0)]))),256))],2)}}}),Ee=$(wt,[["__scopeId","data-v-3f927ebe"]]),Nt={class:"content"},It={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},Mt=b({__name:"VPDocAsideOutline",setup(o){const{frontmatter:e,theme:t}=L(),s=Le([]);x(()=>{s.value=be(e.value.outline??t.value.outline)});const n=T(),r=T();return Vt(n,r),(l,v)=>(a(),d("nav",{"aria-labelledby":"doc-outline-aria-label",class:I(["VPDocAsideOutline",{"has-outline":s.value.length>0}]),ref_key:"container",ref:n},[p("div",Nt,[p("div",{class:"outline-marker",ref_key:"marker",ref:r},null,512),p("div",It,N(i(Ae)(i(t))),1),g(Ee,{headers:s.value,root:!0},null,8,["headers"])])],2))}}),Ct=$(Mt,[["__scopeId","data-v-b38bf2ff"]]),At={class:"VPDocAsideCarbonAds"},Et=b({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(o){const e=()=>null;return(t,s)=>(a(),d("div",At,[g(i(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),Bt={class:"VPDocAside"},Ht=b({__name:"VPDocAside",setup(o){const{theme:e}=L();return(t,s)=>(a(),d("div",Bt,[u(t.$slots,"aside-top",{},void 0,!0),u(t.$slots,"aside-outline-before",{},void 0,!0),g(Ct),u(t.$slots,"aside-outline-after",{},void 0,!0),s[0]||(s[0]=p("div",{class:"spacer"},null,-1)),u(t.$slots,"aside-ads-before",{},void 0,!0),i(e).carbonAds?(a(),k(Et,{key:0,"carbon-ads":i(e).carbonAds},null,8,["carbon-ads"])):_("",!0),u(t.$slots,"aside-ads-after",{},void 0,!0),u(t.$slots,"aside-bottom",{},void 0,!0)]))}}),Ot=$(Ht,[["__scopeId","data-v-6d7b3c46"]]);function Dt(){const{theme:o,page:e}=L();return P(()=>{const{text:t="Edit this page",pattern:s=""}=o.value.editLink||{};let n;return typeof s=="function"?n=s(e.value):n=s.replace(/:path/g,e.value.filePath),{url:n,text:t}})}function Ft(){const{page:o,theme:e,frontmatter:t}=L();return P(()=>{var h,y,m,V,S,C,A,w;const s=Ce(e.value.sidebar,o.value.relativePath),n=bt(s),r=Rt(n,B=>B.link.replace(/[?#].*$/,"")),l=r.findIndex(B=>z(o.value.relativePath,B.link)),v=((h=e.value.docFooter)==null?void 0:h.prev)===!1&&!t.value.prev||t.value.prev===!1,c=((y=e.value.docFooter)==null?void 0:y.next)===!1&&!t.value.next||t.value.next===!1;return{prev:v?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((m=r[l-1])==null?void 0:m.docFooterText)??((V=r[l-1])==null?void 0:V.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((S=r[l-1])==null?void 0:S.link)},next:c?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((C=r[l+1])==null?void 0:C.docFooterText)??((A=r[l+1])==null?void 0:A.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((w=r[l+1])==null?void 0:w.link)}}})}function Rt(o,e){const t=new Set;return o.filter(s=>{const n=e(s);return t.has(n)?!1:t.add(n)})}const O=b({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(o){const e=o,t=P(()=>e.tag??(e.href?"a":"span")),s=P(()=>e.href&&Te.test(e.href)||e.target==="_blank");return(n,r)=>(a(),k(H(t.value),{class:I(["VPLink",{link:n.href,"vp-external-link-icon":s.value,"no-icon":n.noIcon}]),href:n.href?i(_e)(n.href):void 0,target:n.target??(s.value?"_blank":void 0),rel:n.rel??(s.value?"noreferrer":void 0)},{default:f(()=>[u(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),Ut={class:"VPLastUpdated"},Gt=["datetime"],jt=b({__name:"VPDocFooterLastUpdated",setup(o){const{theme:e,page:t,lang:s}=L(),n=P(()=>new Date(t.value.lastUpdated)),r=P(()=>n.value.toISOString()),l=T("");return F(()=>{Z(()=>{var v,c,h;l.value=new Intl.DateTimeFormat((c=(v=e.value.lastUpdated)==null?void 0:v.formatOptions)!=null&&c.forceLocale?s.value:void 0,((h=e.value.lastUpdated)==null?void 0:h.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(n.value)})}),(v,c)=>{var h;return a(),d("p",Ut,[j(N(((h=i(e).lastUpdated)==null?void 0:h.text)||i(e).lastUpdatedText||"Last updated")+": ",1),p("time",{datetime:r.value},N(l.value),9,Gt)])}}}),zt=$(jt,[["__scopeId","data-v-475f71b8"]]),Kt={key:0,class:"VPDocFooter"},Wt={key:0,class:"edit-info"},qt={key:0,class:"edit-link"},Jt={key:1,class:"last-updated"},Yt={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Xt={class:"pager"},Qt=["innerHTML"],Zt=["innerHTML"],xt={class:"pager"},en=["innerHTML"],tn=["innerHTML"],nn=b({__name:"VPDocFooter",setup(o){const{theme:e,page:t,frontmatter:s}=L(),n=Dt(),r=Ft(),l=P(()=>e.value.editLink&&s.value.editLink!==!1),v=P(()=>t.value.lastUpdated),c=P(()=>l.value||v.value||r.value.prev||r.value.next);return(h,y)=>{var m,V,S,C;return c.value?(a(),d("footer",Kt,[u(h.$slots,"doc-footer-before",{},void 0,!0),l.value||v.value?(a(),d("div",Wt,[l.value?(a(),d("div",qt,[g(O,{class:"edit-link-button",href:i(n).url,"no-icon":!0},{default:f(()=>[y[0]||(y[0]=p("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),j(" "+N(i(n).text),1)]),_:1},8,["href"])])):_("",!0),v.value?(a(),d("div",Jt,[g(zt)])):_("",!0)])):_("",!0),(m=i(r).prev)!=null&&m.link||(V=i(r).next)!=null&&V.link?(a(),d("nav",Yt,[y[1]||(y[1]=p("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),p("div",Xt,[(S=i(r).prev)!=null&&S.link?(a(),k(O,{key:0,class:"pager-link prev",href:i(r).prev.link},{default:f(()=>{var A;return[p("span",{class:"desc",innerHTML:((A=i(e).docFooter)==null?void 0:A.prev)||"Previous page"},null,8,Qt),p("span",{class:"title",innerHTML:i(r).prev.text},null,8,Zt)]}),_:1},8,["href"])):_("",!0)]),p("div",xt,[(C=i(r).next)!=null&&C.link?(a(),k(O,{key:0,class:"pager-link next",href:i(r).next.link},{default:f(()=>{var A;return[p("span",{class:"desc",innerHTML:((A=i(e).docFooter)==null?void 0:A.next)||"Next page"},null,8,en),p("span",{class:"title",innerHTML:i(r).next.text},null,8,tn)]}),_:1},8,["href"])):_("",!0)])])):_("",!0)])):_("",!0)}}}),sn=$(nn,[["__scopeId","data-v-4f9813fa"]]),on={class:"container"},an={class:"aside-container"},rn={class:"aside-content"},ln={class:"content"},cn={class:"content-container"},un={class:"main"},dn=b({__name:"VPDoc",setup(o){const{theme:e}=L(),t=ee(),{hasSidebar:s,hasAside:n,leftAside:r}=R(),l=P(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(v,c)=>{const h=K("Content");return a(),d("div",{class:I(["VPDoc",{"has-sidebar":i(s),"has-aside":i(n)}])},[u(v.$slots,"doc-top",{},void 0,!0),p("div",on,[i(n)?(a(),d("div",{key:0,class:I(["aside",{"left-aside":i(r)}])},[c[0]||(c[0]=p("div",{class:"aside-curtain"},null,-1)),p("div",an,[p("div",rn,[g(Ot,null,{"aside-top":f(()=>[u(v.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":f(()=>[u(v.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":f(()=>[u(v.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[u(v.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[u(v.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[u(v.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):_("",!0),p("div",ln,[p("div",cn,[u(v.$slots,"doc-before",{},void 0,!0),p("main",un,[g(h,{class:I(["vp-doc",[l.value,i(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),g(sn,null,{"doc-footer-before":f(()=>[u(v.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),u(v.$slots,"doc-after",{},void 0,!0)])])]),u(v.$slots,"doc-bottom",{},void 0,!0)],2)}}}),vn=$(dn,[["__scopeId","data-v-83890dd9"]]),pn=b({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(o){const e=o,t=P(()=>e.href&&Te.test(e.href)),s=P(()=>e.tag||(e.href?"a":"button"));return(n,r)=>(a(),k(H(s.value),{class:I(["VPButton",[n.size,n.theme]]),href:n.href?i(_e)(n.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:f(()=>[j(N(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),fn=$(pn,[["__scopeId","data-v-906d7fb4"]]),hn=["src","alt"],mn=b({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(o){return(e,t)=>{const s=K("VPImage",!0);return e.image?(a(),d(M,{key:0},[typeof e.image=="string"||"src"in e.image?(a(),d("img",G({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:i(ve)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,hn)):(a(),d(M,{key:1},[g(s,G({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),g(s,G({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):_("",!0)}}}),Q=$(mn,[["__scopeId","data-v-35a7d0b8"]]),_n={class:"container"},bn={class:"main"},kn={key:0,class:"name"},gn=["innerHTML"],$n=["innerHTML"],yn=["innerHTML"],Pn={key:0,class:"actions"},Vn={key:0,class:"image"},Sn={class:"image-container"},Ln=b({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(o){const e=q("hero-image-slot-exists");return(t,s)=>(a(),d("div",{class:I(["VPHero",{"has-image":t.image||i(e)}])},[p("div",_n,[p("div",bn,[u(t.$slots,"home-hero-info-before",{},void 0,!0),u(t.$slots,"home-hero-info",{},()=>[t.name?(a(),d("h1",kn,[p("span",{innerHTML:t.name,class:"clip"},null,8,gn)])):_("",!0),t.text?(a(),d("p",{key:1,innerHTML:t.text,class:"text"},null,8,$n)):_("",!0),t.tagline?(a(),d("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,yn)):_("",!0)],!0),u(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(a(),d("div",Pn,[(a(!0),d(M,null,E(t.actions,n=>(a(),d("div",{key:n.link,class:"action"},[g(fn,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):_("",!0),u(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||i(e)?(a(),d("div",Vn,[p("div",Sn,[s[0]||(s[0]=p("div",{class:"image-bg"},null,-1)),u(t.$slots,"home-hero-image",{},()=>[t.image?(a(),k(Q,{key:0,class:"image-src",image:t.image},null,8,["image"])):_("",!0)],!0)])])):_("",!0)])],2))}}),Tn=$(Ln,[["__scopeId","data-v-955009fc"]]),wn=b({__name:"VPHomeHero",setup(o){const{frontmatter:e}=L();return(t,s)=>i(e).hero?(a(),k(Tn,{key:0,class:"VPHomeHero",name:i(e).hero.name,text:i(e).hero.text,tagline:i(e).hero.tagline,image:i(e).hero.image,actions:i(e).hero.actions},{"home-hero-info-before":f(()=>[u(t.$slots,"home-hero-info-before")]),"home-hero-info":f(()=>[u(t.$slots,"home-hero-info")]),"home-hero-info-after":f(()=>[u(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":f(()=>[u(t.$slots,"home-hero-actions-after")]),"home-hero-image":f(()=>[u(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):_("",!0)}}),Nn={class:"box"},In={key:0,class:"icon"},Mn=["innerHTML"],Cn=["innerHTML"],An=["innerHTML"],En={key:4,class:"link-text"},Bn={class:"link-text-value"},Hn=b({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(o){return(e,t)=>(a(),k(O,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:f(()=>[p("article",Nn,[typeof e.icon=="object"&&e.icon.wrap?(a(),d("div",In,[g(Q,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(a(),k(Q,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(a(),d("div",{key:2,class:"icon",innerHTML:e.icon},null,8,Mn)):_("",!0),p("h2",{class:"title",innerHTML:e.title},null,8,Cn),e.details?(a(),d("p",{key:3,class:"details",innerHTML:e.details},null,8,An)):_("",!0),e.linkText?(a(),d("div",En,[p("p",Bn,[j(N(e.linkText)+" ",1),t[0]||(t[0]=p("span",{class:"vpi-arrow-right link-text-icon"},null,-1))])])):_("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),On=$(Hn,[["__scopeId","data-v-f5e9645b"]]),Dn={key:0,class:"VPFeatures"},Fn={class:"container"},Rn={class:"items"},Un=b({__name:"VPFeatures",props:{features:{}},setup(o){const e=o,t=P(()=>{const s=e.features.length;if(s){if(s===2)return"grid-2";if(s===3)return"grid-3";if(s%3===0)return"grid-6";if(s>3)return"grid-4"}else return});return(s,n)=>s.features?(a(),d("div",Dn,[p("div",Fn,[p("div",Rn,[(a(!0),d(M,null,E(s.features,r=>(a(),d("div",{key:r.title,class:I(["item",[t.value]])},[g(On,{icon:r.icon,title:r.title,details:r.details,link:r.link,"link-text":r.linkText,rel:r.rel,target:r.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):_("",!0)}}),Gn=$(Un,[["__scopeId","data-v-d0a190d7"]]),jn=b({__name:"VPHomeFeatures",setup(o){const{frontmatter:e}=L();return(t,s)=>i(e).features?(a(),k(Gn,{key:0,class:"VPHomeFeatures",features:i(e).features},null,8,["features"])):_("",!0)}}),zn=b({__name:"VPHomeContent",setup(o){const{width:e}=qe({initialWidth:0,includeScrollbar:!1});return(t,s)=>(a(),d("div",{class:"vp-doc container",style:we(i(e)?{"--vp-offset":`calc(50% - ${i(e)/2}px)`}:{})},[u(t.$slots,"default",{},void 0,!0)],4))}}),Kn=$(zn,[["__scopeId","data-v-7a48a447"]]),Wn={class:"VPHome"},qn=b({__name:"VPHome",setup(o){const{frontmatter:e}=L();return(t,s)=>{const n=K("Content");return a(),d("div",Wn,[u(t.$slots,"home-hero-before",{},void 0,!0),g(wn,null,{"home-hero-info-before":f(()=>[u(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[u(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[u(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[u(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[u(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),u(t.$slots,"home-hero-after",{},void 0,!0),u(t.$slots,"home-features-before",{},void 0,!0),g(jn),u(t.$slots,"home-features-after",{},void 0,!0),i(e).markdownStyles!==!1?(a(),k(Kn,{key:0},{default:f(()=>[g(n)]),_:1})):(a(),k(n,{key:1}))])}}}),Jn=$(qn,[["__scopeId","data-v-cbb6ec48"]]),Yn={},Xn={class:"VPPage"};function Qn(o,e){const t=K("Content");return a(),d("div",Xn,[u(o.$slots,"page-top"),g(t),u(o.$slots,"page-bottom")])}const Zn=$(Yn,[["render",Qn]]),xn=b({__name:"VPContent",setup(o){const{page:e,frontmatter:t}=L(),{hasSidebar:s}=R();return(n,r)=>(a(),d("div",{class:I(["VPContent",{"has-sidebar":i(s),"is-home":i(t).layout==="home"}]),id:"VPContent"},[i(e).isNotFound?u(n.$slots,"not-found",{key:0},()=>[g(mt)],!0):i(t).layout==="page"?(a(),k(Zn,{key:1},{"page-top":f(()=>[u(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":f(()=>[u(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):i(t).layout==="home"?(a(),k(Jn,{key:2},{"home-hero-before":f(()=>[u(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":f(()=>[u(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[u(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[u(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[u(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[u(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":f(()=>[u(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":f(()=>[u(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":f(()=>[u(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):i(t).layout&&i(t).layout!=="doc"?(a(),k(H(i(t).layout),{key:3})):(a(),k(vn,{key:4},{"doc-top":f(()=>[u(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":f(()=>[u(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":f(()=>[u(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":f(()=>[u(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":f(()=>[u(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":f(()=>[u(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":f(()=>[u(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[u(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[u(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[u(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":f(()=>[u(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),es=$(xn,[["__scopeId","data-v-91765379"]]),ts={class:"container"},ns=["innerHTML"],ss=["innerHTML"],os=b({__name:"VPFooter",setup(o){const{theme:e,frontmatter:t}=L(),{hasSidebar:s}=R();return(n,r)=>i(e).footer&&i(t).footer!==!1?(a(),d("footer",{key:0,class:I(["VPFooter",{"has-sidebar":i(s)}])},[p("div",ts,[i(e).footer.message?(a(),d("p",{key:0,class:"message",innerHTML:i(e).footer.message},null,8,ns)):_("",!0),i(e).footer.copyright?(a(),d("p",{key:1,class:"copyright",innerHTML:i(e).footer.copyright},null,8,ss)):_("",!0)])],2)):_("",!0)}}),as=$(os,[["__scopeId","data-v-c970a860"]]);function rs(){const{theme:o,frontmatter:e}=L(),t=Le([]),s=P(()=>t.value.length>0);return x(()=>{t.value=be(e.value.outline??o.value.outline)}),{headers:t,hasLocalNav:s}}const is={class:"menu-text"},ls={class:"header"},cs={class:"outline"},us=b({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(o){const e=o,{theme:t}=L(),s=T(!1),n=T(0),r=T(),l=T();function v(m){var V;(V=r.value)!=null&&V.contains(m.target)||(s.value=!1)}D(s,m=>{if(m){document.addEventListener("click",v);return}document.removeEventListener("click",v)}),ie("Escape",()=>{s.value=!1}),x(()=>{s.value=!1});function c(){s.value=!s.value,n.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function h(m){m.target.classList.contains("outline-link")&&(l.value&&(l.value.style.transition="none"),he(()=>{s.value=!1}))}function y(){s.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(m,V)=>(a(),d("div",{class:"VPLocalNavOutlineDropdown",style:we({"--vp-vh":n.value+"px"}),ref_key:"main",ref:r},[m.headers.length>0?(a(),d("button",{key:0,onClick:c,class:I({open:s.value})},[p("span",is,N(i(Ae)(i(t))),1),V[0]||(V[0]=p("span",{class:"vpi-chevron-right icon"},null,-1))],2)):(a(),d("button",{key:1,onClick:y},N(i(t).returnToTopLabel||"Return to top"),1)),g(de,{name:"flyout"},{default:f(()=>[s.value?(a(),d("div",{key:0,ref_key:"items",ref:l,class:"items",onClick:h},[p("div",ls,[p("a",{class:"top-link",href:"#",onClick:y},N(i(t).returnToTopLabel||"Return to top"),1)]),p("div",cs,[g(Ee,{headers:m.headers},null,8,["headers"])])],512)):_("",!0)]),_:1})],4))}}),ds=$(us,[["__scopeId","data-v-bc9dc845"]]),vs={class:"container"},ps=["aria-expanded"],fs={class:"menu-text"},hs=b({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(o){const{theme:e,frontmatter:t}=L(),{hasSidebar:s}=R(),{headers:n}=rs(),{y:r}=Ne(),l=T(0);F(()=>{l.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),x(()=>{n.value=be(t.value.outline??e.value.outline)});const v=P(()=>n.value.length===0),c=P(()=>v.value&&!s.value),h=P(()=>({VPLocalNav:!0,"has-sidebar":s.value,empty:v.value,fixed:c.value}));return(y,m)=>i(t).layout!=="home"&&(!c.value||i(r)>=l.value)?(a(),d("div",{key:0,class:I(h.value)},[p("div",vs,[i(s)?(a(),d("button",{key:0,class:"menu","aria-expanded":y.open,"aria-controls":"VPSidebarNav",onClick:m[0]||(m[0]=V=>y.$emit("open-menu"))},[m[1]||(m[1]=p("span",{class:"vpi-align-left menu-icon"},null,-1)),p("span",fs,N(i(e).sidebarMenuLabel||"Menu"),1)],8,ps)):_("",!0),g(ds,{headers:i(n),navHeight:l.value},null,8,["headers","navHeight"])])],2)):_("",!0)}}),ms=$(hs,[["__scopeId","data-v-070ab83d"]]);function _s(){const o=T(!1);function e(){o.value=!0,window.addEventListener("resize",n)}function t(){o.value=!1,window.removeEventListener("resize",n)}function s(){o.value?t():e()}function n(){window.outerWidth>=768&&t()}const r=ee();return D(()=>r.path,t),{isScreenOpen:o,openScreen:e,closeScreen:t,toggleScreen:s}}const bs={},ks={class:"VPSwitch",type:"button",role:"switch"},gs={class:"check"},$s={key:0,class:"icon"};function ys(o,e){return a(),d("button",ks,[p("span",gs,[o.$slots.default?(a(),d("span",$s,[u(o.$slots,"default",{},void 0,!0)])):_("",!0)])])}const Ps=$(bs,[["render",ys],["__scopeId","data-v-4a1c76db"]]),Vs=b({__name:"VPSwitchAppearance",setup(o){const{isDark:e,theme:t}=L(),s=q("toggle-appearance",()=>{e.value=!e.value}),n=T("");return fe(()=>{n.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(r,l)=>(a(),k(Ps,{title:n.value,class:"VPSwitchAppearance","aria-checked":i(e),onClick:i(s)},{default:f(()=>l[0]||(l[0]=[p("span",{class:"vpi-sun sun"},null,-1),p("span",{class:"vpi-moon moon"},null,-1)])),_:1},8,["title","aria-checked","onClick"]))}}),ke=$(Vs,[["__scopeId","data-v-e40a8bb6"]]),Ss={key:0,class:"VPNavBarAppearance"},Ls=b({__name:"VPNavBarAppearance",setup(o){const{site:e}=L();return(t,s)=>i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(a(),d("div",Ss,[g(ke)])):_("",!0)}}),Ts=$(Ls,[["__scopeId","data-v-af096f4a"]]),ge=T();let Be=!1,ae=0;function ws(o){const e=T(!1);if(te){!Be&&Ns(),ae++;const t=D(ge,s=>{var n,r,l;s===o.el.value||(n=o.el.value)!=null&&n.contains(s)?(e.value=!0,(r=o.onFocus)==null||r.call(o)):(e.value=!1,(l=o.onBlur)==null||l.call(o))});pe(()=>{t(),ae--,ae||Is()})}return Je(e)}function Ns(){document.addEventListener("focusin",He),Be=!0,ge.value=document.activeElement}function Is(){document.removeEventListener("focusin",He)}function He(){ge.value=document.activeElement}const Ms={class:"VPMenuLink"},Cs=["innerHTML"],As=b({__name:"VPMenuLink",props:{item:{}},setup(o){const{page:e}=L();return(t,s)=>(a(),d("div",Ms,[g(O,{class:I({active:i(z)(i(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Cs)]),_:1},8,["class","href","target","rel","no-icon"])]))}}),ne=$(As,[["__scopeId","data-v-acbfed09"]]),Es={class:"VPMenuGroup"},Bs={key:0,class:"title"},Hs=b({__name:"VPMenuGroup",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),d("div",Es,[e.text?(a(),d("p",Bs,N(e.text),1)):_("",!0),(a(!0),d(M,null,E(e.items,s=>(a(),d(M,null,["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):_("",!0)],64))),256))]))}}),Os=$(Hs,[["__scopeId","data-v-48c802d0"]]),Ds={class:"VPMenu"},Fs={key:0,class:"items"},Rs=b({__name:"VPMenu",props:{items:{}},setup(o){return(e,t)=>(a(),d("div",Ds,[e.items?(a(),d("div",Fs,[(a(!0),d(M,null,E(e.items,s=>(a(),d(M,{key:JSON.stringify(s)},["link"in s?(a(),k(ne,{key:0,item:s},null,8,["item"])):"component"in s?(a(),k(H(s.component),G({key:1,ref_for:!0},s.props),null,16)):(a(),k(Os,{key:2,text:s.text,items:s.items},null,8,["text","items"]))],64))),128))])):_("",!0),u(e.$slots,"default",{},void 0,!0)]))}}),Us=$(Rs,[["__scopeId","data-v-7dd3104a"]]),Gs=["aria-expanded","aria-label"],js={key:0,class:"text"},zs=["innerHTML"],Ks={key:1,class:"vpi-more-horizontal icon"},Ws={class:"menu"},qs=b({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(o){const e=T(!1),t=T();ws({el:t,onBlur:s});function s(){e.value=!1}return(n,r)=>(a(),d("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:r[1]||(r[1]=l=>e.value=!0),onMouseleave:r[2]||(r[2]=l=>e.value=!1)},[p("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":n.label,onClick:r[0]||(r[0]=l=>e.value=!e.value)},[n.button||n.icon?(a(),d("span",js,[n.icon?(a(),d("span",{key:0,class:I([n.icon,"option-icon"])},null,2)):_("",!0),n.button?(a(),d("span",{key:1,innerHTML:n.button},null,8,zs)):_("",!0),r[3]||(r[3]=p("span",{class:"vpi-chevron-down text-icon"},null,-1))])):(a(),d("span",Ks))],8,Gs),p("div",Ws,[g(Us,{items:n.items},{default:f(()=>[u(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),$e=$(qs,[["__scopeId","data-v-04f5c5e9"]]),Js=["href","aria-label","innerHTML"],Ys=b({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(o){const e=o,t=T();F(async()=>{var r;await he();const n=(r=t.value)==null?void 0:r.children[0];n instanceof HTMLElement&&n.className.startsWith("vpi-social-")&&(getComputedStyle(n).maskImage||getComputedStyle(n).webkitMaskImage)==="none"&&n.style.setProperty("--icon",`url('https://api.iconify.design/simple-icons/${e.icon}.svg')`)});const s=P(()=>typeof e.icon=="object"?e.icon.svg:``);return(n,r)=>(a(),d("a",{ref_key:"el",ref:t,class:"VPSocialLink no-icon",href:n.link,"aria-label":n.ariaLabel??(typeof n.icon=="string"?n.icon:""),target:"_blank",rel:"noopener",innerHTML:s.value},null,8,Js))}}),Xs=$(Ys,[["__scopeId","data-v-d26d30cb"]]),Qs={class:"VPSocialLinks"},Zs=b({__name:"VPSocialLinks",props:{links:{}},setup(o){return(e,t)=>(a(),d("div",Qs,[(a(!0),d(M,null,E(e.links,({link:s,icon:n,ariaLabel:r})=>(a(),k(Xs,{key:s,icon:n,link:s,ariaLabel:r},null,8,["icon","link","ariaLabel"]))),128))]))}}),ye=$(Zs,[["__scopeId","data-v-ee7a9424"]]),xs={key:0,class:"group translations"},eo={class:"trans-title"},to={key:1,class:"group"},no={class:"item appearance"},so={class:"label"},oo={class:"appearance-action"},ao={key:2,class:"group"},ro={class:"item social-links"},io=b({__name:"VPNavBarExtra",setup(o){const{site:e,theme:t}=L(),{localeLinks:s,currentLang:n}=Y({correspondingLink:!0}),r=P(()=>s.value.length&&n.value.label||e.value.appearance||t.value.socialLinks);return(l,v)=>r.value?(a(),k($e,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:f(()=>[i(s).length&&i(n).label?(a(),d("div",xs,[p("p",eo,N(i(n).label),1),(a(!0),d(M,null,E(i(s),c=>(a(),k(ne,{key:c.link,item:c},null,8,["item"]))),128))])):_("",!0),i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(a(),d("div",to,[p("div",no,[p("p",so,N(i(t).darkModeSwitchLabel||"Appearance"),1),p("div",oo,[g(ke)])])])):_("",!0),i(t).socialLinks?(a(),d("div",ao,[p("div",ro,[g(ye,{class:"social-links-list",links:i(t).socialLinks},null,8,["links"])])])):_("",!0)]),_:1})):_("",!0)}}),lo=$(io,[["__scopeId","data-v-925effce"]]),co=["aria-expanded"],uo=b({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(o){return(e,t)=>(a(),d("button",{type:"button",class:I(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=s=>e.$emit("click"))},t[1]||(t[1]=[p("span",{class:"container"},[p("span",{class:"top"}),p("span",{class:"middle"}),p("span",{class:"bottom"})],-1)]),10,co))}}),vo=$(uo,[["__scopeId","data-v-5dea55bf"]]),po=["innerHTML"],fo=b({__name:"VPNavBarMenuLink",props:{item:{}},setup(o){const{page:e}=L();return(t,s)=>(a(),k(O,{class:I({VPNavBarMenuLink:!0,active:i(z)(i(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,tabindex:"0"},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,po)]),_:1},8,["class","href","target","rel","no-icon"]))}}),ho=$(fo,[["__scopeId","data-v-956ec74c"]]),Oe=b({__name:"VPNavBarMenuGroup",props:{item:{}},setup(o){const e=o,{page:t}=L(),s=r=>"component"in r?!1:"link"in r?z(t.value.relativePath,r.link,!!e.item.activeMatch):r.items.some(s),n=P(()=>s(e.item));return(r,l)=>(a(),k($e,{class:I({VPNavBarMenuGroup:!0,active:i(z)(i(t).relativePath,r.item.activeMatch,!!r.item.activeMatch)||n.value}),button:r.item.text,items:r.item.items},null,8,["class","button","items"]))}}),mo={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},_o=b({__name:"VPNavBarMenu",setup(o){const{theme:e}=L();return(t,s)=>i(e).nav?(a(),d("nav",mo,[s[0]||(s[0]=p("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),(a(!0),d(M,null,E(i(e).nav,n=>(a(),d(M,{key:JSON.stringify(n)},["link"in n?(a(),k(ho,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(H(n.component),G({key:1,ref_for:!0},n.props),null,16)):(a(),k(Oe,{key:2,item:n},null,8,["item"]))],64))),128))])):_("",!0)}}),bo=$(_o,[["__scopeId","data-v-e6d46098"]]);function ko(o){const{localeIndex:e,theme:t}=L();function s(n){var C,A,w;const r=n.split("."),l=(C=t.value.search)==null?void 0:C.options,v=l&&typeof l=="object",c=v&&((w=(A=l.locales)==null?void 0:A[e.value])==null?void 0:w.translations)||null,h=v&&l.translations||null;let y=c,m=h,V=o;const S=r.pop();for(const B of r){let U=null;const W=V==null?void 0:V[B];W&&(U=V=W);const se=m==null?void 0:m[B];se&&(U=m=se);const oe=y==null?void 0:y[B];oe&&(U=y=oe),W||(V=U),se||(m=U),oe||(y=U)}return(y==null?void 0:y[S])??(m==null?void 0:m[S])??(V==null?void 0:V[S])??""}return s}const go=["aria-label"],$o={class:"DocSearch-Button-Container"},yo={class:"DocSearch-Button-Placeholder"},Pe=b({__name:"VPNavBarSearchButton",setup(o){const t=ko({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(s,n)=>(a(),d("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":i(t)("button.buttonAriaLabel")},[p("span",$o,[n[0]||(n[0]=p("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1)),p("span",yo,N(i(t)("button.buttonText")),1)]),n[1]||(n[1]=p("span",{class:"DocSearch-Button-Keys"},[p("kbd",{class:"DocSearch-Button-Key"}),p("kbd",{class:"DocSearch-Button-Key"},"K")],-1))],8,go))}}),Po={class:"VPNavBarSearch"},Vo={id:"local-search"},So={key:1,id:"docsearch"},Lo=b({__name:"VPNavBarSearch",setup(o){const e=Ye(()=>Xe(()=>import("./VPLocalSearchBox.D8p_TdYF.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:s}=L(),n=T(!1),r=T(!1);F(()=>{});function l(){n.value||(n.value=!0,setTimeout(v,16))}function v(){const m=new Event("keydown");m.key="k",m.metaKey=!0,window.dispatchEvent(m),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||v()},16)}function c(m){const V=m.target,S=V.tagName;return V.isContentEditable||S==="INPUT"||S==="SELECT"||S==="TEXTAREA"}const h=T(!1);ie("k",m=>{(m.ctrlKey||m.metaKey)&&(m.preventDefault(),h.value=!0)}),ie("/",m=>{c(m)||(m.preventDefault(),h.value=!0)});const y="local";return(m,V)=>{var S;return a(),d("div",Po,[i(y)==="local"?(a(),d(M,{key:0},[h.value?(a(),k(i(e),{key:0,onClose:V[0]||(V[0]=C=>h.value=!1)})):_("",!0),p("div",Vo,[g(Pe,{onClick:V[1]||(V[1]=C=>h.value=!0)})])],64)):i(y)==="algolia"?(a(),d(M,{key:1},[n.value?(a(),k(i(t),{key:0,algolia:((S=i(s).search)==null?void 0:S.options)??i(s).algolia,onVnodeBeforeMount:V[2]||(V[2]=C=>r.value=!0)},null,8,["algolia"])):_("",!0),r.value?_("",!0):(a(),d("div",So,[g(Pe,{onClick:l})]))],64)):_("",!0)])}}}),To=b({__name:"VPNavBarSocialLinks",setup(o){const{theme:e}=L();return(t,s)=>i(e).socialLinks?(a(),k(ye,{key:0,class:"VPNavBarSocialLinks",links:i(e).socialLinks},null,8,["links"])):_("",!0)}}),wo=$(To,[["__scopeId","data-v-164c457f"]]),No=["href","rel","target"],Io=["innerHTML"],Mo={key:2},Co=b({__name:"VPNavBarTitle",setup(o){const{site:e,theme:t}=L(),{hasSidebar:s}=R(),{currentLang:n}=Y(),r=P(()=>{var c;return typeof t.value.logoLink=="string"?t.value.logoLink:(c=t.value.logoLink)==null?void 0:c.link}),l=P(()=>{var c;return typeof t.value.logoLink=="string"||(c=t.value.logoLink)==null?void 0:c.rel}),v=P(()=>{var c;return typeof t.value.logoLink=="string"||(c=t.value.logoLink)==null?void 0:c.target});return(c,h)=>(a(),d("div",{class:I(["VPNavBarTitle",{"has-sidebar":i(s)}])},[p("a",{class:"title",href:r.value??i(_e)(i(n).link),rel:l.value,target:v.value},[u(c.$slots,"nav-bar-title-before",{},void 0,!0),i(t).logo?(a(),k(Q,{key:0,class:"logo",image:i(t).logo},null,8,["image"])):_("",!0),i(t).siteTitle?(a(),d("span",{key:1,innerHTML:i(t).siteTitle},null,8,Io)):i(t).siteTitle===void 0?(a(),d("span",Mo,N(i(e).title),1)):_("",!0),u(c.$slots,"nav-bar-title-after",{},void 0,!0)],8,No)],2))}}),Ao=$(Co,[["__scopeId","data-v-0f4f798b"]]),Eo={class:"items"},Bo={class:"title"},Ho=b({__name:"VPNavBarTranslations",setup(o){const{theme:e}=L(),{localeLinks:t,currentLang:s}=Y({correspondingLink:!0});return(n,r)=>i(t).length&&i(s).label?(a(),k($e,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:i(e).langMenuLabel||"Change language"},{default:f(()=>[p("div",Eo,[p("p",Bo,N(i(s).label),1),(a(!0),d(M,null,E(i(t),l=>(a(),k(ne,{key:l.link,item:l},null,8,["item"]))),128))])]),_:1},8,["label"])):_("",!0)}}),Oo=$(Ho,[["__scopeId","data-v-c80d9ad0"]]),Do={class:"wrapper"},Fo={class:"container"},Ro={class:"title"},Uo={class:"content"},Go={class:"content-body"},jo=b({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(o){const e=o,{y:t}=Ne(),{hasSidebar:s}=R(),{frontmatter:n}=L(),r=T({});return fe(()=>{r.value={"has-sidebar":s.value,home:n.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(l,v)=>(a(),d("div",{class:I(["VPNavBar",r.value])},[p("div",Do,[p("div",Fo,[p("div",Ro,[g(Ao,null,{"nav-bar-title-before":f(()=>[u(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[u(l.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),p("div",Uo,[p("div",Go,[u(l.$slots,"nav-bar-content-before",{},void 0,!0),g(Lo,{class:"search"}),g(bo,{class:"menu"}),g(Oo,{class:"translations"}),g(Ts,{class:"appearance"}),g(wo,{class:"social-links"}),g(lo,{class:"extra"}),u(l.$slots,"nav-bar-content-after",{},void 0,!0),g(vo,{class:"hamburger",active:l.isScreenOpen,onClick:v[0]||(v[0]=c=>l.$emit("toggle-screen"))},null,8,["active"])])])])]),v[1]||(v[1]=p("div",{class:"divider"},[p("div",{class:"divider-line"})],-1))],2))}}),zo=$(jo,[["__scopeId","data-v-822684d1"]]),Ko={key:0,class:"VPNavScreenAppearance"},Wo={class:"text"},qo=b({__name:"VPNavScreenAppearance",setup(o){const{site:e,theme:t}=L();return(s,n)=>i(e).appearance&&i(e).appearance!=="force-dark"&&i(e).appearance!=="force-auto"?(a(),d("div",Ko,[p("p",Wo,N(i(t).darkModeSwitchLabel||"Appearance"),1),g(ke)])):_("",!0)}}),Jo=$(qo,[["__scopeId","data-v-ffb44008"]]),Yo=["innerHTML"],Xo=b({__name:"VPNavScreenMenuLink",props:{item:{}},setup(o){const e=q("close-screen");return(t,s)=>(a(),k(O,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:i(e)},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Yo)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),Qo=$(Xo,[["__scopeId","data-v-735512b8"]]),Zo=["innerHTML"],xo=b({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(o){const e=q("close-screen");return(t,s)=>(a(),k(O,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:i(e)},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Zo)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),De=$(xo,[["__scopeId","data-v-372ae7c0"]]),ea={class:"VPNavScreenMenuGroupSection"},ta={key:0,class:"title"},na=b({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(o){return(e,t)=>(a(),d("div",ea,[e.text?(a(),d("p",ta,N(e.text),1)):_("",!0),(a(!0),d(M,null,E(e.items,s=>(a(),k(De,{key:s.text,item:s},null,8,["item"]))),128))]))}}),sa=$(na,[["__scopeId","data-v-4b8941ac"]]),oa=["aria-controls","aria-expanded"],aa=["innerHTML"],ra=["id"],ia={key:0,class:"item"},la={key:1,class:"item"},ca={key:2,class:"group"},ua=b({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(o){const e=o,t=T(!1),s=P(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function n(){t.value=!t.value}return(r,l)=>(a(),d("div",{class:I(["VPNavScreenMenuGroup",{open:t.value}])},[p("button",{class:"button","aria-controls":s.value,"aria-expanded":t.value,onClick:n},[p("span",{class:"button-text",innerHTML:r.text},null,8,aa),l[0]||(l[0]=p("span",{class:"vpi-plus button-icon"},null,-1))],8,oa),p("div",{id:s.value,class:"items"},[(a(!0),d(M,null,E(r.items,v=>(a(),d(M,{key:JSON.stringify(v)},["link"in v?(a(),d("div",ia,[g(De,{item:v},null,8,["item"])])):"component"in v?(a(),d("div",la,[(a(),k(H(v.component),G({ref_for:!0},v.props,{"screen-menu":""}),null,16))])):(a(),d("div",ca,[g(sa,{text:v.text,items:v.items},null,8,["text","items"])]))],64))),128))],8,ra)],2))}}),Fe=$(ua,[["__scopeId","data-v-875057a5"]]),da={key:0,class:"VPNavScreenMenu"},va=b({__name:"VPNavScreenMenu",setup(o){const{theme:e}=L();return(t,s)=>i(e).nav?(a(),d("nav",da,[(a(!0),d(M,null,E(i(e).nav,n=>(a(),d(M,{key:JSON.stringify(n)},["link"in n?(a(),k(Qo,{key:0,item:n},null,8,["item"])):"component"in n?(a(),k(H(n.component),G({key:1,ref_for:!0},n.props,{"screen-menu":""}),null,16)):(a(),k(Fe,{key:2,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):_("",!0)}}),pa=b({__name:"VPNavScreenSocialLinks",setup(o){const{theme:e}=L();return(t,s)=>i(e).socialLinks?(a(),k(ye,{key:0,class:"VPNavScreenSocialLinks",links:i(e).socialLinks},null,8,["links"])):_("",!0)}}),fa={class:"list"},ha=b({__name:"VPNavScreenTranslations",setup(o){const{localeLinks:e,currentLang:t}=Y({correspondingLink:!0}),s=T(!1);function n(){s.value=!s.value}return(r,l)=>i(e).length&&i(t).label?(a(),d("div",{key:0,class:I(["VPNavScreenTranslations",{open:s.value}])},[p("button",{class:"title",onClick:n},[l[0]||(l[0]=p("span",{class:"vpi-languages icon lang"},null,-1)),j(" "+N(i(t).label)+" ",1),l[1]||(l[1]=p("span",{class:"vpi-chevron-down icon chevron"},null,-1))]),p("ul",fa,[(a(!0),d(M,null,E(i(e),v=>(a(),d("li",{key:v.link,class:"item"},[g(O,{class:"link",href:v.link},{default:f(()=>[j(N(v.text),1)]),_:2},1032,["href"])]))),128))])],2)):_("",!0)}}),ma=$(ha,[["__scopeId","data-v-362991c2"]]),_a={class:"container"},ba=b({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(o){const e=T(null),t=Ie(te?document.body:null);return(s,n)=>(a(),k(de,{name:"fade",onEnter:n[0]||(n[0]=r=>t.value=!0),onAfterLeave:n[1]||(n[1]=r=>t.value=!1)},{default:f(()=>[s.open?(a(),d("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[p("div",_a,[u(s.$slots,"nav-screen-content-before",{},void 0,!0),g(va,{class:"menu"}),g(ma,{class:"translations"}),g(Jo,{class:"appearance"}),g(pa,{class:"social-links"}),u(s.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):_("",!0)]),_:3}))}}),ka=$(ba,[["__scopeId","data-v-833aabba"]]),ga={key:0,class:"VPNav"},$a=b({__name:"VPNav",setup(o){const{isScreenOpen:e,closeScreen:t,toggleScreen:s}=_s(),{frontmatter:n}=L(),r=P(()=>n.value.navbar!==!1);return me("close-screen",t),Z(()=>{te&&document.documentElement.classList.toggle("hide-nav",!r.value)}),(l,v)=>r.value?(a(),d("header",ga,[g(zo,{"is-screen-open":i(e),onToggleScreen:i(s)},{"nav-bar-title-before":f(()=>[u(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[u(l.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":f(()=>[u(l.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":f(()=>[u(l.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),g(ka,{open:i(e)},{"nav-screen-content-before":f(()=>[u(l.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":f(()=>[u(l.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):_("",!0)}}),ya=$($a,[["__scopeId","data-v-f1e365da"]]),Pa=["role","tabindex"],Va={key:1,class:"items"},Sa=b({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(o){const e=o,{collapsed:t,collapsible:s,isLink:n,isActiveLink:r,hasActiveLink:l,hasChildren:v,toggle:c}=gt(P(()=>e.item)),h=P(()=>v.value?"section":"div"),y=P(()=>n.value?"a":"div"),m=P(()=>v.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),V=P(()=>n.value?void 0:"button"),S=P(()=>[[`level-${e.depth}`],{collapsible:s.value},{collapsed:t.value},{"is-link":n.value},{"is-active":r.value},{"has-active":l.value}]);function C(w){"key"in w&&w.key!=="Enter"||!e.item.link&&c()}function A(){e.item.link&&c()}return(w,B)=>{const U=K("VPSidebarItem",!0);return a(),k(H(h.value),{class:I(["VPSidebarItem",S.value])},{default:f(()=>[w.item.text?(a(),d("div",G({key:0,class:"item",role:V.value},Ze(w.item.items?{click:C,keydown:C}:{},!0),{tabindex:w.item.items&&0}),[B[1]||(B[1]=p("div",{class:"indicator"},null,-1)),w.item.link?(a(),k(O,{key:0,tag:y.value,class:"link",href:w.item.link,rel:w.item.rel,target:w.item.target},{default:f(()=>[(a(),k(H(m.value),{class:"text",innerHTML:w.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),k(H(m.value),{key:1,class:"text",innerHTML:w.item.text},null,8,["innerHTML"])),w.item.collapsed!=null&&w.item.items&&w.item.items.length?(a(),d("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:A,onKeydown:Qe(A,["enter"]),tabindex:"0"},B[0]||(B[0]=[p("span",{class:"vpi-chevron-right caret-icon"},null,-1)]),32)):_("",!0)],16,Pa)):_("",!0),w.item.items&&w.item.items.length?(a(),d("div",Va,[w.depth<5?(a(!0),d(M,{key:0},E(w.item.items,W=>(a(),k(U,{key:W.text,item:W,depth:w.depth+1},null,8,["item","depth"]))),128)):_("",!0)])):_("",!0)]),_:1},8,["class"])}}}),La=$(Sa,[["__scopeId","data-v-196b2e5f"]]),Ta=b({__name:"VPSidebarGroup",props:{items:{}},setup(o){const e=T(!0);let t=null;return F(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),xe(()=>{t!=null&&(clearTimeout(t),t=null)}),(s,n)=>(a(!0),d(M,null,E(s.items,r=>(a(),d("div",{key:r.text,class:I(["group",{"no-transition":e.value}])},[g(La,{item:r,depth:0},null,8,["item"])],2))),128))}}),wa=$(Ta,[["__scopeId","data-v-9e426adc"]]),Na={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},Ia=b({__name:"VPSidebar",props:{open:{type:Boolean}},setup(o){const{sidebarGroups:e,hasSidebar:t}=R(),s=o,n=T(null),r=Ie(te?document.body:null);D([s,n],()=>{var v;s.open?(r.value=!0,(v=n.value)==null||v.focus()):r.value=!1},{immediate:!0,flush:"post"});const l=T(0);return D(e,()=>{l.value+=1},{deep:!0}),(v,c)=>i(t)?(a(),d("aside",{key:0,class:I(["VPSidebar",{open:v.open}]),ref_key:"navEl",ref:n,onClick:c[0]||(c[0]=et(()=>{},["stop"]))},[c[2]||(c[2]=p("div",{class:"curtain"},null,-1)),p("nav",Na,[c[1]||(c[1]=p("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),u(v.$slots,"sidebar-nav-before",{},void 0,!0),(a(),k(wa,{items:i(e),key:l.value},null,8,["items"])),u(v.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):_("",!0)}}),Ma=$(Ia,[["__scopeId","data-v-18756405"]]),Ca=b({__name:"VPSkipLink",setup(o){const e=ee(),t=T();D(()=>e.path,()=>t.value.focus());function s({target:n}){const r=document.getElementById(decodeURIComponent(n.hash).slice(1));if(r){const l=()=>{r.removeAttribute("tabindex"),r.removeEventListener("blur",l)};r.setAttribute("tabindex","-1"),r.addEventListener("blur",l),r.focus(),window.scrollTo(0,0)}}return(n,r)=>(a(),d(M,null,[p("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),p("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:s}," Skip to content ")],64))}}),Aa=$(Ca,[["__scopeId","data-v-c3508ec8"]]),Ea=b({__name:"Layout",setup(o){const{isOpen:e,open:t,close:s}=R(),n=ee();D(()=>n.path,s),kt(e,s);const{frontmatter:r}=L(),l=Me(),v=P(()=>!!l["home-hero-image"]);return me("hero-image-slot-exists",v),(c,h)=>{const y=K("Content");return i(r).layout!==!1?(a(),d("div",{key:0,class:I(["Layout",i(r).pageClass])},[u(c.$slots,"layout-top",{},void 0,!0),g(Aa),g(rt,{class:"backdrop",show:i(e),onClick:i(s)},null,8,["show","onClick"]),g(ya,null,{"nav-bar-title-before":f(()=>[u(c.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[u(c.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":f(()=>[u(c.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":f(()=>[u(c.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":f(()=>[u(c.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":f(()=>[u(c.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),g(ms,{open:i(e),onOpenMenu:i(t)},null,8,["open","onOpenMenu"]),g(Ma,{open:i(e)},{"sidebar-nav-before":f(()=>[u(c.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":f(()=>[u(c.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),g(es,null,{"page-top":f(()=>[u(c.$slots,"page-top",{},void 0,!0)]),"page-bottom":f(()=>[u(c.$slots,"page-bottom",{},void 0,!0)]),"not-found":f(()=>[u(c.$slots,"not-found",{},void 0,!0)]),"home-hero-before":f(()=>[u(c.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":f(()=>[u(c.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[u(c.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[u(c.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[u(c.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[u(c.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":f(()=>[u(c.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":f(()=>[u(c.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":f(()=>[u(c.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":f(()=>[u(c.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":f(()=>[u(c.$slots,"doc-before",{},void 0,!0)]),"doc-after":f(()=>[u(c.$slots,"doc-after",{},void 0,!0)]),"doc-top":f(()=>[u(c.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":f(()=>[u(c.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":f(()=>[u(c.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":f(()=>[u(c.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":f(()=>[u(c.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[u(c.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[u(c.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[u(c.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),g(as),u(c.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),k(y,{key:1}))}}}),Ba=$(Ea,[["__scopeId","data-v-a9a9e638"]]),Ha={Layout:Ba,enhanceApp:({app:o})=>{o.component("Badge",st)}},Oa=b({__name:"VersionPicker",props:{screenMenu:{type:Boolean}},setup(o){const e=T([]),t=T("Versions"),s=T(!1);Se();const n=()=>typeof window<"u"&&(window.location.hostname==="localhost"||window.location.hostname==="127.0.0.1"),r=()=>{if(typeof window>"u")return"";const{origin:c,pathname:h}=window.location;if(c.includes("github.io")){const y=h.split("/").filter(Boolean),m=y.length>0?`/${y[0]}`:"";return`${c}${m}`}else return c},l=()=>new Promise(c=>{if(n()){c(!1);return}const h=setInterval(()=>{window.DOC_VERSIONS&&window.DOCUMENTER_CURRENT_VERSION&&(clearInterval(h),c(!0))},100);setTimeout(()=>{clearInterval(h),c(!1)},5e3)});return F(async()=>{if(!(typeof window>"u")){try{if(n()){const c=["dev"];e.value=c.map(h=>({text:h,link:"/"})),t.value="dev"}else{const c=await l(),h=P(()=>r());if(c&&window.DOC_VERSIONS&&window.DOCUMENTER_CURRENT_VERSION)e.value=window.DOC_VERSIONS.map(y=>({text:y,link:`${h.value}/${y}/`})),t.value=window.DOCUMENTER_CURRENT_VERSION;else{const y=["dev"];e.value=y.map(m=>({text:m,link:`${h.value}/${m}/`})),t.value="dev"}}}catch(c){console.warn("Error loading versions:",c);const h=["dev"],y=P(()=>r());e.value=h.map(m=>({text:m,link:`${y.value}/${m}/`})),t.value="dev"}s.value=!0}}),(c,h)=>s.value?(a(),d(M,{key:0},[!c.screenMenu&&e.value.length>0?(a(),k(Oe,{key:0,item:{text:t.value,items:e.value},class:"VPVersionPicker"},null,8,["item"])):c.screenMenu&&e.value.length>0?(a(),k(Fe,{key:1,text:t.value,items:e.value,class:"VPVersionPicker"},null,8,["text","items"])):_("",!0)],64)):_("",!0)}}),Da=$(Oa,[["__scopeId","data-v-27f608c1"]]),Fa=o=>{if(typeof document>"u")return{stabilizeScrollPosition:n=>async(...r)=>n(...r)};const e=document.documentElement;return{stabilizeScrollPosition:s=>async(...n)=>{const r=s(...n),l=o.value;if(!l)return r;const v=l.offsetTop-e.scrollTop;return await he(),e.scrollTop=l.offsetTop-v,r}}},Re="vitepress:tabSharedState",J=typeof localStorage<"u"?localStorage:null,Ue="vitepress:tabsSharedState",Ra=()=>{const o=J==null?void 0:J.getItem(Ue);if(o)try{return JSON.parse(o)}catch{}return{}},Ua=o=>{J&&J.setItem(Ue,JSON.stringify(o))},Ga=o=>{const e=tt({});D(()=>e.content,(t,s)=>{t&&s&&Ua(t)},{deep:!0}),o.provide(Re,e)},ja=(o,e)=>{const t=q(Re);if(!t)throw new Error("[vitepress-plugin-tabs] TabsSharedState should be injected");F(()=>{t.content||(t.content=Ra())});const s=T(),n=P({get(){var c;const l=e.value,v=o.value;if(l){const h=(c=t.content)==null?void 0:c[l];if(h&&v.includes(h))return h}else{const h=s.value;if(h)return h}return v[0]},set(l){const v=e.value;v?t.content&&(t.content[v]=l):s.value=l}});return{selected:n,select:l=>{n.value=l}}};let Ve=0;const za=()=>(Ve++,""+Ve);function Ka(){const o=Me();return P(()=>{var s;const t=(s=o.default)==null?void 0:s.call(o);return t?t.filter(n=>typeof n.type=="object"&&"__name"in n.type&&n.type.__name==="PluginTabsTab"&&n.props).map(n=>{var r;return(r=n.props)==null?void 0:r.label}):[]})}const Ge="vitepress:tabSingleState",Wa=o=>{me(Ge,o)},qa=()=>{const o=q(Ge);if(!o)throw new Error("[vitepress-plugin-tabs] TabsSingleState should be injected");return o},Ja={class:"plugin-tabs"},Ya=["id","aria-selected","aria-controls","tabindex","onClick"],Xa=b({__name:"PluginTabs",props:{sharedStateKey:{}},setup(o){const e=o,t=Ka(),{selected:s,select:n}=ja(t,nt(e,"sharedStateKey")),r=T(),{stabilizeScrollPosition:l}=Fa(r),v=l(n),c=T([]),h=m=>{var C;const V=t.value.indexOf(s.value);let S;m.key==="ArrowLeft"?S=V>=1?V-1:t.value.length-1:m.key==="ArrowRight"&&(S=V(a(),d("div",Ja,[p("div",{ref_key:"tablist",ref:r,class:"plugin-tabs--tab-list",role:"tablist",onKeydown:h},[(a(!0),d(M,null,E(i(t),S=>(a(),d("button",{id:`tab-${S}-${i(y)}`,ref_for:!0,ref_key:"buttonRefs",ref:c,key:S,role:"tab",class:"plugin-tabs--tab","aria-selected":S===i(s),"aria-controls":`panel-${S}-${i(y)}`,tabindex:S===i(s)?0:-1,onClick:()=>i(v)(S)},N(S),9,Ya))),128))],544),u(m.$slots,"default")]))}}),Qa=["id","aria-labelledby"],Za=b({__name:"PluginTabsTab",props:{label:{}},setup(o){const{uid:e,selected:t}=qa();return(s,n)=>i(t)===s.label?(a(),d("div",{key:0,id:`panel-${s.label}-${i(e)}`,class:"plugin-tabs--content",role:"tabpanel",tabindex:"0","aria-labelledby":`tab-${s.label}-${i(e)}`},[u(s.$slots,"default",{},void 0,!0)],8,Qa)):_("",!0)}}),xa=$(Za,[["__scopeId","data-v-9b0d03d2"]]),er=o=>{Ga(o),o.component("PluginTabs",Xa),o.component("PluginTabsTab",xa)},nr={extends:Ha,enhanceApp({app:o,router:e,siteData:t}){er(o),o.component("VersionPicker",Da)}};export{nr as R,ko as c,L as u}; diff --git a/dev/assets/manual_orders_ideals.md.EkUqp_u_.js b/dev/assets/manual_orders_ideals.md.YGrAEavw.js similarity index 86% rename from dev/assets/manual_orders_ideals.md.EkUqp_u_.js rename to dev/assets/manual_orders_ideals.md.YGrAEavw.js index 2133062502..77953e17ff 100644 --- a/dev/assets/manual_orders_ideals.md.EkUqp_u_.js +++ b/dev/assets/manual_orders_ideals.md.YGrAEavw.js @@ -25,19 +25,19 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr julia> [ mc \\ I for I = lp] 10-element Vector{FinGenAbGroupElem}: - [4] [1] - [4] - [5] - [3] - [2] [7] [1] + [8] + [3] + [5] + [4] + [7] [0] - [2] + [5] julia> mc(c[1]) -<2, 7//2*_$^2 + 2*_$ + 1//2> +<2, 1//2*_$^2 + 2*_$ + 5//2> Norm: 2 Minimum: 2 two normal wrt: 2 @@ -46,9 +46,9 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr 9 julia> mc(c[1])^Int(order(c[1])) -<512, 48778768008944312042281//2*_$^2 - 24206243073821420343184*_$ + 52810618909468316764975//2> +<32, 13217457633644257//2*_$^2 - 6559103588818597*_$ + 14309957929619471//2> Norm: 512 -Minimum: 512 +Minimum: 32 two normal wrt: 2 julia> mc \\ ans @@ -62,7 +62,7 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr degree_limit::Int = 0, F::Function, bad::ZZRingElem)`,2)),s("p",null,[t[437]||(t[437]=i("Computes the prime ideals ")),s("mjx-container",q4,[(l(),e("svg",K4,t[433]||(t[433]=[a('',1)]))),t[434]||(t[434]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[438]||(t[438]=i(" with norm up to ")),s("mjx-container",W4,[(l(),e("svg",Y4,t[435]||(t[435]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[436]||(t[436]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"B")])],-1))]),t[439]||(t[439]=i("."))]),s("p",null,[t[446]||(t[446]=i("If ")),t[447]||(t[447]=s("code",null,"degree_limit",-1)),t[448]||(t[448]=i(" is a nonzero integer ")),s("mjx-container",_4,[(l(),e("svg",st,t[440]||(t[440]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),t[441]||(t[441]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"k")])],-1))]),t[449]||(t[449]=i(", then prime ideals ")),s("mjx-container",tt,[(l(),e("svg",it,t[442]||(t[442]=[a('',1)]))),t[443]||(t[443]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")])])],-1))]),t[450]||(t[450]=i(" with ")),s("mjx-container",et,[(l(),e("svg",lt,t[444]||(t[444]=[a('',1)]))),t[445]||(t[445]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"deg"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")]),s("mo",{stretchy:"false"},")"),s("mo",null,">"),s("mi",null,"k")])],-1))]),t[451]||(t[451]=i(" will be discarded."))]),s("p",null,[t[460]||(t[460]=i("The function ")),s("mjx-container",at,[(l(),e("svg",nt,t[452]||(t[452]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D439",d:"M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[453]||(t[453]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"F")])],-1))]),t[461]||(t[461]=i(" must be a function on prime numbers not dividing ")),t[462]||(t[462]=s("code",null,"bad",-1)),t[463]||(t[463]=i(" such that ")),s("mjx-container",ot,[(l(),e("svg",rt,t[454]||(t[454]=[a('',1)]))),t[455]||(t[455]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"F"),s("mo",{stretchy:"false"},"("),s("mi",null,"p"),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mi",null,"deg"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")]),s("mo",{stretchy:"false"},")")])],-1))]),t[464]||(t[464]=i(" for all prime ideals ")),s("mjx-container",pt,[(l(),e("svg",dt,t[456]||(t[456]=[a('',1)]))),t[457]||(t[457]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")])])],-1))]),t[465]||(t[465]=i(" lying above ")),s("mjx-container",ht,[(l(),e("svg",Qt,t[458]||(t[458]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),t[459]||(t[459]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"p")])],-1))]),t[466]||(t[466]=i("."))]),t[469]||(t[469]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[1092]||(t[1092]=a(`
julia
julia> I = mc(c[1])
-<2, 7//2*_$^2 + 2*_$ + 1//2>
+<2, 1//2*_$^2 + 2*_$ + 5//2>
 Norm: 2
 Minimum: 2
 two normal wrt: 2
@@ -71,39 +71,39 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
 false
 
 julia> I = I^Int(order(c[1]))
-<512, 48778768008944312042281//2*_$^2 - 24206243073821420343184*_$ + 52810618909468316764975//2>
+<32, 13217457633644257//2*_$^2 - 6559103588818597*_$ + 14309957929619471//2>
 Norm: 512
-Minimum: 512
+Minimum: 32
 two normal wrt: 2
 
 julia> is_principal(I)
 true
 
 julia> is_principal_fac_elem(I)
-(true, 5^-1*(_$^2 + _$ + 2)^1*(_$ + 5)^-1*(_$^2 + 1)^-1*3^1*1^-1*(_$ - 3)^2*(_$ + 1)^1)
`,1)),s("p",null,[t[472]||(t[472]=i("The computation of ")),s("mjx-container",mt,[(l(),e("svg",kt,t[470]||(t[470]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[471]||(t[471]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[473]||(t[473]=i("-units is also tied to the class group:"))]),s("details",Tt,[s("summary",null,[t[474]||(t[474]=s("a",{id:"torsion_units-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units")],-1)),t[475]||(t[475]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[483]||(t[483]=a('
julia
torsion_units(O::AbsSimpleNumFieldOrder) -> Vector{AbsSimpleNumFieldOrderElem}
',1)),s("p",null,[t[480]||(t[480]=i("Given an order ")),s("mjx-container",gt,[(l(),e("svg",ut,t[476]||(t[476]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[477]||(t[477]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[481]||(t[481]=i(", compute the torsion units of ")),s("mjx-container",xt,[(l(),e("svg",wt,t[478]||(t[478]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[479]||(t[479]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[482]||(t[482]=i("."))]),t[484]||(t[484]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",yt,[s("summary",null,[t[485]||(t[485]=s("a",{id:"torsion_unit_group-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_unit_group-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_unit_group")],-1)),t[486]||(t[486]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[497]||(t[497]=a('
julia
torsion_unit_group(O::AbsSimpleNumFieldOrder) -> GrpAb, Map
',1)),s("p",null,[t[493]||(t[493]=i("Given an order ")),s("mjx-container",bt,[(l(),e("svg",ct,t[487]||(t[487]=[a('',1)]))),t[488]||(t[488]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[494]||(t[494]=i(", returns the torsion units as an abelian group ")),s("mjx-container",Et,[(l(),e("svg",ft,t[489]||(t[489]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),t[490]||(t[490]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"G")])],-1))]),t[495]||(t[495]=i(" together with a map ")),s("mjx-container",vt,[(l(),e("svg",Ft,t[491]||(t[491]=[a('',1)]))),t[492]||(t[492]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"G"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[496]||(t[496]=i("."))]),t[498]||(t[498]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ct,[s("summary",null,[t[499]||(t[499]=s("a",{id:"torsion_units_generator-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units_generator-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units_generator")],-1)),t[500]||(t[500]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[508]||(t[508]=a('
julia
torsion_units_generator(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[505]||(t[505]=i("Given an order ")),s("mjx-container",Mt,[(l(),e("svg",Ht,t[501]||(t[501]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[502]||(t[502]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[506]||(t[506]=i(", compute a generator of the torsion units of ")),s("mjx-container",jt,[(l(),e("svg",Lt,t[503]||(t[503]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[504]||(t[504]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[507]||(t[507]=i("."))]),t[509]||(t[509]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",At,[s("summary",null,[t[510]||(t[510]=s("a",{id:"torsion_units_gen_order-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units_gen_order-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units_gen_order")],-1)),t[511]||(t[511]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[519]||(t[519]=a('
julia
torsion_units_gen_order(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[516]||(t[516]=i("Given an order ")),s("mjx-container",Dt,[(l(),e("svg",Zt,t[512]||(t[512]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[513]||(t[513]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[517]||(t[517]=i(", compute a generator of the torsion units of ")),s("mjx-container",Bt,[(l(),e("svg",Vt,t[514]||(t[514]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[515]||(t[515]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[518]||(t[518]=i(" as well as its order."))]),t[520]||(t[520]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ot,[s("summary",null,[t[521]||(t[521]=s("a",{id:"unit_group-Tuple{AbsSimpleNumFieldOrder}",href:"#unit_group-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"unit_group")],-1)),t[522]||(t[522]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[537]||(t[537]=a('
julia
unit_group(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map
',1)),s("p",null,[t[529]||(t[529]=i("Returns a group ")),s("mjx-container",St,[(l(),e("svg",Nt,t[523]||(t[523]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[524]||(t[524]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"U")])],-1))]),t[530]||(t[530]=i(" and an isomorphism map ")),s("mjx-container",It,[(l(),e("svg",Gt,t[525]||(t[525]=[a('',1)]))),t[526]||(t[526]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{"data-mjx-texclass":"PUNCT"},":"),s("mi",null,"U"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[531]||(t[531]=i(". A set of fundamental units of ")),s("mjx-container",Rt,[(l(),e("svg",zt,t[527]||(t[527]=[a('',1)]))),t[528]||(t[528]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[532]||(t[532]=i(" can be obtained via ")),t[533]||(t[533]=s("code",null,"[ f(U[1+i]) for i in 1:unit_group_rank(O) ]",-1)),t[534]||(t[534]=i(". ")),t[535]||(t[535]=s("code",null,"f(U[1])",-1)),t[536]||(t[536]=i(" will give a generator for the torsion subgroup."))]),t[538]||(t[538]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Jt,[s("summary",null,[t[539]||(t[539]=s("a",{id:"unit_group_fac_elem-Tuple{AbsSimpleNumFieldOrder}",href:"#unit_group_fac_elem-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"unit_group_fac_elem")],-1)),t[540]||(t[540]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[555]||(t[555]=a('
julia
unit_group_fac_elem(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map
',1)),s("p",null,[t[547]||(t[547]=i("Returns a group ")),s("mjx-container",Xt,[(l(),e("svg",$t,t[541]||(t[541]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[542]||(t[542]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"U")])],-1))]),t[548]||(t[548]=i(" and an isomorphism map ")),s("mjx-container",Ut,[(l(),e("svg",Pt,t[543]||(t[543]=[a('',1)]))),t[544]||(t[544]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{"data-mjx-texclass":"PUNCT"},":"),s("mi",null,"U"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[549]||(t[549]=i(". A set of fundamental units of ")),s("mjx-container",qt,[(l(),e("svg",Kt,t[545]||(t[545]=[a('',1)]))),t[546]||(t[546]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[550]||(t[550]=i(" can be obtained via ")),t[551]||(t[551]=s("code",null,"[ f(U[1+i]) for i in 1:unit_group_rank(O) ]",-1)),t[552]||(t[552]=i(". ")),t[553]||(t[553]=s("code",null,"f(U[1])",-1)),t[554]||(t[554]=i(" will give a generator for the torsion subgroup. All elements will be returned in factored form."))]),t[556]||(t[556]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Wt,[s("summary",null,[t[557]||(t[557]=s("a",{id:"sunit_group-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_group-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_group")],-1)),t[558]||(t[558]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[572]||(t[572]=a('
julia
sunit_group(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[567]||(t[567]=i("For an array ")),s("mjx-container",Yt,[(l(),e("svg",_t,t[559]||(t[559]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[560]||(t[560]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[568]||(t[568]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",s2,[(l(),e("svg",t2,t[561]||(t[561]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[562]||(t[562]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[569]||(t[569]=i("-unit group defined by ")),s("mjx-container",i2,[(l(),e("svg",e2,t[563]||(t[563]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[564]||(t[564]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[570]||(t[570]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",l2,[(l(),e("svg",a2,t[565]||(t[565]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[566]||(t[566]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[571]||(t[571]=i("."))]),t[573]||(t[573]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",n2,[s("summary",null,[t[574]||(t[574]=s("a",{id:"sunit_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_group_fac_elem")],-1)),t[575]||(t[575]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[589]||(t[589]=a('
julia
sunit_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[584]||(t[584]=i("For an array ")),s("mjx-container",o2,[(l(),e("svg",r2,t[576]||(t[576]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[577]||(t[577]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[585]||(t[585]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",p2,[(l(),e("svg",d2,t[578]||(t[578]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[579]||(t[579]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[586]||(t[586]=i("-unit group defined by ")),s("mjx-container",h2,[(l(),e("svg",Q2,t[580]||(t[580]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[581]||(t[581]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[587]||(t[587]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",m2,[(l(),e("svg",k2,t[582]||(t[582]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[583]||(t[583]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[588]||(t[588]=i(". The map will return elements in factored form."))]),t[590]||(t[590]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",T2,[s("summary",null,[t[591]||(t[591]=s("a",{id:"sunit_mod_units_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_mod_units_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_mod_units_group_fac_elem")],-1)),t[592]||(t[592]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[606]||(t[606]=a('
julia
sunit_mod_units_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[601]||(t[601]=i("For an array ")),s("mjx-container",g2,[(l(),e("svg",u2,t[593]||(t[593]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[594]||(t[594]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[602]||(t[602]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",x2,[(l(),e("svg",w2,t[595]||(t[595]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[596]||(t[596]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[603]||(t[603]=i("-unit group defined by ")),s("mjx-container",y2,[(l(),e("svg",b2,t[597]||(t[597]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[598]||(t[598]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[604]||(t[604]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",c2,[(l(),e("svg",E2,t[599]||(t[599]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[600]||(t[600]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[605]||(t[605]=i(" modulo the units of the field. The map will return elements in factored form."))]),t[607]||(t[607]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[1093]||(t[1093]=a(`
julia
julia> u, mu = unit_group(zk)
+(true, (-1//2*_$^2 + 6*_$ - 3//2)^4*5^1*(_$ - 3)^-1*(_$^2 + _$ + 2)^-1*(_$ + 5)^-2*(_$^2 + 1)^2*3^-2*11^-1*(_$ + 1)^-1*2^4*(_$ + 2)^2*1^-1)
`,1)),s("p",null,[t[472]||(t[472]=i("The computation of ")),s("mjx-container",mt,[(l(),e("svg",kt,t[470]||(t[470]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[471]||(t[471]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[473]||(t[473]=i("-units is also tied to the class group:"))]),s("details",Tt,[s("summary",null,[t[474]||(t[474]=s("a",{id:"torsion_units-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units")],-1)),t[475]||(t[475]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[483]||(t[483]=a('
julia
torsion_units(O::AbsSimpleNumFieldOrder) -> Vector{AbsSimpleNumFieldOrderElem}
',1)),s("p",null,[t[480]||(t[480]=i("Given an order ")),s("mjx-container",gt,[(l(),e("svg",ut,t[476]||(t[476]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[477]||(t[477]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[481]||(t[481]=i(", compute the torsion units of ")),s("mjx-container",xt,[(l(),e("svg",wt,t[478]||(t[478]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[479]||(t[479]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[482]||(t[482]=i("."))]),t[484]||(t[484]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",yt,[s("summary",null,[t[485]||(t[485]=s("a",{id:"torsion_unit_group-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_unit_group-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_unit_group")],-1)),t[486]||(t[486]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[497]||(t[497]=a('
julia
torsion_unit_group(O::AbsSimpleNumFieldOrder) -> GrpAb, Map
',1)),s("p",null,[t[493]||(t[493]=i("Given an order ")),s("mjx-container",bt,[(l(),e("svg",ct,t[487]||(t[487]=[a('',1)]))),t[488]||(t[488]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[494]||(t[494]=i(", returns the torsion units as an abelian group ")),s("mjx-container",Et,[(l(),e("svg",ft,t[489]||(t[489]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),t[490]||(t[490]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"G")])],-1))]),t[495]||(t[495]=i(" together with a map ")),s("mjx-container",vt,[(l(),e("svg",Ft,t[491]||(t[491]=[a('',1)]))),t[492]||(t[492]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"G"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[496]||(t[496]=i("."))]),t[498]||(t[498]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ct,[s("summary",null,[t[499]||(t[499]=s("a",{id:"torsion_units_generator-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units_generator-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units_generator")],-1)),t[500]||(t[500]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[508]||(t[508]=a('
julia
torsion_units_generator(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[505]||(t[505]=i("Given an order ")),s("mjx-container",Mt,[(l(),e("svg",Ht,t[501]||(t[501]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[502]||(t[502]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[506]||(t[506]=i(", compute a generator of the torsion units of ")),s("mjx-container",jt,[(l(),e("svg",Lt,t[503]||(t[503]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[504]||(t[504]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[507]||(t[507]=i("."))]),t[509]||(t[509]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",At,[s("summary",null,[t[510]||(t[510]=s("a",{id:"torsion_units_gen_order-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units_gen_order-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units_gen_order")],-1)),t[511]||(t[511]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[519]||(t[519]=a('
julia
torsion_units_gen_order(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[516]||(t[516]=i("Given an order ")),s("mjx-container",Dt,[(l(),e("svg",Zt,t[512]||(t[512]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[513]||(t[513]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[517]||(t[517]=i(", compute a generator of the torsion units of ")),s("mjx-container",Bt,[(l(),e("svg",Vt,t[514]||(t[514]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[515]||(t[515]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[518]||(t[518]=i(" as well as its order."))]),t[520]||(t[520]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ot,[s("summary",null,[t[521]||(t[521]=s("a",{id:"unit_group-Tuple{AbsSimpleNumFieldOrder}",href:"#unit_group-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"unit_group")],-1)),t[522]||(t[522]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[537]||(t[537]=a('
julia
unit_group(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map
',1)),s("p",null,[t[529]||(t[529]=i("Returns a group ")),s("mjx-container",St,[(l(),e("svg",Nt,t[523]||(t[523]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[524]||(t[524]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"U")])],-1))]),t[530]||(t[530]=i(" and an isomorphism map ")),s("mjx-container",It,[(l(),e("svg",Gt,t[525]||(t[525]=[a('',1)]))),t[526]||(t[526]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{"data-mjx-texclass":"PUNCT"},":"),s("mi",null,"U"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[531]||(t[531]=i(". A set of fundamental units of ")),s("mjx-container",Rt,[(l(),e("svg",zt,t[527]||(t[527]=[a('',1)]))),t[528]||(t[528]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[532]||(t[532]=i(" can be obtained via ")),t[533]||(t[533]=s("code",null,"[ f(U[1+i]) for i in 1:unit_group_rank(O) ]",-1)),t[534]||(t[534]=i(". ")),t[535]||(t[535]=s("code",null,"f(U[1])",-1)),t[536]||(t[536]=i(" will give a generator for the torsion subgroup."))]),t[538]||(t[538]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Jt,[s("summary",null,[t[539]||(t[539]=s("a",{id:"unit_group_fac_elem-Tuple{AbsSimpleNumFieldOrder}",href:"#unit_group_fac_elem-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"unit_group_fac_elem")],-1)),t[540]||(t[540]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[555]||(t[555]=a('
julia
unit_group_fac_elem(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map
',1)),s("p",null,[t[547]||(t[547]=i("Returns a group ")),s("mjx-container",Xt,[(l(),e("svg",$t,t[541]||(t[541]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[542]||(t[542]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"U")])],-1))]),t[548]||(t[548]=i(" and an isomorphism map ")),s("mjx-container",Ut,[(l(),e("svg",Pt,t[543]||(t[543]=[a('',1)]))),t[544]||(t[544]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{"data-mjx-texclass":"PUNCT"},":"),s("mi",null,"U"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[549]||(t[549]=i(". A set of fundamental units of ")),s("mjx-container",qt,[(l(),e("svg",Kt,t[545]||(t[545]=[a('',1)]))),t[546]||(t[546]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[550]||(t[550]=i(" can be obtained via ")),t[551]||(t[551]=s("code",null,"[ f(U[1+i]) for i in 1:unit_group_rank(O) ]",-1)),t[552]||(t[552]=i(". ")),t[553]||(t[553]=s("code",null,"f(U[1])",-1)),t[554]||(t[554]=i(" will give a generator for the torsion subgroup. All elements will be returned in factored form."))]),t[556]||(t[556]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Wt,[s("summary",null,[t[557]||(t[557]=s("a",{id:"sunit_group-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_group-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_group")],-1)),t[558]||(t[558]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[572]||(t[572]=a('
julia
sunit_group(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[567]||(t[567]=i("For an array ")),s("mjx-container",Yt,[(l(),e("svg",_t,t[559]||(t[559]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[560]||(t[560]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[568]||(t[568]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",s2,[(l(),e("svg",t2,t[561]||(t[561]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[562]||(t[562]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[569]||(t[569]=i("-unit group defined by ")),s("mjx-container",i2,[(l(),e("svg",e2,t[563]||(t[563]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[564]||(t[564]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[570]||(t[570]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",l2,[(l(),e("svg",a2,t[565]||(t[565]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[566]||(t[566]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[571]||(t[571]=i("."))]),t[573]||(t[573]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",n2,[s("summary",null,[t[574]||(t[574]=s("a",{id:"sunit_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_group_fac_elem")],-1)),t[575]||(t[575]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[589]||(t[589]=a('
julia
sunit_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[584]||(t[584]=i("For an array ")),s("mjx-container",o2,[(l(),e("svg",r2,t[576]||(t[576]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[577]||(t[577]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[585]||(t[585]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",p2,[(l(),e("svg",d2,t[578]||(t[578]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[579]||(t[579]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[586]||(t[586]=i("-unit group defined by ")),s("mjx-container",h2,[(l(),e("svg",Q2,t[580]||(t[580]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[581]||(t[581]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[587]||(t[587]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",m2,[(l(),e("svg",k2,t[582]||(t[582]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[583]||(t[583]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[588]||(t[588]=i(". The map will return elements in factored form."))]),t[590]||(t[590]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",T2,[s("summary",null,[t[591]||(t[591]=s("a",{id:"sunit_mod_units_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_mod_units_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_mod_units_group_fac_elem")],-1)),t[592]||(t[592]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[606]||(t[606]=a('
julia
sunit_mod_units_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[601]||(t[601]=i("For an array ")),s("mjx-container",g2,[(l(),e("svg",u2,t[593]||(t[593]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[594]||(t[594]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[602]||(t[602]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",x2,[(l(),e("svg",w2,t[595]||(t[595]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[596]||(t[596]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[603]||(t[603]=i("-unit group defined by ")),s("mjx-container",y2,[(l(),e("svg",b2,t[597]||(t[597]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[598]||(t[598]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[604]||(t[604]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",c2,[(l(),e("svg",E2,t[599]||(t[599]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[600]||(t[600]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[605]||(t[605]=i(" modulo the units of the field. The map will return elements in factored form."))]),t[607]||(t[607]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[1093]||(t[1093]=a(`
julia
julia> u, mu = unit_group(zk)
 (Z/2 x Z, UnitGroup map of Maximal order of Number field of degree 3 over QQ
 with basis AbsSimpleNumFieldElem[1, _$, 1//2*_$^2 + 1//2]
 )
 
 julia> mu(u[2])
--_$^2 + _$ - 1
+_$ - 12
 
 julia> u, mu = unit_group_fac_elem(zk)
 (Z/2 x Z, UnitGroup map of Factored elements over Number field of degree 3 over QQ
 )
 
 julia> mu(u[2])
-(-1//2*_$^2 + 6*_$ - 3//2)^-1*5^-1*(_$^2 + _$ + 2)^1*(_$ + 1)^1*(-2*_$^2 + 30*_$ - 42)^-1*(-_$^2 + 15*_$ - 21)^1
+(_$^2 + 1)^-1*(-5*_$^2 + 61*_$ + 52)^1*3^1*2^1*(1//2*_$^2 + 28*_$ - 117//2)^-1
 
 julia> evaluate(ans)
--_$^2 + _$ - 1
+_$ - 12
 
 julia> lp = factor(6*zk)
 Dict{AbsSimpleNumFieldOrderIdeal, Int64} with 4 entries:
   <3, _$ + 5>                  => 1
   <3, _$^2 + 1>                => 1
-  <2, 1//2*_$^2 + 2*_$ + 5//2> => 2
-  <2, 5//2*_$^2 + _$ + 1//2>   => 1
+  <2, 7//2*_$^2 + 7//2>        => 2
+  <2, 7//2*_$^2 + 3*_$ + 3//2> => 1
 
 julia> s, ms = Hecke.sunit_group(collect(keys(lp)))
 (Z/2 x Z^(5), SUnits  map of Number field of degree 3 over QQ for AbsSimpleNumFieldOrderIdeal[<3, _$ + 5>
@@ -116,12 +116,12 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
 Minimum: 3
 basis_matrix
 [3 0 0; 0 3 0; 0 0 1]
-two normal wrt: 3, <2, 1//2*_$^2 + 2*_$ + 5//2>
+two normal wrt: 3, <2, 7//2*_$^2 + 7//2>
 Norm: 2
 Minimum: 2
 basis_matrix
 [2 0 0; 1 1 0; 0 0 1]
-two normal wrt: 2, <2, 5//2*_$^2 + _$ + 1//2>
+two normal wrt: 2, <2, 7//2*_$^2 + 3*_$ + 3//2>
 Norm: 2
 Minimum: 2
 basis_matrix
@@ -130,13 +130,13 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
 )
 
 julia> ms(s[4])
-1//2*_$^2 - 6*_$ - 5//2
+-1//2*_$^2 + 6*_$ + 5//2
 
 julia> norm(ans)
--144
+144
 
 julia> factor(numerator(ans))
--1 * 2^4 * 3^2

Miscaellenous

`,2)),s("details",f2,[s("summary",null,[t[608]||(t[608]=s("a",{id:"order-Tuple{AbsNumFieldOrderIdeal}",href:"#order-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[609]||(t[609]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[614]||(t[614]=a('
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder
',1)),s("p",null,[t[612]||(t[612]=i("Returns the order of ")),s("mjx-container",v2,[(l(),e("svg",F2,t[610]||(t[610]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[611]||(t[611]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[613]||(t[613]=i("."))]),t[615]||(t[615]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",C2,[s("summary",null,[t[616]||(t[616]=s("a",{id:"order-Tuple{Hecke.AbsNumFieldOrderFractionalIdeal}",href:"#order-Tuple{Hecke.AbsNumFieldOrderFractionalIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[617]||(t[617]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[622]||(t[622]=a('
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder
',1)),s("p",null,[t[620]||(t[620]=i("The order that was used to define the ideal ")),s("mjx-container",M2,[(l(),e("svg",H2,t[618]||(t[618]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[619]||(t[619]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[621]||(t[621]=i("."))]),t[623]||(t[623]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",j2,[s("summary",null,[t[624]||(t[624]=s("a",{id:"order-Tuple{Hecke.RelNumFieldOrderIdeal}",href:"#order-Tuple{Hecke.RelNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[625]||(t[625]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[630]||(t[630]=a('
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder
',1)),s("p",null,[t[628]||(t[628]=i("Returns the order of ")),s("mjx-container",L2,[(l(),e("svg",A2,t[626]||(t[626]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[627]||(t[627]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[629]||(t[629]=i("."))]),t[631]||(t[631]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",D2,[s("summary",null,[t[632]||(t[632]=s("a",{id:"order-Tuple{Hecke.RelNumFieldOrderFractionalIdeal}",href:"#order-Tuple{Hecke.RelNumFieldOrderFractionalIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[633]||(t[633]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[638]||(t[638]=a('
julia
order(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrder
',1)),s("p",null,[t[636]||(t[636]=i("Returns the order of ")),s("mjx-container",Z2,[(l(),e("svg",B2,t[634]||(t[634]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[635]||(t[635]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[637]||(t[637]=i("."))]),t[639]||(t[639]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",V2,[s("summary",null,[t[640]||(t[640]=s("a",{id:"nf-Tuple{AbsNumFieldOrderIdeal}",href:"#nf-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"nf")],-1)),t[641]||(t[641]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[646]||(t[646]=a('
julia
nf(x::NumFieldOrderIdeal) -> AbsSimpleNumField
',1)),s("p",null,[t[644]||(t[644]=i("Returns the number field, of which ")),s("mjx-container",O2,[(l(),e("svg",S2,t[642]||(t[642]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[643]||(t[643]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1))]),t[645]||(t[645]=i(" is an integral ideal."))]),t[647]||(t[647]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",N2,[s("summary",null,[t[648]||(t[648]=s("a",{id:"basis-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#basis-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis")],-1)),t[649]||(t[649]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[661]||(t[661]=a('
julia
basis(A::AbsNumFieldOrderIdeal) -> Vector{AbsSimpleNumFieldOrderElem}
',1)),s("p",null,[t[652]||(t[652]=i("Returns the basis of ")),s("mjx-container",I2,[(l(),e("svg",G2,t[650]||(t[650]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[651]||(t[651]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[653]||(t[653]=i("."))]),t[662]||(t[662]=a('

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}
',2)),s("p",null,[t[658]||(t[658]=i("Returns the ")),s("mjx-container",R2,[(l(),e("svg",z2,t[654]||(t[654]=[a('',1)]))),t[655]||(t[655]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[659]||(t[659]=i("-basis of ")),s("mjx-container",J2,[(l(),e("svg",X2,t[656]||(t[656]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[657]||(t[657]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[660]||(t[660]=i("."))]),t[663]||(t[663]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",$2,[s("summary",null,[t[664]||(t[664]=s("a",{id:"lll_basis-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#lll_basis-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"lll_basis")],-1)),t[665]||(t[665]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[670]||(t[670]=a('
julia
lll_basis(I::NumFieldOrderIdeal) -> Vector{NumFieldElem}
',1)),s("p",null,[t[668]||(t[668]=i("A basis for ")),s("mjx-container",U2,[(l(),e("svg",P2,t[666]||(t[666]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[667]||(t[667]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[669]||(t[669]=i(" that is reduced using the LLL algorithm for the Minkowski metric."))]),t[671]||(t[671]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",q2,[s("summary",null,[t[672]||(t[672]=s("a",{id:"basis_matrix-Tuple{AbsNumFieldOrderIdeal}",href:"#basis_matrix-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis_matrix")],-1)),t[673]||(t[673]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[678]||(t[678]=a('
julia
basis_matrix(A::AbsNumFieldOrderIdeal) -> ZZMatrix
',1)),s("p",null,[t[676]||(t[676]=i("Returns the basis matrix of ")),s("mjx-container",K2,[(l(),e("svg",W2,t[674]||(t[674]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[675]||(t[675]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[677]||(t[677]=i("."))]),t[679]||(t[679]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Y2,[s("summary",null,[t[680]||(t[680]=s("a",{id:"basis_mat_inv-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#basis_mat_inv-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis_mat_inv")],-1)),t[681]||(t[681]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[686]||(t[686]=a('
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat
',1)),s("p",null,[t[684]||(t[684]=i("Return the inverse of the basis matrix of ")),s("mjx-container",_2,[(l(),e("svg",si,t[682]||(t[682]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[683]||(t[683]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[685]||(t[685]=i("."))]),t[687]||(t[687]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",ti,[s("summary",null,[t[688]||(t[688]=s("a",{id:"has_princ_gen_special-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#has_princ_gen_special-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"has_princ_gen_special")],-1)),t[689]||(t[689]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[694]||(t[694]=a('
julia
has_princ_gen_special(A::AbsNumFieldOrderIdeal) -> Bool
',1)),s("p",null,[t[692]||(t[692]=i("Returns whether ")),s("mjx-container",ii,[(l(),e("svg",ei,t[690]||(t[690]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[691]||(t[691]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[693]||(t[693]=i(" knows if it is generated by a rational integer."))]),t[695]||(t[695]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",li,[s("summary",null,[t[696]||(t[696]=s("a",{id:"principal_generator-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#principal_generator-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"principal_generator")],-1)),t[697]||(t[697]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[702]||(t[702]=a('
julia
principal_generator(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[700]||(t[700]=i("For a principal ideal ")),s("mjx-container",ai,[(l(),e("svg",ni,t[698]||(t[698]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[699]||(t[699]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[701]||(t[701]=i(", find a generator."))]),t[703]||(t[703]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",oi,[s("summary",null,[t[704]||(t[704]=s("a",{id:"principal_generator_fac_elem-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#principal_generator_fac_elem-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"principal_generator_fac_elem")],-1)),t[705]||(t[705]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[710]||(t[710]=a('
julia
principal_generator_fac_elem(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> FacElem{AbsSimpleNumFieldElem, number_field}
',1)),s("p",null,[t[708]||(t[708]=i("For a principal ideal ")),s("mjx-container",ri,[(l(),e("svg",pi,t[706]||(t[706]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[707]||(t[707]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[709]||(t[709]=i(", find a generator in factored form."))]),t[711]||(t[711]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",di,[s("summary",null,[t[712]||(t[712]=s("a",{id:"minimum-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#minimum-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"minimum")],-1)),t[713]||(t[713]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[728]||(t[728]=a('
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem
',1)),s("p",null,[t[716]||(t[716]=i("Returns the smallest non-negative element in ")),s("mjx-container",hi,[(l(),e("svg",Qi,t[714]||(t[714]=[a('',1)]))),t[715]||(t[715]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[717]||(t[717]=i("."))]),t[729]||(t[729]=a(`

source

julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
+1 * 2^4 * 3^2

Miscaellenous

`,2)),s("details",f2,[s("summary",null,[t[608]||(t[608]=s("a",{id:"order-Tuple{AbsNumFieldOrderIdeal}",href:"#order-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[609]||(t[609]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[614]||(t[614]=a('
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder
',1)),s("p",null,[t[612]||(t[612]=i("Returns the order of ")),s("mjx-container",v2,[(l(),e("svg",F2,t[610]||(t[610]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[611]||(t[611]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[613]||(t[613]=i("."))]),t[615]||(t[615]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",C2,[s("summary",null,[t[616]||(t[616]=s("a",{id:"order-Tuple{Hecke.AbsNumFieldOrderFractionalIdeal}",href:"#order-Tuple{Hecke.AbsNumFieldOrderFractionalIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[617]||(t[617]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[622]||(t[622]=a('
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder
',1)),s("p",null,[t[620]||(t[620]=i("The order that was used to define the ideal ")),s("mjx-container",M2,[(l(),e("svg",H2,t[618]||(t[618]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[619]||(t[619]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[621]||(t[621]=i("."))]),t[623]||(t[623]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",j2,[s("summary",null,[t[624]||(t[624]=s("a",{id:"order-Tuple{Hecke.RelNumFieldOrderIdeal}",href:"#order-Tuple{Hecke.RelNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[625]||(t[625]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[630]||(t[630]=a('
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder
',1)),s("p",null,[t[628]||(t[628]=i("Returns the order of ")),s("mjx-container",L2,[(l(),e("svg",A2,t[626]||(t[626]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[627]||(t[627]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[629]||(t[629]=i("."))]),t[631]||(t[631]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",D2,[s("summary",null,[t[632]||(t[632]=s("a",{id:"order-Tuple{Hecke.RelNumFieldOrderFractionalIdeal}",href:"#order-Tuple{Hecke.RelNumFieldOrderFractionalIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[633]||(t[633]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[638]||(t[638]=a('
julia
order(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrder
',1)),s("p",null,[t[636]||(t[636]=i("Returns the order of ")),s("mjx-container",Z2,[(l(),e("svg",B2,t[634]||(t[634]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[635]||(t[635]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[637]||(t[637]=i("."))]),t[639]||(t[639]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",V2,[s("summary",null,[t[640]||(t[640]=s("a",{id:"nf-Tuple{AbsNumFieldOrderIdeal}",href:"#nf-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"nf")],-1)),t[641]||(t[641]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[646]||(t[646]=a('
julia
nf(x::NumFieldOrderIdeal) -> AbsSimpleNumField
',1)),s("p",null,[t[644]||(t[644]=i("Returns the number field, of which ")),s("mjx-container",O2,[(l(),e("svg",S2,t[642]||(t[642]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[643]||(t[643]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1))]),t[645]||(t[645]=i(" is an integral ideal."))]),t[647]||(t[647]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",N2,[s("summary",null,[t[648]||(t[648]=s("a",{id:"basis-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#basis-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis")],-1)),t[649]||(t[649]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[661]||(t[661]=a('
julia
basis(A::AbsNumFieldOrderIdeal) -> Vector{AbsSimpleNumFieldOrderElem}
',1)),s("p",null,[t[652]||(t[652]=i("Returns the basis of ")),s("mjx-container",I2,[(l(),e("svg",G2,t[650]||(t[650]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[651]||(t[651]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[653]||(t[653]=i("."))]),t[662]||(t[662]=a('

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}
',2)),s("p",null,[t[658]||(t[658]=i("Returns the ")),s("mjx-container",R2,[(l(),e("svg",z2,t[654]||(t[654]=[a('',1)]))),t[655]||(t[655]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[659]||(t[659]=i("-basis of ")),s("mjx-container",J2,[(l(),e("svg",X2,t[656]||(t[656]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[657]||(t[657]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[660]||(t[660]=i("."))]),t[663]||(t[663]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",$2,[s("summary",null,[t[664]||(t[664]=s("a",{id:"lll_basis-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#lll_basis-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"lll_basis")],-1)),t[665]||(t[665]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[670]||(t[670]=a('
julia
lll_basis(I::NumFieldOrderIdeal) -> Vector{NumFieldElem}
',1)),s("p",null,[t[668]||(t[668]=i("A basis for ")),s("mjx-container",U2,[(l(),e("svg",P2,t[666]||(t[666]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[667]||(t[667]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[669]||(t[669]=i(" that is reduced using the LLL algorithm for the Minkowski metric."))]),t[671]||(t[671]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",q2,[s("summary",null,[t[672]||(t[672]=s("a",{id:"basis_matrix-Tuple{AbsNumFieldOrderIdeal}",href:"#basis_matrix-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis_matrix")],-1)),t[673]||(t[673]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[678]||(t[678]=a('
julia
basis_matrix(A::AbsNumFieldOrderIdeal) -> ZZMatrix
',1)),s("p",null,[t[676]||(t[676]=i("Returns the basis matrix of ")),s("mjx-container",K2,[(l(),e("svg",W2,t[674]||(t[674]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[675]||(t[675]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[677]||(t[677]=i("."))]),t[679]||(t[679]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Y2,[s("summary",null,[t[680]||(t[680]=s("a",{id:"basis_mat_inv-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#basis_mat_inv-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis_mat_inv")],-1)),t[681]||(t[681]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[686]||(t[686]=a('
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat
',1)),s("p",null,[t[684]||(t[684]=i("Return the inverse of the basis matrix of ")),s("mjx-container",_2,[(l(),e("svg",si,t[682]||(t[682]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[683]||(t[683]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[685]||(t[685]=i("."))]),t[687]||(t[687]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",ti,[s("summary",null,[t[688]||(t[688]=s("a",{id:"has_princ_gen_special-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#has_princ_gen_special-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"has_princ_gen_special")],-1)),t[689]||(t[689]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[694]||(t[694]=a('
julia
has_princ_gen_special(A::AbsNumFieldOrderIdeal) -> Bool
',1)),s("p",null,[t[692]||(t[692]=i("Returns whether ")),s("mjx-container",ii,[(l(),e("svg",ei,t[690]||(t[690]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[691]||(t[691]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[693]||(t[693]=i(" knows if it is generated by a rational integer."))]),t[695]||(t[695]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",li,[s("summary",null,[t[696]||(t[696]=s("a",{id:"principal_generator-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#principal_generator-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"principal_generator")],-1)),t[697]||(t[697]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[702]||(t[702]=a('
julia
principal_generator(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[700]||(t[700]=i("For a principal ideal ")),s("mjx-container",ai,[(l(),e("svg",ni,t[698]||(t[698]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[699]||(t[699]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[701]||(t[701]=i(", find a generator."))]),t[703]||(t[703]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",oi,[s("summary",null,[t[704]||(t[704]=s("a",{id:"principal_generator_fac_elem-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#principal_generator_fac_elem-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"principal_generator_fac_elem")],-1)),t[705]||(t[705]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[710]||(t[710]=a('
julia
principal_generator_fac_elem(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> FacElem{AbsSimpleNumFieldElem, number_field}
',1)),s("p",null,[t[708]||(t[708]=i("For a principal ideal ")),s("mjx-container",ri,[(l(),e("svg",pi,t[706]||(t[706]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[707]||(t[707]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[709]||(t[709]=i(", find a generator in factored form."))]),t[711]||(t[711]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",di,[s("summary",null,[t[712]||(t[712]=s("a",{id:"minimum-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#minimum-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"minimum")],-1)),t[713]||(t[713]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[728]||(t[728]=a('
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem
',1)),s("p",null,[t[716]||(t[716]=i("Returns the smallest non-negative element in ")),s("mjx-container",hi,[(l(),e("svg",Qi,t[714]||(t[714]=[a('',1)]))),t[715]||(t[715]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[717]||(t[717]=i("."))]),t[729]||(t[729]=a(`

source

julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
   minimum(A::RelNumFieldOrderIdeal) -> RelNumFieldOrderIdeal
`,2)),s("p",null,[t[724]||(t[724]=i("Returns the ideal ")),s("mjx-container",mi,[(l(),e("svg",ki,t[718]||(t[718]=[a('',1)]))),t[719]||(t[719]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mi",null,"O")])],-1))]),t[725]||(t[725]=i(" where ")),s("mjx-container",Ti,[(l(),e("svg",gi,t[720]||(t[720]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[721]||(t[721]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[726]||(t[726]=i(" is the maximal order of the coefficient ideals of ")),s("mjx-container",ui,[(l(),e("svg",xi,t[722]||(t[722]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[723]||(t[723]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[727]||(t[727]=i("."))]),t[730]||(t[730]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",wi,[s("summary",null,[t[731]||(t[731]=s("a",{id:"minimum-Tuple{Hecke.RelNumFieldOrderIdeal}",href:"#minimum-Tuple{Hecke.RelNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"minimum")],-1)),t[732]||(t[732]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[743]||(t[743]=a(`
julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
   minimum(A::RelNumFieldOrderIdeal) -> RelNumFieldOrderIdeal
`,1)),s("p",null,[t[739]||(t[739]=i("Returns the ideal ")),s("mjx-container",yi,[(l(),e("svg",bi,t[733]||(t[733]=[a('',1)]))),t[734]||(t[734]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mi",null,"O")])],-1))]),t[740]||(t[740]=i(" where ")),s("mjx-container",ci,[(l(),e("svg",Ei,t[735]||(t[735]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[736]||(t[736]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[741]||(t[741]=i(" is the maximal order of the coefficient ideals of ")),s("mjx-container",fi,[(l(),e("svg",vi,t[737]||(t[737]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[738]||(t[738]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[742]||(t[742]=i("."))]),t[744]||(t[744]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Fi,[s("summary",null,[t[745]||(t[745]=s("a",{id:"minimum-Tuple{AbsNumFieldOrderIdeal}",href:"#minimum-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"minimum")],-1)),t[746]||(t[746]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[751]||(t[751]=a('
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem
',1)),s("p",null,[t[749]||(t[749]=i("Returns the smallest non-negative element in ")),s("mjx-container",Ci,[(l(),e("svg",Mi,t[747]||(t[747]=[a('',1)]))),t[748]||(t[748]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[750]||(t[750]=i("."))]),t[752]||(t[752]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Hi,[s("summary",null,[t[753]||(t[753]=s("a",{id:"has_minimum-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#has_minimum-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"has_minimum")],-1)),t[754]||(t[754]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[759]||(t[759]=a('
julia
has_minimum(A::AbsNumFieldOrderIdeal) -> Bool
',1)),s("p",null,[t[757]||(t[757]=i("Returns whether ")),s("mjx-container",ji,[(l(),e("svg",Li,t[755]||(t[755]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[756]||(t[756]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[758]||(t[758]=i(" knows its minimum."))]),t[760]||(t[760]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ai,[s("summary",null,[t[761]||(t[761]=s("a",{id:"norm-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#norm-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"norm")],-1)),t[762]||(t[762]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[798]||(t[798]=a('
julia
norm(A::AbsNumFieldOrderIdeal) -> ZZRingElem
',1)),s("p",null,[t[771]||(t[771]=i("Returns the norm of ")),s("mjx-container",Di,[(l(),e("svg",Zi,t[763]||(t[763]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[764]||(t[764]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[772]||(t[772]=i(", that is, the cardinality of ")),s("mjx-container",Bi,[(l(),e("svg",Vi,t[765]||(t[765]=[a('',1)]))),t[766]||(t[766]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"A")])],-1))]),t[773]||(t[773]=i(", where ")),s("mjx-container",Oi,[(l(),e("svg",Si,t[767]||(t[767]=[a('',1)]))),t[768]||(t[768]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[774]||(t[774]=i(" is the order of ")),s("mjx-container",Ni,[(l(),e("svg",Ii,t[769]||(t[769]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[770]||(t[770]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[775]||(t[775]=i("."))]),t[799]||(t[799]=a('

source

julia
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
',2)),s("p",null,[t[778]||(t[778]=i("Returns the norm of ")),s("mjx-container",Gi,[(l(),e("svg",Ri,t[776]||(t[776]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[777]||(t[777]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[779]||(t[779]=i("."))]),t[800]||(t[800]=a('

source

julia
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> S
',2)),s("p",null,[t[782]||(t[782]=i("Returns the norm of ")),s("mjx-container",zi,[(l(),e("svg",Ji,t[780]||(t[780]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[781]||(t[781]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[783]||(t[783]=i("."))]),t[801]||(t[801]=a('

source

julia
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElem
',2)),s("p",null,[t[788]||(t[788]=i("Returns the norm of ")),s("mjx-container",Xi,[(l(),e("svg",$i,t[784]||(t[784]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[785]||(t[785]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[789]||(t[789]=i(" considered as an (possibly fractional) ideal of ")),s("mjx-container",Ui,[(l(),e("svg",Pi,t[786]||(t[786]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[787]||(t[787]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[790]||(t[790]=i("."))]),t[802]||(t[802]=a(`

source

julia
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
   where { S, T, U } -> T
`,2)),s("p",null,[t[795]||(t[795]=i("Returns the norm of ")),s("mjx-container",qi,[(l(),e("svg",Ki,t[791]||(t[791]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[792]||(t[792]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[796]||(t[796]=i(" considered as an (possibly fractional) ideal of ")),s("mjx-container",Wi,[(l(),e("svg",Yi,t[793]||(t[793]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[794]||(t[794]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[797]||(t[797]=i("."))]),t[803]||(t[803]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",_i,[s("summary",null,[t[804]||(t[804]=s("a",{id:"has_norm-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#has_norm-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"has_norm")],-1)),t[805]||(t[805]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[810]||(t[810]=a('
julia
has_norm(A::AbsNumFieldOrderIdeal) -> Bool
',1)),s("p",null,[t[808]||(t[808]=i("Returns whether ")),s("mjx-container",s3,[(l(),e("svg",t3,t[806]||(t[806]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[807]||(t[807]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[809]||(t[809]=i(" knows its norm."))]),t[811]||(t[811]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",i3,[s("summary",null,[t[812]||(t[812]=s("a",{id:"idempotents-Tuple{AbsSimpleNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}",href:"#idempotents-Tuple{AbsSimpleNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"idempotents")],-1)),t[813]||(t[813]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[814]||(t[814]=a('
julia
idempotents(x::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, y::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem, AbsSimpleNumFieldOrderElem

Returns a tuple (e, f) consisting of elements e in x, f in y such that 1 = e + f.

If the ideals are not coprime, an error is raised.

source

',4))]),s("details",e3,[s("summary",null,[t[815]||(t[815]=s("a",{id:"is_prime-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#is_prime-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"is_prime")],-1)),t[816]||(t[816]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[821]||(t[821]=a('
julia
is_prime(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Bool
',1)),s("p",null,[t[819]||(t[819]=i("Returns whether ")),s("mjx-container",l3,[(l(),e("svg",a3,t[817]||(t[817]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[818]||(t[818]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[820]||(t[820]=i(" is a prime ideal."))]),t[822]||(t[822]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",n3,[s("summary",null,[t[823]||(t[823]=s("a",{id:"is_prime_known-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#is_prime_known-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"is_prime_known")],-1)),t[824]||(t[824]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[829]||(t[829]=a('
julia
is_prime_known(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Bool
',1)),s("p",null,[t[827]||(t[827]=i("Returns whether ")),s("mjx-container",o3,[(l(),e("svg",r3,t[825]||(t[825]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[826]||(t[826]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[828]||(t[828]=i(" knows if it is prime."))]),t[830]||(t[830]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",p3,[s("summary",null,[t[831]||(t[831]=s("a",{id:"is_ramified-Tuple{AbsSimpleNumFieldOrder, Union{Int64, ZZRingElem}}",href:"#is_ramified-Tuple{AbsSimpleNumFieldOrder, Union{Int64, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_ramified")],-1)),t[832]||(t[832]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[843]||(t[843]=a('
julia
is_ramified(O::AbsSimpleNumFieldOrder, p::Int) -> Bool
',1)),s("p",null,[t[839]||(t[839]=i("Returns whether the integer ")),s("mjx-container",d3,[(l(),e("svg",h3,t[833]||(t[833]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),t[834]||(t[834]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"p")])],-1))]),t[840]||(t[840]=i(" is ramified in ")),s("mjx-container",Q3,[(l(),e("svg",m3,t[835]||(t[835]=[a('',1)]))),t[836]||(t[836]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[841]||(t[841]=i(". It is assumed that ")),s("mjx-container",k3,[(l(),e("svg",T3,t[837]||(t[837]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),t[838]||(t[838]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"p")])],-1))]),t[842]||(t[842]=i(" is prime."))]),t[844]||(t[844]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",g3,[s("summary",null,[t[845]||(t[845]=s("a",{id:"ramification_index-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#ramification_index-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"ramification_index")],-1)),t[846]||(t[846]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[851]||(t[851]=a('
julia
ramification_index(P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int
',1)),s("p",null,[t[849]||(t[849]=i("The ramification index of the prime-ideal ")),s("mjx-container",u3,[(l(),e("svg",x3,t[847]||(t[847]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[848]||(t[848]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"P")])],-1))]),t[850]||(t[850]=i("."))]),t[852]||(t[852]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",w3,[s("summary",null,[t[853]||(t[853]=s("a",{id:"degree-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#degree-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"degree")],-1)),t[854]||(t[854]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[859]||(t[859]=a('
julia
degree(P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int
',1)),s("p",null,[t[857]||(t[857]=i("The inertia degree of the prime-ideal ")),s("mjx-container",y3,[(l(),e("svg",b3,t[855]||(t[855]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[856]||(t[856]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"P")])],-1))]),t[858]||(t[858]=i("."))]),t[860]||(t[860]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",c3,[s("summary",null,[t[861]||(t[861]=s("a",{id:"valuation-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderIdeal}",href:"#valuation-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"valuation")],-1)),t[862]||(t[862]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[879]||(t[879]=a('
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
',1)),s("p",null,[t[873]||(t[873]=i("Computes the ")),s("mjx-container",E3,[(l(),e("svg",f3,t[863]||(t[863]=[a('',1)]))),t[864]||(t[864]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")])])],-1))]),t[874]||(t[874]=i("-adic valuation of ")),s("mjx-container",v3,[(l(),e("svg",F3,t[865]||(t[865]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[866]||(t[866]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[875]||(t[875]=i(", that is, the largest ")),s("mjx-container",C3,[(l(),e("svg",M3,t[867]||(t[867]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),t[868]||(t[868]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"i")])],-1))]),t[876]||(t[876]=i(" such that ")),s("mjx-container",H3,[(l(),e("svg",j3,t[869]||(t[869]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[870]||(t[870]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[877]||(t[877]=i(" is contained in ")),s("mjx-container",L3,[(l(),e("svg",A3,t[871]||(t[871]=[a('',1)]))),t[872]||(t[872]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")]),s("mi",null,"i")])])],-1))]),t[878]||(t[878]=i("."))]),t[880]||(t[880]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",D3,[s("summary",null,[t[881]||(t[881]=s("a",{id:"valuation-Tuple{AbsSimpleNumFieldOrderElem, AbsSimpleNumFieldOrderIdeal}",href:"#valuation-Tuple{AbsSimpleNumFieldOrderElem, AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"valuation")],-1)),t[882]||(t[882]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[899]||(t[899]=a(`
julia
valuation(a::AbsSimpleNumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
diff --git a/dev/assets/manual_orders_ideals.md.EkUqp_u_.lean.js b/dev/assets/manual_orders_ideals.md.YGrAEavw.lean.js
similarity index 86%
rename from dev/assets/manual_orders_ideals.md.EkUqp_u_.lean.js
rename to dev/assets/manual_orders_ideals.md.YGrAEavw.lean.js
index 2133062502..77953e17ff 100644
--- a/dev/assets/manual_orders_ideals.md.EkUqp_u_.lean.js
+++ b/dev/assets/manual_orders_ideals.md.YGrAEavw.lean.js
@@ -25,19 +25,19 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
 
 julia> [ mc \\ I for I = lp]
 10-element Vector{FinGenAbGroupElem}:
- [4]
  [1]
- [4]
- [5]
- [3]
- [2]
  [7]
  [1]
+ [8]
+ [3]
+ [5]
+ [4]
+ [7]
  [0]
- [2]
+ [5]
 
 julia> mc(c[1])
-<2, 7//2*_$^2 + 2*_$ + 1//2>
+<2, 1//2*_$^2 + 2*_$ + 5//2>
 Norm: 2
 Minimum: 2
 two normal wrt: 2
@@ -46,9 +46,9 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
 9
 
 julia> mc(c[1])^Int(order(c[1]))
-<512, 48778768008944312042281//2*_$^2 - 24206243073821420343184*_$ + 52810618909468316764975//2>
+<32, 13217457633644257//2*_$^2 - 6559103588818597*_$ + 14309957929619471//2>
 Norm: 512
-Minimum: 512
+Minimum: 32
 two normal wrt: 2
 
 julia> mc \\ ans
@@ -62,7 +62,7 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
                    degree_limit::Int = 0,
                    F::Function,
                    bad::ZZRingElem)
`,2)),s("p",null,[t[437]||(t[437]=i("Computes the prime ideals ")),s("mjx-container",q4,[(l(),e("svg",K4,t[433]||(t[433]=[a('',1)]))),t[434]||(t[434]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[438]||(t[438]=i(" with norm up to ")),s("mjx-container",W4,[(l(),e("svg",Y4,t[435]||(t[435]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[436]||(t[436]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"B")])],-1))]),t[439]||(t[439]=i("."))]),s("p",null,[t[446]||(t[446]=i("If ")),t[447]||(t[447]=s("code",null,"degree_limit",-1)),t[448]||(t[448]=i(" is a nonzero integer ")),s("mjx-container",_4,[(l(),e("svg",st,t[440]||(t[440]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),t[441]||(t[441]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"k")])],-1))]),t[449]||(t[449]=i(", then prime ideals ")),s("mjx-container",tt,[(l(),e("svg",it,t[442]||(t[442]=[a('',1)]))),t[443]||(t[443]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")])])],-1))]),t[450]||(t[450]=i(" with ")),s("mjx-container",et,[(l(),e("svg",lt,t[444]||(t[444]=[a('',1)]))),t[445]||(t[445]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"deg"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")]),s("mo",{stretchy:"false"},")"),s("mo",null,">"),s("mi",null,"k")])],-1))]),t[451]||(t[451]=i(" will be discarded."))]),s("p",null,[t[460]||(t[460]=i("The function ")),s("mjx-container",at,[(l(),e("svg",nt,t[452]||(t[452]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D439",d:"M48 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H742Q749 676 749 669Q749 664 736 557T722 447Q720 440 702 440H690Q683 445 683 453Q683 454 686 477T689 530Q689 560 682 579T663 610T626 626T575 633T503 634H480Q398 633 393 631Q388 629 386 623Q385 622 352 492L320 363H375Q378 363 398 363T426 364T448 367T472 374T489 386Q502 398 511 419T524 457T529 475Q532 480 548 480H560Q567 475 567 470Q567 467 536 339T502 207Q500 200 482 200H470Q463 206 463 212Q463 215 468 234T473 274Q473 303 453 310T364 317H309L277 190Q245 66 245 60Q245 46 334 46H359Q365 40 365 39T363 19Q359 6 353 0H336Q295 2 185 2Q120 2 86 2T48 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[453]||(t[453]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"F")])],-1))]),t[461]||(t[461]=i(" must be a function on prime numbers not dividing ")),t[462]||(t[462]=s("code",null,"bad",-1)),t[463]||(t[463]=i(" such that ")),s("mjx-container",ot,[(l(),e("svg",rt,t[454]||(t[454]=[a('',1)]))),t[455]||(t[455]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"F"),s("mo",{stretchy:"false"},"("),s("mi",null,"p"),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("mi",null,"deg"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")]),s("mo",{stretchy:"false"},")")])],-1))]),t[464]||(t[464]=i(" for all prime ideals ")),s("mjx-container",pt,[(l(),e("svg",dt,t[456]||(t[456]=[a('',1)]))),t[457]||(t[457]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")])])],-1))]),t[465]||(t[465]=i(" lying above ")),s("mjx-container",ht,[(l(),e("svg",Qt,t[458]||(t[458]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),t[459]||(t[459]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"p")])],-1))]),t[466]||(t[466]=i("."))]),t[469]||(t[469]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[1092]||(t[1092]=a(`
julia
julia> I = mc(c[1])
-<2, 7//2*_$^2 + 2*_$ + 1//2>
+<2, 1//2*_$^2 + 2*_$ + 5//2>
 Norm: 2
 Minimum: 2
 two normal wrt: 2
@@ -71,39 +71,39 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
 false
 
 julia> I = I^Int(order(c[1]))
-<512, 48778768008944312042281//2*_$^2 - 24206243073821420343184*_$ + 52810618909468316764975//2>
+<32, 13217457633644257//2*_$^2 - 6559103588818597*_$ + 14309957929619471//2>
 Norm: 512
-Minimum: 512
+Minimum: 32
 two normal wrt: 2
 
 julia> is_principal(I)
 true
 
 julia> is_principal_fac_elem(I)
-(true, 5^-1*(_$^2 + _$ + 2)^1*(_$ + 5)^-1*(_$^2 + 1)^-1*3^1*1^-1*(_$ - 3)^2*(_$ + 1)^1)
`,1)),s("p",null,[t[472]||(t[472]=i("The computation of ")),s("mjx-container",mt,[(l(),e("svg",kt,t[470]||(t[470]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[471]||(t[471]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[473]||(t[473]=i("-units is also tied to the class group:"))]),s("details",Tt,[s("summary",null,[t[474]||(t[474]=s("a",{id:"torsion_units-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units")],-1)),t[475]||(t[475]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[483]||(t[483]=a('
julia
torsion_units(O::AbsSimpleNumFieldOrder) -> Vector{AbsSimpleNumFieldOrderElem}
',1)),s("p",null,[t[480]||(t[480]=i("Given an order ")),s("mjx-container",gt,[(l(),e("svg",ut,t[476]||(t[476]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[477]||(t[477]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[481]||(t[481]=i(", compute the torsion units of ")),s("mjx-container",xt,[(l(),e("svg",wt,t[478]||(t[478]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[479]||(t[479]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[482]||(t[482]=i("."))]),t[484]||(t[484]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",yt,[s("summary",null,[t[485]||(t[485]=s("a",{id:"torsion_unit_group-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_unit_group-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_unit_group")],-1)),t[486]||(t[486]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[497]||(t[497]=a('
julia
torsion_unit_group(O::AbsSimpleNumFieldOrder) -> GrpAb, Map
',1)),s("p",null,[t[493]||(t[493]=i("Given an order ")),s("mjx-container",bt,[(l(),e("svg",ct,t[487]||(t[487]=[a('',1)]))),t[488]||(t[488]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[494]||(t[494]=i(", returns the torsion units as an abelian group ")),s("mjx-container",Et,[(l(),e("svg",ft,t[489]||(t[489]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),t[490]||(t[490]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"G")])],-1))]),t[495]||(t[495]=i(" together with a map ")),s("mjx-container",vt,[(l(),e("svg",Ft,t[491]||(t[491]=[a('',1)]))),t[492]||(t[492]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"G"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[496]||(t[496]=i("."))]),t[498]||(t[498]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ct,[s("summary",null,[t[499]||(t[499]=s("a",{id:"torsion_units_generator-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units_generator-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units_generator")],-1)),t[500]||(t[500]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[508]||(t[508]=a('
julia
torsion_units_generator(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[505]||(t[505]=i("Given an order ")),s("mjx-container",Mt,[(l(),e("svg",Ht,t[501]||(t[501]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[502]||(t[502]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[506]||(t[506]=i(", compute a generator of the torsion units of ")),s("mjx-container",jt,[(l(),e("svg",Lt,t[503]||(t[503]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[504]||(t[504]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[507]||(t[507]=i("."))]),t[509]||(t[509]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",At,[s("summary",null,[t[510]||(t[510]=s("a",{id:"torsion_units_gen_order-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units_gen_order-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units_gen_order")],-1)),t[511]||(t[511]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[519]||(t[519]=a('
julia
torsion_units_gen_order(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[516]||(t[516]=i("Given an order ")),s("mjx-container",Dt,[(l(),e("svg",Zt,t[512]||(t[512]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[513]||(t[513]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[517]||(t[517]=i(", compute a generator of the torsion units of ")),s("mjx-container",Bt,[(l(),e("svg",Vt,t[514]||(t[514]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[515]||(t[515]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[518]||(t[518]=i(" as well as its order."))]),t[520]||(t[520]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ot,[s("summary",null,[t[521]||(t[521]=s("a",{id:"unit_group-Tuple{AbsSimpleNumFieldOrder}",href:"#unit_group-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"unit_group")],-1)),t[522]||(t[522]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[537]||(t[537]=a('
julia
unit_group(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map
',1)),s("p",null,[t[529]||(t[529]=i("Returns a group ")),s("mjx-container",St,[(l(),e("svg",Nt,t[523]||(t[523]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[524]||(t[524]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"U")])],-1))]),t[530]||(t[530]=i(" and an isomorphism map ")),s("mjx-container",It,[(l(),e("svg",Gt,t[525]||(t[525]=[a('',1)]))),t[526]||(t[526]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{"data-mjx-texclass":"PUNCT"},":"),s("mi",null,"U"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[531]||(t[531]=i(". A set of fundamental units of ")),s("mjx-container",Rt,[(l(),e("svg",zt,t[527]||(t[527]=[a('',1)]))),t[528]||(t[528]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[532]||(t[532]=i(" can be obtained via ")),t[533]||(t[533]=s("code",null,"[ f(U[1+i]) for i in 1:unit_group_rank(O) ]",-1)),t[534]||(t[534]=i(". ")),t[535]||(t[535]=s("code",null,"f(U[1])",-1)),t[536]||(t[536]=i(" will give a generator for the torsion subgroup."))]),t[538]||(t[538]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Jt,[s("summary",null,[t[539]||(t[539]=s("a",{id:"unit_group_fac_elem-Tuple{AbsSimpleNumFieldOrder}",href:"#unit_group_fac_elem-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"unit_group_fac_elem")],-1)),t[540]||(t[540]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[555]||(t[555]=a('
julia
unit_group_fac_elem(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map
',1)),s("p",null,[t[547]||(t[547]=i("Returns a group ")),s("mjx-container",Xt,[(l(),e("svg",$t,t[541]||(t[541]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[542]||(t[542]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"U")])],-1))]),t[548]||(t[548]=i(" and an isomorphism map ")),s("mjx-container",Ut,[(l(),e("svg",Pt,t[543]||(t[543]=[a('',1)]))),t[544]||(t[544]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{"data-mjx-texclass":"PUNCT"},":"),s("mi",null,"U"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[549]||(t[549]=i(". A set of fundamental units of ")),s("mjx-container",qt,[(l(),e("svg",Kt,t[545]||(t[545]=[a('',1)]))),t[546]||(t[546]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[550]||(t[550]=i(" can be obtained via ")),t[551]||(t[551]=s("code",null,"[ f(U[1+i]) for i in 1:unit_group_rank(O) ]",-1)),t[552]||(t[552]=i(". ")),t[553]||(t[553]=s("code",null,"f(U[1])",-1)),t[554]||(t[554]=i(" will give a generator for the torsion subgroup. All elements will be returned in factored form."))]),t[556]||(t[556]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Wt,[s("summary",null,[t[557]||(t[557]=s("a",{id:"sunit_group-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_group-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_group")],-1)),t[558]||(t[558]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[572]||(t[572]=a('
julia
sunit_group(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[567]||(t[567]=i("For an array ")),s("mjx-container",Yt,[(l(),e("svg",_t,t[559]||(t[559]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[560]||(t[560]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[568]||(t[568]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",s2,[(l(),e("svg",t2,t[561]||(t[561]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[562]||(t[562]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[569]||(t[569]=i("-unit group defined by ")),s("mjx-container",i2,[(l(),e("svg",e2,t[563]||(t[563]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[564]||(t[564]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[570]||(t[570]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",l2,[(l(),e("svg",a2,t[565]||(t[565]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[566]||(t[566]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[571]||(t[571]=i("."))]),t[573]||(t[573]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",n2,[s("summary",null,[t[574]||(t[574]=s("a",{id:"sunit_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_group_fac_elem")],-1)),t[575]||(t[575]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[589]||(t[589]=a('
julia
sunit_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[584]||(t[584]=i("For an array ")),s("mjx-container",o2,[(l(),e("svg",r2,t[576]||(t[576]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[577]||(t[577]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[585]||(t[585]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",p2,[(l(),e("svg",d2,t[578]||(t[578]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[579]||(t[579]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[586]||(t[586]=i("-unit group defined by ")),s("mjx-container",h2,[(l(),e("svg",Q2,t[580]||(t[580]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[581]||(t[581]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[587]||(t[587]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",m2,[(l(),e("svg",k2,t[582]||(t[582]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[583]||(t[583]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[588]||(t[588]=i(". The map will return elements in factored form."))]),t[590]||(t[590]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",T2,[s("summary",null,[t[591]||(t[591]=s("a",{id:"sunit_mod_units_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_mod_units_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_mod_units_group_fac_elem")],-1)),t[592]||(t[592]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[606]||(t[606]=a('
julia
sunit_mod_units_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[601]||(t[601]=i("For an array ")),s("mjx-container",g2,[(l(),e("svg",u2,t[593]||(t[593]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[594]||(t[594]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[602]||(t[602]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",x2,[(l(),e("svg",w2,t[595]||(t[595]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[596]||(t[596]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[603]||(t[603]=i("-unit group defined by ")),s("mjx-container",y2,[(l(),e("svg",b2,t[597]||(t[597]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[598]||(t[598]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[604]||(t[604]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",c2,[(l(),e("svg",E2,t[599]||(t[599]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[600]||(t[600]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[605]||(t[605]=i(" modulo the units of the field. The map will return elements in factored form."))]),t[607]||(t[607]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[1093]||(t[1093]=a(`
julia
julia> u, mu = unit_group(zk)
+(true, (-1//2*_$^2 + 6*_$ - 3//2)^4*5^1*(_$ - 3)^-1*(_$^2 + _$ + 2)^-1*(_$ + 5)^-2*(_$^2 + 1)^2*3^-2*11^-1*(_$ + 1)^-1*2^4*(_$ + 2)^2*1^-1)
`,1)),s("p",null,[t[472]||(t[472]=i("The computation of ")),s("mjx-container",mt,[(l(),e("svg",kt,t[470]||(t[470]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[471]||(t[471]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[473]||(t[473]=i("-units is also tied to the class group:"))]),s("details",Tt,[s("summary",null,[t[474]||(t[474]=s("a",{id:"torsion_units-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units")],-1)),t[475]||(t[475]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[483]||(t[483]=a('
julia
torsion_units(O::AbsSimpleNumFieldOrder) -> Vector{AbsSimpleNumFieldOrderElem}
',1)),s("p",null,[t[480]||(t[480]=i("Given an order ")),s("mjx-container",gt,[(l(),e("svg",ut,t[476]||(t[476]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[477]||(t[477]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[481]||(t[481]=i(", compute the torsion units of ")),s("mjx-container",xt,[(l(),e("svg",wt,t[478]||(t[478]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[479]||(t[479]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[482]||(t[482]=i("."))]),t[484]||(t[484]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",yt,[s("summary",null,[t[485]||(t[485]=s("a",{id:"torsion_unit_group-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_unit_group-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_unit_group")],-1)),t[486]||(t[486]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[497]||(t[497]=a('
julia
torsion_unit_group(O::AbsSimpleNumFieldOrder) -> GrpAb, Map
',1)),s("p",null,[t[493]||(t[493]=i("Given an order ")),s("mjx-container",bt,[(l(),e("svg",ct,t[487]||(t[487]=[a('',1)]))),t[488]||(t[488]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[494]||(t[494]=i(", returns the torsion units as an abelian group ")),s("mjx-container",Et,[(l(),e("svg",ft,t[489]||(t[489]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),t[490]||(t[490]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"G")])],-1))]),t[495]||(t[495]=i(" together with a map ")),s("mjx-container",vt,[(l(),e("svg",Ft,t[491]||(t[491]=[a('',1)]))),t[492]||(t[492]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"G"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[496]||(t[496]=i("."))]),t[498]||(t[498]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ct,[s("summary",null,[t[499]||(t[499]=s("a",{id:"torsion_units_generator-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units_generator-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units_generator")],-1)),t[500]||(t[500]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[508]||(t[508]=a('
julia
torsion_units_generator(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[505]||(t[505]=i("Given an order ")),s("mjx-container",Mt,[(l(),e("svg",Ht,t[501]||(t[501]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[502]||(t[502]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[506]||(t[506]=i(", compute a generator of the torsion units of ")),s("mjx-container",jt,[(l(),e("svg",Lt,t[503]||(t[503]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[504]||(t[504]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[507]||(t[507]=i("."))]),t[509]||(t[509]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",At,[s("summary",null,[t[510]||(t[510]=s("a",{id:"torsion_units_gen_order-Tuple{AbsSimpleNumFieldOrder}",href:"#torsion_units_gen_order-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"torsion_units_gen_order")],-1)),t[511]||(t[511]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[519]||(t[519]=a('
julia
torsion_units_gen_order(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[516]||(t[516]=i("Given an order ")),s("mjx-container",Dt,[(l(),e("svg",Zt,t[512]||(t[512]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[513]||(t[513]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[517]||(t[517]=i(", compute a generator of the torsion units of ")),s("mjx-container",Bt,[(l(),e("svg",Vt,t[514]||(t[514]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[515]||(t[515]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[518]||(t[518]=i(" as well as its order."))]),t[520]||(t[520]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ot,[s("summary",null,[t[521]||(t[521]=s("a",{id:"unit_group-Tuple{AbsSimpleNumFieldOrder}",href:"#unit_group-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"unit_group")],-1)),t[522]||(t[522]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[537]||(t[537]=a('
julia
unit_group(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map
',1)),s("p",null,[t[529]||(t[529]=i("Returns a group ")),s("mjx-container",St,[(l(),e("svg",Nt,t[523]||(t[523]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[524]||(t[524]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"U")])],-1))]),t[530]||(t[530]=i(" and an isomorphism map ")),s("mjx-container",It,[(l(),e("svg",Gt,t[525]||(t[525]=[a('',1)]))),t[526]||(t[526]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{"data-mjx-texclass":"PUNCT"},":"),s("mi",null,"U"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[531]||(t[531]=i(". A set of fundamental units of ")),s("mjx-container",Rt,[(l(),e("svg",zt,t[527]||(t[527]=[a('',1)]))),t[528]||(t[528]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[532]||(t[532]=i(" can be obtained via ")),t[533]||(t[533]=s("code",null,"[ f(U[1+i]) for i in 1:unit_group_rank(O) ]",-1)),t[534]||(t[534]=i(". ")),t[535]||(t[535]=s("code",null,"f(U[1])",-1)),t[536]||(t[536]=i(" will give a generator for the torsion subgroup."))]),t[538]||(t[538]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Jt,[s("summary",null,[t[539]||(t[539]=s("a",{id:"unit_group_fac_elem-Tuple{AbsSimpleNumFieldOrder}",href:"#unit_group_fac_elem-Tuple{AbsSimpleNumFieldOrder}"},[s("span",{class:"jlbinding"},"unit_group_fac_elem")],-1)),t[540]||(t[540]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[555]||(t[555]=a('
julia
unit_group_fac_elem(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map
',1)),s("p",null,[t[547]||(t[547]=i("Returns a group ")),s("mjx-container",Xt,[(l(),e("svg",$t,t[541]||(t[541]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[542]||(t[542]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"U")])],-1))]),t[548]||(t[548]=i(" and an isomorphism map ")),s("mjx-container",Ut,[(l(),e("svg",Pt,t[543]||(t[543]=[a('',1)]))),t[544]||(t[544]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",{"data-mjx-texclass":"PUNCT"},":"),s("mi",null,"U"),s("mo",{accent:"false",stretchy:"false"},"→"),s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mo",null,"×")])])],-1))]),t[549]||(t[549]=i(". A set of fundamental units of ")),s("mjx-container",qt,[(l(),e("svg",Kt,t[545]||(t[545]=[a('',1)]))),t[546]||(t[546]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[550]||(t[550]=i(" can be obtained via ")),t[551]||(t[551]=s("code",null,"[ f(U[1+i]) for i in 1:unit_group_rank(O) ]",-1)),t[552]||(t[552]=i(". ")),t[553]||(t[553]=s("code",null,"f(U[1])",-1)),t[554]||(t[554]=i(" will give a generator for the torsion subgroup. All elements will be returned in factored form."))]),t[556]||(t[556]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Wt,[s("summary",null,[t[557]||(t[557]=s("a",{id:"sunit_group-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_group-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_group")],-1)),t[558]||(t[558]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[572]||(t[572]=a('
julia
sunit_group(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[567]||(t[567]=i("For an array ")),s("mjx-container",Yt,[(l(),e("svg",_t,t[559]||(t[559]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[560]||(t[560]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[568]||(t[568]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",s2,[(l(),e("svg",t2,t[561]||(t[561]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[562]||(t[562]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[569]||(t[569]=i("-unit group defined by ")),s("mjx-container",i2,[(l(),e("svg",e2,t[563]||(t[563]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[564]||(t[564]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[570]||(t[570]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",l2,[(l(),e("svg",a2,t[565]||(t[565]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[566]||(t[566]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[571]||(t[571]=i("."))]),t[573]||(t[573]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",n2,[s("summary",null,[t[574]||(t[574]=s("a",{id:"sunit_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_group_fac_elem")],-1)),t[575]||(t[575]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[589]||(t[589]=a('
julia
sunit_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[584]||(t[584]=i("For an array ")),s("mjx-container",o2,[(l(),e("svg",r2,t[576]||(t[576]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[577]||(t[577]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[585]||(t[585]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",p2,[(l(),e("svg",d2,t[578]||(t[578]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[579]||(t[579]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[586]||(t[586]=i("-unit group defined by ")),s("mjx-container",h2,[(l(),e("svg",Q2,t[580]||(t[580]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[581]||(t[581]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[587]||(t[587]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",m2,[(l(),e("svg",k2,t[582]||(t[582]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[583]||(t[583]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[588]||(t[588]=i(". The map will return elements in factored form."))]),t[590]||(t[590]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",T2,[s("summary",null,[t[591]||(t[591]=s("a",{id:"sunit_mod_units_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#sunit_mod_units_group_fac_elem-Tuple{Vector{AbsSimpleNumFieldOrderIdeal}}"},[s("span",{class:"jlbinding"},"sunit_mod_units_group_fac_elem")],-1)),t[592]||(t[592]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[606]||(t[606]=a('
julia
sunit_mod_units_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map
',1)),s("p",null,[t[601]||(t[601]=i("For an array ")),s("mjx-container",g2,[(l(),e("svg",u2,t[593]||(t[593]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[594]||(t[594]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[602]||(t[602]=i(" of (coprime prime) ideals, find the ")),s("mjx-container",x2,[(l(),e("svg",w2,t[595]||(t[595]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),t[596]||(t[596]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"S")])],-1))]),t[603]||(t[603]=i("-unit group defined by ")),s("mjx-container",y2,[(l(),e("svg",b2,t[597]||(t[597]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[598]||(t[598]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[604]||(t[604]=i(", ie. the group of non-zero field elements which are only divisible by ideals in ")),s("mjx-container",c2,[(l(),e("svg",E2,t[599]||(t[599]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[600]||(t[600]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[605]||(t[605]=i(" modulo the units of the field. The map will return elements in factored form."))]),t[607]||(t[607]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[1093]||(t[1093]=a(`
julia
julia> u, mu = unit_group(zk)
 (Z/2 x Z, UnitGroup map of Maximal order of Number field of degree 3 over QQ
 with basis AbsSimpleNumFieldElem[1, _$, 1//2*_$^2 + 1//2]
 )
 
 julia> mu(u[2])
--_$^2 + _$ - 1
+_$ - 12
 
 julia> u, mu = unit_group_fac_elem(zk)
 (Z/2 x Z, UnitGroup map of Factored elements over Number field of degree 3 over QQ
 )
 
 julia> mu(u[2])
-(-1//2*_$^2 + 6*_$ - 3//2)^-1*5^-1*(_$^2 + _$ + 2)^1*(_$ + 1)^1*(-2*_$^2 + 30*_$ - 42)^-1*(-_$^2 + 15*_$ - 21)^1
+(_$^2 + 1)^-1*(-5*_$^2 + 61*_$ + 52)^1*3^1*2^1*(1//2*_$^2 + 28*_$ - 117//2)^-1
 
 julia> evaluate(ans)
--_$^2 + _$ - 1
+_$ - 12
 
 julia> lp = factor(6*zk)
 Dict{AbsSimpleNumFieldOrderIdeal, Int64} with 4 entries:
   <3, _$ + 5>                  => 1
   <3, _$^2 + 1>                => 1
-  <2, 1//2*_$^2 + 2*_$ + 5//2> => 2
-  <2, 5//2*_$^2 + _$ + 1//2>   => 1
+  <2, 7//2*_$^2 + 7//2>        => 2
+  <2, 7//2*_$^2 + 3*_$ + 3//2> => 1
 
 julia> s, ms = Hecke.sunit_group(collect(keys(lp)))
 (Z/2 x Z^(5), SUnits  map of Number field of degree 3 over QQ for AbsSimpleNumFieldOrderIdeal[<3, _$ + 5>
@@ -116,12 +116,12 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
 Minimum: 3
 basis_matrix
 [3 0 0; 0 3 0; 0 0 1]
-two normal wrt: 3, <2, 1//2*_$^2 + 2*_$ + 5//2>
+two normal wrt: 3, <2, 7//2*_$^2 + 7//2>
 Norm: 2
 Minimum: 2
 basis_matrix
 [2 0 0; 1 1 0; 0 0 1]
-two normal wrt: 2, <2, 5//2*_$^2 + _$ + 1//2>
+two normal wrt: 2, <2, 7//2*_$^2 + 3*_$ + 3//2>
 Norm: 2
 Minimum: 2
 basis_matrix
@@ -130,13 +130,13 @@ import{_ as r,c as e,j as s,a as i,a4 as a,G as o,B as p,o as l}from"./chunks/fr
 )
 
 julia> ms(s[4])
-1//2*_$^2 - 6*_$ - 5//2
+-1//2*_$^2 + 6*_$ + 5//2
 
 julia> norm(ans)
--144
+144
 
 julia> factor(numerator(ans))
--1 * 2^4 * 3^2

Miscaellenous

`,2)),s("details",f2,[s("summary",null,[t[608]||(t[608]=s("a",{id:"order-Tuple{AbsNumFieldOrderIdeal}",href:"#order-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[609]||(t[609]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[614]||(t[614]=a('
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder
',1)),s("p",null,[t[612]||(t[612]=i("Returns the order of ")),s("mjx-container",v2,[(l(),e("svg",F2,t[610]||(t[610]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[611]||(t[611]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[613]||(t[613]=i("."))]),t[615]||(t[615]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",C2,[s("summary",null,[t[616]||(t[616]=s("a",{id:"order-Tuple{Hecke.AbsNumFieldOrderFractionalIdeal}",href:"#order-Tuple{Hecke.AbsNumFieldOrderFractionalIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[617]||(t[617]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[622]||(t[622]=a('
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder
',1)),s("p",null,[t[620]||(t[620]=i("The order that was used to define the ideal ")),s("mjx-container",M2,[(l(),e("svg",H2,t[618]||(t[618]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[619]||(t[619]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[621]||(t[621]=i("."))]),t[623]||(t[623]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",j2,[s("summary",null,[t[624]||(t[624]=s("a",{id:"order-Tuple{Hecke.RelNumFieldOrderIdeal}",href:"#order-Tuple{Hecke.RelNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[625]||(t[625]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[630]||(t[630]=a('
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder
',1)),s("p",null,[t[628]||(t[628]=i("Returns the order of ")),s("mjx-container",L2,[(l(),e("svg",A2,t[626]||(t[626]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[627]||(t[627]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[629]||(t[629]=i("."))]),t[631]||(t[631]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",D2,[s("summary",null,[t[632]||(t[632]=s("a",{id:"order-Tuple{Hecke.RelNumFieldOrderFractionalIdeal}",href:"#order-Tuple{Hecke.RelNumFieldOrderFractionalIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[633]||(t[633]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[638]||(t[638]=a('
julia
order(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrder
',1)),s("p",null,[t[636]||(t[636]=i("Returns the order of ")),s("mjx-container",Z2,[(l(),e("svg",B2,t[634]||(t[634]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[635]||(t[635]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[637]||(t[637]=i("."))]),t[639]||(t[639]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",V2,[s("summary",null,[t[640]||(t[640]=s("a",{id:"nf-Tuple{AbsNumFieldOrderIdeal}",href:"#nf-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"nf")],-1)),t[641]||(t[641]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[646]||(t[646]=a('
julia
nf(x::NumFieldOrderIdeal) -> AbsSimpleNumField
',1)),s("p",null,[t[644]||(t[644]=i("Returns the number field, of which ")),s("mjx-container",O2,[(l(),e("svg",S2,t[642]||(t[642]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[643]||(t[643]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1))]),t[645]||(t[645]=i(" is an integral ideal."))]),t[647]||(t[647]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",N2,[s("summary",null,[t[648]||(t[648]=s("a",{id:"basis-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#basis-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis")],-1)),t[649]||(t[649]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[661]||(t[661]=a('
julia
basis(A::AbsNumFieldOrderIdeal) -> Vector{AbsSimpleNumFieldOrderElem}
',1)),s("p",null,[t[652]||(t[652]=i("Returns the basis of ")),s("mjx-container",I2,[(l(),e("svg",G2,t[650]||(t[650]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[651]||(t[651]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[653]||(t[653]=i("."))]),t[662]||(t[662]=a('

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}
',2)),s("p",null,[t[658]||(t[658]=i("Returns the ")),s("mjx-container",R2,[(l(),e("svg",z2,t[654]||(t[654]=[a('',1)]))),t[655]||(t[655]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[659]||(t[659]=i("-basis of ")),s("mjx-container",J2,[(l(),e("svg",X2,t[656]||(t[656]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[657]||(t[657]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[660]||(t[660]=i("."))]),t[663]||(t[663]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",$2,[s("summary",null,[t[664]||(t[664]=s("a",{id:"lll_basis-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#lll_basis-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"lll_basis")],-1)),t[665]||(t[665]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[670]||(t[670]=a('
julia
lll_basis(I::NumFieldOrderIdeal) -> Vector{NumFieldElem}
',1)),s("p",null,[t[668]||(t[668]=i("A basis for ")),s("mjx-container",U2,[(l(),e("svg",P2,t[666]||(t[666]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[667]||(t[667]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[669]||(t[669]=i(" that is reduced using the LLL algorithm for the Minkowski metric."))]),t[671]||(t[671]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",q2,[s("summary",null,[t[672]||(t[672]=s("a",{id:"basis_matrix-Tuple{AbsNumFieldOrderIdeal}",href:"#basis_matrix-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis_matrix")],-1)),t[673]||(t[673]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[678]||(t[678]=a('
julia
basis_matrix(A::AbsNumFieldOrderIdeal) -> ZZMatrix
',1)),s("p",null,[t[676]||(t[676]=i("Returns the basis matrix of ")),s("mjx-container",K2,[(l(),e("svg",W2,t[674]||(t[674]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[675]||(t[675]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[677]||(t[677]=i("."))]),t[679]||(t[679]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Y2,[s("summary",null,[t[680]||(t[680]=s("a",{id:"basis_mat_inv-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#basis_mat_inv-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis_mat_inv")],-1)),t[681]||(t[681]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[686]||(t[686]=a('
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat
',1)),s("p",null,[t[684]||(t[684]=i("Return the inverse of the basis matrix of ")),s("mjx-container",_2,[(l(),e("svg",si,t[682]||(t[682]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[683]||(t[683]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[685]||(t[685]=i("."))]),t[687]||(t[687]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",ti,[s("summary",null,[t[688]||(t[688]=s("a",{id:"has_princ_gen_special-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#has_princ_gen_special-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"has_princ_gen_special")],-1)),t[689]||(t[689]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[694]||(t[694]=a('
julia
has_princ_gen_special(A::AbsNumFieldOrderIdeal) -> Bool
',1)),s("p",null,[t[692]||(t[692]=i("Returns whether ")),s("mjx-container",ii,[(l(),e("svg",ei,t[690]||(t[690]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[691]||(t[691]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[693]||(t[693]=i(" knows if it is generated by a rational integer."))]),t[695]||(t[695]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",li,[s("summary",null,[t[696]||(t[696]=s("a",{id:"principal_generator-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#principal_generator-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"principal_generator")],-1)),t[697]||(t[697]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[702]||(t[702]=a('
julia
principal_generator(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[700]||(t[700]=i("For a principal ideal ")),s("mjx-container",ai,[(l(),e("svg",ni,t[698]||(t[698]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[699]||(t[699]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[701]||(t[701]=i(", find a generator."))]),t[703]||(t[703]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",oi,[s("summary",null,[t[704]||(t[704]=s("a",{id:"principal_generator_fac_elem-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#principal_generator_fac_elem-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"principal_generator_fac_elem")],-1)),t[705]||(t[705]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[710]||(t[710]=a('
julia
principal_generator_fac_elem(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> FacElem{AbsSimpleNumFieldElem, number_field}
',1)),s("p",null,[t[708]||(t[708]=i("For a principal ideal ")),s("mjx-container",ri,[(l(),e("svg",pi,t[706]||(t[706]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[707]||(t[707]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[709]||(t[709]=i(", find a generator in factored form."))]),t[711]||(t[711]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",di,[s("summary",null,[t[712]||(t[712]=s("a",{id:"minimum-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#minimum-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"minimum")],-1)),t[713]||(t[713]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[728]||(t[728]=a('
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem
',1)),s("p",null,[t[716]||(t[716]=i("Returns the smallest non-negative element in ")),s("mjx-container",hi,[(l(),e("svg",Qi,t[714]||(t[714]=[a('',1)]))),t[715]||(t[715]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[717]||(t[717]=i("."))]),t[729]||(t[729]=a(`

source

julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
+1 * 2^4 * 3^2

Miscaellenous

`,2)),s("details",f2,[s("summary",null,[t[608]||(t[608]=s("a",{id:"order-Tuple{AbsNumFieldOrderIdeal}",href:"#order-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[609]||(t[609]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[614]||(t[614]=a('
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder
',1)),s("p",null,[t[612]||(t[612]=i("Returns the order of ")),s("mjx-container",v2,[(l(),e("svg",F2,t[610]||(t[610]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[611]||(t[611]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[613]||(t[613]=i("."))]),t[615]||(t[615]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",C2,[s("summary",null,[t[616]||(t[616]=s("a",{id:"order-Tuple{Hecke.AbsNumFieldOrderFractionalIdeal}",href:"#order-Tuple{Hecke.AbsNumFieldOrderFractionalIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[617]||(t[617]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[622]||(t[622]=a('
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder
',1)),s("p",null,[t[620]||(t[620]=i("The order that was used to define the ideal ")),s("mjx-container",M2,[(l(),e("svg",H2,t[618]||(t[618]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[619]||(t[619]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[621]||(t[621]=i("."))]),t[623]||(t[623]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",j2,[s("summary",null,[t[624]||(t[624]=s("a",{id:"order-Tuple{Hecke.RelNumFieldOrderIdeal}",href:"#order-Tuple{Hecke.RelNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[625]||(t[625]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[630]||(t[630]=a('
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder
',1)),s("p",null,[t[628]||(t[628]=i("Returns the order of ")),s("mjx-container",L2,[(l(),e("svg",A2,t[626]||(t[626]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[627]||(t[627]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[629]||(t[629]=i("."))]),t[631]||(t[631]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",D2,[s("summary",null,[t[632]||(t[632]=s("a",{id:"order-Tuple{Hecke.RelNumFieldOrderFractionalIdeal}",href:"#order-Tuple{Hecke.RelNumFieldOrderFractionalIdeal}"},[s("span",{class:"jlbinding"},"order")],-1)),t[633]||(t[633]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[638]||(t[638]=a('
julia
order(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrder
',1)),s("p",null,[t[636]||(t[636]=i("Returns the order of ")),s("mjx-container",Z2,[(l(),e("svg",B2,t[634]||(t[634]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[635]||(t[635]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[637]||(t[637]=i("."))]),t[639]||(t[639]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",V2,[s("summary",null,[t[640]||(t[640]=s("a",{id:"nf-Tuple{AbsNumFieldOrderIdeal}",href:"#nf-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"nf")],-1)),t[641]||(t[641]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[646]||(t[646]=a('
julia
nf(x::NumFieldOrderIdeal) -> AbsSimpleNumField
',1)),s("p",null,[t[644]||(t[644]=i("Returns the number field, of which ")),s("mjx-container",O2,[(l(),e("svg",S2,t[642]||(t[642]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[643]||(t[643]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"x")])],-1))]),t[645]||(t[645]=i(" is an integral ideal."))]),t[647]||(t[647]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",N2,[s("summary",null,[t[648]||(t[648]=s("a",{id:"basis-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#basis-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis")],-1)),t[649]||(t[649]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[661]||(t[661]=a('
julia
basis(A::AbsNumFieldOrderIdeal) -> Vector{AbsSimpleNumFieldOrderElem}
',1)),s("p",null,[t[652]||(t[652]=i("Returns the basis of ")),s("mjx-container",I2,[(l(),e("svg",G2,t[650]||(t[650]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[651]||(t[651]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[653]||(t[653]=i("."))]),t[662]||(t[662]=a('

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}
',2)),s("p",null,[t[658]||(t[658]=i("Returns the ")),s("mjx-container",R2,[(l(),e("svg",z2,t[654]||(t[654]=[a('',1)]))),t[655]||(t[655]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[659]||(t[659]=i("-basis of ")),s("mjx-container",J2,[(l(),e("svg",X2,t[656]||(t[656]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[657]||(t[657]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[660]||(t[660]=i("."))]),t[663]||(t[663]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",$2,[s("summary",null,[t[664]||(t[664]=s("a",{id:"lll_basis-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#lll_basis-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"lll_basis")],-1)),t[665]||(t[665]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[670]||(t[670]=a('
julia
lll_basis(I::NumFieldOrderIdeal) -> Vector{NumFieldElem}
',1)),s("p",null,[t[668]||(t[668]=i("A basis for ")),s("mjx-container",U2,[(l(),e("svg",P2,t[666]||(t[666]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),t[667]||(t[667]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"I")])],-1))]),t[669]||(t[669]=i(" that is reduced using the LLL algorithm for the Minkowski metric."))]),t[671]||(t[671]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",q2,[s("summary",null,[t[672]||(t[672]=s("a",{id:"basis_matrix-Tuple{AbsNumFieldOrderIdeal}",href:"#basis_matrix-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis_matrix")],-1)),t[673]||(t[673]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[678]||(t[678]=a('
julia
basis_matrix(A::AbsNumFieldOrderIdeal) -> ZZMatrix
',1)),s("p",null,[t[676]||(t[676]=i("Returns the basis matrix of ")),s("mjx-container",K2,[(l(),e("svg",W2,t[674]||(t[674]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[675]||(t[675]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[677]||(t[677]=i("."))]),t[679]||(t[679]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Y2,[s("summary",null,[t[680]||(t[680]=s("a",{id:"basis_mat_inv-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#basis_mat_inv-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"basis_mat_inv")],-1)),t[681]||(t[681]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[686]||(t[686]=a('
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat
',1)),s("p",null,[t[684]||(t[684]=i("Return the inverse of the basis matrix of ")),s("mjx-container",_2,[(l(),e("svg",si,t[682]||(t[682]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[683]||(t[683]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[685]||(t[685]=i("."))]),t[687]||(t[687]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",ti,[s("summary",null,[t[688]||(t[688]=s("a",{id:"has_princ_gen_special-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#has_princ_gen_special-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"has_princ_gen_special")],-1)),t[689]||(t[689]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[694]||(t[694]=a('
julia
has_princ_gen_special(A::AbsNumFieldOrderIdeal) -> Bool
',1)),s("p",null,[t[692]||(t[692]=i("Returns whether ")),s("mjx-container",ii,[(l(),e("svg",ei,t[690]||(t[690]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[691]||(t[691]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[693]||(t[693]=i(" knows if it is generated by a rational integer."))]),t[695]||(t[695]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",li,[s("summary",null,[t[696]||(t[696]=s("a",{id:"principal_generator-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#principal_generator-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"principal_generator")],-1)),t[697]||(t[697]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[702]||(t[702]=a('
julia
principal_generator(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem
',1)),s("p",null,[t[700]||(t[700]=i("For a principal ideal ")),s("mjx-container",ai,[(l(),e("svg",ni,t[698]||(t[698]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[699]||(t[699]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[701]||(t[701]=i(", find a generator."))]),t[703]||(t[703]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",oi,[s("summary",null,[t[704]||(t[704]=s("a",{id:"principal_generator_fac_elem-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#principal_generator_fac_elem-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"principal_generator_fac_elem")],-1)),t[705]||(t[705]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[710]||(t[710]=a('
julia
principal_generator_fac_elem(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> FacElem{AbsSimpleNumFieldElem, number_field}
',1)),s("p",null,[t[708]||(t[708]=i("For a principal ideal ")),s("mjx-container",ri,[(l(),e("svg",pi,t[706]||(t[706]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[707]||(t[707]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[709]||(t[709]=i(", find a generator in factored form."))]),t[711]||(t[711]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",di,[s("summary",null,[t[712]||(t[712]=s("a",{id:"minimum-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#minimum-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"minimum")],-1)),t[713]||(t[713]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[728]||(t[728]=a('
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem
',1)),s("p",null,[t[716]||(t[716]=i("Returns the smallest non-negative element in ")),s("mjx-container",hi,[(l(),e("svg",Qi,t[714]||(t[714]=[a('',1)]))),t[715]||(t[715]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[717]||(t[717]=i("."))]),t[729]||(t[729]=a(`

source

julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
   minimum(A::RelNumFieldOrderIdeal) -> RelNumFieldOrderIdeal
`,2)),s("p",null,[t[724]||(t[724]=i("Returns the ideal ")),s("mjx-container",mi,[(l(),e("svg",ki,t[718]||(t[718]=[a('',1)]))),t[719]||(t[719]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mi",null,"O")])],-1))]),t[725]||(t[725]=i(" where ")),s("mjx-container",Ti,[(l(),e("svg",gi,t[720]||(t[720]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[721]||(t[721]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[726]||(t[726]=i(" is the maximal order of the coefficient ideals of ")),s("mjx-container",ui,[(l(),e("svg",xi,t[722]||(t[722]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[723]||(t[723]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[727]||(t[727]=i("."))]),t[730]||(t[730]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",wi,[s("summary",null,[t[731]||(t[731]=s("a",{id:"minimum-Tuple{Hecke.RelNumFieldOrderIdeal}",href:"#minimum-Tuple{Hecke.RelNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"minimum")],-1)),t[732]||(t[732]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[743]||(t[743]=a(`
julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
   minimum(A::RelNumFieldOrderIdeal) -> RelNumFieldOrderIdeal
`,1)),s("p",null,[t[739]||(t[739]=i("Returns the ideal ")),s("mjx-container",yi,[(l(),e("svg",bi,t[733]||(t[733]=[a('',1)]))),t[734]||(t[734]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mi",null,"O")])],-1))]),t[740]||(t[740]=i(" where ")),s("mjx-container",ci,[(l(),e("svg",Ei,t[735]||(t[735]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[736]||(t[736]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[741]||(t[741]=i(" is the maximal order of the coefficient ideals of ")),s("mjx-container",fi,[(l(),e("svg",vi,t[737]||(t[737]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[738]||(t[738]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[742]||(t[742]=i("."))]),t[744]||(t[744]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Fi,[s("summary",null,[t[745]||(t[745]=s("a",{id:"minimum-Tuple{AbsNumFieldOrderIdeal}",href:"#minimum-Tuple{AbsNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"minimum")],-1)),t[746]||(t[746]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[751]||(t[751]=a('
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem
',1)),s("p",null,[t[749]||(t[749]=i("Returns the smallest non-negative element in ")),s("mjx-container",Ci,[(l(),e("svg",Mi,t[747]||(t[747]=[a('',1)]))),t[748]||(t[748]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",null,"∩"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"bold"},"Z")])])],-1))]),t[750]||(t[750]=i("."))]),t[752]||(t[752]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Hi,[s("summary",null,[t[753]||(t[753]=s("a",{id:"has_minimum-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#has_minimum-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"has_minimum")],-1)),t[754]||(t[754]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[759]||(t[759]=a('
julia
has_minimum(A::AbsNumFieldOrderIdeal) -> Bool
',1)),s("p",null,[t[757]||(t[757]=i("Returns whether ")),s("mjx-container",ji,[(l(),e("svg",Li,t[755]||(t[755]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[756]||(t[756]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[758]||(t[758]=i(" knows its minimum."))]),t[760]||(t[760]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",Ai,[s("summary",null,[t[761]||(t[761]=s("a",{id:"norm-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#norm-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"norm")],-1)),t[762]||(t[762]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[798]||(t[798]=a('
julia
norm(A::AbsNumFieldOrderIdeal) -> ZZRingElem
',1)),s("p",null,[t[771]||(t[771]=i("Returns the norm of ")),s("mjx-container",Di,[(l(),e("svg",Zi,t[763]||(t[763]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[764]||(t[764]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[772]||(t[772]=i(", that is, the cardinality of ")),s("mjx-container",Bi,[(l(),e("svg",Vi,t[765]||(t[765]=[a('',1)]))),t[766]||(t[766]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"A")])],-1))]),t[773]||(t[773]=i(", where ")),s("mjx-container",Oi,[(l(),e("svg",Si,t[767]||(t[767]=[a('',1)]))),t[768]||(t[768]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[774]||(t[774]=i(" is the order of ")),s("mjx-container",Ni,[(l(),e("svg",Ii,t[769]||(t[769]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[770]||(t[770]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[775]||(t[775]=i("."))]),t[799]||(t[799]=a('

source

julia
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
',2)),s("p",null,[t[778]||(t[778]=i("Returns the norm of ")),s("mjx-container",Gi,[(l(),e("svg",Ri,t[776]||(t[776]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[777]||(t[777]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[779]||(t[779]=i("."))]),t[800]||(t[800]=a('

source

julia
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> S
',2)),s("p",null,[t[782]||(t[782]=i("Returns the norm of ")),s("mjx-container",zi,[(l(),e("svg",Ji,t[780]||(t[780]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[781]||(t[781]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[783]||(t[783]=i("."))]),t[801]||(t[801]=a('

source

julia
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElem
',2)),s("p",null,[t[788]||(t[788]=i("Returns the norm of ")),s("mjx-container",Xi,[(l(),e("svg",$i,t[784]||(t[784]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[785]||(t[785]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[789]||(t[789]=i(" considered as an (possibly fractional) ideal of ")),s("mjx-container",Ui,[(l(),e("svg",Pi,t[786]||(t[786]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[787]||(t[787]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[790]||(t[790]=i("."))]),t[802]||(t[802]=a(`

source

julia
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
   where { S, T, U } -> T
`,2)),s("p",null,[t[795]||(t[795]=i("Returns the norm of ")),s("mjx-container",qi,[(l(),e("svg",Ki,t[791]||(t[791]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[792]||(t[792]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[796]||(t[796]=i(" considered as an (possibly fractional) ideal of ")),s("mjx-container",Wi,[(l(),e("svg",Yi,t[793]||(t[793]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),t[794]||(t[794]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"O")])],-1))]),t[797]||(t[797]=i("."))]),t[803]||(t[803]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",_i,[s("summary",null,[t[804]||(t[804]=s("a",{id:"has_norm-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#has_norm-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"has_norm")],-1)),t[805]||(t[805]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[810]||(t[810]=a('
julia
has_norm(A::AbsNumFieldOrderIdeal) -> Bool
',1)),s("p",null,[t[808]||(t[808]=i("Returns whether ")),s("mjx-container",s3,[(l(),e("svg",t3,t[806]||(t[806]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[807]||(t[807]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[809]||(t[809]=i(" knows its norm."))]),t[811]||(t[811]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",i3,[s("summary",null,[t[812]||(t[812]=s("a",{id:"idempotents-Tuple{AbsSimpleNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}",href:"#idempotents-Tuple{AbsSimpleNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"idempotents")],-1)),t[813]||(t[813]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[814]||(t[814]=a('
julia
idempotents(x::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, y::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem, AbsSimpleNumFieldOrderElem

Returns a tuple (e, f) consisting of elements e in x, f in y such that 1 = e + f.

If the ideals are not coprime, an error is raised.

source

',4))]),s("details",e3,[s("summary",null,[t[815]||(t[815]=s("a",{id:"is_prime-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#is_prime-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"is_prime")],-1)),t[816]||(t[816]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[821]||(t[821]=a('
julia
is_prime(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Bool
',1)),s("p",null,[t[819]||(t[819]=i("Returns whether ")),s("mjx-container",l3,[(l(),e("svg",a3,t[817]||(t[817]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[818]||(t[818]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[820]||(t[820]=i(" is a prime ideal."))]),t[822]||(t[822]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",n3,[s("summary",null,[t[823]||(t[823]=s("a",{id:"is_prime_known-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#is_prime_known-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"is_prime_known")],-1)),t[824]||(t[824]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[829]||(t[829]=a('
julia
is_prime_known(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Bool
',1)),s("p",null,[t[827]||(t[827]=i("Returns whether ")),s("mjx-container",o3,[(l(),e("svg",r3,t[825]||(t[825]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[826]||(t[826]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[828]||(t[828]=i(" knows if it is prime."))]),t[830]||(t[830]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",p3,[s("summary",null,[t[831]||(t[831]=s("a",{id:"is_ramified-Tuple{AbsSimpleNumFieldOrder, Union{Int64, ZZRingElem}}",href:"#is_ramified-Tuple{AbsSimpleNumFieldOrder, Union{Int64, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_ramified")],-1)),t[832]||(t[832]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[843]||(t[843]=a('
julia
is_ramified(O::AbsSimpleNumFieldOrder, p::Int) -> Bool
',1)),s("p",null,[t[839]||(t[839]=i("Returns whether the integer ")),s("mjx-container",d3,[(l(),e("svg",h3,t[833]||(t[833]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),t[834]||(t[834]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"p")])],-1))]),t[840]||(t[840]=i(" is ramified in ")),s("mjx-container",Q3,[(l(),e("svg",m3,t[835]||(t[835]=[a('',1)]))),t[836]||(t[836]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),t[841]||(t[841]=i(". It is assumed that ")),s("mjx-container",k3,[(l(),e("svg",T3,t[837]||(t[837]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),t[838]||(t[838]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"p")])],-1))]),t[842]||(t[842]=i(" is prime."))]),t[844]||(t[844]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",g3,[s("summary",null,[t[845]||(t[845]=s("a",{id:"ramification_index-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#ramification_index-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"ramification_index")],-1)),t[846]||(t[846]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[851]||(t[851]=a('
julia
ramification_index(P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int
',1)),s("p",null,[t[849]||(t[849]=i("The ramification index of the prime-ideal ")),s("mjx-container",u3,[(l(),e("svg",x3,t[847]||(t[847]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[848]||(t[848]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"P")])],-1))]),t[850]||(t[850]=i("."))]),t[852]||(t[852]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",w3,[s("summary",null,[t[853]||(t[853]=s("a",{id:"degree-Tuple{AbsSimpleNumFieldOrderIdeal}",href:"#degree-Tuple{AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"degree")],-1)),t[854]||(t[854]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[859]||(t[859]=a('
julia
degree(P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int
',1)),s("p",null,[t[857]||(t[857]=i("The inertia degree of the prime-ideal ")),s("mjx-container",y3,[(l(),e("svg",b3,t[855]||(t[855]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[856]||(t[856]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"P")])],-1))]),t[858]||(t[858]=i("."))]),t[860]||(t[860]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",c3,[s("summary",null,[t[861]||(t[861]=s("a",{id:"valuation-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderIdeal}",href:"#valuation-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"valuation")],-1)),t[862]||(t[862]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[879]||(t[879]=a('
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
',1)),s("p",null,[t[873]||(t[873]=i("Computes the ")),s("mjx-container",E3,[(l(),e("svg",f3,t[863]||(t[863]=[a('',1)]))),t[864]||(t[864]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")])])],-1))]),t[874]||(t[874]=i("-adic valuation of ")),s("mjx-container",v3,[(l(),e("svg",F3,t[865]||(t[865]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[866]||(t[866]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[875]||(t[875]=i(", that is, the largest ")),s("mjx-container",C3,[(l(),e("svg",M3,t[867]||(t[867]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),t[868]||(t[868]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"i")])],-1))]),t[876]||(t[876]=i(" such that ")),s("mjx-container",H3,[(l(),e("svg",j3,t[869]||(t[869]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[870]||(t[870]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),t[877]||(t[877]=i(" is contained in ")),s("mjx-container",L3,[(l(),e("svg",A3,t[871]||(t[871]=[a('',1)]))),t[872]||(t[872]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msup",null,[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"fraktur"},"p")]),s("mi",null,"i")])])],-1))]),t[878]||(t[878]=i("."))]),t[880]||(t[880]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",D3,[s("summary",null,[t[881]||(t[881]=s("a",{id:"valuation-Tuple{AbsSimpleNumFieldOrderElem, AbsSimpleNumFieldOrderIdeal}",href:"#valuation-Tuple{AbsSimpleNumFieldOrderElem, AbsSimpleNumFieldOrderIdeal}"},[s("span",{class:"jlbinding"},"valuation")],-1)),t[882]||(t[882]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[899]||(t[899]=a(`
julia
valuation(a::AbsSimpleNumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
diff --git a/dev/assets/manual_quad_forms_genusherm.md.BogsNjRw.js b/dev/assets/manual_quad_forms_genusherm.md.DRYXccU8.js
similarity index 97%
rename from dev/assets/manual_quad_forms_genusherm.md.BogsNjRw.js
rename to dev/assets/manual_quad_forms_genusherm.md.DRYXccU8.js
index 93361444c1..e010884124 100644
--- a/dev/assets/manual_quad_forms_genusherm.md.BogsNjRw.js
+++ b/dev/assets/manual_quad_forms_genusherm.md.DRYXccU8.js
@@ -158,10 +158,10 @@ import{_ as p,c as e,j as i,a as t,a4 as a,G as h,B as r,o as l}from"./chunks/fr
 julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
 
 julia> det_representative(g1)
--8*a - 6
+8*a - 6
 
 julia> det_representative(g1,2)
--8*a - 6

Gram matrices

`,4)),i("details",ri,[i("summary",null,[s[689]||(s[689]=i("a",{id:"gram_matrix-Tuple{HermLocalGenus, Int64}",href:"#gram_matrix-Tuple{HermLocalGenus, Int64}"},[i("span",{class:"jlbinding"},"gram_matrix")],-1)),s[690]||(s[690]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[725]||(s[725]=a('
julia
gram_matrix(g::HermLocalGenus, i::Int) -> MatElem
',1)),i("p",null,[s[701]||(s[701]=t("Given a local genus symbol ")),s[702]||(s[702]=i("code",null,"g",-1)),s[703]||(s[703]=t(" for hermitian lattices over ")),i("mjx-container",oi,[(l(),e("svg",Qi,s[691]||(s[691]=[a('',1)]))),s[692]||(s[692]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[704]||(s[704]=t(" at a prime ideal ")),i("mjx-container",ki,[(l(),e("svg",di,s[693]||(s[693]=[a('',1)]))),s[694]||(s[694]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[705]||(s[705]=t(" of ")),i("mjx-container",Ti,[(l(),e("svg",mi,s[695]||(s[695]=[a('',1)]))),s[696]||(s[696]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),i("mi",null,"K")])])],-1))]),s[706]||(s[706]=t(", return a Gram matrix ")),s[707]||(s[707]=i("code",null,"M",-1)),s[708]||(s[708]=t(" of the ")),s[709]||(s[709]=i("code",null,"i",-1)),s[710]||(s[710]=t("th Jordan block of ")),s[711]||(s[711]=i("code",null,"g",-1)),s[712]||(s[712]=t(", with coefficients in ")),s[713]||(s[713]=i("code",null,"E",-1)),s[714]||(s[714]=t(". ")),s[715]||(s[715]=i("code",null,"M",-1)),s[716]||(s[716]=t(" is such that any hermitian lattice over ")),i("mjx-container",gi,[(l(),e("svg",Ei,s[697]||(s[697]=[a('',1)]))),s[698]||(s[698]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[717]||(s[717]=t(" with Gram matrix ")),s[718]||(s[718]=i("code",null,"M",-1)),s[719]||(s[719]=t(" satisfies that the local genus symbol of its completion at ")),i("mjx-container",xi,[(l(),e("svg",yi,s[699]||(s[699]=[a('',1)]))),s[700]||(s[700]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[720]||(s[720]=t(" is equal to the ")),s[721]||(s[721]=i("code",null,"i",-1)),s[722]||(s[722]=t("th Jordan block of ")),s[723]||(s[723]=i("code",null,"g",-1)),s[724]||(s[724]=t("."))]),s[726]||(s[726]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ui,[i("summary",null,[s[727]||(s[727]=i("a",{id:"gram_matrix-Tuple{HermLocalGenus}",href:"#gram_matrix-Tuple{HermLocalGenus}"},[i("span",{class:"jlbinding"},"gram_matrix")],-1)),s[728]||(s[728]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[759]||(s[759]=a('
julia
gram_matrix(g::HermLocalGenus) -> MatElem
',1)),i("p",null,[s[739]||(s[739]=t("Given a local genus symbol ")),s[740]||(s[740]=i("code",null,"g",-1)),s[741]||(s[741]=t(" for hermitian lattices over ")),i("mjx-container",wi,[(l(),e("svg",ci,s[729]||(s[729]=[a('',1)]))),s[730]||(s[730]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[742]||(s[742]=t(" at a prime ideal ")),i("mjx-container",Fi,[(l(),e("svg",bi,s[731]||(s[731]=[a('',1)]))),s[732]||(s[732]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[743]||(s[743]=t(" of ")),i("mjx-container",fi,[(l(),e("svg",Ci,s[733]||(s[733]=[a('',1)]))),s[734]||(s[734]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),i("mi",null,"K")])])],-1))]),s[744]||(s[744]=t(", return a Gram matrix ")),s[745]||(s[745]=i("code",null,"M",-1)),s[746]||(s[746]=t(" of ")),s[747]||(s[747]=i("code",null,"g",-1)),s[748]||(s[748]=t(", with coefficients in ")),s[749]||(s[749]=i("code",null,"E",-1)),s[750]||(s[750]=t(".")),s[751]||(s[751]=i("code",null,"M",-1)),s[752]||(s[752]=t(" is such that any hermitian lattice over ")),i("mjx-container",Li,[(l(),e("svg",vi,s[735]||(s[735]=[a('',1)]))),s[736]||(s[736]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[753]||(s[753]=t(" with Gram matrix ")),s[754]||(s[754]=i("code",null,"M",-1)),s[755]||(s[755]=t(" satisfies that the local genus symbol of its completion at ")),i("mjx-container",Hi,[(l(),e("svg",Mi,s[737]||(s[737]=[a('',1)]))),s[738]||(s[738]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[756]||(s[756]=t(" is ")),s[757]||(s[757]=i("code",null,"g",-1)),s[758]||(s[758]=t("."))]),s[760]||(s[760]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[1109]||(s[1109]=a(`

Examples

julia

+8*a - 6

Gram matrices

`,4)),i("details",ri,[i("summary",null,[s[689]||(s[689]=i("a",{id:"gram_matrix-Tuple{HermLocalGenus, Int64}",href:"#gram_matrix-Tuple{HermLocalGenus, Int64}"},[i("span",{class:"jlbinding"},"gram_matrix")],-1)),s[690]||(s[690]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[725]||(s[725]=a('
julia
gram_matrix(g::HermLocalGenus, i::Int) -> MatElem
',1)),i("p",null,[s[701]||(s[701]=t("Given a local genus symbol ")),s[702]||(s[702]=i("code",null,"g",-1)),s[703]||(s[703]=t(" for hermitian lattices over ")),i("mjx-container",oi,[(l(),e("svg",Qi,s[691]||(s[691]=[a('',1)]))),s[692]||(s[692]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[704]||(s[704]=t(" at a prime ideal ")),i("mjx-container",ki,[(l(),e("svg",di,s[693]||(s[693]=[a('',1)]))),s[694]||(s[694]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[705]||(s[705]=t(" of ")),i("mjx-container",Ti,[(l(),e("svg",mi,s[695]||(s[695]=[a('',1)]))),s[696]||(s[696]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),i("mi",null,"K")])])],-1))]),s[706]||(s[706]=t(", return a Gram matrix ")),s[707]||(s[707]=i("code",null,"M",-1)),s[708]||(s[708]=t(" of the ")),s[709]||(s[709]=i("code",null,"i",-1)),s[710]||(s[710]=t("th Jordan block of ")),s[711]||(s[711]=i("code",null,"g",-1)),s[712]||(s[712]=t(", with coefficients in ")),s[713]||(s[713]=i("code",null,"E",-1)),s[714]||(s[714]=t(". ")),s[715]||(s[715]=i("code",null,"M",-1)),s[716]||(s[716]=t(" is such that any hermitian lattice over ")),i("mjx-container",gi,[(l(),e("svg",Ei,s[697]||(s[697]=[a('',1)]))),s[698]||(s[698]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[717]||(s[717]=t(" with Gram matrix ")),s[718]||(s[718]=i("code",null,"M",-1)),s[719]||(s[719]=t(" satisfies that the local genus symbol of its completion at ")),i("mjx-container",xi,[(l(),e("svg",yi,s[699]||(s[699]=[a('',1)]))),s[700]||(s[700]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[720]||(s[720]=t(" is equal to the ")),s[721]||(s[721]=i("code",null,"i",-1)),s[722]||(s[722]=t("th Jordan block of ")),s[723]||(s[723]=i("code",null,"g",-1)),s[724]||(s[724]=t("."))]),s[726]||(s[726]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ui,[i("summary",null,[s[727]||(s[727]=i("a",{id:"gram_matrix-Tuple{HermLocalGenus}",href:"#gram_matrix-Tuple{HermLocalGenus}"},[i("span",{class:"jlbinding"},"gram_matrix")],-1)),s[728]||(s[728]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[759]||(s[759]=a('
julia
gram_matrix(g::HermLocalGenus) -> MatElem
',1)),i("p",null,[s[739]||(s[739]=t("Given a local genus symbol ")),s[740]||(s[740]=i("code",null,"g",-1)),s[741]||(s[741]=t(" for hermitian lattices over ")),i("mjx-container",wi,[(l(),e("svg",ci,s[729]||(s[729]=[a('',1)]))),s[730]||(s[730]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[742]||(s[742]=t(" at a prime ideal ")),i("mjx-container",Fi,[(l(),e("svg",bi,s[731]||(s[731]=[a('',1)]))),s[732]||(s[732]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[743]||(s[743]=t(" of ")),i("mjx-container",fi,[(l(),e("svg",Ci,s[733]||(s[733]=[a('',1)]))),s[734]||(s[734]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),i("mi",null,"K")])])],-1))]),s[744]||(s[744]=t(", return a Gram matrix ")),s[745]||(s[745]=i("code",null,"M",-1)),s[746]||(s[746]=t(" of ")),s[747]||(s[747]=i("code",null,"g",-1)),s[748]||(s[748]=t(", with coefficients in ")),s[749]||(s[749]=i("code",null,"E",-1)),s[750]||(s[750]=t(".")),s[751]||(s[751]=i("code",null,"M",-1)),s[752]||(s[752]=t(" is such that any hermitian lattice over ")),i("mjx-container",Li,[(l(),e("svg",vi,s[735]||(s[735]=[a('',1)]))),s[736]||(s[736]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[753]||(s[753]=t(" with Gram matrix ")),s[754]||(s[754]=i("code",null,"M",-1)),s[755]||(s[755]=t(" satisfies that the local genus symbol of its completion at ")),i("mjx-container",Hi,[(l(),e("svg",Mi,s[737]||(s[737]=[a('',1)]))),s[738]||(s[738]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[756]||(s[756]=t(" is ")),s[757]||(s[757]=i("code",null,"g",-1)),s[758]||(s[758]=t("."))]),s[760]||(s[760]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[1109]||(s[1109]=a(`

Examples

julia

 julia> Qx, x = QQ["x"];
 
 julia> K, a = number_field(x^2 - 2, "a");
diff --git a/dev/assets/manual_quad_forms_genusherm.md.BogsNjRw.lean.js b/dev/assets/manual_quad_forms_genusherm.md.DRYXccU8.lean.js
similarity index 97%
rename from dev/assets/manual_quad_forms_genusherm.md.BogsNjRw.lean.js
rename to dev/assets/manual_quad_forms_genusherm.md.DRYXccU8.lean.js
index 93361444c1..e010884124 100644
--- a/dev/assets/manual_quad_forms_genusherm.md.BogsNjRw.lean.js
+++ b/dev/assets/manual_quad_forms_genusherm.md.DRYXccU8.lean.js
@@ -158,10 +158,10 @@ import{_ as p,c as e,j as i,a as t,a4 as a,G as h,B as r,o as l}from"./chunks/fr
 julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
 
 julia> det_representative(g1)
--8*a - 6
+8*a - 6
 
 julia> det_representative(g1,2)
--8*a - 6

Gram matrices

`,4)),i("details",ri,[i("summary",null,[s[689]||(s[689]=i("a",{id:"gram_matrix-Tuple{HermLocalGenus, Int64}",href:"#gram_matrix-Tuple{HermLocalGenus, Int64}"},[i("span",{class:"jlbinding"},"gram_matrix")],-1)),s[690]||(s[690]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[725]||(s[725]=a('
julia
gram_matrix(g::HermLocalGenus, i::Int) -> MatElem
',1)),i("p",null,[s[701]||(s[701]=t("Given a local genus symbol ")),s[702]||(s[702]=i("code",null,"g",-1)),s[703]||(s[703]=t(" for hermitian lattices over ")),i("mjx-container",oi,[(l(),e("svg",Qi,s[691]||(s[691]=[a('',1)]))),s[692]||(s[692]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[704]||(s[704]=t(" at a prime ideal ")),i("mjx-container",ki,[(l(),e("svg",di,s[693]||(s[693]=[a('',1)]))),s[694]||(s[694]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[705]||(s[705]=t(" of ")),i("mjx-container",Ti,[(l(),e("svg",mi,s[695]||(s[695]=[a('',1)]))),s[696]||(s[696]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),i("mi",null,"K")])])],-1))]),s[706]||(s[706]=t(", return a Gram matrix ")),s[707]||(s[707]=i("code",null,"M",-1)),s[708]||(s[708]=t(" of the ")),s[709]||(s[709]=i("code",null,"i",-1)),s[710]||(s[710]=t("th Jordan block of ")),s[711]||(s[711]=i("code",null,"g",-1)),s[712]||(s[712]=t(", with coefficients in ")),s[713]||(s[713]=i("code",null,"E",-1)),s[714]||(s[714]=t(". ")),s[715]||(s[715]=i("code",null,"M",-1)),s[716]||(s[716]=t(" is such that any hermitian lattice over ")),i("mjx-container",gi,[(l(),e("svg",Ei,s[697]||(s[697]=[a('',1)]))),s[698]||(s[698]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[717]||(s[717]=t(" with Gram matrix ")),s[718]||(s[718]=i("code",null,"M",-1)),s[719]||(s[719]=t(" satisfies that the local genus symbol of its completion at ")),i("mjx-container",xi,[(l(),e("svg",yi,s[699]||(s[699]=[a('',1)]))),s[700]||(s[700]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[720]||(s[720]=t(" is equal to the ")),s[721]||(s[721]=i("code",null,"i",-1)),s[722]||(s[722]=t("th Jordan block of ")),s[723]||(s[723]=i("code",null,"g",-1)),s[724]||(s[724]=t("."))]),s[726]||(s[726]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ui,[i("summary",null,[s[727]||(s[727]=i("a",{id:"gram_matrix-Tuple{HermLocalGenus}",href:"#gram_matrix-Tuple{HermLocalGenus}"},[i("span",{class:"jlbinding"},"gram_matrix")],-1)),s[728]||(s[728]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[759]||(s[759]=a('
julia
gram_matrix(g::HermLocalGenus) -> MatElem
',1)),i("p",null,[s[739]||(s[739]=t("Given a local genus symbol ")),s[740]||(s[740]=i("code",null,"g",-1)),s[741]||(s[741]=t(" for hermitian lattices over ")),i("mjx-container",wi,[(l(),e("svg",ci,s[729]||(s[729]=[a('',1)]))),s[730]||(s[730]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[742]||(s[742]=t(" at a prime ideal ")),i("mjx-container",Fi,[(l(),e("svg",bi,s[731]||(s[731]=[a('',1)]))),s[732]||(s[732]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[743]||(s[743]=t(" of ")),i("mjx-container",fi,[(l(),e("svg",Ci,s[733]||(s[733]=[a('',1)]))),s[734]||(s[734]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),i("mi",null,"K")])])],-1))]),s[744]||(s[744]=t(", return a Gram matrix ")),s[745]||(s[745]=i("code",null,"M",-1)),s[746]||(s[746]=t(" of ")),s[747]||(s[747]=i("code",null,"g",-1)),s[748]||(s[748]=t(", with coefficients in ")),s[749]||(s[749]=i("code",null,"E",-1)),s[750]||(s[750]=t(".")),s[751]||(s[751]=i("code",null,"M",-1)),s[752]||(s[752]=t(" is such that any hermitian lattice over ")),i("mjx-container",Li,[(l(),e("svg",vi,s[735]||(s[735]=[a('',1)]))),s[736]||(s[736]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[753]||(s[753]=t(" with Gram matrix ")),s[754]||(s[754]=i("code",null,"M",-1)),s[755]||(s[755]=t(" satisfies that the local genus symbol of its completion at ")),i("mjx-container",Hi,[(l(),e("svg",Mi,s[737]||(s[737]=[a('',1)]))),s[738]||(s[738]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[756]||(s[756]=t(" is ")),s[757]||(s[757]=i("code",null,"g",-1)),s[758]||(s[758]=t("."))]),s[760]||(s[760]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[1109]||(s[1109]=a(`

Examples

julia

+8*a - 6

Gram matrices

`,4)),i("details",ri,[i("summary",null,[s[689]||(s[689]=i("a",{id:"gram_matrix-Tuple{HermLocalGenus, Int64}",href:"#gram_matrix-Tuple{HermLocalGenus, Int64}"},[i("span",{class:"jlbinding"},"gram_matrix")],-1)),s[690]||(s[690]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[725]||(s[725]=a('
julia
gram_matrix(g::HermLocalGenus, i::Int) -> MatElem
',1)),i("p",null,[s[701]||(s[701]=t("Given a local genus symbol ")),s[702]||(s[702]=i("code",null,"g",-1)),s[703]||(s[703]=t(" for hermitian lattices over ")),i("mjx-container",oi,[(l(),e("svg",Qi,s[691]||(s[691]=[a('',1)]))),s[692]||(s[692]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[704]||(s[704]=t(" at a prime ideal ")),i("mjx-container",ki,[(l(),e("svg",di,s[693]||(s[693]=[a('',1)]))),s[694]||(s[694]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[705]||(s[705]=t(" of ")),i("mjx-container",Ti,[(l(),e("svg",mi,s[695]||(s[695]=[a('',1)]))),s[696]||(s[696]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),i("mi",null,"K")])])],-1))]),s[706]||(s[706]=t(", return a Gram matrix ")),s[707]||(s[707]=i("code",null,"M",-1)),s[708]||(s[708]=t(" of the ")),s[709]||(s[709]=i("code",null,"i",-1)),s[710]||(s[710]=t("th Jordan block of ")),s[711]||(s[711]=i("code",null,"g",-1)),s[712]||(s[712]=t(", with coefficients in ")),s[713]||(s[713]=i("code",null,"E",-1)),s[714]||(s[714]=t(". ")),s[715]||(s[715]=i("code",null,"M",-1)),s[716]||(s[716]=t(" is such that any hermitian lattice over ")),i("mjx-container",gi,[(l(),e("svg",Ei,s[697]||(s[697]=[a('',1)]))),s[698]||(s[698]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[717]||(s[717]=t(" with Gram matrix ")),s[718]||(s[718]=i("code",null,"M",-1)),s[719]||(s[719]=t(" satisfies that the local genus symbol of its completion at ")),i("mjx-container",xi,[(l(),e("svg",yi,s[699]||(s[699]=[a('',1)]))),s[700]||(s[700]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[720]||(s[720]=t(" is equal to the ")),s[721]||(s[721]=i("code",null,"i",-1)),s[722]||(s[722]=t("th Jordan block of ")),s[723]||(s[723]=i("code",null,"g",-1)),s[724]||(s[724]=t("."))]),s[726]||(s[726]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ui,[i("summary",null,[s[727]||(s[727]=i("a",{id:"gram_matrix-Tuple{HermLocalGenus}",href:"#gram_matrix-Tuple{HermLocalGenus}"},[i("span",{class:"jlbinding"},"gram_matrix")],-1)),s[728]||(s[728]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[759]||(s[759]=a('
julia
gram_matrix(g::HermLocalGenus) -> MatElem
',1)),i("p",null,[s[739]||(s[739]=t("Given a local genus symbol ")),s[740]||(s[740]=i("code",null,"g",-1)),s[741]||(s[741]=t(" for hermitian lattices over ")),i("mjx-container",wi,[(l(),e("svg",ci,s[729]||(s[729]=[a('',1)]))),s[730]||(s[730]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[742]||(s[742]=t(" at a prime ideal ")),i("mjx-container",Fi,[(l(),e("svg",bi,s[731]||(s[731]=[a('',1)]))),s[732]||(s[732]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[743]||(s[743]=t(" of ")),i("mjx-container",fi,[(l(),e("svg",Ci,s[733]||(s[733]=[a('',1)]))),s[734]||(s[734]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),i("mi",null,"K")])])],-1))]),s[744]||(s[744]=t(", return a Gram matrix ")),s[745]||(s[745]=i("code",null,"M",-1)),s[746]||(s[746]=t(" of ")),s[747]||(s[747]=i("code",null,"g",-1)),s[748]||(s[748]=t(", with coefficients in ")),s[749]||(s[749]=i("code",null,"E",-1)),s[750]||(s[750]=t(".")),s[751]||(s[751]=i("code",null,"M",-1)),s[752]||(s[752]=t(" is such that any hermitian lattice over ")),i("mjx-container",Li,[(l(),e("svg",vi,s[735]||(s[735]=[a('',1)]))),s[736]||(s[736]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"K")])],-1))]),s[753]||(s[753]=t(" with Gram matrix ")),s[754]||(s[754]=i("code",null,"M",-1)),s[755]||(s[755]=t(" satisfies that the local genus symbol of its completion at ")),i("mjx-container",Hi,[(l(),e("svg",Mi,s[737]||(s[737]=[a('',1)]))),s[738]||(s[738]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"fraktur"},"p")])])],-1))]),s[756]||(s[756]=t(" is ")),s[757]||(s[757]=i("code",null,"g",-1)),s[758]||(s[758]=t("."))]),s[760]||(s[760]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[1109]||(s[1109]=a(`

Examples

julia

 julia> Qx, x = QQ["x"];
 
 julia> K, a = number_field(x^2 - 2, "a");
diff --git a/dev/assets/manual_quad_forms_lattices.md.BoAMWbRa.js b/dev/assets/manual_quad_forms_lattices.md.PNuumtZo.js
similarity index 99%
rename from dev/assets/manual_quad_forms_lattices.md.BoAMWbRa.js
rename to dev/assets/manual_quad_forms_lattices.md.PNuumtZo.js
index 7d63c6528e..6da39be390 100644
--- a/dev/assets/manual_quad_forms_lattices.md.BoAMWbRa.js
+++ b/dev/assets/manual_quad_forms_lattices.md.PNuumtZo.js
@@ -580,7 +580,7 @@ import{_ as p,c as l,a4 as t,j as i,a,G as h,B as k,o as n}from"./chunks/framewo
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
 (1//14 * <1, 1>) * [6 1])
- ([4, 5, 0, 1], Fractional ideal of
+ ([3, 2, 0, 1], Fractional ideal of
 Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1>
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
@@ -598,12 +598,12 @@ import{_ as p,c as l,a4 as t,j as i,a,G as h,B as k,o as n}from"./chunks/framewo
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
 (1//2 * <1, 1>) * [0 1])
- ([3, 2, 1, 0], Fractional ideal of
+ ([2, 4, 1, 0], Fractional ideal of
 Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1>
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
 (1//14 * <1, 1>) * [6 1])
- ([5, 3, 0, 1], Fractional ideal of
+ ([4, 5, 0, 1], Fractional ideal of
 Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1>
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
diff --git a/dev/assets/manual_quad_forms_lattices.md.BoAMWbRa.lean.js b/dev/assets/manual_quad_forms_lattices.md.PNuumtZo.lean.js
similarity index 99%
rename from dev/assets/manual_quad_forms_lattices.md.BoAMWbRa.lean.js
rename to dev/assets/manual_quad_forms_lattices.md.PNuumtZo.lean.js
index 7d63c6528e..6da39be390 100644
--- a/dev/assets/manual_quad_forms_lattices.md.BoAMWbRa.lean.js
+++ b/dev/assets/manual_quad_forms_lattices.md.PNuumtZo.lean.js
@@ -580,7 +580,7 @@ import{_ as p,c as l,a4 as t,j as i,a,G as h,B as k,o as n}from"./chunks/framewo
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
 (1//14 * <1, 1>) * [6 1])
- ([4, 5, 0, 1], Fractional ideal of
+ ([3, 2, 0, 1], Fractional ideal of
 Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1>
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
@@ -598,12 +598,12 @@ import{_ as p,c as l,a4 as t,j as i,a,G as h,B as k,o as n}from"./chunks/framewo
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
 (1//2 * <1, 1>) * [0 1])
- ([3, 2, 1, 0], Fractional ideal of
+ ([2, 4, 1, 0], Fractional ideal of
 Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1>
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
 (1//14 * <1, 1>) * [6 1])
- ([5, 3, 0, 1], Fractional ideal of
+ ([4, 5, 0, 1], Fractional ideal of
 Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1>
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
diff --git a/dev/examples.html b/dev/examples.html
index db537cd29a..12651b47cd 100644
--- a/dev/examples.html
+++ b/dev/examples.html
@@ -9,20 +9,20 @@
     
     
     
-    
+    
     
-    
+    
     
     
     
-    
+    
     
     
     
   
   
     
Skip to content

Examples and sample code

- + \ No newline at end of file diff --git a/dev/hashmap.json b/dev/hashmap.json index 1a9b6bd725..9ed3a7e4c8 100644 --- a/dev/hashmap.json +++ b/dev/hashmap.json @@ -1 +1 @@ -{"examples.md":"DT_EyRfM","howto_index.md":"keqIbqp-","howto_reduction.md":"D6fVSZQn","index.md":"B8AwvuoP","manual_abelian_elements.md":"U1DCi5q9","manual_abelian_introduction.md":"0nrEfdI4","manual_abelian_maps.md":"CRKCfKzQ","manual_abelian_structural.md":"YGTeeo0z","manual_algebras_basics.md":"DwQIkqQJ","manual_algebras_groupalgebras.md":"QBTxho18","manual_algebras_intro.md":"C31NABj-","manual_algebras_structureconstant.md":"CrsU2_f8","manual_developer_documentation.md":"BLf4g7pW","manual_developer_test.md":"DhoLd6yP","manual_elliptic_curves_basics.md":"DmcApgEM","manual_elliptic_curves_finite_fields.md":"BQLNJVt-","manual_elliptic_curves_intro.md":"C-1xNQKl","manual_elliptic_curves_number_fields.md":"CeFzGIgD","manual_index.md":"DA_K8Z2e","manual_misc_conjugacy.md":"BWhX3nBt","manual_misc_facelem.md":"CaM1D1qu","manual_misc_mset.md":"D1TXDqpT","manual_misc_pmat.md":"Lkbgwo-y","manual_misc_sparse.md":"BxzzUEPT","manual_number_fields_class_fields.md":"CZPCrwn6","manual_number_fields_complex_embeddings.md":"CUb5z0zq","manual_number_fields_conventions.md":"tNjtIH26","manual_number_fields_elements.md":"BDslVMVI","manual_number_fields_fields.md":"CVdu3Ale","manual_number_fields_internal.md":"Dl6RDIpq","manual_number_fields_intro.md":"CgQtc1Zv","manual_orders_elements.md":"Ch4_6UBb","manual_orders_frac_ideals.md":"B18EdSee","manual_orders_ideals.md":"EkUqp_u_","manual_orders_introduction.md":"BI6trSRT","manual_orders_orders.md":"CPOjvYwH","manual_quad_forms_basics.md":"dYgC9Kdg","manual_quad_forms_discriminant_group.md":"D-wnBN8O","manual_quad_forms_genusherm.md":"BogsNjRw","manual_quad_forms_integer_lattices.md":"BNl9Tg7J","manual_quad_forms_introduction.md":"BxHohwyL","manual_quad_forms_lattices.md":"BoAMWbRa","manual_quad_forms_zgenera.md":"DNxQykaH","references.md":"B1d176zc","start_index.md":"DSvQofBR","tutorials_index.md":"BspdZYCl"} +{"examples.md":"DT_EyRfM","howto_index.md":"keqIbqp-","howto_reduction.md":"D6fVSZQn","index.md":"B8AwvuoP","manual_abelian_elements.md":"U1DCi5q9","manual_abelian_introduction.md":"0nrEfdI4","manual_abelian_maps.md":"CRKCfKzQ","manual_abelian_structural.md":"YGTeeo0z","manual_algebras_basics.md":"DwQIkqQJ","manual_algebras_groupalgebras.md":"QBTxho18","manual_algebras_intro.md":"C31NABj-","manual_algebras_structureconstant.md":"CrsU2_f8","manual_developer_documentation.md":"BLf4g7pW","manual_developer_test.md":"DhoLd6yP","manual_elliptic_curves_basics.md":"DmcApgEM","manual_elliptic_curves_finite_fields.md":"BQLNJVt-","manual_elliptic_curves_intro.md":"C-1xNQKl","manual_elliptic_curves_number_fields.md":"CeFzGIgD","manual_index.md":"DA_K8Z2e","manual_misc_conjugacy.md":"BWhX3nBt","manual_misc_facelem.md":"CaM1D1qu","manual_misc_mset.md":"D1TXDqpT","manual_misc_pmat.md":"Lkbgwo-y","manual_misc_sparse.md":"BxzzUEPT","manual_number_fields_class_fields.md":"CZPCrwn6","manual_number_fields_complex_embeddings.md":"CUb5z0zq","manual_number_fields_conventions.md":"tNjtIH26","manual_number_fields_elements.md":"BDslVMVI","manual_number_fields_fields.md":"CVdu3Ale","manual_number_fields_internal.md":"Dl6RDIpq","manual_number_fields_intro.md":"CgQtc1Zv","manual_orders_elements.md":"Ch4_6UBb","manual_orders_frac_ideals.md":"B18EdSee","manual_orders_ideals.md":"YGrAEavw","manual_orders_introduction.md":"BI6trSRT","manual_orders_orders.md":"CPOjvYwH","manual_quad_forms_basics.md":"dYgC9Kdg","manual_quad_forms_discriminant_group.md":"D-wnBN8O","manual_quad_forms_genusherm.md":"DRYXccU8","manual_quad_forms_integer_lattices.md":"BNl9Tg7J","manual_quad_forms_introduction.md":"BxHohwyL","manual_quad_forms_lattices.md":"PNuumtZo","manual_quad_forms_zgenera.md":"DNxQykaH","references.md":"B1d176zc","start_index.md":"DSvQofBR","tutorials_index.md":"BspdZYCl"} diff --git a/dev/howto/index.html b/dev/howto/index.html index ed8ce5cd6c..5895db6cd9 100644 --- a/dev/howto/index.html +++ b/dev/howto/index.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content
- + \ No newline at end of file diff --git a/dev/howto/reduction.html b/dev/howto/reduction.html index f8d9a11e4b..f3c02b9999 100644 --- a/dev/howto/reduction.html +++ b/dev/howto/reduction.html @@ -9,13 +9,13 @@ - + - + - + @@ -58,7 +58,7 @@ julia> base_ring(fbar) === F true
- + \ No newline at end of file diff --git a/dev/index.html b/dev/index.html index 17e8bd44e2..a41298dee9 100644 --- a/dev/index.html +++ b/dev/index.html @@ -9,13 +9,13 @@ - + - + - + @@ -34,7 +34,7 @@ publisher = {ACM}, address = {New York, NY, USA}, }

Acknowledgement

Hecke is part of the OSCAR project and the development is supported by the Deutsche Forschungsgemeinschaft DFG within the Collaborative Research Center TRR 195.

- + \ No newline at end of file diff --git a/dev/manual/abelian/elements.html b/dev/manual/abelian/elements.html index dedad972e1..e5d0d88fe2 100644 --- a/dev/manual/abelian/elements.html +++ b/dev/manual/abelian/elements.html @@ -9,13 +9,13 @@ - + - + - + @@ -33,7 +33,7 @@ end Abelian group element [0, 0] Abelian group element [0, 1] - + \ No newline at end of file diff --git a/dev/manual/abelian/introduction.html b/dev/manual/abelian/introduction.html index 6119ca81bb..f4a65edb06 100644 --- a/dev/manual/abelian/introduction.html +++ b/dev/manual/abelian/introduction.html @@ -9,13 +9,13 @@ - + - + - + @@ -30,7 +30,7 @@ (Z/2)^3 Z/2 x Z/4 Z/8

Invariants

is_snf Method
julia
is_snf(G::FinGenAbGroup) -> Bool

Return whether the current relation matrix of the group G is in Smith normal form.

source

number_of_generators Method
julia
number_of_generators(G::FinGenAbGroup) -> Int

Return the number of generators of G in the current representation.

source

nrels Method
julia
number_of_relations(G::FinGenAbGroup) -> Int

Return the number of relations of G in the current representation.

source

rels Method
julia
rels(A::FinGenAbGroup) -> ZZMatrix

Return the currently used relations of G as a single matrix.

source

is_finite Method
julia
isfinite(A::FinGenAbGroup) -> Bool

Return whether A is finite.

source

torsion_free_rank Method
julia
torsion_free_rank(A::FinGenAbGroup) -> Int

Return the torsion free rank of A, that is, the dimension of the Q-vectorspace AZQ.

See also rank.

source

order Method
julia
order(A::FinGenAbGroup) -> ZZRingElem

Return the order of A. It is assumed that A is finite.

source

exponent Method
julia
exponent(A::FinGenAbGroup) -> ZZRingElem

Return the exponent of A. It is assumed that A is finite.

source

is_trivial Method
julia
is_trivial(A::FinGenAbGroup) -> Bool

Return whether A is the trivial group.

source

is_torsion Method
julia
is_torsion(G::FinGenAbGroup) -> Bool

Return whether G is a torsion group.

source

is_cyclic Method
julia
is_cyclic(G::FinGenAbGroup) -> Bool

Return whether G is cyclic.

source

elementary_divisors Method
julia
elementary_divisors(G::FinGenAbGroup) -> Vector{ZZRingElem}

Given G, return the elementary divisors of G, that is, the unique non-negative integers e1,,ek with eiei+1 and ei1 such that GZ/e1Z××Z/ekZ.

source

- + \ No newline at end of file diff --git a/dev/manual/abelian/maps.html b/dev/manual/abelian/maps.html index 12f5985b02..ecc9e509f2 100644 --- a/dev/manual/abelian/maps.html +++ b/dev/manual/abelian/maps.html @@ -9,13 +9,13 @@ - + - + - + @@ -45,7 +45,7 @@ julia> (h+h)(gen(G, 1)) Abelian group element [0, 4] - + \ No newline at end of file diff --git a/dev/manual/abelian/structural.html b/dev/manual/abelian/structural.html index 4c99ad7d72..b46a9edf94 100644 --- a/dev/manual/abelian/structural.html +++ b/dev/manual/abelian/structural.html @@ -9,13 +9,13 @@ - + - + - + @@ -92,7 +92,7 @@ (U[1], map(U[2], gens(U[1]))) = (Finitely generated abelian group with 4 generators and 4 relations, FinGenAbGroupElem[[3, 6], [0, 6], [0, 4], [2, 0]])
quo Method
julia
quo(G::FinGenAbGroup, s::Vector{FinGenAbGroupElem}) -> FinGenAbGroup, GrpAbfinGemMap

Create the quotient H of G by the subgroup generated by the elements in s, together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, M::ZZMatrix) -> FinGenAbGroup, FinGenAbGroupHom

Create the quotient H of G by the subgroup generated by the elements corresponding to the rows of M, together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, n::Integer}) -> FinGenAbGroup, Map
 quo(G::FinGenAbGroup, n::ZZRingElem}) -> FinGenAbGroup, Map

Returns the quotient H=G/nG together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, n::Integer}) -> FinGenAbGroup, Map
 quo(G::FinGenAbGroup, n::ZZRingElem}) -> FinGenAbGroup, Map

Returns the quotient H=G/nG together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, U::FinGenAbGroup) -> FinGenAbGroup, Map

Create the quotient H of G by U, together with the projection p:GH.

source

For 2 subgroups U and V of the same group G, U+V returns the smallest subgroup of G containing both. Similarly, UV computes the intersection and UV tests for inclusion. The difference between issubset = and is_subgroup is that the inclusion map is also returned in the 2nd call.

intersect Method
julia
intersect(mG::FinGenAbGroupHom, mH::FinGenAbGroupHom) -> FinGenAbGroup, Map

Given two injective maps of abelian groups with the same codomain G, return the intersection of the images as a subgroup of G.

source

Direct Products

direct_product Method
julia
direct_product(G::FinGenAbGroup...) -> FinGenAbGroup, Vector{FinGenAbGroupHom}

Return the direct product D of the (finitely many) abelian groups Gi, together with the projections DGi.

For finite abelian groups, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain D as a direct sum together with the injections DGi, one should call direct_sum(G...). If one wants to obtain D as a biproduct together with the projections and the injections, one should call biproduct(G...).

Otherwise, one could also call canonical_injections(D) or canonical_projections(D) later on.

source

canonical_injection Method
julia
canonical_injection(G::FinGenAbGroup, i::Int) -> FinGenAbGroupHom

Given a group G that was created as a direct product, return the injection from the ith component.

source

canonical_projection Method
julia
canonical_projection(G::FinGenAbGroup, i::Int) -> FinGenAbGroupHom

Given a group G that was created as a direct product, return the projection onto the ith component.

source

flat Method
julia
flat(G::FinGenAbGroup) -> FinGenAbGroupHom

Given a group G that is created using (iterated) direct products, or (iterated) tensor products, return a group isomorphism into a flat product: for G:=(AB)C, it returns the isomorphism GABC (resp. ).

source

Tensor Producs

tensor_product Method
julia
tensor_product(G::FinGenAbGroup...; task::Symbol = :map) -> FinGenAbGroup, Map

Given groups Gi, compute the tensor product G1Gn. If task is set to ":map", a map ϕ is returned that maps tuples in G1××Gn to pure tensors g1gn. The map admits a preimage as well.

source

hom_tensor Method
julia
hom_tensor(G::FinGenAbGroup, H::FinGenAbGroup, A::Vector{ <: Map{FinGenAbGroup, FinGenAbGroup}}) -> Map

Given groups G=G1Gn and H=H1Hn as well as maps ϕi:GiHi, compute the tensor product of the maps.

source

Hom-Group

hom Method
julia
hom(G::FinGenAbGroup, H::FinGenAbGroup; task::Symbol = :map) -> FinGenAbGroup, Map

Computes the group of all homomorpisms from G to H as an abstract group. If task is ":map", then a map ϕ is computed that can be used to obtain actual homomorphisms. This map also allows preimages. Set task to ":none" to not compute the map.

source

- + \ No newline at end of file diff --git a/dev/manual/algebras/basics.html b/dev/manual/algebras/basics.html index 16dc86fee9..13916d8ce9 100644 --- a/dev/manual/algebras/basics.html +++ b/dev/manual/algebras/basics.html @@ -9,13 +9,13 @@ - + - + - + @@ -52,7 +52,7 @@ julia> dimension_of_center(A) 1

source

- + \ No newline at end of file diff --git a/dev/manual/algebras/groupalgebras.html b/dev/manual/algebras/groupalgebras.html index d67e069b0f..cdc6485fbe 100644 --- a/dev/manual/algebras/groupalgebras.html +++ b/dev/manual/algebras/groupalgebras.html @@ -9,13 +9,13 @@ - + - + - + @@ -35,7 +35,7 @@ julia> QG(Dict(a => 2, zero(G) => 1)) == 2 * QG(a) + 1 * QG(zero(G)) true - + \ No newline at end of file diff --git a/dev/manual/algebras/intro.html b/dev/manual/algebras/intro.html index 898ab21166..cb56a96a38 100644 --- a/dev/manual/algebras/intro.html +++ b/dev/manual/algebras/intro.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content

Introduction

Note

The functions described in this section are experimental. While the overall functionality provided will stay the same, names of specific functions or conventions for the return values might change in future versions.

This section describes the functionality for finite-dimensional associative algebras (or just algebras for short). Since different applications have different requirements, the following types of algebras are implemented:

  • structure constant algebras,

  • matrix algebras,

  • group algebras,

  • quaternion algebras.

These share a common interface encompassing a wide range of functions, which is indicated by the use of the type AbstractAssociativeAlgebra in the signature.

- + \ No newline at end of file diff --git a/dev/manual/algebras/structureconstant.html b/dev/manual/algebras/structureconstant.html index f69d7a4d95..09f5ae44b6 100644 --- a/dev/manual/algebras/structureconstant.html +++ b/dev/manual/algebras/structureconstant.html @@ -9,13 +9,13 @@ - + - + - + @@ -37,7 +37,7 @@ [:, :, 2] = 0 1 1 0

source

- + \ No newline at end of file diff --git a/dev/manual/developer/documentation.html b/dev/manual/developer/documentation.html index 8b59269b56..df2209acc9 100644 --- a/dev/manual/developer/documentation.html +++ b/dev/manual/developer/documentation.html @@ -9,13 +9,13 @@ - + - + - + @@ -24,7 +24,7 @@
Skip to content

Documentation

The files for the documentation are located in the docs/src/manual/ directory.

Adding files to the documentation

To add files to the documentation edit directly the file docs/src/.vitepress/config.mts.

Building the documentation

  1. Run julia and execute (with Hecke developed in your current environment)
julia
julia> using Hecke
 
 julia> Hecke.build_doc() # or Hecke.build_doc(;doctest = false) to speed things up
  1. In the terminal, navigate to docs/ and run
bash
Hecke/docs> npm run docs:build

(This step takes place outside of julia.)

Note

To speed up the development process, step 1 can be repeated within the same julia session.

- + \ No newline at end of file diff --git a/dev/manual/developer/test.html b/dev/manual/developer/test.html index f4bdf76b27..2b17114c09 100644 --- a/dev/manual/developer/test.html +++ b/dev/manual/developer/test.html @@ -9,13 +9,13 @@ - + - + - + @@ -55,7 +55,7 @@ │   │   ├── QuadBin.jl │   │   └── Torsion.jl │   ├── QuadForm.jl

Adding tests

  • If one adds functionality to a file, say src/QuadForm/Quad/Genus.jl, a corresponding a test should be added to the corresponding test file. In this case this would be test/QuadForm/Quad/Genus.jl.

  • Assume one adds a new file, say src/QuadForm/New.jl, which is included in src/QuadForm.jl. Then a corresponding file test/QuadForm/Test.jl containing the tests must be added. This new file must then also be included in test/QuadForm.jl.

  • Similar to the above, if a new directory in src/ is added, the same must apply in test/.

Adding long tests

If one knows that running a particular test will take a long time, one can use @long_test instead of @test inside the test suite. When running the test suite, tests annotated with @long_test will not be run, unless specifically asked for (see below). The continuous integration servers will run at least one job including the long tests.

Running the tests

Running all tests

All tests can be run as usual with Pkg.test("Hecke"). The whole test suite can be run in parallel using the following options:

  • Set the environment variable HECKE_TEST_VARIABLE=n, where n is the number of processes.

  • On julia >= 1.3, run Pkg.test("Hecke", test_args = ["-j$(n)"]), where n is the number of processes.

The tests annotated with @long_test can be invoked by setting HECKE_TESTLONG=1 or adding "long" to the test_args keyword argument on julia >= 1.3.

Running a subset of tests

Because the test structure mirrors the source directory, it is easy to run only a subset of tests. For example, to run all the tests in test/QuadForm/Quad/Genus.jl, one can invoke:

julia
julia> Hecke.test_module("QuadForm/Quad/Genus")

This also works on the directory level. If one wants to add run all tests for quadratic forms, one can just run

julia
julia> Hecke.test_module("QuadForm")
- + \ No newline at end of file diff --git a/dev/manual/elliptic_curves/basics.html b/dev/manual/elliptic_curves/basics.html index 8f4d9002a0..3f83736524 100644 --- a/dev/manual/elliptic_curves/basics.html +++ b/dev/manual/elliptic_curves/basics.html @@ -9,13 +9,13 @@ - + - + - + @@ -71,7 +71,7 @@ y^2 = x^3 + x + 2 Point (-1 : 0 : 1) of Elliptic curve with equation y^2 = x^3 + x + 2

source

- + \ No newline at end of file diff --git a/dev/manual/elliptic_curves/finite_fields.html b/dev/manual/elliptic_curves/finite_fields.html index 223de5be56..599e8b9cd9 100644 --- a/dev/manual/elliptic_curves/finite_fields.html +++ b/dev/manual/elliptic_curves/finite_fields.html @@ -9,13 +9,13 @@ - + - + - + @@ -76,7 +76,7 @@ julia> disc_log(P, Q) 13

source

- + \ No newline at end of file diff --git a/dev/manual/elliptic_curves/intro.html b/dev/manual/elliptic_curves/intro.html index 3dd4e930b4..1676f95d1b 100644 --- a/dev/manual/elliptic_curves/intro.html +++ b/dev/manual/elliptic_curves/intro.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content

Introduction

This chapter deals with functionality for elliptic curves, which is available over arbitrary fields, with specific features available for curvers over the rationals and number fields, and finite fields.

An elliptic curve E is the projective closure of the curve given by the Weierstrass equation

y2+a1xy+a3y=x3+a2x2+a4x+a6

specified by the list of coefficients [a1, a2, a3, a4, a6]. If a1=a2=a3=0, this simplifies to

y2=x3+a4x+a6

which we refer to as a short Weierstrass equation and which is specified by the two element list [a4, a6].

- + \ No newline at end of file diff --git a/dev/manual/elliptic_curves/number_fields.html b/dev/manual/elliptic_curves/number_fields.html index d1daf667d4..1c76e570ed 100644 --- a/dev/manual/elliptic_curves/number_fields.html +++ b/dev/manual/elliptic_curves/number_fields.html @@ -9,20 +9,20 @@ - + - + - + - + \ No newline at end of file diff --git a/dev/manual/index.html b/dev/manual/index.html index d938aa03a7..e0ed5b6e13 100644 --- a/dev/manual/index.html +++ b/dev/manual/index.html @@ -9,20 +9,20 @@ - + - + - + - + \ No newline at end of file diff --git a/dev/manual/misc/FacElem.html b/dev/manual/misc/FacElem.html index 0f31054b3a..36ddfdaf28 100644 --- a/dev/manual/misc/FacElem.html +++ b/dev/manual/misc/FacElem.html @@ -9,13 +9,13 @@ - + - + - + @@ -29,7 +29,7 @@ simplify(x::FacElem{ZZRingElem}) -> FacElem{ZZRingElem}

Simplfies the factored element, i.e. arranges for the base to be coprime.

source

The simplified version can then be used further:

isone Method
julia
isone(x::FacElem{QQFieldElem}) -> Bool
 isone(x::FacElem{ZZRingElem}) -> Bool

Tests if x represents 1 without an evaluation.

source

factor_coprime Method
julia
factor_coprime(x::FacElem{ZZRingElem}) -> Fac{ZZRingElem}

Computed a partial factorisation of x, ie. writes x as a product of pariwise coprime integers.

source

factor_coprime Method
julia
factor_coprime(x::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}

Computed a partial factorisation of x, ie. writes x as a product of pariwise coprime integral ideals.

source

factor_coprime Method
julia
factor_coprime(Q::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}

A coprime factorisation of Q: each ideal in Q is split using \code{integral_split} and then a coprime basis is computed. This does {\bf not} use any factorisation.

source

factor_coprime Method
julia
factor_coprime(I::AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, ZZRingElem}

Factors the rincipal ideal generated by a into coprimes by computing a coprime basis from the principal ideals in the factorisation of a.

source

factor Method
julia
 factor(Q::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}

The factorisation of Q, by refining a coprime factorisation.

source

factor Method
julia
factor(I::AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, ZZRingElem}

Factors the principal ideal generated by a by refining a coprime factorisation.

source

For factorised algebraic numbers a unique simplification is not possible, however, this allows still do obtain partial results:

compact_presentation Function
julia
compact_presentation(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, n::Int = 2; decom, arb_prec = 100, short_prec = 1000) -> FacElem

Computes a presentation a=aini where all the exponents ni are powers of n and, the elements ai are "small", generically, they have a norm bounded by dn/2 where d is the discriminant of the maximal order. As the algorithm needs the factorisation of the principal ideal generated by a, it can be passed in in \code{decom}.

source

valuation Method
julia
valuation(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

The valuation of a at P.

source

valuation Method
julia
valuation(A::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})
 valuation(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})

The valuation of A at P.

source

evaluate_mod Method
julia
evaluate_mod(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, B::AbsSimpleNumFieldOrderFractionalIdeal) -> AbsSimpleNumFieldElem

Evaluates a using CRT and small primes. Assumes that the ideal generated by a is in fact B. Useful in cases where a has huge exponents, but the evaluated element is actually "small".

source

reduce_ideal Method
julia
reduce_ideal(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem}

Computes B and α in factored form, such that αB=A.

source

modular_proj Method
julia
modular_proj(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, me::modular_env) -> Vector{fqPolyRepFieldElem}

Given an algebraic number a in factored form and data \code{me} as computed by \code{modular_init}, project a onto the residue class fields.

source

Positivity & Signs

Factored elements can be used instead of number field elements for the functions sign, signs, is_positive, is_negative and is_totally_positive, see Positivity & Signs

Miscellaneous

max_exp Method
julia
max_exp(a::FacElem)

Finds the largest exponent in the factored element a.

source

min_exp Method
julia
min_exp(a::FacElem)

Finds the smallest exponent in the factored element a.

source

maxabs_exp Method
julia
maxabs_exp(a::FacElem)

Finds the largest exponent by absolute value in the factored element a.

source

- + \ No newline at end of file diff --git a/dev/manual/misc/conjugacy.html b/dev/manual/misc/conjugacy.html index cf639abef7..5174df56b7 100644 --- a/dev/manual/misc/conjugacy.html +++ b/dev/manual/misc/conjugacy.html @@ -9,13 +9,13 @@ - + - + - + @@ -35,7 +35,7 @@ julia> isone(abs(det(T))) && T * A == B * T true

source

- + \ No newline at end of file diff --git a/dev/manual/misc/mset.html b/dev/manual/misc/mset.html index 7aafc43e5b..ce685f9493 100644 --- a/dev/manual/misc/mset.html +++ b/dev/manual/misc/mset.html @@ -9,13 +9,13 @@ - + - + - + @@ -177,7 +177,7 @@ 'r' ' ' 'v'

source

Sub-set iterators

Sub-multi-sets

subsets Method
julia
subsets(s::MSet) -> MSubSetIt{T}

Return an iterator on all sub-multi-sets of s.

source

julia
subsets(s::Set) -> SubSetItr{T}

Return an iterator for all sub-sets of s.

source

julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

julia
subsets(v::Vector{T}, k::Int) where T

Return a vector of all ordered k-element sub-vectors of v.

source

Sub-sets

subsets Method
julia
subsets(s::MSet) -> MSubSetIt{T}

Return an iterator on all sub-multi-sets of s.

source

julia
subsets(s::Set) -> SubSetItr{T}

Return an iterator for all sub-sets of s.

source

julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

julia
subsets(v::Vector{T}, k::Int) where T

Return a vector of all ordered k-element sub-vectors of v.

source

Sub-sets of a given size

subsets Method
julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

- + \ No newline at end of file diff --git a/dev/manual/misc/pmat.html b/dev/manual/misc/pmat.html index 1c750f9e20..31d0c8804b 100644 --- a/dev/manual/misc/pmat.html +++ b/dev/manual/misc/pmat.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content

Pseudo-matrices

This chapter deals with pseudo-matrices. We follow the common terminology and conventions introduced in [1], however, we operate on rows, not on columns.

Let R be a Dedekind domain, typically, the maximal order of some number field K, further fix some finite dimensional K-vectorspace V (with some basis), frequently Kn or the K-structure of some extension of K. Since in general R is not a PID, the R-modules in V are usually not free, but still projective.

Any finitely generated R-module MV can be represented as a pseudo-matrix PMat as follows: The structure theory of R-modules gives the existence of (fractional) R-ideals Ai and elements ωiV such that M=Aiωi and the sum is direct.

Following Cohen we call modules of the form Aω for some ideal A and ωV a pseudo element. A system (Ai,ωi) is called a pseudo-generating system for M if Aiωi|i=M. A pseudo-generating system is called a pseudo-basis if the ωi are K-linear independent.

A pseudo-matrix X is a tuple containing a vector of ideals Ai (1ir) and a matrix UKr×n. The i-th row together with the i-th ideal defines a pseudo-element, thus an R-module, all of them together generate a module M.

A pseudo-matrix X=((Ai)i,U) is said to be in pseudo-hnf if U is essentially upper triangular. Similar to the classical hnf, there is an algorithm that transforms any pseudo-matrix into one in pseudo-hnf while maintaining the module.

Creation

In general to create a PMat one has to specify a matrix and a vector of ideals:

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the (row) pseudo matrix representing the Zk-module cimi where ci are the ideals in c and mi the rows of M.

source

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the (row) pseudo matrix representing the Zk-module cimi where ci are the ideals in c and mi the rows of M.

source

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the free (row) pseudo matrix representing the Zk-module Zkmi where mi are the rows of M.

source

(Those functions are also available as pseudo_matrix)

Operations

coefficient_ideals Method
julia
coefficient_ideals(M::PMat)

Returns the vector of coefficient ideals.

source

matrix Method
julia
matrix(M::PMat)

Returns the matrix part of the PMat.

source

base_ring Method
julia
base_ring(M::PMat)

The PMat M defines an R-module for some maximal order R. This function returns the R that was used to defined M.

source

pseudo_hnf Method
julia
pseudo_hnf(P::PMat)

Transforms P into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of P will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module.

A optional second argument can be specified as a symbols, indicating the desired shape of the echelon form. Possible are :upperright (the default) and :lowerleft

source

pseudo_hnf_with_transform Method
julia
pseudo_hnf_with_transform(P::PMat)

Transforms P into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of P will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module. The used transformation is returned as a second return value.

A optional second argument can be specified as a symbol, indicating the desired shape of the echelon form. Possible are :upperright (the default) and :lowerleft

source

Examples

- + \ No newline at end of file diff --git a/dev/manual/misc/sparse.html b/dev/manual/misc/sparse.html index 353c1db741..c9824e755f 100644 --- a/dev/manual/misc/sparse.html +++ b/dev/manual/misc/sparse.html @@ -9,13 +9,13 @@ - + - + - + @@ -25,7 +25,7 @@ minimum(A::RelNumFieldOrderIdeal) -> RelNumFieldOrderIdeal

Returns the ideal AO where O is the maximal order of the coefficient ideals of A.

source

minimum Method
julia
minimum(A::SRow{T}) -> T

Returns the smallest entry of A.

source

norm2 Method
julia
norm2(A::SRow{T} -> T

Returns AAt.

source

Functionality for integral sparse rows

lift Method
julia
lift(A::SRow{zzModRingElem}) -> SRow{ZZRingElem}

Return the sparse row obtained by lifting all entries in A.

source

mod! Method
julia
mod!(A::SRow{ZZRingElem}, n::ZZRingElem) -> SRow{ZZRingElem}

Inplace reduction of all entries of A modulo n to the positive residue system.

source

mod_sym! Method
julia
mod_sym!(A::SRow{ZZRingElem}, n::ZZRingElem) -> SRow{ZZRingElem}

Inplace reduction of all entries of A modulo n to the symmetric residue system.

source

mod_sym! Method
julia
mod_sym!(A::SRow{ZZRingElem}, n::Integer) -> SRow{ZZRingElem}

Inplace reduction of all entries of A modulo n to the symmetric residue system.

source

maximum Method
julia
maximum(abs, A::SRow{ZZRingElem}) -> ZZRingElem

Returns the largest, in absolute value, entry of A.

source

Conversion to/from julia and AbstractAlgebra types

Vector Method
julia
Vector(a::SMat{T}, n::Int) -> Vector{T}

The first n entries of a, as a julia vector.

source

sparse_row Method
julia
sparse_row(A::MatElem)

Convert A to a sparse row. nrows(A) == 1 must hold.

source

dense_row Method
julia
dense_row(r::SRow, n::Int)

Convert r[1:n] to a dense row, that is an AbstractAlgebra matrix.

source

Sparse matrices

Let R be a commutative ring. Sparse matrices with base ring R are modelled by objects of type SMat. More precisely, the type is of parametrized form SRow{T}, where T is the element type of the base ring. For example, SMat{ZZRingElem} is the type for sparse matrices over the integers.

In contrast to sparse rows, sparse matrices have a fixed number of rows and columns, that is, they represent elements of the matrices space Matn×m(R). Internally, sparse matrices are implemented as an array of sparse rows. As a consequence, unlike their dense counterparts, sparse matrices have a mutable number of rows and it is very performant to add additional rows.

Construction

sparse_matrix Method
julia
sparse_matrix(R::Ring) -> SMat

Return an empty sparse matrix with base ring R.

source

sparse_matrix Method
julia
sparse_matrix(R::Ring, n::Int, m::Int) -> SMat

Return a sparse n times m zero matrix over R.

source

Sparse matrices can also be created from dense matrices as well as from julia arrays:

sparse_matrix Method
julia
sparse_matrix(A::MatElem; keepzrows::Bool = true)

Constructs the sparse matrix corresponding to the dense matrix A. If keepzrows is false, then the constructor will drop any zero row of A.

source

sparse_matrix Method
julia
sparse_matrix(R::Ring, A::Matrix{T}) -> SMat

Constructs the sparse matrix over R corresponding to A.

source

sparse_matrix Method
julia
sparse_matrix(R::Ring, A::Matrix{T}) -> SMat

Constructs the sparse matrix over R corresponding to A.

source

The normal way however, is to add rows:

push! Method
julia
push!(A::SMat{T}, B::SRow{T}) where T

Appends the sparse row B to A.

source

Sparse matrices can also be concatenated to form larger ones:

vcat! Method
julia
vcat!(A::SMat, B::SMat) -> SMat

Vertically joins A and B inplace, that is, the rows of B are appended to A.

source

vcat Method
julia
vcat(A::SMat, B::SMat) -> SMat

Vertically joins A and B.

source

hcat! Method
julia
hcat!(A::SMat, B::SMat) -> SMat

Horizontally concatenates A and B, inplace, changing A.

source

hcat Method
julia
hcat(A::SMat, B::SMat) -> SMat

Horizontally concatenates A and B.

source

(Normal julia cat is also supported)

There are special constructors:

identity_matrix Method
julia
identity_matrix(::Type{SMat}, R::Ring, n::Int)

Return a sparse n times n identity matrix over R.

source

zero_matrix Method
julia
zero_matrix(::Type{SMat}, R::Ring, n::Int)

Return a sparse n times n zero matrix over R.

source

zero_matrix Method
julia
zero_matrix(::Type{SMat}, R::Ring, n::Int, m::Int)

Return a sparse n times m zero matrix over R.

source

block_diagonal_matrix Method
julia
block_diagonal_matrix(xs::Vector{SMat})

Return the block diagonal matrix with the matrices in xs on the diagonal. Requires all blocks to have the same base ring.

source

Slices:

sub Method
julia
sub(A::SMat, r::AbstractUnitRange, c::AbstractUnitRange) -> SMat

Return the submatrix of A, where the rows correspond to r and the columns correspond to c.

source

Transpose:

transpose Method
julia
transpose(A::SMat) -> SMat

Returns the transpose of A.

source

Elementary Properties

sparsity Method
julia
sparsity(A::SMat) -> Float64

Return the sparsity of A, that is, the number of zero-valued elements divided by the number of all elements.

source

density Method
julia
density(A::SMat) -> Float64

Return the density of A, that is, the number of nonzero-valued elements divided by the number of all elements.

source

nnz Method
julia
nnz(A::SMat) -> Int

Return the number of non-zero entries of A.

source

number_of_rows Method
julia
number_of_rows(A::SMat) -> Int

Return the number of rows of A.

source

number_of_columns Method
julia
number_of_columns(A::SMat) -> Int

Return the number of columns of A.

source

isone Method
julia
isone(A::SMat)

Tests if A is an identity matrix.

source

iszero Method
julia
iszero(A::SMat)

Tests if A is a zero matrix.

source

is_upper_triangular Method
julia
is_upper_triangular(A::SMat)

Returns true if and only if A is upper (right) triangular.

source

maximum Method
julia
maximum(A::SMat{T}) -> T

Finds the largest entry of A.

source

minimum Method
julia
minimum(A::SMat{T}) -> T

Finds the smallest entry of A.

source

maximum Method
julia
maximum(abs, A::SMat{ZZRingElem}) -> ZZRingElem

Finds the largest, in absolute value, entry of A.

source

elementary_divisors Method
julia
elementary_divisors(A::SMat{ZZRingElem}) -> Vector{ZZRingElem}

The elementary divisors of A, i.e. the diagonal elements of the Smith normal form of A.

source

solve_dixon_sf Method
julia
solve_dixon_sf(A::SMat{ZZRingElem}, b::SRow{ZZRingElem}, is_int::Bool = false) -> SRow{ZZRingElem}, ZZRingElem
 solve_dixon_sf(A::SMat{ZZRingElem}, B::SMat{ZZRingElem}, is_int::Bool = false) -> SMat{ZZRingElem}, ZZRingElem

For a sparse square matrix A of full rank and a sparse matrix (row), find a sparse matrix (row) x and an integer d s.th. xA=bd holds. The algorithm is a Dixon-based linear p-adic lifting method. If \code{is_int} is given, then d is assumed to be 1. In this case rational reconstruction is avoided.

source

hadamard_bound2 Method
julia
hadamard_bound2(A::SMat{T}) -> T

The square of the product of the norms of the rows of A.

source

echelon_with_transform Method
julia
echelon_with_transform(A::SMat{zzModRingElem}) -> SMat, SMat

Find a unimodular matrix T and an upper-triangular E s.th. TA=E holds.

source

reduce_full Method
julia
reduce_full(A::SMat{ZZRingElem}, g::SRow{ZZRingElem},
                       with_transform = Val(false)) -> SRow{ZZRingElem}, Vector{Int}

Reduces g modulo A and assumes that A is upper triangular.

The second return value is the array of pivot elements of A that changed.

If with_transform is set to Val(true), then additionally an array of transformations is returned.

source

hnf! Method
julia
hnf!(A::SMat{ZZRingElem})

Inplace transform of A into upper right Hermite normal form.

source

hnf Method
julia
hnf(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Return the upper right Hermite normal form of A.

source

snf Method
julia
snf(A::SMat{ZZRingElem})

The Smith normal form (snf) of A.

source

hnf_extend! Method
julia
hnf_extend!(A::SMat{ZZRingElem}, b::SMat{ZZRingElem}, offset::Int = 0) -> SMat{ZZRingElem}

Given a matrix A in HNF, extend this to get the HNF of the concatenation with b.

source

is_diagonal Method
julia
is_diagonal(A::SMat) -> Bool

True iff only the i-th entry in the i-th row is non-zero.

source

det Method
julia
det(A::SMat{ZZRingElem})

The determinant of A using a modular algorithm. Uses the dense (zzModMatrix) determinant on A for various primes p.

source

det_mc Method
julia
det_mc(A::SMat{ZZRingElem})

Computes the determinant of A using a LasVegas style algorithm, i.e. the result is not proven to be correct. Uses the dense (zzModMatrix) determinant on A for various primes p.

source

valence_mc Method
julia
valence_mc{T}(A::SMat{T}; extra_prime = 2, trans = Vector{SMatSLP_add_row{T}}()) -> T

Uses a Monte-Carlo algorithm to compute the valence of A. The valence is the valence of the minimal polynomial f of transpose(A)A, thus the last non-zero coefficient, typically f(0).

The valence is computed modulo various primes until the computation stabilises for extra_prime many.

trans, if given, is a SLP (straight-line-program) in GL(n, Z). Then the valence of trans * A is computed instead.

source

saturate Method
julia
saturate(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Computes the saturation of A, that is, a basis for QMZn, where M is the row span of A and n the number of rows of A.

Equivalently, return TA for an invertible rational matrix T, such that TA is integral and the elementary divisors of TA are all trivial.

source

hnf_kannan_bachem Method
julia
hnf_kannan_bachem(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Compute the Hermite normal form of A using the Kannan-Bachem algorithm.

source

diagonal_form Method
julia
diagonal_form(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

A matrix D that is diagonal and obtained via unimodular row and column operations. Like a snf without the divisibility condition.

source

Manipulation/ Access

getindex Method
julia
getindex(A::SMat, i::Int, j::Int)

Given a sparse matrix A=(aij)i,j, return the entry aij.

source

getindex Method
julia
getindex(A::SMat, i::Int) -> SRow

Given a sparse matrix A and an index i, return the i-th row of A.

source

setindex! Method
julia
setindex!(A::SMat, b::SRow, i::Int)

Given a sparse matrix A, a sparse row b and an index i, set the i-th row of A equal to b.

source

swap_rows! Method
julia
swap_rows!(A::SMat{T}, i::Int, j::Int)

Swap the i-th and j-th row of A inplace.

source

swap_cols! Method
julia
swap_cols!(A::SMat, i::Int, j::Int)

Swap the i-th and j-th column of A inplace.

source

scale_row! Method
julia
scale_row!(A::SMat{T}, i::Int, c::T)

Multiply the i-th row of A by c inplace.

source

add_scaled_col! Method
julia
add_scaled_col!(A::SMat{T}, i::Int, j::Int, c::T)

Add c times the i-th column to the j-th column of A inplace, that is, AjAj+cAi, where (Ai)i denote the columns of A.

source

add_scaled_row! Method
julia
add_scaled_row!(A::SMat{T}, i::Int, j::Int, c::T)

Add c times the i-th row to the j-th row of A inplace, that is, AjAj+cAi, where (Ai)i denote the rows of A.

source

transform_row! Method
julia
transform_row!(A::SMat{T}, i::Int, j::Int, a::T, b::T, c::T, d::T)

Applies the transformation (Ai,Aj)(aAi+bAj,cAi+dAj) to A, where (Ai)i are the rows of A.

source

diagonal Method
julia
diagonal(A::SMat) -> ZZRingElem[]

The diagonal elements of A in an array.

source

reverse_rows! Method
julia
reverse_rows!(A::SMat)

Inplace inversion of the rows of A.

source

mod_sym! Method
julia
mod_sym!(A::SMat{ZZRingElem}, n::ZZRingElem)

Inplace reduction of all entries of A modulo n to the symmetric residue system.

source

find_row_starting_with Method
julia
find_row_starting_with(A::SMat, p::Int) -> Int

Tries to find the index i such that Ai,p0 and Ai,pj=0 for all j>1. It is assumed that A is upper triangular. If such an index does not exist, find the smallest index larger.

source

reduce Method
julia
reduce(A::SMat{ZZRingElem}, g::SRow{ZZRingElem}, m::ZZRingElem) -> SRow{ZZRingElem}

Given an upper triangular matrix A over the integers, a sparse row g and an integer m, this function reduces g modulo A and returns g modulo m with respect to the symmetric residue system.

source

reduce Method
julia
reduce(A::SMat{ZZRingElem}, g::SRow{ZZRingElem}) -> SRow{ZZRingElem}

Given an upper triangular matrix A over a field and a sparse row g, this function reduces g modulo A.

source

reduce Method
julia
reduce(A::SMat{T}, g::SRow{T}) -> SRow{T}

Given an upper triangular matrix A over a field and a sparse row g, this function reduces g modulo A.

source

rand_row Method
julia
rand_row(A::SMat) -> SRow

Return a random row of the sparse matrix A.

source

Changing of the ring:

map_entries Method
julia
map_entries(f, A::SMat) -> SMat

Given a sparse matrix A and a callable object f, this function will construct a new sparse matrix by applying f to all elements of A.

source

change_base_ring Method
julia
change_base_ring(R::Ring, A::SMat)

Create a new sparse matrix by coercing all elements into the ring R.

source

Arithmetic

Matrices support the usual operations as well

  • +, -, ==

  • div, divexact by scalars

  • multiplication by scalars

Various products:

* Method
julia
*(A::SMat{T}, b::AbstractVector{T}) -> Vector{T}

Return the product Ab as a dense vector.

source

* Method
julia
*(A::SMat{T}, b::AbstractMatrix{T}) -> Matrix{T}

Return the product Ab as a dense array.

source

* Method
julia
*(A::SMat{T}, b::MatElem{T}) -> MatElem

Return the product Ab as a dense matrix.

source

* Method
julia
*(A::SRow, B::SMat) -> SRow

Return the product AB as a sparse row.

source

dot Method
julia
dot(x::SRow{T}, A::SMat{T}, y::SRow{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

dot Method
julia
dot(x::MatrixElem{T}, A::SMat{T}, y::MatrixElem{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

dot Method
julia
dot(x::AbstractVector{T}, A::SMat{T}, y::AbstractVector{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

Other:

sparse Method
julia
sparse(A::SMat) -> SparseMatrixCSC

The same matrix, but as a sparse matrix of julia type SparseMatrixCSC.

source

ZZMatrix Method
julia
ZZMatrix(A::SMat{ZZRingElem})

The same matrix A, but as an ZZMatrix.

source

ZZMatrix Method
julia
ZZMatrix(A::SMat{T}) where {T <: Integer}

The same matrix A, but as an ZZMatrix. Requires a conversion from the base ring of A to ZZ.

source

Matrix Method
julia
Matrix(A::SMat{T}) -> Matrix{T}

The same matrix, but as a julia matrix.

source

Array Method
julia
Array(A::SMat{T}) -> Matrix{T}

The same matrix, but as a two-dimensional julia array.

source

- + \ No newline at end of file diff --git a/dev/manual/number_fields/class_fields.html b/dev/manual/number_fields/class_fields.html index d3b9dea7d8..e344a8b8c5 100644 --- a/dev/manual/number_fields/class_fields.html +++ b/dev/manual/number_fields/class_fields.html @@ -9,13 +9,13 @@ - + - + - + @@ -61,7 +61,7 @@ julia> isone(discriminant(ZK)) true
ray_class_field Method
julia
ray_class_field(K::RelSimpleNumField{AbsSimpleNumFieldElem}) -> ClassField
 ray_class_field(K::AbsSimpleNumField) -> ClassField

For a (relative) abelian extension, compute an abstract representation as a class field.

source

genus_field Method
julia
genus_field(A::ClassField, k::AbsSimpleNumField) -> ClassField

The maximal extension contained in A that is the compositum of K with an abelian extension of k.

source

maximal_abelian_subfield Method
julia
maximal_abelian_subfield(A::ClassField, k::AbsSimpleNumField) -> ClassField

The maximal abelian extension of k contained in A. k must be a subfield of the base field of A.

source

maximal_abelian_subfield Method
julia
maximal_abelian_subfield(K::RelSimpleNumField{AbsSimpleNumFieldElem}; of_closure::Bool = false) -> ClassField

Using a probabilistic algorithm for the norm group computation, determine the maximal abelian subfield in K over its base field. If of_closure is set to true, then the algorithm is applied to the normal closure of K (without computing it).

source

Invariants

degree Method
julia
degree(A::ClassField)

The degree of A over its base field, i.e. the size of the defining ideal group.

source

base_ring Method
julia
base_ring(A::ClassField)

The maximal order of the field that A is defined over.

source

base_field Method
julia
base_field(A::ClassField)

The number field that A is defined over.

source

discriminant Method
julia
discriminant(C::ClassField) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Using the conductor-discriminant formula, compute the (relative) discriminant of C. This does not use the defining equations.

source

conductor Method
julia
conductor(C::ClassField) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Vector{InfPlc}

Return the conductor of the abelian extension corresponding to C.

source

defining_modulus Method
julia
defining_modulus(CF::ClassField)

The modulus, i.e. an ideal of the set of real places, used to create the class field.

source

is_cyclic Method
julia
is_cyclic(C::ClassField)

Tests if the (relative) automorphism group of C is cyclic (by checking the defining ideal group).

source

is_conductor Method
julia
is_conductor(C::Hecke.ClassField, m::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, inf_plc::Vector{InfPlc}=InfPlc[]; check) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Vector{InfPlc}

Checks if (m, inf_plc) is the conductor of the abelian extension corresponding to C. If check is false, it assumes that the given modulus is a multiple of the conductor. This is usually faster than computing the conductor.

source

is_normal Method
julia
is_normal(C::ClassField) -> Bool

For a class field C defined over a normal base field k, decide if C is normal over Q.

source

is_central Method
julia
is_central(C::ClassField) -> Bool

For a class field C defined over a normal base field k, decide if C is central over Q.

source

Operations

* Method
julia
*(A::ClassField, B::ClassField) -> ClassField

The compositum of a and b as a (formal) class field.

source

compositum Method
julia
compositum(a::ClassField, b::ClassField) -> ClassField

The compositum of a and b as a (formal) class field.

source

== Method
julia
==(a::ClassField, b::ClassField)

Tests if a and b are equal.

source

intersect Method
julia
intersect(a::ClassField, b::ClassField) -> ClassField

The intersection of a and b as a class field.

source

prime_decomposition_type Method
julia
prime_decomposition_type(C::ClassField, p::AbsNumFieldOrderIdeal) -> (Int, Int, Int)

For a prime p in the base ring of r, determine the splitting type of p in r. ie. the tuple (e,f,g) giving the ramification degree, the inertia and the number of primes above p.

source

is_subfield Method
julia
is_subfield(a::ClassField, b::ClassField) -> Bool

Determines if a is a subfield of b.

source

is_local_norm Method
julia
is_local_norm(r::ClassField, a::AbsNumFieldOrderElem) -> Bool

Tests if a is a local norm at all finite places in the extension implicitly given by r.

source

is_local_norm Method
julia
is_local_norm(r::ClassField, a::AbsNumFieldOrderElem, p::AbsNumFieldOrderIdeal) -> Bool

Tests if a is a local norm at p in the extension implicitly given by r. Currently the conductor cannot have infinite places.

source

normal_closure Method
julia
normal_closure(C::ClassField) -> ClassField

For a ray class field C extending a normal base field k, compute the normal closure over Q.

source

subfields Method
julia
subfields(C::ClassField; degree::Int, is_normal, type) -> Vector{ClassField}

Find all subfields of C over the base field.

If the optional keyword argument degree is positive, then only those with prescribed degree will be returned.

If the optional keyword is_normal is given, then only those that are normal over the field fixed by the automorphisms is returned. For normal base fields, this amounts to extensions that are normal over Q.

If the optional keyword is_normal is set to a list of automorphisms, then only those wil be considered.

type can be set to the desired relative Galois group, given as a vector of integers descibing the structure.

Note

This will not find all subfields over Q, but only the ones sharing the same base field.

source

- + \ No newline at end of file diff --git a/dev/manual/number_fields/complex_embeddings.html b/dev/manual/number_fields/complex_embeddings.html index 39ec42d3eb..a574ebe4ac 100644 --- a/dev/manual/number_fields/complex_embeddings.html +++ b/dev/manual/number_fields/complex_embeddings.html @@ -9,13 +9,13 @@ - + - + - + @@ -151,7 +151,7 @@ julia> restrict(emb[3], i) Complex embedding corresponding to -1.00 * i of imaginary quadratic field defined by x^2 + 1 - + \ No newline at end of file diff --git a/dev/manual/number_fields/conventions.html b/dev/manual/number_fields/conventions.html index bea14afa2c..f18e51383d 100644 --- a/dev/manual/number_fields/conventions.html +++ b/dev/manual/number_fields/conventions.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content

Conventions

By an absolute number field we mean finite extensions of Q, which is of type AbsSimpleNumField and whose elements are of type AbsSimpleNumFieldElem. Such an absolute number field K is always given in the form K=Q(α)=Q[X]/(f), where fQ[X] is an irreducible polynomial. See here for more information on the different types of fields supported.

We call (1,α,α2,,αd1), where d is the degree [K:Q] the power basis of K. If β is any element of K, then the representation matrix of β is the matrix representing KK,γβγ with respect to the power basis, that is,

β(1,α,,αd1)=Mα(1,α,,αd1).

Let (r,s) be the signature of K, that is, K has r real embeddings σi:KR, 1ir, and 2s complex embeddings σi:KC, 1i2s. In Hecke the complex embeddings are always ordered such that σi=σi+s for r+1ir+s. The Q-linear function

KRdα(σ1(α),,σr(α),2Re(σr+1(α)),2Im(σr+1(α)),,2Re(σr+s(α)),2Im(σr+s(α)))

is called the Minkowski map (or Minkowski embedding).

If K=Q(α) is an absolute number field, then an order O of K is a subring of the ring of integers OK, which is free of rank [K:Q] as a Z-module. The natural order Z[α] is called the equation order of K. In Hecke orders of absolute number fields are constructed (implicitly) by specifying a Z-basis, which is referred to as the basis of O. If (ω1,,ωd) is the basis of O, then the matrix BMatd×d(Q) with

is called the basis matrix of O. We call det(B) the generalized index of O. In case Z[α]O, the determinant det(B)1 is in fact equal to [O:Z[α]] and is called the index of O. The matrix

(σ1(ω1)σr(ω1)2Re(σr+1(ω1))2Im(σr+1(ω1))2Im(σr+s(ω1))σ1(ω2)σr(ω2)2Re(σr+1(ω2))2Im(σr+1(ω2))2Im(σr+s(ω2))σ1(ωd)σr(ωd)2Re(σr+1(ωd))2Im(σr+2(ωd))2Im(σr+s(ωd)))Matd×d(R).

is called the Minkowski matrix of O.

- + \ No newline at end of file diff --git a/dev/manual/number_fields/elements.html b/dev/manual/number_fields/elements.html index 1c35e26531..1fd56202e1 100644 --- a/dev/manual/number_fields/elements.html +++ b/dev/manual/number_fields/elements.html @@ -9,13 +9,13 @@ - + - + - + @@ -34,7 +34,7 @@ julia> L([a, 1, 1//2]) 1//2*b^2 + b + a
quadratic_defect Method
julia
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}

Returns the valuation of the quadratic defect of the element a at p, which can either be prime object or an infinite place of the parent of a.

source

hilbert_symbol Method
julia
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int

Returns the local Hilbert symbol (a,b)p.

source

representation_matrix Method
julia
representation_matrix(a::NumFieldElem) -> MatElem

Returns the representation matrix of a, that is, the matrix representing multiplication with a with respect to the canonical basis of the parent of a.

source

basis_matrix Method
julia
basis_matrix(v::Vector{NumFieldElem}) -> Mat

Given a vector v of n elements of a number field K of degree d, this function returns an n×d matrix with entries in the base field of K, where row i contains the coefficients of v[i] with respect of the canonical basis of K.

source

coefficients Method
julia
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}

Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.

source

coordinates Method
julia
coordinates(x::NumFieldElem{T}) -> Vector{T}

Given an element x in a number field K, this function returns the coordinates of x with respect to the basis of K (the output of the 'basis' function).

source

absolute_coordinates Method
julia
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}

Given an element x in a number field K, this function returns the coordinates of x with respect to the basis of K over the rationals (the output of the absolute_basis function).

source

coeff Method
julia
coeff(a::SimpleNumFieldElem, i::Int) -> FieldElem

Given a number field element a of a simple number field extension L/K, this function returns the i-th coefficient of a, when expanded in the canonical power basis of L. The result is an element of K.

source

valuation Method
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

Computes the p-adic valuation of a, that is, the largest i such that a is contained in pi.

source

torsion_unit_order Method
julia
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)

Given a torsion unit x together with a multiple n of its order, compute the order of x, that is, the smallest kZ1 such that xk=1.

It is not checked whether x is a torsion unit.

source

tr Method
julia
tr(a::NumFieldElem) -> NumFieldElem

Returns the trace of an element a of a number field extension L/K. This will be an element of K.

source

absolute_tr Method
julia
absolute_tr(a::NumFieldElem) -> QQFieldElem

Given a number field element a, returns the absolute trace of a.

source

algebraic_split Method
julia
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElem

Writes the input as a quotient of two "small" algebraic integers.

source

Conjugates

conjugates Method
julia
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Let p be the precision of C, then every entry y of the vector returned satisfies radius(real(y)) < 2^-p and radius(imag(y)) < 2^-p respectively.

source

conjugates Method
julia
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Every entry y of the vector returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol respectively.

source

conjugates_log Method
julia
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the elements (log(|σ1(x)|),,log(|σr(x)|),,2log(|σr+1(x)|),,2log(|σr+s(x)|)) as elements of type ArbFieldElem with radius less then 2^-abs_tol.

source

conjugates_real Method
julia
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Compute the real conjugates of x as elements of type ArbFieldElem.

Every entry y of the array returned satisfies radius(y) < 2^-abs_tol.

source

conjugates_complex Method
julia
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the complex conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Every entry y of the array returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol.

source

conjugates_arb_log_normalise Method
julia
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
 conjugates_arb_log_normalise(x::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, p::Int = 10)

The "normalised" logarithms, i.e. the array cilog|x(i)|1/nlog|N(x)|, so the (weighted) sum adds up to zero.

source

minkowski_map Method
julia
minkowski_map(a::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the image of a under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^(-abs_tol).

source

Predicates

is_integral Method
julia
is_integral(a::NumFieldElem) -> Bool

Returns whether a is integral, that is, whether the minimal polynomial of a has integral coefficients.

source

is_torsion_unit Method
julia
is_torsion_unit(x::AbsSimpleNumFieldElem, checkisunit::Bool = false) -> Bool

Returns whether x is a torsion unit, that is, whether there exists n such that xn=1.

If checkisunit is true, it is first checked whether x is a unit of the maximal order of the number field x is lying in.

source

is_local_norm Method
julia
is_local_norm(L::NumField, a::NumFieldElem, P)

Given a number field L/K, an element aK and a prime ideal P of K, returns whether a is a local norm at P.

The number field L/K must be a simple extension of degree 2.

source

is_norm_divisible Method
julia
is_norm_divisible(a::AbsSimpleNumFieldElem, n::ZZRingElem) -> Bool

Checks if the norm of a is divisible by n, assuming that the norm of a is an integer.

source

is_norm Method
julia
is_norm(K::AbsSimpleNumField, a::ZZRingElem; extra::Vector{ZZRingElem}) -> Bool, AbsSimpleNumFieldElem

For a ZZRingElem a, try to find TK s.th. N(T)=a holds. If successful, return true and T, otherwise false and some element. In \testtt{extra} one can pass in additional prime numbers that are allowed to occur in the solution. This will then be supplemented. The element will be returned in factored form.

source

Invariants

norm Method
julia
norm(a::NumFieldElem) -> NumFieldElem

Returns the norm of an element a of a number field extension L/K. This will be an element of K.

source

absolute_norm Method
julia
absolute_norm(a::NumFieldElem) -> QQFieldElem

Given a number field element a, returns the absolute norm of a.

source

minpoly Method
julia
minpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the minimal polynomial of a over the base field of K.

source

absolute_minpoly Method
julia
absolute_minpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the minimal polynomial of a over the rationals Q.

source

charpoly Method
julia
charpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the characteristic polynomial of a over the base field of K.

source

absolute_charpoly Method
julia
absolute_charpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the characteristic polynomial of a over the rationals Q.

source

norm Method
julia
norm(a::NumFieldElem, k::NumField) -> NumFieldElem

Returns the norm of an element a of a number field L with respect to a subfield k of L. This will be an element of k.

source

- + \ No newline at end of file diff --git a/dev/manual/number_fields/fields.html b/dev/manual/number_fields/fields.html index f7c73101a3..5d9a3afa40 100644 --- a/dev/manual/number_fields/fields.html +++ b/dev/manual/number_fields/fields.html @@ -9,13 +9,13 @@ - + - + - + @@ -84,7 +84,7 @@ julia> complex_places(K) 1-element Vector{InfPlc{AbsSimpleNumField, AbsSimpleNumFieldEmbedding}}: Infinite place corresponding to (Complex embedding corresponding to 0.00 + 2.24 * i of imaginary quadratic field)

source

isreal Method
julia
isreal(P::Plc)

Return whether the embedding into C defined by P is real or not.

source

is_complex Method
julia
is_complex(P::Plc) -> Bool

Return whether the embedding into C defined by P is complex or not.

source

Miscellaneous

norm_equation Method
julia
norm_equation(K::AnticNumerField, a) -> AbsSimpleNumFieldElem

For a an integer or rational, try to find TK s.th. N(T)=a. Raises an error if unsuccessful.

source

lorenz_module Method
julia
lorenz_module(k::AbsSimpleNumField, n::Int) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Finds an ideal A s.th. for all positive units e=1modA we have that e is an n-th power. Uses Lorenz, number theory, 9.3.1. If containing is set, it has to be an integral ideal. The resulting ideal will be a multiple of this.

source

kummer_failure Method
julia
kummer_failure(x::AbsSimpleNumFieldElem, M::Int, N::Int) -> Int

Computes the quotient of N and [K(ζM,(Nx)):K(ζM)], where K is the field containing x and N divides M.

source

is_defining_polynomial_nice Method
julia
is_defining_polynomial_nice(K::AbsSimpleNumField)

Tests if the defining polynomial of K is integral and monic.

source

- + \ No newline at end of file diff --git a/dev/manual/number_fields/internal.html b/dev/manual/number_fields/internal.html index e9a6bc3e37..7c26ae338c 100644 --- a/dev/manual/number_fields/internal.html +++ b/dev/manual/number_fields/internal.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content

Internals

Types of number fields

Number fields, in Hecke, come in several different types:

  • AbsSimpleNumField: a finite simple extension of the rational numbers Q

  • AbsNonSimpleNumField: a finite extension of Q given by several polynomials. We will refer to this as a non-simple field - even though mathematically we can find a primitive elements.

  • RelSimpleNumField: a finite simple extension of a number field. This is actually parametried by the (element) type of the coefficient field. The complete type of an extension of an absolute field (AbsSimpleNumField) is RelSimpleNumField{AbsSimpleNumFieldElem}. The next extension thus will be RelSimpleNumField{RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}.

  • RelNonSimpleNumField: extensions of number fields given by several polynomials. This too will be referred to as a non-simple field.

The simple types AbsSimpleNumField and RelSimpleNumField are also called simple fields in the rest of this document, RelSimpleNumField and RelNonSimpleNumField are referred to as relative extensions while AbsSimpleNumField and AbsNonSimpleNumField are called absolute.

Internally, simple fields are essentially just (univariate) polynomial quotients in a dense representation, while non-simple fields are multivariate quotient rings, thus have a sparse presentation. In general, simple fields allow much faster arithmetic, while the non-simple fields give easy access to large degree fields.

Absolute simple fields

The most basic number field type is that of AbsSimpleNumField. Internally this is essentially represented as a unvariate quotient with the arithmetic provided by the C-library antic with the binding provided by Nemo.

- + \ No newline at end of file diff --git a/dev/manual/number_fields/intro.html b/dev/manual/number_fields/intro.html index a4f01484e3..61868cae63 100644 --- a/dev/manual/number_fields/intro.html +++ b/dev/manual/number_fields/intro.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content

Introduction

By definition, mathematically a number field is just a finite extension of the rational Q. In Hecke, a number field L is recursively defined as being the field of rational numbers Q or a finite extension of a number field K. In the second case, the extension can be defined in the one of the following two ways:

  • We have L=K[x]/(f), where fK[x] is an irreducible polynomial (simple extension), or

  • We have L=K[x1,,xn]/(f1(x1),,fn(xn)), where f1,,fnK[x] are univariate polynomials (non-simple extension).

In both cases we refer to K as the base field of the number field L. Another useful dichotomy comes from the type of the base field. We call L an absolute number field, if the base field is equal to the rational numbers Q.

- + \ No newline at end of file diff --git a/dev/manual/orders/elements.html b/dev/manual/orders/elements.html index 1a142e72ca..812221d0c7 100644 --- a/dev/manual/orders/elements.html +++ b/dev/manual/orders/elements.html @@ -9,13 +9,13 @@ - + - + - + @@ -23,7 +23,7 @@
Skip to content

Elements

Elements in orders have two representations: they can be viewed as elements in the Zn giving the coefficients wrt to the order basis where they are elements in. On the other hand, as every order is in a field, they also have a representation as number field elements. Since, asymptotically, operations are more efficient in the field (due to fast polynomial arithmetic) than in the order, the primary representation is that as a field element.

Creation

Elements are constructed either as linear combinations of basis elements or via explicit coercion. Elements will be of type AbsNumFieldOrderElem, the type if actually parametrized by the type of the surrounding field and the type of the field elements. E.g. the type of any element in any order of an absolute simple field will be AbsSimpleNumFieldOrderElem

AbsNumFieldOrder Type
julia
  (O::NumFieldOrder)(a::NumFieldElem, check::Bool = true) -> NumFieldOrderElem

Given an element a of the ambient number field of O, this function coerces the element into O. It will be checked that a is contained in O if and only if check is true.

source

julia
  (O::NumFieldOrder)(a::NumFieldOrderElem, check::Bool = true) -> NumFieldOrderElem

Given an element a of some order in the ambient number field of O, this function coerces the element into O. It will be checked that a is contained in O if and only if check is true.

source

julia
  (O::NumFieldOrder)(a::IntegerUnion) -> NumFieldOrderElem

Given an element a of type ZZRingElem or Integer, this function coerces the element into O.

source

julia
  (O::AbsNumFieldOrder)(arr::Vector{ZZRingElem})

Returns the element of O with coefficient vector arr.

source

julia
  (O::AbsNumFieldOrder)(arr::Vector{Integer})

Returns the element of O with coefficient vector arr.

source

Basic properties

parent Method
julia
parent(a::NumFieldOrderElem) -> NumFieldOrder

Returns the order of which a is an element.

source

elem_in_nf Method
julia
elem_in_nf(a::NumFieldOrderElem) -> NumFieldElem

Returns the element a considered as an element of the ambient number field.

source

coordinates Method
julia
coordinates(a::AbsNumFieldOrderElem) -> Vector{ZZRingElem}

Returns the coefficient vector of a with respect to the basis of the order.

source

discriminant Method
julia
discriminant(B::Vector{NumFieldOrderElem})

Returns the discriminant of the family B of algebraic numbers, i.e. det((tr(B[i]B[j]))i,j)2.

source

julia
discriminant(E::EllipticCurve) -> FieldElem

Return the discriminant of E.

source

julia
discriminant(C::HypellCrv{T}) -> T

Compute the discriminant of C.

source

julia
discriminant(O::AlgssRelOrd)

Returns the discriminant of O.

source

== Method
julia
==(x::NumFieldOrderElem, y::NumFieldOrderElem) -> Bool

Returns whether x and y are equal.

source

Arithmetic

All the usual arithmetic operatinos are defined:

  • -(::NUmFieldOrdElem)

  • +(::NumFieldOrderElem, ::NumFieldOrderElem)

  • -(::NumFieldOrderElem, ::NumFieldOrderElem)

  • *(::NumFieldOrderElem, ::NumFieldOrderElem)

  • ^(::NumFieldOrderElem, ::Int)

  • mod(::AbsNumFieldOrderElem, ::Int)

  • mod_sym(::NumFieldOrderElem, ::ZZRingElem)

  • powermod(::AbsNumFieldOrderElem, ::ZZRingElem, ::Int)

Miscellaneous

representation_matrix Method
julia
representation_matrix(a::AbsNumFieldOrderElem) -> ZZMatrix

Returns the representation matrix of the element a.

source

representation_matrix Method
julia
representation_matrix(a::AbsNumFieldOrderElem, K::AbsSimpleNumField) -> FakeFmpqMat

Returns the representation matrix of the element a considered as an element of the ambient number field K. It is assumed that K is the ambient number field of the order of a.

source

tr Method
julia
tr(a::NumFieldOrderElem)

Returns the trace of a as an element of the base ring.

source

norm Method
julia
norm(a::NumFieldOrderElem)

Returns the norm of a as an element in the base ring.

source

absolute_norm Method
julia
absolute_norm(a::NumFieldOrderElem) -> ZZRingElem

Return the absolute norm as an integer.

source

absolute_tr Method
julia
absolute_tr(a::NumFieldOrderElem) -> ZZRingElem

Return the absolute trace as an integer.

source

rand Method
julia
rand(O::AbsSimpleNumFieldOrder, n::IntegerUnion) -> AbsNumFieldOrderElem

Computes a coefficient vector with entries uniformly distributed in {n,,1,0,1,,n} and returns the corresponding element of the order O.

source

minkowski_map Method
julia
minkowski_map(a::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the image of a under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^-abs_tol.

source

conjugates_arb Method
julia
conjugates_arb(x::NumFieldOrderElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+2ir+s.

Every entry y of the array returned satisfies radius(real(y)) < 2^-abs_tol, radius(imag(y)) < 2^-abs_tol respectively.

source

conjugates_arb_log Method
julia
conjugates_arb_log(x::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the elements (log(|σ1(x)|),,log(|σr(x)|),,2log(|σr+1(x)|),,2log(|σr+s(x)|)) as elements of type ArbFieldElem radius less then 2^-abs_tol.

source

t2 Method
julia
t2(x::NumFieldOrderElem, abs_tol::Int = 32) -> ArbFieldElem

Return the T2-norm of x. The radius of the result will be less than 2^-abs_tol.

source

minpoly Method
julia
minpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem

The minimal polynomial of a.

source

charpoly Method
julia
charpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem
 charpoly(a::AbsNumFieldOrderElem, ZZ) -> ZZPolyRingElem

The characteristic polynomial of a.

source

factor Method
julia
factor(a::AbsSimpleNumFieldOrderElem) -> Fac{AbsSimpleNumFieldOrderElem}

Computes a factorization of a into irreducible elements. The return value is a factorization fac, which satisfies a = unit(fac) * prod(p^e for (p, e) in fac).

The function requires that a is non-zero and that all prime ideals containing a are principal, which is for example satisfied if class group of the order of a is trivial.

source

denominator Method
julia
denominator(a::NumFieldElem, O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the smallest positive integer k such that ka is contained in O.

source

discriminant Method
julia
discriminant(B::Vector{NumFieldOrderElem})

Returns the discriminant of the family B of algebraic numbers, i.e. det((tr(B[i]B[j]))i,j)2.

source

julia
discriminant(E::EllipticCurve) -> FieldElem

Return the discriminant of E.

source

julia
discriminant(C::HypellCrv{T}) -> T

Compute the discriminant of C.

source

julia
discriminant(O::AlgssRelOrd)

Returns the discriminant of O.

source

- + \ No newline at end of file diff --git a/dev/manual/orders/frac_ideals.html b/dev/manual/orders/frac_ideals.html index 4b92eb9c42..a9f40b6c77 100644 --- a/dev/manual/orders/frac_ideals.html +++ b/dev/manual/orders/frac_ideals.html @@ -9,13 +9,13 @@ - + - + - + @@ -23,7 +23,7 @@
Skip to content

Fractional ideals

A fractional ideal in the number field K is a ZK-module A such that there exists an integer d>0 which dA is an (integral) ideal in ZK. Due to the Dedekind property of ZK, the ideals for a multiplicative group.

Fractional ideals are represented as an integral ideal and an additional denominator. They are of type AbsSimpleNumFieldOrderFractionalIdeal.

Creation

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O with basis matrix M/b. If M_in_hnf is set, then it is assumed that A is already in lower left HNF.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O with basis matrix M/b. If M_in_hnf is set, then it is assumed that A is already in lower left HNF.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::QQMatrix) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O generated by the elements corresponding to the rows of M.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal

The fractional ideal of O generated by a Z-basis of I.

source

julia
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrderFractionalIdeal

Turns the ideal I into a fractional ideal of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal, b::ZZRingElem) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal I/b of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, a::AbsSimpleNumFieldElem) -> AbsNumFieldOrderFractionalIdeal

Creates the principal fractional ideal (a) of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, a::AbsNumFieldOrderElem) -> AbsNumFieldOrderFractionalIdeal

Creates the principal fractional ideal (a) of O.

source

inv Method
julia
inv(A::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal

Computes the inverse of A, that is, the fractional ideal B such that AB=OK.

source

Arithmetic

All the normal operations are provided as well.

inv Method
julia
inv(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderFractionalIdeal

Returns the fractional ideal B such that AB=O.

source

integral_split Method
julia
integral_split(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderIdeal, AbsNumFieldOrderIdeal

Computes the unique coprime integral ideals N and D s.th. A=ND1

source

numerator Method
julia
numerator(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrderIdeal

Returns the ideal da where d is the denominator of a.

source

denominator Method
julia
denominator(a::RelNumFieldOrderFractionalIdeal) -> ZZRingElem

Returns the smallest positive integer d such that da is contained in the order of a.

source

Miscaellenous

order Method
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder

The order that was used to define the ideal a.

source

basis_matrix Method
julia
basis_matrix(I::AbsNumFieldOrderFractionalIdeal) -> FakeFmpqMat

Returns the basis matrix of I with respect to the basis of the order.

source

basis_mat_inv Method
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat

Return the inverse of the basis matrix of A.

source

basis Method
julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}

Returns the Z-basis of I.

source

norm Method
julia
norm(I::AbsNumFieldOrderFractionalIdeal) -> QQFieldElem

Returns the norm of I.

source

julia
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Returns the norm of a.

source

julia
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> S

Returns the norm of a.

source

julia
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElem

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

julia
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
   where { S, T, U } -> T

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

- + \ No newline at end of file diff --git a/dev/manual/orders/ideals.html b/dev/manual/orders/ideals.html index cc052bbc57..b121a9dc19 100644 --- a/dev/manual/orders/ideals.html +++ b/dev/manual/orders/ideals.html @@ -9,13 +9,13 @@ - + - + - + - + @@ -48,19 +48,19 @@ julia> [ mc \ I for I = lp] 10-element Vector{FinGenAbGroupElem}: - [4] [1] - [4] - [5] - [3] - [2] [7] [1] + [8] + [3] + [5] + [4] + [7] [0] - [2] + [5] julia> mc(c[1]) -<2, 7//2*_$^2 + 2*_$ + 1//2> +<2, 1//2*_$^2 + 2*_$ + 5//2> Norm: 2 Minimum: 2 two normal wrt: 2 @@ -69,9 +69,9 @@ 9 julia> mc(c[1])^Int(order(c[1])) -<512, 48778768008944312042281//2*_$^2 - 24206243073821420343184*_$ + 52810618909468316764975//2> +<32, 13217457633644257//2*_$^2 - 6559103588818597*_$ + 14309957929619471//2> Norm: 512 -Minimum: 512 +Minimum: 32 two normal wrt: 2 julia> mc \ ans @@ -85,7 +85,7 @@ degree_limit::Int = 0, F::Function, bad::ZZRingElem)

Computes the prime ideals O with norm up to B.

If degree_limit is a nonzero integer k, then prime ideals p with deg(p)>k will be discarded.

The function F must be a function on prime numbers not dividing bad such that F(p)=deg(p) for all prime ideals p lying above p.

source

julia
julia> I = mc(c[1])
-<2, 7//2*_$^2 + 2*_$ + 1//2>
+<2, 1//2*_$^2 + 2*_$ + 5//2>
 Norm: 2
 Minimum: 2
 two normal wrt: 2
@@ -94,39 +94,39 @@
 false
 
 julia> I = I^Int(order(c[1]))
-<512, 48778768008944312042281//2*_$^2 - 24206243073821420343184*_$ + 52810618909468316764975//2>
+<32, 13217457633644257//2*_$^2 - 6559103588818597*_$ + 14309957929619471//2>
 Norm: 512
-Minimum: 512
+Minimum: 32
 two normal wrt: 2
 
 julia> is_principal(I)
 true
 
 julia> is_principal_fac_elem(I)
-(true, 5^-1*(_$^2 + _$ + 2)^1*(_$ + 5)^-1*(_$^2 + 1)^-1*3^1*1^-1*(_$ - 3)^2*(_$ + 1)^1)

The computation of S-units is also tied to the class group:

torsion_units Method
julia
torsion_units(O::AbsSimpleNumFieldOrder) -> Vector{AbsSimpleNumFieldOrderElem}

Given an order O, compute the torsion units of O.

source

torsion_unit_group Method
julia
torsion_unit_group(O::AbsSimpleNumFieldOrder) -> GrpAb, Map

Given an order O, returns the torsion units as an abelian group G together with a map GO×.

source

torsion_units_generator Method
julia
torsion_units_generator(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem

Given an order O, compute a generator of the torsion units of O.

source

torsion_units_gen_order Method
julia
torsion_units_gen_order(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem

Given an order O, compute a generator of the torsion units of O as well as its order.

source

unit_group Method
julia
unit_group(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map

Returns a group U and an isomorphism map f:UO×. A set of fundamental units of O can be obtained via [ f(U[1+i]) for i in 1:unit_group_rank(O) ]. f(U[1]) will give a generator for the torsion subgroup.

source

unit_group_fac_elem Method
julia
unit_group_fac_elem(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map

Returns a group U and an isomorphism map f:UO×. A set of fundamental units of O can be obtained via [ f(U[1+i]) for i in 1:unit_group_rank(O) ]. f(U[1]) will give a generator for the torsion subgroup. All elements will be returned in factored form.

source

sunit_group Method
julia
sunit_group(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map

For an array I of (coprime prime) ideals, find the S-unit group defined by I, ie. the group of non-zero field elements which are only divisible by ideals in I.

source

sunit_group_fac_elem Method
julia
sunit_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map

For an array I of (coprime prime) ideals, find the S-unit group defined by I, ie. the group of non-zero field elements which are only divisible by ideals in I. The map will return elements in factored form.

source

sunit_mod_units_group_fac_elem Method
julia
sunit_mod_units_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map

For an array I of (coprime prime) ideals, find the S-unit group defined by I, ie. the group of non-zero field elements which are only divisible by ideals in I modulo the units of the field. The map will return elements in factored form.

source

julia
julia> u, mu = unit_group(zk)
+(true, (-1//2*_$^2 + 6*_$ - 3//2)^4*5^1*(_$ - 3)^-1*(_$^2 + _$ + 2)^-1*(_$ + 5)^-2*(_$^2 + 1)^2*3^-2*11^-1*(_$ + 1)^-1*2^4*(_$ + 2)^2*1^-1)

The computation of S-units is also tied to the class group:

torsion_units Method
julia
torsion_units(O::AbsSimpleNumFieldOrder) -> Vector{AbsSimpleNumFieldOrderElem}

Given an order O, compute the torsion units of O.

source

torsion_unit_group Method
julia
torsion_unit_group(O::AbsSimpleNumFieldOrder) -> GrpAb, Map

Given an order O, returns the torsion units as an abelian group G together with a map GO×.

source

torsion_units_generator Method
julia
torsion_units_generator(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem

Given an order O, compute a generator of the torsion units of O.

source

torsion_units_gen_order Method
julia
torsion_units_gen_order(O::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderElem

Given an order O, compute a generator of the torsion units of O as well as its order.

source

unit_group Method
julia
unit_group(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map

Returns a group U and an isomorphism map f:UO×. A set of fundamental units of O can be obtained via [ f(U[1+i]) for i in 1:unit_group_rank(O) ]. f(U[1]) will give a generator for the torsion subgroup.

source

unit_group_fac_elem Method
julia
unit_group_fac_elem(O::AbsSimpleNumFieldOrder) -> FinGenAbGroup, Map

Returns a group U and an isomorphism map f:UO×. A set of fundamental units of O can be obtained via [ f(U[1+i]) for i in 1:unit_group_rank(O) ]. f(U[1]) will give a generator for the torsion subgroup. All elements will be returned in factored form.

source

sunit_group Method
julia
sunit_group(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map

For an array I of (coprime prime) ideals, find the S-unit group defined by I, ie. the group of non-zero field elements which are only divisible by ideals in I.

source

sunit_group_fac_elem Method
julia
sunit_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map

For an array I of (coprime prime) ideals, find the S-unit group defined by I, ie. the group of non-zero field elements which are only divisible by ideals in I. The map will return elements in factored form.

source

sunit_mod_units_group_fac_elem Method
julia
sunit_mod_units_group_fac_elem(I::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> GrpAb, Map

For an array I of (coprime prime) ideals, find the S-unit group defined by I, ie. the group of non-zero field elements which are only divisible by ideals in I modulo the units of the field. The map will return elements in factored form.

source

julia
julia> u, mu = unit_group(zk)
 (Z/2 x Z, UnitGroup map of Maximal order of Number field of degree 3 over QQ
 with basis AbsSimpleNumFieldElem[1, _$, 1//2*_$^2 + 1//2]
 )
 
 julia> mu(u[2])
--_$^2 + _$ - 1
+_$ - 12
 
 julia> u, mu = unit_group_fac_elem(zk)
 (Z/2 x Z, UnitGroup map of Factored elements over Number field of degree 3 over QQ
 )
 
 julia> mu(u[2])
-(-1//2*_$^2 + 6*_$ - 3//2)^-1*5^-1*(_$^2 + _$ + 2)^1*(_$ + 1)^1*(-2*_$^2 + 30*_$ - 42)^-1*(-_$^2 + 15*_$ - 21)^1
+(_$^2 + 1)^-1*(-5*_$^2 + 61*_$ + 52)^1*3^1*2^1*(1//2*_$^2 + 28*_$ - 117//2)^-1
 
 julia> evaluate(ans)
--_$^2 + _$ - 1
+_$ - 12
 
 julia> lp = factor(6*zk)
 Dict{AbsSimpleNumFieldOrderIdeal, Int64} with 4 entries:
   <3, _$ + 5>                  => 1
   <3, _$^2 + 1>                => 1
-  <2, 1//2*_$^2 + 2*_$ + 5//2> => 2
-  <2, 5//2*_$^2 + _$ + 1//2>   => 1
+  <2, 7//2*_$^2 + 7//2>        => 2
+  <2, 7//2*_$^2 + 3*_$ + 3//2> => 1
 
 julia> s, ms = Hecke.sunit_group(collect(keys(lp)))
 (Z/2 x Z^(5), SUnits  map of Number field of degree 3 over QQ for AbsSimpleNumFieldOrderIdeal[<3, _$ + 5>
@@ -139,12 +139,12 @@
 Minimum: 3
 basis_matrix
 [3 0 0; 0 3 0; 0 0 1]
-two normal wrt: 3, <2, 1//2*_$^2 + 2*_$ + 5//2>
+two normal wrt: 3, <2, 7//2*_$^2 + 7//2>
 Norm: 2
 Minimum: 2
 basis_matrix
 [2 0 0; 1 1 0; 0 0 1]
-two normal wrt: 2, <2, 5//2*_$^2 + _$ + 1//2>
+two normal wrt: 2, <2, 7//2*_$^2 + 3*_$ + 3//2>
 Norm: 2
 Minimum: 2
 basis_matrix
@@ -153,13 +153,13 @@
 )
 
 julia> ms(s[4])
-1//2*_$^2 - 6*_$ - 5//2
+-1//2*_$^2 + 6*_$ + 5//2
 
 julia> norm(ans)
--144
+144
 
 julia> factor(numerator(ans))
--1 * 2^4 * 3^2

Miscaellenous

order Method
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder

Returns the order of I.

source

order Method
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder

The order that was used to define the ideal a.

source

order Method
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder

Returns the order of I.

source

order Method
julia
order(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrder

Returns the order of a.

source

nf Method
julia
nf(x::NumFieldOrderIdeal) -> AbsSimpleNumField

Returns the number field, of which x is an integral ideal.

source

basis Method
julia
basis(A::AbsNumFieldOrderIdeal) -> Vector{AbsSimpleNumFieldOrderElem}

Returns the basis of A.

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}

Returns the Z-basis of I.

source

lll_basis Method
julia
lll_basis(I::NumFieldOrderIdeal) -> Vector{NumFieldElem}

A basis for I that is reduced using the LLL algorithm for the Minkowski metric.

source

basis_matrix Method
julia
basis_matrix(A::AbsNumFieldOrderIdeal) -> ZZMatrix

Returns the basis matrix of A.

source

basis_mat_inv Method
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat

Return the inverse of the basis matrix of A.

source

has_princ_gen_special Method
julia
has_princ_gen_special(A::AbsNumFieldOrderIdeal) -> Bool

Returns whether A knows if it is generated by a rational integer.

source

principal_generator Method
julia
principal_generator(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem

For a principal ideal A, find a generator.

source

principal_generator_fac_elem Method
julia
principal_generator_fac_elem(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> FacElem{AbsSimpleNumFieldElem, number_field}

For a principal ideal A, find a generator in factored form.

source

minimum Method
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem

Returns the smallest non-negative element in AZ.

source

julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
+1 * 2^4 * 3^2

Miscaellenous

order Method
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder

Returns the order of I.

source

order Method
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder

The order that was used to define the ideal a.

source

order Method
julia
order(I::NumFieldOrderIdeal) -> AbsSimpleNumFieldOrder

Returns the order of I.

source

order Method
julia
order(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrder

Returns the order of a.

source

nf Method
julia
nf(x::NumFieldOrderIdeal) -> AbsSimpleNumField

Returns the number field, of which x is an integral ideal.

source

basis Method
julia
basis(A::AbsNumFieldOrderIdeal) -> Vector{AbsSimpleNumFieldOrderElem}

Returns the basis of A.

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}

Returns the Z-basis of I.

source

lll_basis Method
julia
lll_basis(I::NumFieldOrderIdeal) -> Vector{NumFieldElem}

A basis for I that is reduced using the LLL algorithm for the Minkowski metric.

source

basis_matrix Method
julia
basis_matrix(A::AbsNumFieldOrderIdeal) -> ZZMatrix

Returns the basis matrix of A.

source

basis_mat_inv Method
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat

Return the inverse of the basis matrix of A.

source

has_princ_gen_special Method
julia
has_princ_gen_special(A::AbsNumFieldOrderIdeal) -> Bool

Returns whether A knows if it is generated by a rational integer.

source

principal_generator Method
julia
principal_generator(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem

For a principal ideal A, find a generator.

source

principal_generator_fac_elem Method
julia
principal_generator_fac_elem(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> FacElem{AbsSimpleNumFieldElem, number_field}

For a principal ideal A, find a generator in factored form.

source

minimum Method
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem

Returns the smallest non-negative element in AZ.

source

julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
   minimum(A::RelNumFieldOrderIdeal) -> RelNumFieldOrderIdeal

Returns the ideal AO where O is the maximal order of the coefficient ideals of A.

source

minimum Method
julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
   minimum(A::RelNumFieldOrderIdeal) -> RelNumFieldOrderIdeal

Returns the ideal AO where O is the maximal order of the coefficient ideals of A.

source

minimum Method
julia
minimum(A::AbsNumFieldOrderIdeal) -> ZZRingElem

Returns the smallest non-negative element in AZ.

source

has_minimum Method
julia
has_minimum(A::AbsNumFieldOrderIdeal) -> Bool

Returns whether A knows its minimum.

source

norm Method
julia
norm(A::AbsNumFieldOrderIdeal) -> ZZRingElem

Returns the norm of A, that is, the cardinality of O/A, where O is the order of A.

source

julia
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Returns the norm of a.

source

julia
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> S

Returns the norm of a.

source

julia
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElem

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

julia
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
   where { S, T, U } -> T

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

has_norm Method
julia
has_norm(A::AbsNumFieldOrderIdeal) -> Bool

Returns whether A knows its norm.

source

idempotents Method
julia
idempotents(x::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, y::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem, AbsSimpleNumFieldOrderElem

Returns a tuple (e, f) consisting of elements e in x, f in y such that 1 = e + f.

If the ideals are not coprime, an error is raised.

source

is_prime Method
julia
is_prime(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Bool

Returns whether A is a prime ideal.

source

is_prime_known Method
julia
is_prime_known(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Bool

Returns whether A knows if it is prime.

source

is_ramified Method
julia
is_ramified(O::AbsSimpleNumFieldOrder, p::Int) -> Bool

Returns whether the integer p is ramified in O. It is assumed that p is prime.

source

ramification_index Method
julia
ramification_index(P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int

The ramification index of the prime-ideal P.

source

degree Method
julia
degree(P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int

The inertia degree of the prime-ideal P.

source

valuation Method
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

Computes the p-adic valuation of a, that is, the largest i such that a is contained in pi.

source

valuation Method
julia
valuation(a::AbsSimpleNumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
@@ -170,7 +170,7 @@
 quo(O::AlgAssAbsOrd, I::AlgAssAbsOrdIdl) -> AbsOrdQuoRing, Map

The quotient ring O/I as a ring together with the section M:O/IO. The pointwise inverse of M is the canonical projection OO/I.

source

residue_ring Method
julia
residue_ring(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderQuoRing
 residue_ring(O::AlgAssAbsOrd, I::AlgAssAbsOrdIdl) -> AbsOrdQuoRing

The quotient ring O modulo I as a new ring.

source

residue_field Method
julia
residue_field(O::AbsSimpleNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, check::Bool = true) -> Field, Map

Returns the residue field of the prime ideal P together with the projection map. If check is true, the ideal is checked for being prime.

source

mod Method
julia
mod(x::AbsSimpleNumFieldOrderElem, I::AbsNumFieldOrderIdeal)

Returns the unique element y of the ambient order of x with xymodI and the following property: If a1,,adZ1 are the diagonal entries of the unique HNF basis matrix of I and (b1,,bd) is the coefficient vector of y, then 0bi<ai for 1id.

source

crt Method
julia
crt(r1::AbsSimpleNumFieldOrderElem, i1::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, r2::AbsSimpleNumFieldOrderElem, i2::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem

Find x such that xr1modi1 and xr2modi2 using idempotents.

source

euler_phi Method
julia
euler_phi(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

The ideal version of the totient function returns the size of the unit group of the residue ring modulo the ideal.

source

multiplicative_group Method
julia
multiplicative_group(Q::AbsSimpleNumFieldOrderQuoRing) -> FinGenAbGroup, Map{FinGenAbGroup, AbsSimpleNumFieldOrderQuoRing}
 unit_group(Q::AbsSimpleNumFieldOrderQuoRing) -> FinGenAbGroup, Map{FinGenAbGroup, AbsSimpleNumFieldOrderQuoRing}

Returns the unit group of Q as an abstract group A and an isomorphism map f:AQ×.

source

multiplicative_group_generators Method
julia
multiplicative_group_generators(Q::AbsSimpleNumFieldOrderQuoRing) -> Vector{AbsSimpleNumFieldOrderQuoRingElem}

Return a set of generators for Q×.

source

- + \ No newline at end of file diff --git a/dev/manual/orders/introduction.html b/dev/manual/orders/introduction.html index 76adc3d654..a7f4c1a1c8 100644 --- a/dev/manual/orders/introduction.html +++ b/dev/manual/orders/introduction.html @@ -9,13 +9,13 @@ - + - + - + @@ -68,7 +68,7 @@ 2-element Vector{FqFieldElem}: 1 0 - + \ No newline at end of file diff --git a/dev/manual/orders/orders.html b/dev/manual/orders/orders.html index 61385173cd..1c5e3be00f 100644 --- a/dev/manual/orders/orders.html +++ b/dev/manual/orders/orders.html @@ -9,13 +9,13 @@ - + - + - + @@ -37,7 +37,7 @@ is_index_divisor(O::AbsSimpleNumFieldOrder, d::Int) -> Bool

Returns whether d is a divisor of the index of O. It is assumed that O contains the equation order of the ambient number field.

source

minkowski_matrix Method
julia
minkowski_matrix(O::AbsNumFieldOrder, abs_tol::Int = 64) -> ArbMatrix

Returns the Minkowski matrix of O. Thus if O has degree d, then the result is a matrix in Matd×d(R). The entries of the matrix are real balls of type ArbFieldElem with radius less then 2^-abs_tol.

source

in Method
julia
in(a::NumFieldElem, O::NumFieldOrder) -> Bool

Checks whether a lies in O.

source

norm_change_const Method
julia
norm_change_const(O::AbsSimpleNumFieldOrder) -> (Float64, Float64)

Returns (c1,c2)R>02 such that for all x=i=1dxiωiO we have T2(x)c1idxi2 and idxi2c2T2(x), where (ωi)i is the Z-basis of O.

source

trace_matrix Method
julia
trace_matrix(O::AbsNumFieldOrder) -> ZZMatrix

Returns the trace matrix of O, that is, the matrix (trK/Q(bibj))1i,jd.

source

+ Method
julia
+(R::AbsSimpleNumFieldOrder, S::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrder

Given two orders R, S of K, this function returns the smallest order containing both R and S. It is assumed that R, S contain the ambient equation order and have coprime index.

source

poverorder Method
julia
poverorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
 poverorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder

This function tries to find an order that is locally larger than O at the prime p: If p divides the index [OK:O], this function will return an order R such that vp([OK:R])<vp([OK:O]). Otherwise O is returned.

source

poverorders Method
julia
poverorders(O, p) -> Vector{Ord}

Returns all p-overorders of O, that is all overorders M, such that the index of O in M is a p-power.

source

pmaximal_overorder Method
julia
pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
 pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder

This function finds a p-maximal order R containing O. That is, the index [OK:R] is not divisible by p.

source

pradical Method
julia
pradical(O::AbsSimpleNumFieldOrder, p::{ZZRingElem|Integer}) -> AbsNumFieldOrderIdeal

Given a prime number p, this function returns the p-radical pO of O, which is just {xOkZ0:xkpO}. It is not checked that p is prime.

source

pradical Method
julia
  pradical(O::RelNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> RelNumFieldOrderIdeal

Given a prime ideal P, this function returns the P-radical PO of O, which is just {xOkZ0:xkPO}. It is not checked that P is prime.

source

ring_of_multipliers Method
julia
ring_of_multipliers(I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrder

Computes the order (I:I), which is the set of all xK with xII.

source

Invariants

discriminant Method
julia
discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the discriminant of O.

source

reduced_discriminant Method
julia
reduced_discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the reduced discriminant, that is, the largest elementary divisor of the trace matrix of O.

source

degree Method
julia
degree(O::NumFieldOrder) -> Int

Returns the degree of O.

source

index Method
julia
index(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Assuming that the order O contains the equation order Z[α] of the ambient number field, this function returns the index [O:Z].

source

different Method
julia
different(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal

The different ideal of R, that is, the ideal generated by all differents of elements in R. For Gorenstein orders, this is also the inverse ideal of the co-different.

source

codifferent Method
julia
codifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

The codifferent ideal of R, i.e. the trace-dual of R.

source

is_gorenstein Method
julia
is_gorenstein(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \mathcal{O} is Gorenstein.

source

is_bass Method
julia
is_bass(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \mathcal{O} is Bass.

source

is_equation_order Method
julia
is_equation_order(O::NumFieldOrder) -> Bool

Returns whether O is the equation order of the ambient number field K.

source

zeta_log_residue Method
julia
zeta_log_residue(O::AbsSimpleNumFieldOrder, error::Float64) -> ArbFieldElem

Computes the residue of the zeta function of O at 1. The output will be an element of type ArbFieldElem with radius less then error.

source

ramified_primes Method
julia
ramified_primes(O::AbsNumFieldOrder) -> Vector{ZZRingElem}

Returns the list of prime numbers that divide disc(O).

source

Arithmetic

Progress and intermediate results of the functions mentioned here can be obtained via verbose_level, supported are

  • ClassGroup

  • UnitGroup

All of the functions have a very similar interface: they return an abelian group and a map converting elements of the group into the objects required. The maps also allow a point-wise inverse to server as the discrete logarithm map. For more information on abelian groups, see here, for ideals, here.

For the processing of units, there are a couple of helper functions also available:

is_independent Function
julia
is_independent{T}(x::Vector{T})

Given an array of non-zero units in a number field, returns whether they are multiplicatively independent.

source

Predicates

is_contained Method
julia
is_contained(R::AbsNumFieldOrder, S::AbsNumFieldOrder) -> Bool

Checks if R is contained in S.

source

is_maximal Method
julia
is_maximal(R::AbsNumFieldOrder) -> Bool

Tests if the order R is maximal. This might trigger the computation of the maximal order.

source

- + \ No newline at end of file diff --git a/dev/manual/quad_forms/Zgenera.html b/dev/manual/quad_forms/Zgenera.html index 603d2e585f..9fdde19481 100644 --- a/dev/manual/quad_forms/Zgenera.html +++ b/dev/manual/quad_forms/Zgenera.html @@ -9,13 +9,13 @@ - + - + - + @@ -25,7 +25,7 @@ min_scale::RationalUnion = min(one(QQ), QQ(abs(determinant))), max_scale::RationalUnion = max(one(QQ), QQ(abs(determinant))), even=false) -> Vector{ZZGenus}

Return a list of all genera with the given conditions. Genera of non-integral Z-lattices are also supported.

Arguments

  • sig_pair: a pair of non-negative integers giving the signature

  • determinant: a rational number; the sign is ignored

  • min_scale: a rational number; return only genera whose scale is an integer multiple of min_scale (default: min(one(QQ), QQ(abs(determinant))))

  • max_scale: a rational number; return only genera such that max_scale is an integer multiple of the scale (default: max(one(QQ), QQ(abs(determinant))))

  • even: boolean; if set to true, return only the even genera (default: false)

source

From other genus symbols

direct_sum Method
julia
direct_sum(G1::ZZGenus, G2::ZZGenus) -> ZZGenus

Return the genus of the direct sum of G1 and G2.

The direct sum is defined via representatives.

source

Attributes of the genus

dim Method
julia
dim(G::ZZGenus) -> Int

Return the dimension of this genus.

source

rank Method
julia
rank(G::ZZGenus) -> Int

Return the rank of a (representative of) the genus G.

source

signature Method
julia
signature(G::ZZGenus) -> Int

Return the signature of this genus.

The signature is p - n where p is the number of positive eigenvalues and n the number of negative eigenvalues.

source

det Method
julia
det(G::ZZGenus) -> QQFieldElem

Return the determinant of this genus.

source

iseven Method
julia
iseven(G::ZZGenus) -> Bool

Return if this genus is even.

source

is_definite Method
julia
is_definite(G::ZZGenus) -> Bool

Return if this genus is definite.

source

level Method
julia
level(G::ZZGenus) -> QQFieldElem

Return the level of this genus.

This is the denominator of the inverse gram matrix of a representative.

source

scale Method
julia
scale(G::ZZGenus) -> QQFieldElem

Return the scale of this genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

norm Method
julia
norm(G::ZZGenus) -> QQFieldElem

Return the norm of this genus.

Let L be a lattice with bilinear form b. The norm of (L,b) is defined as the ideal generated by {b(x,x)|xL}.

source

primes Method
julia
primes(G::ZZGenus) -> Vector{ZZRingElem}

Return the list of primes of the local symbols of G.

Note that 2 is always in the output since the 2-adic symbol of a ZZGenus is, by convention, always defined.

source

is_integral Method
julia
is_integral(G::ZZGenus) -> Bool

Return whether G is a genus of integral Z-lattices.

source

Discriminant group

discriminant_group(::ZZGenus)

Primary genera

is_primary_with_prime Method
julia
is_primary_with_prime(G::ZZGenus) -> Bool, ZZRingElem

Given a genus of Z-lattices G, return whether it is primary, that is whether the bilinear form is integral and the associated discriminant form (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular genera, this function returns (true, 1). If the genus is not primary, the second return value is -1 by default.

source

is_primary Method
julia
is_primary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool

Given a genus of integral Z-lattices G and a prime number p, return whether G is p-primary, that is whether the associated discriminant form (see discriminant_group) is a p-group.

source

is_elementary_with_prime Method
julia
is_elementary_with_prime(G::ZZGenus) -> Bool, ZZRingElem

Given a genus of Z-lattices G, return whether it is elementary, that is whether the bilinear form is inegtral and the associated discriminant form (see discriminant_group) is an elementary p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular genera, this function returns (true, 1). If the genus is not elementary, the second return value is -1 by default.

source

is_elementary Method
julia
is_elementary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool

Given a genus of integral Z-lattices G and a prime number p, return whether G is p-elementary, that is whether its associated discriminant form (see discriminant_group) is an elementary p-group.

source

local Symbol

local_symbol Method
julia
local_symbol(G::ZZGenus, p) -> ZZLocalGenus

Return the local symbol at p.

source

Representative(s)

quadratic_space Method
julia
quadratic_space(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

rational_representative Method
julia
rational_representative(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

representative Method
julia
representative(G::ZZGenus) -> ZZLat

Compute a representative of this genus && cache it.

source

representatives Method
julia
representatives(G::ZZGenus) -> Vector{ZZLat}

Return a list of representatives of the isometry classes in this genus.

source

mass Method
julia
mass(G::ZZGenus) -> QQFieldElem

Return the mass of this genus.

The genus must be definite. Let L_1, ... L_n be a complete list of representatives of the isometry classes in this genus. Its mass is defined as i=1n1|O(Li)|.

source

rescale Method
julia
rescale(G::ZZGenus, a::RationalUnion) -> ZZGenus

Given a genus symbol G of Z-lattices, return the genus symbol of any representative of G rescaled by a.

source

Embeddings and Representations

represents Method
julia
represents(G1::ZZGenus, G2::ZZGenus) -> Bool

Return if G1 represents G2. That is if some element in the genus of G1 represents some element in the genus of G2.

source

Local genus Symbols

ZZLocalGenus Type
julia
ZZLocalGenus

Local genus symbol over a p-adic ring.

The genus symbol of a component p^m A for odd prime = p is of the form (m,n,d), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) \in \{1,u\} for a normalized quadratic non-residue u.

The genus symbol of a component 2^m A is of the form (m, n, s, d, o), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) in {1,3,5,7}

  • s = 0 (or 1) if even (or odd)

  • o = oddity of A (= 0 if s = 0) in Z/8Z = the trace of the diagonalization of A

The genus symbol is a list of such symbols (ordered by m) for each of the Jordan blocks A_1,...,A_t.

Reference: [5] Chapter 15, Section 7.

Arguments

  • prime: a prime number

  • symbol: the list of invariants for Jordan blocks A_t,...,A_t given as a list of lists of integers

source

Creation

genus Method
julia
genus(L::ZZLat, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of L at the prime p.

source

genus Method
julia
genus(A::QQMatrix, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of a Z-lattice with gram matrix A at the prime p.

source

Attributes

prime Method
julia
prime(S::ZZLocalGenus) -> ZZRingElem

Return the prime p of this p-adic genus.

source

iseven Method
julia
iseven(S::ZZLocalGenus) -> Bool

Return if the underlying p-adic lattice is even.

If p is odd, every lattice is even.

source

symbol Method
julia
symbol(S::ZZLocalGenus, scale::Int) -> Vector{Int}

Return the underlying lists of integers for the Jordan block of the given scale

source

hasse_invariant Method
julia
hasse_invariant(S::ZZLocalGenus) -> Int

Return the Hasse invariant of a representative. If the representative is diagonal (a_1, ... , a_n) Then the Hasse invariant is

i<j(ai,aj)p

.

source

det Method
julia
det(S::ZZLocalGenus) -> QQFieldElem

Return an rational representing the determinant of this genus.

source

dim Method
julia
dim(S::ZZLocalGenus) -> Int

Return the dimension of this genus.

source

rank Method
julia
rank(S::ZZLocalGenus) -> Int

Return the rank of (a representative of) S.

source

excess Method
julia
excess(S::ZZLocalGenus) -> zzModRingElem

Return the p-excess of the quadratic form whose Hessian matrix is the symmetric matrix A.

When p = 2 the p-excess is called the oddity. The p-excess is always even && is divisible by 4 if p is congruent 1 mod 4.

Reference

[5] pp 370-371.

source

signature Method
julia
signature(S::ZZLocalGenus) -> zzModRingElem

Return the p-signature of this p-adic form.

source

oddity Method
julia
oddity(S::ZZLocalGenus) -> zzModRingElem

Return the oddity of this even form. The oddity is also called the 2-signature

source

scale Method
julia
scale(S::ZZLocalGenus) -> QQFieldElem

Return the scale of this local genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

norm Method
julia
norm(S::ZZLocalGenus) -> QQFieldElem

Return the norm of this local genus.

Let L be a lattice with bilinear form b. The norm of (L,b) is defined as the ideal generated by {b(x,x)|xL}.

source

level Method
julia
level(S::ZZLocalGenus) -> QQFieldElem

Return the maximal scale of a jordan component.

source

Representative

representative Method
julia
representative(S::ZZLocalGenus) -> ZZLat

Return an integer lattice which represents this local genus.

source

gram_matrix Method
julia
gram_matrix(S::ZZLocalGenus) -> MatElem

Return a gram matrix of some representative of this local genus.

source

rescale Method
julia
rescale(G::ZZLocalGenus, a::RationalUnion) -> ZZLocalGenus

Given a local genus symbol G of Z-lattices, return the local genus symbol of any representative of G rescaled by a.

source

Direct sums

direct_sum Method
julia
direct_sum(S1::ZZLocalGenus, S2::ZZLocalGenus) -> ZZLocalGenus

Return the local genus of the direct sum of two representatives.

source

Embeddings/Representations

represents Method
julia
represents(g1::ZZLocalGenus, g2::ZZLocalGenus) -> Bool

Return whether g1 represents g2.

Based on O'Meara Integral Representations of Quadratic Forms Over Local Fields Note that for p == 2 there is a typo in O'Meara Theorem 3 (V). The correct statement is (V) 2i(1+4ω)Li+1/l[i].

source

- + \ No newline at end of file diff --git a/dev/manual/quad_forms/basics.html b/dev/manual/quad_forms/basics.html index dbe34f1e7c..789a904445 100644 --- a/dev/manual/quad_forms/basics.html +++ b/dev/manual/quad_forms/basics.html @@ -9,13 +9,13 @@ - + - + - + @@ -234,7 +234,7 @@ julia> is_locally_hyperbolic(H, p) false - + \ No newline at end of file diff --git a/dev/manual/quad_forms/discriminant_group.html b/dev/manual/quad_forms/discriminant_group.html index cb5bf67717..dc3b1c8834 100644 --- a/dev/manual/quad_forms/discriminant_group.html +++ b/dev/manual/quad_forms/discriminant_group.html @@ -9,13 +9,13 @@ - + - + - + @@ -215,7 +215,7 @@ direct_sum(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}

Given a collection of torsion quadratic modules T1,,Tn, return their direct sum T:=T1Tn, together with the injections TiT.

For objects of type TorQuadModule, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T as a direct product with the projections TTi, one should call direct_product(x). If one wants to obtain T as a biproduct with the injections TiT and the projections TTi, one should call biproduct(x).

source

direct_product Method
julia
direct_product(x::Vararg{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}
 direct_product(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}

Given a collection of torsion quadratic modules T1,,Tn, return their direct product T:=T1××Tn, together with the projections TTi.

For objects of type TorQuadModule, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T as a direct sum with the inctions TiT, one should call direct_sum(x). If one wants to obtain T as a biproduct with the injections TiT and the projections TTi, one should call biproduct(x).

source

biproduct Method
julia
biproduct(x::Vararg{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}, Vector{TorQuadModuleMap}
 biproduct(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}, Vector{TorQuadModuleMap}

Given a collection of torsion quadratic modules T1,,Tn, return their biproduct T:=T1Tn, together with the injections TiT and the projections TTi.

For objects of type TorQuadModule, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T as a direct sum with the inctions TiT, one should call direct_sum(x). If one wants to obtain T as a direct product with the projections TTi, one should call direct_product(x).

source

Submodules

submodules Method
julia
submodules(T::TorQuadModule; kw...)

Return the submodules of T as an iterator. Possible keyword arguments to restrict the submodules:

  • order::Int: only submodules of order order,

  • index::Int: only submodules of index index,

  • subtype::Vector{Int}: only submodules which are isomorphic as an abelian group to abelian_group(subtype),

  • quotype::Vector{Int}: only submodules whose quotient are isomorphic as an abelian to abelian_group(quotype).

source

stable_submodules Method
julia
stable_submodules(T::TorQuadModule, act::Vector{TorQuadModuleMap}; kw...)

Return the submodules of T stable under the endomorphisms in act as an iterator. Possible keyword arguments to restrict the submodules:

  • quotype::Vector{Int}: only submodules whose quotient are isomorphic as an abelian group to abelian_group(quotype).

source

- + \ No newline at end of file diff --git a/dev/manual/quad_forms/genusherm.html b/dev/manual/quad_forms/genusherm.html index 34955ce6d3..fbd9a45c89 100644 --- a/dev/manual/quad_forms/genusherm.html +++ b/dev/manual/quad_forms/genusherm.html @@ -9,13 +9,13 @@ - + - + - + - + @@ -181,10 +181,10 @@ julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det); julia> det_representative(g1) --8*a - 6 +8*a - 6 julia> det_representative(g1,2) --8*a - 6

Gram matrices

gram_matrix Method
julia
gram_matrix(g::HermLocalGenus, i::Int) -> MatElem

Given a local genus symbol g for hermitian lattices over E/K at a prime ideal p of OK, return a Gram matrix M of the ith Jordan block of g, with coefficients in E. M is such that any hermitian lattice over E/K with Gram matrix M satisfies that the local genus symbol of its completion at p is equal to the ith Jordan block of g.

source

gram_matrix Method
julia
gram_matrix(g::HermLocalGenus) -> MatElem

Given a local genus symbol g for hermitian lattices over E/K at a prime ideal p of OK, return a Gram matrix M of g, with coefficients in E.M is such that any hermitian lattice over E/K with Gram matrix M satisfies that the local genus symbol of its completion at p is g.

source

Examples

julia

+8*a - 6

Gram matrices

gram_matrix Method
julia
gram_matrix(g::HermLocalGenus, i::Int) -> MatElem

Given a local genus symbol g for hermitian lattices over E/K at a prime ideal p of OK, return a Gram matrix M of the ith Jordan block of g, with coefficients in E. M is such that any hermitian lattice over E/K with Gram matrix M satisfies that the local genus symbol of its completion at p is equal to the ith Jordan block of g.

source

gram_matrix Method
julia
gram_matrix(g::HermLocalGenus) -> MatElem

Given a local genus symbol g for hermitian lattices over E/K at a prime ideal p of OK, return a Gram matrix M of g, with coefficients in E.M is such that any hermitian lattice over E/K with Gram matrix M satisfies that the local genus symbol of its completion at p is g.

source

Examples

julia

 julia> Qx, x = QQ["x"];
 
 julia> K, a = number_field(x^2 - 2, "a");
@@ -482,7 +482,7 @@
 (1, 1//1 * <1, 1>)
 (_$, 1//1 * <1, 1>)

Rescaling

rescale Method
julia
rescale(g::HermLocalGenus, a::Union{FieldElem, RationalUnion})
                                                           -> HermLocalGenus

Given a local genus symbol G of hermitian lattices and an element a lying in the base field E of g, return the local genus symbol at the prime ideal p associated to g of any representative of g rescaled by a.

source

rescale Method
julia
rescale(G::HermGenus, a::Union{FieldElem, RationalUnion}) -> HermGenus

Given a global genus symbol G of hermitian lattices and an element a lying in the base field E of G, return the global genus symbol of any representative of G rescaled by a.

source

- + \ No newline at end of file diff --git a/dev/manual/quad_forms/integer_lattices.html b/dev/manual/quad_forms/integer_lattices.html index 0d573066cf..a73757e0a4 100644 --- a/dev/manual/quad_forms/integer_lattices.html +++ b/dev/manual/quad_forms/integer_lattices.html @@ -9,13 +9,13 @@ - + - + - + @@ -426,7 +426,7 @@ 2-element Vector{Tuple{Vector{ZZRingElem}, QQFieldElem}}: ([2, 1], 1) ([0, 1], 1)

source


- + \ No newline at end of file diff --git a/dev/manual/quad_forms/introduction.html b/dev/manual/quad_forms/introduction.html index b331fb7f0a..f42cefade3 100644 --- a/dev/manual/quad_forms/introduction.html +++ b/dev/manual/quad_forms/introduction.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content

Introduction

This chapter deals with quadratic and hermitian spaces, and lattices there of. Note that even though quadratic spaces/lattices are theoretically a special case of hermitian spaces/lattices, a particular distinction is made here. As a note for knowledgeable users, only methods regarding hermitian spaces/lattices over degree 1 and degree 2 extensions of number fields are implemented up to now.

Definitions and vocabulary

We begin by collecting the necessary definitions and vocabulary. The terminology follows mainly [Kir16]

Quadratic and hermitian spaces

Let K be a number field and let E be a finitely generated etale algebra over K of dimension 1 or 2, i.e. E=K or E is a separable extension of K of degree 2. In both cases, E/K is endowed with an K-linear involution x:EE for which K is the fixed field (in the case E=K, this is simply the identity of K).

A hermitian space V over E/K is a finite-dimensional E-vector space, together with a sesquilinear (with respect to the involution of E/K) morphism Φ:V×VE. In the trivial case E=K, Φ is therefore a K-bilinear morphism and we called (V,Φ) a quadratic hermitian space over K.

We will always work with an implicit canonical basis e1,,en of V. In view of this, hermitian spaces over E/K are in bijection with hermitian matrices with entries in E, with respect to the involution x. In particular, there is a bijection between quadratic hermitian spaces over K and symmetric matrices with entries in K. For any basis B=(v1,,vn) of (V,Φ), we call the matrix GB=(Φ(vi,vj))1i,jnEn×n the Gram matrix of (V,Φ) associated to B. If B is the implicit fixed canonical basis of (V,Φ), we simply talk about the Gram matrix of (V,Φ).

For a hermitian space V, we refer to the field E as the base ring of V and to x as the involution of V. Meanwhile, the field K is referred to as the fixed field of V.

By abuse of language, non-quadratic hermitian spaces are sometimes simply called hermitian spaces and, in contrast, quadratic hermitian spaces are called quadratic spaces. In a general context, an arbitrary space (quadratic or hermitian) is referred to as a space throughout this chapter.

Quadratic and hermitian lattices

Let V be a space over E/K. A finitely generated OE-submodule L of V is called a hermitian lattice. By extension of vocabulary if V is quadratic (i.e. E=K), L is called a quadratic hermitian lattice. We call V the ambient space of L and LOEE the rational span of L.

For a hermitian lattice L, we refer to E as the base field of L and to the ring OE as the base ring of L. We also call x:EE the involution of L. Finally, we refer to the field K fixed by this involution as the fixed field of L and to OK as the fixed ring of L.

Once again by abuse of language, non-quadratic hermitian lattices are sometimes simply called hermitian lattices and quadratic lattices refer to quadratic hermitian lattices. Therefore, in a general context, an arbitrary lattice is referred to as a lattice in this chapter.

References

Many of the implemented algorithms for computing with quadratic and hermitian lattices over number fields are based on the Magma implementation of Markus Kirschmer, which can be found here.

Most of the definitions and results are taken from:

[Kir16] : Definite quadratic and hermitian forms with small class number. Habilitationsschrift. RWTH Aachen University, 2016. pdf

[Kir19] : Determinant groups of hermitian lattices over local fields, Archiv der Mathematik, 113 (2019), no. 4, 337–347. pdf

- + \ No newline at end of file diff --git a/dev/manual/quad_forms/lattices.html b/dev/manual/quad_forms/lattices.html index ae6eca56fe..dfcd50285b 100644 --- a/dev/manual/quad_forms/lattices.html +++ b/dev/manual/quad_forms/lattices.html @@ -9,13 +9,13 @@ - + - + - + - + @@ -603,7 +603,7 @@ with basis pseudo-matrix (1//1 * <1, 1>) * [1 0] (1//14 * <1, 1>) * [6 1]) - ([4, 5, 0, 1], Fractional ideal of + ([3, 2, 0, 1], Fractional ideal of Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1> with basis pseudo-matrix (1//1 * <1, 1>) * [1 0] @@ -621,17 +621,17 @@ with basis pseudo-matrix (1//1 * <1, 1>) * [1 0] (1//2 * <1, 1>) * [0 1]) - ([3, 2, 1, 0], Fractional ideal of + ([2, 4, 1, 0], Fractional ideal of Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1> with basis pseudo-matrix (1//1 * <1, 1>) * [1 0] (1//14 * <1, 1>) * [6 1]) - ([5, 3, 0, 1], Fractional ideal of + ([4, 5, 0, 1], Fractional ideal of Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1> with basis pseudo-matrix (1//1 * <1, 1>) * [1 0] (1//14 * <1, 1>) * [6 1]) - + \ No newline at end of file diff --git a/dev/references.html b/dev/references.html index f0f63ac92f..dee5137be3 100644 --- a/dev/references.html +++ b/dev/references.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content

Bibliography

  1. H. Cohen. Advanced topics in computational number theory. Vol. 193 of Graduate Texts in Mathematics (Springer-Verlag, New York, 2000); p. xvi+578.

  2. H. Cohen. A course in computational algebraic number theory. Vol. 138 of Graduate Texts in Mathematics (Springer-Verlag, Berlin, 1993); p. xii+534.

  3. M. Pohst and H. Zassenhaus. Algorithmic algebraic number theory. Vol. 30 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1997); p. xiv+499.

  4. D. A. Marcus. Number fields. Universitext (Springer, Cham, 2018); p. xviii+203.

  5. J. H. Conway and N. J. Sloane. Sphere packings, lattices and groups. Third Edition, Vol. 290 of Grundlehren der mathematischen Wissenschaften (Springer-Verlag, New York, 1999); p. lxxiv+703.

  6. V. V. Nikulin. Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43, 111–177, 238 (1979).

- + \ No newline at end of file diff --git a/dev/start/index.html b/dev/start/index.html index d21b75b47d..2527674674 100644 --- a/dev/start/index.html +++ b/dev/start/index.html @@ -9,13 +9,13 @@ - + - + - + @@ -37,7 +37,7 @@ julia> C (Z/2)^2 - + \ No newline at end of file diff --git a/dev/tutorials/index.html b/dev/tutorials/index.html index 9d7e9b669a..724be84448 100644 --- a/dev/tutorials/index.html +++ b/dev/tutorials/index.html @@ -9,20 +9,20 @@ - + - + - +
Skip to content
- + \ No newline at end of file diff --git a/v0.34.8/404.html b/v0.34.8/404.html index 6a559e41f3..1e02ef00b8 100644 --- a/v0.34.8/404.html +++ b/v0.34.8/404.html @@ -6,17 +6,17 @@ 404 | Hecke - - + + - - + +
- + \ No newline at end of file diff --git a/v0.34.8/assets/chunks/@localSearchIndexroot.CRnWRWhC.js b/v0.34.8/assets/chunks/@localSearchIndexroot.CRnWRWhC.js index 0c0160e94e..a32088871f 100644 --- a/v0.34.8/assets/chunks/@localSearchIndexroot.CRnWRWhC.js +++ b/v0.34.8/assets/chunks/@localSearchIndexroot.CRnWRWhC.js @@ -1 +1 @@ -const e='{"documentCount":303,"nextId":303,"documentIds":{"0":"/Hecke.jl/v0.34.8/examples#Examples-and-sample-code","1":"/Hecke.jl/v0.34.8/howto/#How-to-guides","2":"/Hecke.jl/v0.34.8/howto/reduction#Reduction-of-polynomials-over-number-fields-modulo-a-prime-ideal","3":"/Hecke.jl/v0.34.8/#features","4":"/Hecke.jl/v0.34.8/#Citing-Hecke","5":"/Hecke.jl/v0.34.8/#acknowledgement","6":"/Hecke.jl/v0.34.8/manual/abelian/elements#elements","7":"/Hecke.jl/v0.34.8/manual/abelian/elements#creation","8":"/Hecke.jl/v0.34.8/manual/abelian/elements#access","9":"/Hecke.jl/v0.34.8/manual/abelian/elements#predicates","10":"/Hecke.jl/v0.34.8/manual/abelian/elements#invariants","11":"/Hecke.jl/v0.34.8/manual/abelian/elements#iterator","12":"/Hecke.jl/v0.34.8/manual/abelian/introduction#AbelianGroupLink2","13":"/Hecke.jl/v0.34.8/manual/abelian/introduction#Basic-Creation","14":"/Hecke.jl/v0.34.8/manual/abelian/introduction#invariants","15":"/Hecke.jl/v0.34.8/manual/abelian/maps#maps","16":"/Hecke.jl/v0.34.8/manual/abelian/structural#Structural-Computations","17":"/Hecke.jl/v0.34.8/manual/abelian/structural#Subgroups-and-Quotients","18":"/Hecke.jl/v0.34.8/manual/abelian/structural#Direct-Products","19":"/Hecke.jl/v0.34.8/manual/abelian/structural#Tensor-Producs","20":"/Hecke.jl/v0.34.8/manual/abelian/structural#hom-group","21":"/Hecke.jl/v0.34.8/manual/algebras/basics#basics","22":"/Hecke.jl/v0.34.8/manual/algebras/basics#Creation-of-algebras","23":"/Hecke.jl/v0.34.8/manual/algebras/basics#Basic-properties","24":"/Hecke.jl/v0.34.8/manual/algebras/basics#predicates","25":"/Hecke.jl/v0.34.8/manual/algebras/basics#generators","26":"/Hecke.jl/v0.34.8/manual/algebras/basics#center","27":"/Hecke.jl/v0.34.8/manual/algebras/groupalgebras#Group-algebras","28":"/Hecke.jl/v0.34.8/manual/algebras/groupalgebras#creation","29":"/Hecke.jl/v0.34.8/manual/algebras/groupalgebras#elements","30":"/Hecke.jl/v0.34.8/manual/algebras/intro#Algebras","31":"/Hecke.jl/v0.34.8/manual/algebras/structureconstant#SCA","32":"/Hecke.jl/v0.34.8/manual/algebras/structureconstant#creation","33":"/Hecke.jl/v0.34.8/manual/algebras/structureconstant#Structure-constant-table","34":"/Hecke.jl/v0.34.8/manual/developer/documentation#documentation","35":"/Hecke.jl/v0.34.8/manual/developer/documentation#Adding-files-to-the-documentation","36":"/Hecke.jl/v0.34.8/manual/developer/documentation#Building-the-documentation","37":"/Hecke.jl/v0.34.8/manual/developer/test#testing","38":"/Hecke.jl/v0.34.8/manual/developer/test#structure","39":"/Hecke.jl/v0.34.8/manual/developer/test#Adding-tests","40":"/Hecke.jl/v0.34.8/manual/developer/test#Adding-long-tests","41":"/Hecke.jl/v0.34.8/manual/developer/test#Running-the-tests","42":"/Hecke.jl/v0.34.8/manual/developer/test#Running-all-tests","43":"/Hecke.jl/v0.34.8/manual/developer/test#Running-a-subset-of-tests","44":"/Hecke.jl/v0.34.8/manual/elliptic_curves/basics#basics","45":"/Hecke.jl/v0.34.8/manual/elliptic_curves/basics#creation","46":"/Hecke.jl/v0.34.8/manual/elliptic_curves/basics#Basic-properties","47":"/Hecke.jl/v0.34.8/manual/elliptic_curves/basics#points","48":"/Hecke.jl/v0.34.8/manual/elliptic_curves/basics#examples","49":"/Hecke.jl/v0.34.8/manual/elliptic_curves/finite_fields#Elliptic-curves-over-finite-fields","50":"/Hecke.jl/v0.34.8/manual/elliptic_curves/finite_fields#Random-points","51":"/Hecke.jl/v0.34.8/manual/elliptic_curves/finite_fields#Cardinality-and-orders","52":"/Hecke.jl/v0.34.8/manual/elliptic_curves/finite_fields#frobenius","53":"/Hecke.jl/v0.34.8/manual/elliptic_curves/finite_fields#Group-structure-of-rational-points","54":"/Hecke.jl/v0.34.8/manual/elliptic_curves/finite_fields#Discrete-logarithm","55":"/Hecke.jl/v0.34.8/manual/elliptic_curves/number_fields#Elliptic-curves-over-rationals-and-number-fields","56":"/Hecke.jl/v0.34.8/manual/#manual","57":"/Hecke.jl/v0.34.8/manual/elliptic_curves/intro#introduction","58":"/Hecke.jl/v0.34.8/manual/misc/FacElem#Factored-Elements","59":"/Hecke.jl/v0.34.8/manual/misc/FacElem#construction","60":"/Hecke.jl/v0.34.8/manual/misc/FacElem#conversion","61":"/Hecke.jl/v0.34.8/manual/misc/FacElem#Special-functions","62":"/Hecke.jl/v0.34.8/manual/misc/FacElem#Positivity-and-Signs","63":"/Hecke.jl/v0.34.8/manual/misc/FacElem#miscellaneous","64":"/Hecke.jl/v0.34.8/manual/misc/conjugacy#Conjugacy-of-integral-matrices","65":"/Hecke.jl/v0.34.8/manual/misc/mset#Multi-sets-and-sub-set-iterators","66":"/Hecke.jl/v0.34.8/manual/misc/mset#multi-sets","67":"/Hecke.jl/v0.34.8/manual/misc/mset#Type-and-constructors","68":"/Hecke.jl/v0.34.8/manual/misc/mset#functions","69":"/Hecke.jl/v0.34.8/manual/misc/mset#Sub-set-iterators","70":"/Hecke.jl/v0.34.8/manual/misc/mset#sub-multi-sets","71":"/Hecke.jl/v0.34.8/manual/misc/mset#sub-sets","72":"/Hecke.jl/v0.34.8/manual/misc/mset#Sub-sets-of-a-given-size","73":"/Hecke.jl/v0.34.8/manual/misc/pmat#PMatLink","74":"/Hecke.jl/v0.34.8/manual/misc/pmat#creation","75":"/Hecke.jl/v0.34.8/manual/misc/pmat#operations","76":"/Hecke.jl/v0.34.8/manual/misc/pmat#examples","77":"/Hecke.jl/v0.34.8/manual/misc/sparse#Sparse-linear-algebra","78":"/Hecke.jl/v0.34.8/manual/misc/sparse#introduction","79":"/Hecke.jl/v0.34.8/manual/misc/sparse#Sparse-rows","80":"/Hecke.jl/v0.34.8/manual/misc/sparse#creation","81":"/Hecke.jl/v0.34.8/manual/misc/sparse#Basic-operations","82":"/Hecke.jl/v0.34.8/manual/misc/sparse#Change-of-base-ring","83":"/Hecke.jl/v0.34.8/manual/misc/sparse#Maximum,-minimum-and-2-norm","84":"/Hecke.jl/v0.34.8/manual/misc/sparse#Functionality-for-integral-sparse-rows","85":"/Hecke.jl/v0.34.8/manual/misc/sparse#Conversion-to/from-julia-and-AbstractAlgebra-types","86":"/Hecke.jl/v0.34.8/manual/misc/sparse#Sparse-matrices","87":"/Hecke.jl/v0.34.8/manual/misc/sparse#construction","88":"/Hecke.jl/v0.34.8/manual/misc/sparse#Elementary-Properties","89":"/Hecke.jl/v0.34.8/manual/misc/sparse#Manipulation/-Access","90":"/Hecke.jl/v0.34.8/manual/misc/sparse#arithmetic","91":"/Hecke.jl/v0.34.8/manual/number_fields/class_fields#Class-Field-Theory","92":"/Hecke.jl/v0.34.8/manual/number_fields/class_fields#introduction","93":"/Hecke.jl/v0.34.8/manual/number_fields/class_fields#Ray-Class-Groups","94":"/Hecke.jl/v0.34.8/manual/number_fields/class_fields#Ray-Class-Fields","95":"/Hecke.jl/v0.34.8/manual/number_fields/class_fields#example","96":"/Hecke.jl/v0.34.8/manual/number_fields/class_fields#conversions","97":"/Hecke.jl/v0.34.8/manual/number_fields/class_fields#invariants","98":"/Hecke.jl/v0.34.8/manual/number_fields/class_fields#operations","99":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#Complex-embedding","100":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#Construction-of-complex-embeddings","101":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#properties","102":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#Conjugated-embedding","103":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#Evaluating-elements-at-complex-embeddings","104":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#Logarithmic-embedding","105":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#restriction","106":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#extension","107":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#positivity_and_signs2","108":"/Hecke.jl/v0.34.8/manual/number_fields/complex_embeddings#example","109":"/Hecke.jl/v0.34.8/manual/number_fields/conventions#conventions","110":"/Hecke.jl/v0.34.8/manual/number_fields/elements#Element-operations","111":"/Hecke.jl/v0.34.8/manual/number_fields/elements#creation","112":"/Hecke.jl/v0.34.8/manual/number_fields/elements#conjugates","113":"/Hecke.jl/v0.34.8/manual/number_fields/elements#predicates","114":"/Hecke.jl/v0.34.8/manual/number_fields/elements#invariants","115":"/Hecke.jl/v0.34.8/manual/number_fields/fields#Number-field-operations","116":"/Hecke.jl/v0.34.8/manual/number_fields/fields#Creation-of-number-fields","117":"/Hecke.jl/v0.34.8/manual/number_fields/fields#Basic-properties","118":"/Hecke.jl/v0.34.8/manual/number_fields/fields#invariants","119":"/Hecke.jl/v0.34.8/manual/number_fields/fields#predicates","120":"/Hecke.jl/v0.34.8/manual/number_fields/fields#subfields","121":"/Hecke.jl/v0.34.8/manual/number_fields/fields#conversion","122":"/Hecke.jl/v0.34.8/manual/number_fields/fields#morphisms","123":"/Hecke.jl/v0.34.8/manual/number_fields/fields#Galois-theory","124":"/Hecke.jl/v0.34.8/manual/number_fields/fields#Infinite-places","125":"/Hecke.jl/v0.34.8/manual/number_fields/fields#miscellaneous","126":"/Hecke.jl/v0.34.8/manual/number_fields/internal#internals","127":"/Hecke.jl/v0.34.8/manual/number_fields/internal#Types-of-number-fields","128":"/Hecke.jl/v0.34.8/manual/number_fields/internal#Absolute-simple-fields","129":"/Hecke.jl/v0.34.8/manual/number_fields/intro#NumberFieldsLink","130":"/Hecke.jl/v0.34.8/manual/orders/elements#elements","131":"/Hecke.jl/v0.34.8/manual/orders/elements#creation","132":"/Hecke.jl/v0.34.8/manual/orders/elements#Basic-properties","133":"/Hecke.jl/v0.34.8/manual/orders/elements#arithmetic","134":"/Hecke.jl/v0.34.8/manual/orders/elements#miscellaneous","135":"/Hecke.jl/v0.34.8/manual/orders/frac_ideals#Fractional-ideals","136":"/Hecke.jl/v0.34.8/manual/orders/frac_ideals#creation","137":"/Hecke.jl/v0.34.8/manual/orders/frac_ideals#arithmetic","138":"/Hecke.jl/v0.34.8/manual/orders/frac_ideals#miscaellenous","139":"/Hecke.jl/v0.34.8/manual/orders/introduction#introduction","140":"/Hecke.jl/v0.34.8/manual/orders/introduction#Orders-of-absolute-number-fields","141":"/Hecke.jl/v0.34.8/manual/orders/introduction#Orders-of-relative-number-fields","142":"/Hecke.jl/v0.34.8/manual/orders/introduction#examples","143":"/Hecke.jl/v0.34.8/manual/orders/ideals#NfOrdIdlLink2","144":"/Hecke.jl/v0.34.8/manual/orders/ideals#creation","145":"/Hecke.jl/v0.34.8/manual/orders/ideals#arithmetic","146":"/Hecke.jl/v0.34.8/manual/orders/ideals#Class-Group","147":"/Hecke.jl/v0.34.8/manual/orders/ideals#miscaellenous","148":"/Hecke.jl/v0.34.8/manual/orders/ideals#Quotient-Rings","149":"/Hecke.jl/v0.34.8/manual/orders/orders#orders","150":"/Hecke.jl/v0.34.8/manual/orders/orders#Creation-and-basic-properties","151":"/Hecke.jl/v0.34.8/manual/orders/orders#example","152":"/Hecke.jl/v0.34.8/manual/orders/orders#invariants","153":"/Hecke.jl/v0.34.8/manual/orders/orders#arithmetic","154":"/Hecke.jl/v0.34.8/manual/orders/orders#predicates","155":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Spaces2","156":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Creation-of-spaces","157":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#examples","158":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#attributes","159":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Examples-2","160":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#predicates","161":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Examples-3","162":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Inner-products-and-diagonalization","163":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Examples-4","164":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#equivalence","165":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Examples-5","166":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#embeddings","167":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Examples-6","168":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Categorical-constructions","169":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#example","170":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Orthogonality-operations","171":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Example-2","172":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Isotropic-spaces","173":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Example-3","174":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Hyperbolic-spaces","175":"/Hecke.jl/v0.34.8/manual/quad_forms/basics#Example-4","176":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Genera-of-Integer-Lattices","177":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Creation-of-Genera","178":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#From-an-integral-Lattice","179":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#From-a-gram-matrix","180":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Enumeration-of-genus-symbols","181":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#From-other-genus-symbols","182":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Attributes-of-the-genus","183":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Discriminant-group","184":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Primary-genera","185":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#local-Symbol","186":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#representative-s","187":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Embeddings-and-Representations","188":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Local-genus-Symbols","189":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#creation","190":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#attributes","191":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#representative","192":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#Direct-sums","193":"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#embeddings-representations","194":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Discriminant-Groups","195":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Torsion-Quadratic-Modules","196":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#The-underlying-Type","197":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#attributes","198":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#elements","199":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Lift-to-the-cover","200":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Orthogonal-submodules","201":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#isometry","202":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Primary-and-elementary-modules","203":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Smith-normal-form","204":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Discriminant-Groups-2","205":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#From-a-lattice","206":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#From-a-matrix","207":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Rescaling-the-form","208":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#invariants","209":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#genus","210":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#Categorical-constructions","211":"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#submodules","212":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Genera-for-hermitian-lattices","213":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Local-genus-symbols","214":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Creation-of-local-genus-symbols","215":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#examples","216":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#attributes","217":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-2","218":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#invariants","219":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-3","220":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#predicates","221":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-4","222":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Local-uniformizer","223":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#example","224":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Determinant-representatives","225":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-5","226":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Gram-matrices","227":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-6","228":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Global-genus-symbols","229":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Creation-of-global-genus-symbols","230":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-7","231":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Attributes-2","232":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-8","233":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#mass","234":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Example-2","235":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Representatives-of-a-genus","236":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-9","237":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Sum-of-genera","238":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-10","239":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Enumeration-of-genera","240":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#Examples-11","241":"/Hecke.jl/v0.34.8/manual/quad_forms/genusherm#rescaling","242":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Integer-Lattices","243":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Creation-of-integer-lattices","244":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#From-a-gram-matrix","245":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#In-a-quadratic-space","246":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Special-lattices","247":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#From-a-genus","248":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Rescaling-the-Quadratic-Form","249":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#attributes","250":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#invariants","251":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#The-Genus","252":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Real-invariants","253":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#isometries","254":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Root-lattices","255":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Module-operations","256":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#embeddings","257":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Categorical-constructions","258":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Orthogonal-sublattices","259":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Dual-lattice","260":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Discriminant-group","261":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#overlattices","262":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Sublattices-defined-by-endomorphisms","263":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Computing-embeddings","264":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#LLL,-Short-and-Close-Vectors","265":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#LLL-and-indefinite-LLL","266":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Short-Vectors","267":"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#Close-Vectors","268":"/Hecke.jl/v0.34.8/manual/quad_forms/introduction#introduction","269":"/Hecke.jl/v0.34.8/manual/quad_forms/introduction#Definitions-and-vocabulary","270":"/Hecke.jl/v0.34.8/manual/quad_forms/introduction#Quadratic-and-hermitian-spaces","271":"/Hecke.jl/v0.34.8/manual/quad_forms/introduction#Quadratic-and-hermitian-lattices","272":"/Hecke.jl/v0.34.8/manual/quad_forms/introduction#references","273":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#lattices","274":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Creation-of-lattices","275":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Inside-a-given-ambient-space","276":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Quadratic-lattice-over-a-number-field","277":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Hermitian-lattice-over-a-degree-2-extension","278":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#examples","279":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Ambient-space-and-rational-span","280":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-2","281":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Rational-equivalence","282":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-3","283":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#attributes","284":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-4","285":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Module-operations","286":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-5","287":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Categorical-constructions","288":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#invariants","289":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-6","290":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#predicates","291":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-7","292":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Local-properties","293":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-8","294":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Automorphisms-for-definite-lattices","295":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-9","296":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#isometry","297":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-10","298":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Maximal-integral-lattices","299":"/Hecke.jl/v0.34.8/manual/quad_forms/lattices#Examples-11","300":"/Hecke.jl/v0.34.8/references#bibliography","301":"/Hecke.jl/v0.34.8/start/#Getting-started","302":"/Hecke.jl/v0.34.8/tutorials/#tutorials"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[4,1,1],"1":[3,1,1],"2":[10,1,139],"3":[1,1,40],"4":[2,1,78],"5":[1,1,21],"6":[1,1,29],"7":[1,1,93],"8":[1,1,39],"9":[1,1,18],"10":[1,1,16],"11":[1,1,36],"12":[1,1,38],"13":[2,1,100],"14":[1,1,79],"15":[1,1,97],"16":[2,1,75],"17":[3,2,225],"18":[2,2,85],"19":[2,2,52],"20":[2,2,46],"21":[1,1,1],"22":[3,1,46],"23":[2,1,29],"24":[1,1,27],"25":[1,1,88],"26":[1,1,43],"27":[2,1,20],"28":[1,2,41],"29":[1,2,58],"30":[1,1,67],"31":[3,1,1],"32":[1,3,86],"33":[3,3,36],"34":[1,1,13],"35":[5,1,15],"36":[3,1,51],"37":[1,1,1],"38":[1,1,47],"39":[2,2,45],"40":[3,2,41],"41":[3,1,1],"42":[3,4,54],"43":[5,4,44],"44":[1,1,1],"45":[1,1,72],"46":[2,1,110],"47":[1,1,42],"48":[1,2,84],"49":[5,1,1],"50":[2,5,35],"51":[3,5,52],"52":[1,5,47],"53":[5,5,70],"54":[2,5,60],"55":[7,1,1],"56":[1,1,5],"57":[1,1,55],"58":[2,1,140],"59":[1,2,62],"60":[1,2,68],"61":[2,2,202],"62":[3,2,24],"63":[1,2,22],"64":[4,1,49],"65":[6,1,1],"66":[2,6,1],"67":[3,6,120],"68":[1,6,151],"69":[3,6,1],"70":[3,7,33],"71":[2,7,33],"72":[6,7,20],"73":[2,1,140],"74":[1,2,50],"75":[1,2,83],"76":[1,2,1],"77":[3,1,1],"78":[1,3,44],"79":[2,3,60],"80":[1,4,37],"81":[2,4,54],"82":[4,4,22],"83":[5,4,33],"84":[5,4,41],"85":[7,4,38],"86":[2,3,67],"87":[1,4,121],"88":[2,4,251],"89":[2,4,148],"90":[1,4,75],"91":[3,1,1],"92":[1,3,74],"93":[3,3,159],"94":[3,3,128],"95":[1,5,46],"96":[1,3,154],"97":[1,3,94],"98":[1,3,131],"99":[2,1,32],"100":[4,2,49],"101":[1,2,41],"102":[2,2,28],"103":[5,2,88],"104":[2,2,51],"105":[1,2,80],"106":[1,2,65],"107":[3,2,84],"108":[1,2,59],"109":[1,1,146],"110":[2,1,1],"111":[1,2,186],"112":[1,3,95],"113":[1,3,106],"114":[1,3,45],"115":[3,1,1],"116":[4,3,222],"117":[2,3,111],"118":[1,3,77],"119":[1,3,105],"120":[1,4,104],"121":[1,3,98],"122":[1,3,91],"123":[2,3,52],"124":[2,3,57],"125":[1,3,90],"126":[1,1,1],"127":[4,1,94],"128":[3,1,29],"129":[1,1,70],"130":[1,1,46],"131":[1,1,73],"132":[2,1,69],"133":[1,1,18],"134":[1,1,190],"135":[2,1,44],"136":[1,2,62],"137":[1,2,56],"138":[1,2,60],"139":[1,1,61],"140":[5,1,52],"141":[5,1,98],"142":[1,1,97],"143":[1,1,90],"144":[1,1,92],"145":[1,1,93],"146":[2,1,331],"147":[1,1,161],"148":[2,1,123],"149":[1,1,96],"150":[4,1,145],"151":[1,5,232],"152":[1,1,102],"153":[1,1,93],"154":[1,1,22],"155":[1,1,1],"156":[3,1,52],"157":[1,4,67],"158":[1,1,87],"159":[1,2,65],"160":[1,1,71],"161":[1,2,32],"162":[4,1,110],"163":[1,5,35],"164":[1,1,134],"165":[1,2,60],"166":[1,1,94],"167":[1,2,56],"168":[2,1,116],"169":[1,3,43],"170":[2,1,35],"171":[1,3,21],"172":[2,1,54],"173":[1,3,32],"174":[2,1,61],"175":[1,3,33],"176":[4,1,69],"177":[3,4,1],"178":[4,5,12],"179":[4,5,17],"180":[4,5,63],"181":[4,5,19],"182":[4,4,88],"183":[2,7,4],"184":[2,7,61],"185":[2,7,13],"186":[3,4,63],"187":[3,4,19],"188":[3,4,73],"189":[1,7,25],"190":[1,7,117],"191":[1,7,37],"192":[2,7,16],"193":[2,7,46],"194":[2,1,1],"195":[3,2,91],"196":[3,5,146],"197":[1,5,51],"198":[1,5,29],"199":[4,5,27],"200":[2,5,13],"201":[1,5,114],"202":[4,5,58],"203":[3,5,41],"204":[2,2,23],"205":[3,2,42],"206":[3,2,54],"207":[3,2,33],"208":[1,2,63],"209":[1,2,117],"210":[2,2,59],"211":[1,2,39],"212":[4,1,1],"213":[3,4,152],"214":[5,7,60],"215":[1,10,86],"216":[1,7,38],"217":[1,8,48],"218":[1,7,86],"219":[1,8,54],"220":[1,7,33],"221":[1,8,38],"222":[2,7,38],"223":[1,8,32],"224":[2,7,58],"225":[1,9,34],"226":[2,7,48],"227":[1,9,45],"228":[3,4,78],"229":[5,7,66],"230":[1,10,119],"231":[1,7,90],"232":[1,8,80],"233":[1,7,75],"234":[1,8,63],"235":[4,4,93],"236":[1,8,64],"237":[3,4,43],"238":[1,7,96],"239":[3,4,82],"240":[1,7,78],"241":[1,4,41],"242":[2,1,63],"243":[4,2,1],"244":[4,6,39],"245":[4,6,48],"246":[2,6,227],"247":[3,6,15],"248":[4,6,51],"249":[1,2,59],"250":[1,2,100],"251":[2,3,29],"252":[2,3,27],"253":[1,2,78],"254":[2,1,116],"255":[2,2,147],"256":[1,2,1],"257":[2,3,63],"258":[2,3,29],"259":[2,3,11],"260":[2,3,6],"261":[1,3,117],"262":[4,3,60],"263":[2,3,80],"264":[5,2,1],"265":[3,7,55],"266":[2,7,88],"267":[2,7,80],"268":[1,1,45],"269":[3,1,15],"270":[4,4,120],"271":[4,4,70],"272":[1,1,57],"273":[1,1,1],"274":[3,1,1],"275":[5,4,62],"276":[6,4,83],"277":[7,4,77],"278":[1,11,137],"279":[5,1,34],"280":[1,6,60],"281":[2,1,44],"282":[1,3,88],"283":[1,1,127],"284":[1,2,81],"285":[2,1,113],"286":[1,3,67],"287":[2,1,114],"288":[1,1,53],"289":[1,2,57],"290":[1,1,84],"291":[1,2,51],"292":[2,1,100],"293":[1,3,40],"294":[4,1,106],"295":[1,5,45],"296":[1,1,83],"297":[1,2,44],"298":[3,1,69],"299":[1,4,66],"300":[1,1,89],"301":[2,1,73],"302":[1,1,1]},"averageFieldLength":[2.072607260726073,3.0066006600660065,64.39603960396035],"storedFields":{"0":{"title":"Examples and sample code","titles":[]},"1":{"title":"How-to guides","titles":[]},"2":{"title":"Reduction of polynomials over number fields modulo a prime ideal","titles":[]},"3":{"title":"Features","titles":[]},"4":{"title":"Citing Hecke","titles":[]},"5":{"title":"Acknowledgement","titles":[]},"6":{"title":"Elements","titles":[]},"7":{"title":"Creation","titles":["Elements"]},"8":{"title":"Access","titles":["Elements"]},"9":{"title":"Predicates","titles":["Elements"]},"10":{"title":"Invariants","titles":["Elements"]},"11":{"title":"Iterator","titles":["Elements"]},"12":{"title":"Introduction","titles":[]},"13":{"title":"Basic Creation","titles":["Introduction"]},"14":{"title":"Invariants","titles":["Introduction"]},"15":{"title":"Maps","titles":[]},"16":{"title":"Structural Computations","titles":[]},"17":{"title":"Subgroups and Quotients","titles":["Structural Computations"]},"18":{"title":"Direct Products","titles":["Structural Computations"]},"19":{"title":"Tensor Producs","titles":["Structural Computations"]},"20":{"title":"Hom-Group","titles":["Structural Computations"]},"21":{"title":"Basics","titles":[]},"22":{"title":"Creation of algebras","titles":["Basics"]},"23":{"title":"Basic properties","titles":["Basics"]},"24":{"title":"Predicates","titles":["Basics"]},"25":{"title":"Generators","titles":["Basics"]},"26":{"title":"Center","titles":["Basics"]},"27":{"title":"Group algebras","titles":[]},"28":{"title":"Creation","titles":["Group algebras"]},"29":{"title":"Elements","titles":["Group algebras"]},"30":{"title":"Introduction","titles":[]},"31":{"title":"Structure constant algebras","titles":[]},"32":{"title":"Creation","titles":["Structure constant algebras"]},"33":{"title":"Structure constant table","titles":["Structure constant algebras"]},"34":{"title":"Documentation","titles":[]},"35":{"title":"Adding files to the documentation","titles":["Documentation"]},"36":{"title":"Building the documentation","titles":["Documentation"]},"37":{"title":"Testing","titles":[]},"38":{"title":"Structure","titles":["Testing"]},"39":{"title":"Adding tests","titles":["Testing","Structure"]},"40":{"title":"Adding long tests","titles":["Testing","Structure"]},"41":{"title":"Running the tests","titles":["Testing"]},"42":{"title":"Running all tests","titles":["Testing","Running the tests"]},"43":{"title":"Running a subset of tests","titles":["Testing","Running the tests"]},"44":{"title":"Basics","titles":[]},"45":{"title":"Creation","titles":["Basics"]},"46":{"title":"Basic properties","titles":["Basics"]},"47":{"title":"Points","titles":["Basics"]},"48":{"title":"Examples","titles":["Basics","Points"]},"49":{"title":"Elliptic curves over finite fields","titles":[]},"50":{"title":"Random points","titles":["Elliptic curves over finite fields"]},"51":{"title":"Cardinality and orders","titles":["Elliptic curves over finite fields"]},"52":{"title":"Frobenius","titles":["Elliptic curves over finite fields"]},"53":{"title":"Group structure of rational points","titles":["Elliptic curves over finite fields"]},"54":{"title":"Discrete logarithm","titles":["Elliptic curves over finite fields"]},"55":{"title":"Elliptic curves over rationals and number fields","titles":[]},"56":{"title":"Manual","titles":[]},"57":{"title":"Introduction","titles":[]},"58":{"title":"Factored Elements","titles":[]},"59":{"title":"Construction","titles":["Factored Elements"]},"60":{"title":"Conversion","titles":["Factored Elements"]},"61":{"title":"Special functions","titles":["Factored Elements"]},"62":{"title":"Positivity & Signs","titles":["Factored Elements"]},"63":{"title":"Miscellaneous","titles":["Factored Elements"]},"64":{"title":"Conjugacy of integral matrices","titles":[]},"65":{"title":"Multi-sets and sub-set iterators","titles":[]},"66":{"title":"Multi-sets","titles":["Multi-sets and sub-set iterators"]},"67":{"title":"Type and constructors","titles":["Multi-sets and sub-set iterators","Multi-sets"]},"68":{"title":"Functions","titles":["Multi-sets and sub-set iterators","Multi-sets"]},"69":{"title":"Sub-set iterators","titles":["Multi-sets and sub-set iterators"]},"70":{"title":"Sub-multi-sets","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"71":{"title":"Sub-sets","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"72":{"title":"Sub-sets of a given size","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"73":{"title":"Pseudo-matrices","titles":[]},"74":{"title":"Creation","titles":["Pseudo-matrices"]},"75":{"title":"Operations","titles":["Pseudo-matrices"]},"76":{"title":"Examples","titles":["Pseudo-matrices"]},"77":{"title":"Sparse linear algebra","titles":[]},"78":{"title":"Introduction","titles":["Sparse linear algebra"]},"79":{"title":"Sparse rows","titles":["Sparse linear algebra"]},"80":{"title":"Creation","titles":["Sparse linear algebra","Sparse rows"]},"81":{"title":"Basic operations","titles":["Sparse linear algebra","Sparse rows"]},"82":{"title":"Change of base ring","titles":["Sparse linear algebra","Sparse rows"]},"83":{"title":"Maximum, minimum and 2-norm","titles":["Sparse linear algebra","Sparse rows"]},"84":{"title":"Functionality for integral sparse rows","titles":["Sparse linear algebra","Sparse rows"]},"85":{"title":"Conversion to/from julia and AbstractAlgebra types","titles":["Sparse linear algebra","Sparse rows"]},"86":{"title":"Sparse matrices","titles":["Sparse linear algebra"]},"87":{"title":"Construction","titles":["Sparse linear algebra","Sparse matrices"]},"88":{"title":"Elementary Properties","titles":["Sparse linear algebra","Sparse matrices"]},"89":{"title":"Manipulation/ Access","titles":["Sparse linear algebra","Sparse matrices"]},"90":{"title":"Arithmetic","titles":["Sparse linear algebra","Sparse matrices"]},"91":{"title":"Class Field Theory","titles":[]},"92":{"title":"Introduction","titles":["Class Field Theory"]},"93":{"title":"Ray Class Groups","titles":["Class Field Theory"]},"94":{"title":"Ray Class Fields","titles":["Class Field Theory"]},"95":{"title":"Example","titles":["Class Field Theory","Ray Class Fields"]},"96":{"title":"Conversions","titles":["Class Field Theory"]},"97":{"title":"Invariants","titles":["Class Field Theory"]},"98":{"title":"Operations","titles":["Class Field Theory"]},"99":{"title":"Complex embedding","titles":[]},"100":{"title":"Construction of complex embeddings","titles":["Complex embedding"]},"101":{"title":"Properties","titles":["Complex embedding"]},"102":{"title":"Conjugated embedding","titles":["Complex embedding"]},"103":{"title":"Evaluating elements at complex embeddings","titles":["Complex embedding"]},"104":{"title":"Logarithmic embedding","titles":["Complex embedding"]},"105":{"title":"Restriction","titles":["Complex embedding"]},"106":{"title":"Extension","titles":["Complex embedding"]},"107":{"title":"Positivity & Signs","titles":["Complex embedding"]},"108":{"title":"Example","titles":["Complex embedding"]},"109":{"title":"Conventions","titles":[]},"110":{"title":"Element operations","titles":[]},"111":{"title":"Creation","titles":["Element operations"]},"112":{"title":"Conjugates","titles":["Element operations","Creation"]},"113":{"title":"Predicates","titles":["Element operations","Creation"]},"114":{"title":"Invariants","titles":["Element operations","Creation"]},"115":{"title":"Number field operations","titles":[]},"116":{"title":"Creation of number fields","titles":["Number field operations"]},"117":{"title":"Basic properties","titles":["Number field operations"]},"118":{"title":"Invariants","titles":["Number field operations"]},"119":{"title":"Predicates","titles":["Number field operations"]},"120":{"title":"Subfields","titles":["Number field operations","Predicates"]},"121":{"title":"Conversion","titles":["Number field operations"]},"122":{"title":"Morphisms","titles":["Number field operations"]},"123":{"title":"Galois theory","titles":["Number field operations"]},"124":{"title":"Infinite places","titles":["Number field operations"]},"125":{"title":"Miscellaneous","titles":["Number field operations"]},"126":{"title":"Internals","titles":[]},"127":{"title":"Types of number fields","titles":["Internals"]},"128":{"title":"Absolute simple fields","titles":["Internals"]},"129":{"title":"Introduction","titles":[]},"130":{"title":"Elements","titles":[]},"131":{"title":"Creation","titles":["Elements"]},"132":{"title":"Basic properties","titles":["Elements"]},"133":{"title":"Arithmetic","titles":["Elements"]},"134":{"title":"Miscellaneous","titles":["Elements"]},"135":{"title":"Fractional ideals","titles":[]},"136":{"title":"Creation","titles":["Fractional ideals"]},"137":{"title":"Arithmetic","titles":["Fractional ideals"]},"138":{"title":"Miscaellenous","titles":["Fractional ideals"]},"139":{"title":"Introduction","titles":[]},"140":{"title":"Orders of absolute number fields","titles":["Introduction"]},"141":{"title":"Orders of relative number fields","titles":["Introduction"]},"142":{"title":"Examples","titles":["Introduction"]},"143":{"title":"Ideals","titles":[]},"144":{"title":"Creation","titles":["Ideals"]},"145":{"title":"Arithmetic","titles":["Ideals"]},"146":{"title":"Class Group","titles":["Ideals"]},"147":{"title":"Miscaellenous","titles":["Ideals"]},"148":{"title":"Quotient Rings","titles":["Ideals"]},"149":{"title":"Orders","titles":[]},"150":{"title":"Creation and basic properties","titles":["Orders"]},"151":{"title":"Example","titles":["Orders","Creation and basic properties"]},"152":{"title":"Invariants","titles":["Orders"]},"153":{"title":"Arithmetic","titles":["Orders"]},"154":{"title":"Predicates","titles":["Orders"]},"155":{"title":"Spaces","titles":[]},"156":{"title":"Creation of spaces","titles":["Spaces"]},"157":{"title":"Examples","titles":["Spaces","Creation of spaces"]},"158":{"title":"Attributes","titles":["Spaces"]},"159":{"title":"Examples","titles":["Spaces","Attributes"]},"160":{"title":"Predicates","titles":["Spaces"]},"161":{"title":"Examples","titles":["Spaces","Predicates"]},"162":{"title":"Inner products and diagonalization","titles":["Spaces"]},"163":{"title":"Examples","titles":["Spaces","Inner products and diagonalization"]},"164":{"title":"Equivalence","titles":["Spaces"]},"165":{"title":"Examples","titles":["Spaces","Equivalence"]},"166":{"title":"Embeddings","titles":["Spaces"]},"167":{"title":"Examples","titles":["Spaces","Embeddings"]},"168":{"title":"Categorical constructions","titles":["Spaces"]},"169":{"title":"Example","titles":["Spaces","Categorical constructions"]},"170":{"title":"Orthogonality operations","titles":["Spaces"]},"171":{"title":"Example","titles":["Spaces","Orthogonality operations"]},"172":{"title":"Isotropic spaces","titles":["Spaces"]},"173":{"title":"Example","titles":["Spaces","Isotropic spaces"]},"174":{"title":"Hyperbolic spaces","titles":["Spaces"]},"175":{"title":"Example","titles":["Spaces","Hyperbolic spaces"]},"176":{"title":"Genera of Integer Lattices","titles":[]},"177":{"title":"Creation of Genera","titles":["Genera of Integer Lattices"]},"178":{"title":"From an integral Lattice","titles":["Genera of Integer Lattices","Creation of Genera"]},"179":{"title":"From a gram matrix","titles":["Genera of Integer Lattices","Creation of Genera"]},"180":{"title":"Enumeration of genus symbols","titles":["Genera of Integer Lattices","Creation of Genera"]},"181":{"title":"From other genus symbols","titles":["Genera of Integer Lattices","Creation of Genera"]},"182":{"title":"Attributes of the genus","titles":["Genera of Integer Lattices"]},"183":{"title":"Discriminant group","titles":["Genera of Integer Lattices","Attributes of the genus"]},"184":{"title":"Primary genera","titles":["Genera of Integer Lattices","Attributes of the genus"]},"185":{"title":"local Symbol","titles":["Genera of Integer Lattices","Attributes of the genus"]},"186":{"title":"Representative(s)","titles":["Genera of Integer Lattices"]},"187":{"title":"Embeddings and Representations","titles":["Genera of Integer Lattices"]},"188":{"title":"Local genus Symbols","titles":["Genera of Integer Lattices"]},"189":{"title":"Creation","titles":["Genera of Integer Lattices","Local genus Symbols"]},"190":{"title":"Attributes","titles":["Genera of Integer Lattices","Local genus Symbols"]},"191":{"title":"Representative","titles":["Genera of Integer Lattices","Local genus Symbols"]},"192":{"title":"Direct sums","titles":["Genera of Integer Lattices","Local genus Symbols"]},"193":{"title":"Embeddings/Representations","titles":["Genera of Integer Lattices","Local genus Symbols"]},"194":{"title":"Discriminant Groups","titles":[]},"195":{"title":"Torsion Quadratic Modules","titles":["Discriminant Groups"]},"196":{"title":"The underlying Type","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"197":{"title":"Attributes","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"198":{"title":"Elements","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"199":{"title":"Lift to the cover","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"200":{"title":"Orthogonal submodules","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"201":{"title":"Isometry","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"202":{"title":"Primary and elementary modules","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"203":{"title":"Smith normal form","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"204":{"title":"Discriminant Groups","titles":["Discriminant Groups"]},"205":{"title":"From a lattice","titles":["Discriminant Groups","Discriminant Groups"]},"206":{"title":"From a matrix","titles":["Discriminant Groups","Discriminant Groups"]},"207":{"title":"Rescaling the form","titles":["Discriminant Groups","Discriminant Groups"]},"208":{"title":"Invariants","titles":["Discriminant Groups","Discriminant Groups"]},"209":{"title":"Genus","titles":["Discriminant Groups","Discriminant Groups"]},"210":{"title":"Categorical constructions","titles":["Discriminant Groups","Discriminant Groups"]},"211":{"title":"Submodules","titles":["Discriminant Groups","Discriminant Groups"]},"212":{"title":"Genera for hermitian lattices","titles":[]},"213":{"title":"Local genus symbols","titles":["Genera for hermitian lattices"]},"214":{"title":"Creation of local genus symbols","titles":["Genera for hermitian lattices","Local genus symbols"]},"215":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Creation of local genus symbols"]},"216":{"title":"Attributes","titles":["Genera for hermitian lattices","Local genus symbols"]},"217":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Attributes"]},"218":{"title":"Invariants","titles":["Genera for hermitian lattices","Local genus symbols"]},"219":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Invariants"]},"220":{"title":"Predicates","titles":["Genera for hermitian lattices","Local genus symbols"]},"221":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Predicates"]},"222":{"title":"Local uniformizer","titles":["Genera for hermitian lattices","Local genus symbols"]},"223":{"title":"Example","titles":["Genera for hermitian lattices","Local genus symbols","Local uniformizer"]},"224":{"title":"Determinant representatives","titles":["Genera for hermitian lattices","Local genus symbols"]},"225":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Determinant representatives"]},"226":{"title":"Gram matrices","titles":["Genera for hermitian lattices","Local genus symbols"]},"227":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Gram matrices"]},"228":{"title":"Global genus symbols","titles":["Genera for hermitian lattices"]},"229":{"title":"Creation of global genus symbols","titles":["Genera for hermitian lattices","Global genus symbols"]},"230":{"title":"Examples","titles":["Genera for hermitian lattices","Global genus symbols","Creation of global genus symbols"]},"231":{"title":"Attributes","titles":["Genera for hermitian lattices","Global genus symbols"]},"232":{"title":"Examples","titles":["Genera for hermitian lattices","Global genus symbols","Attributes"]},"233":{"title":"Mass","titles":["Genera for hermitian lattices","Global genus symbols"]},"234":{"title":"Example","titles":["Genera for hermitian lattices","Global genus symbols","Mass"]},"235":{"title":"Representatives of a genus","titles":["Genera for hermitian lattices"]},"236":{"title":"Examples","titles":["Genera for hermitian lattices","Representatives of a genus"]},"237":{"title":"Sum of genera","titles":["Genera for hermitian lattices"]},"238":{"title":"Examples","titles":["Genera for hermitian lattices","Sum of genera"]},"239":{"title":"Enumeration of genera","titles":["Genera for hermitian lattices"]},"240":{"title":"Examples","titles":["Genera for hermitian lattices","Enumeration of genera"]},"241":{"title":"Rescaling","titles":["Genera for hermitian lattices"]},"242":{"title":"Integer Lattices","titles":[]},"243":{"title":"Creation of integer lattices","titles":["Integer Lattices"]},"244":{"title":"From a gram matrix","titles":["Integer Lattices","Creation of integer lattices"]},"245":{"title":"In a quadratic space","titles":["Integer Lattices","Creation of integer lattices"]},"246":{"title":"Special lattices","titles":["Integer Lattices","Creation of integer lattices"]},"247":{"title":"From a genus","titles":["Integer Lattices","Creation of integer lattices"]},"248":{"title":"Rescaling the Quadratic Form","titles":["Integer Lattices","Creation of integer lattices"]},"249":{"title":"Attributes","titles":["Integer Lattices"]},"250":{"title":"Invariants","titles":["Integer Lattices"]},"251":{"title":"The Genus","titles":["Integer Lattices","Invariants"]},"252":{"title":"Real invariants","titles":["Integer Lattices","Invariants"]},"253":{"title":"Isometries","titles":["Integer Lattices"]},"254":{"title":"Root lattices","titles":[]},"255":{"title":"Module operations","titles":["Root lattices"]},"256":{"title":"Embeddings","titles":["Root lattices"]},"257":{"title":"Categorical constructions","titles":["Root lattices","Embeddings"]},"258":{"title":"Orthogonal sublattices","titles":["Root lattices","Embeddings"]},"259":{"title":"Dual lattice","titles":["Root lattices","Embeddings"]},"260":{"title":"Discriminant group","titles":["Root lattices","Embeddings"]},"261":{"title":"Overlattices","titles":["Root lattices","Embeddings"]},"262":{"title":"Sublattices defined by endomorphisms","titles":["Root lattices","Embeddings"]},"263":{"title":"Computing embeddings","titles":["Root lattices","Embeddings"]},"264":{"title":"LLL, Short and Close Vectors","titles":["Root lattices"]},"265":{"title":"LLL and indefinite LLL","titles":["Root lattices","LLL, Short and Close Vectors"]},"266":{"title":"Short Vectors","titles":["Root lattices","LLL, Short and Close Vectors"]},"267":{"title":"Close Vectors","titles":["Root lattices","LLL, Short and Close Vectors"]},"268":{"title":"Introduction","titles":[]},"269":{"title":"Definitions and vocabulary","titles":["Introduction"]},"270":{"title":"Quadratic and hermitian spaces","titles":["Introduction","Definitions and vocabulary"]},"271":{"title":"Quadratic and hermitian lattices","titles":["Introduction","Definitions and vocabulary"]},"272":{"title":"References","titles":["Introduction"]},"273":{"title":"Lattices","titles":[]},"274":{"title":"Creation of lattices","titles":["Lattices"]},"275":{"title":"Inside a given ambient space","titles":["Lattices","Creation of lattices"]},"276":{"title":"Quadratic lattice over a number field","titles":["Lattices","Creation of lattices"]},"277":{"title":"Hermitian lattice over a degree 2 extension","titles":["Lattices","Creation of lattices"]},"278":{"title":"Examples","titles":["Lattices","Creation of lattices","Hermitian lattice over a degree 2 extension"]},"279":{"title":"Ambient space and rational span","titles":["Lattices"]},"280":{"title":"Examples","titles":["Lattices","Ambient space and rational span"]},"281":{"title":"Rational equivalence","titles":["Lattices"]},"282":{"title":"Examples","titles":["Lattices","Rational equivalence"]},"283":{"title":"Attributes","titles":["Lattices"]},"284":{"title":"Examples","titles":["Lattices","Attributes"]},"285":{"title":"Module operations","titles":["Lattices"]},"286":{"title":"Examples","titles":["Lattices","Module operations"]},"287":{"title":"Categorical constructions","titles":["Lattices"]},"288":{"title":"Invariants","titles":["Lattices"]},"289":{"title":"Examples","titles":["Lattices","Invariants"]},"290":{"title":"Predicates","titles":["Lattices"]},"291":{"title":"Examples","titles":["Lattices","Predicates"]},"292":{"title":"Local properties","titles":["Lattices"]},"293":{"title":"Examples","titles":["Lattices","Local properties"]},"294":{"title":"Automorphisms for definite lattices","titles":["Lattices"]},"295":{"title":"Examples","titles":["Lattices","Automorphisms for definite lattices"]},"296":{"title":"Isometry","titles":["Lattices"]},"297":{"title":"Examples","titles":["Lattices","Isometry"]},"298":{"title":"Maximal integral lattices","titles":["Lattices"]},"299":{"title":"Examples","titles":["Lattices","Maximal integral lattices"]},"300":{"title":"Bibliography","titles":[]},"301":{"title":"Getting started","titles":[]},"302":{"title":"Tutorials","titles":[]}},"dirtCount":0,"index":[["∣x",{"2":{"288":1}}],["∣x∈l",{"2":{"288":1}}],["~markus",{"2":{"278":2}}],["\\t\\t\\t",{"2":{"277":2}}],["ℤ",{"2":{"246":2}}],["≅",{"2":{"246":1}}],["∩",{"2":{"246":1}}],["∩z",{"2":{"150":1}}],["±1",{"2":{"224":1}}],["×ln",{"2":{"257":1,"287":1}}],["×tn",{"2":{"210":1}}],["×vn",{"2":{"168":1}}],["↦φ",{"2":{"205":1}}],["ψ",{"2":{"174":3}}],["`h`",{"2":{"246":1}}],["`v`",{"2":{"246":1}}],["`sek`",{"2":{"230":2}}],["`cyclotomix",{"2":{"169":1}}],["`facelemzzringelem",{"2":{"58":1}}],["⊕ln",{"2":{"257":2,"287":2}}],["⊕tn",{"2":{"210":2}}],["⊕vn",{"2":{"168":2}}],["⊕c",{"2":{"18":1}}],["φp",{"2":{"172":2}}],["φ",{"2":{"158":7,"160":3,"162":1,"164":3,"166":3,"172":2,"174":1,"195":1,"198":1,"250":4,"255":2,"270":8,"285":3,"288":4,"294":3}}],["≤c1⋅∑idxi2",{"2":{"151":1}}],["∈2z",{"2":{"250":1}}],["∈r",{"2":{"151":1}}],["∈matd×d",{"2":{"109":1}}],["∏i",{"2":{"190":1}}],["∏aiei",{"2":{"146":1}}],["∏bd",{"2":{"59":2}}],["∏biei",{"2":{"59":2}}],["−n",{"2":{"134":1}}],["−1",{"2":{"109":1,"116":1,"134":1,"158":1,"213":1,"218":5}}],["∗b",{"2":{"132":1,"134":1}}],["∗a",{"2":{"88":1}}],["γ",{"2":{"117":1,"261":2}}],["γ∈k",{"2":{"117":1}}],["γ↦βγ",{"2":{"109":1}}],["⋮⋱⋮⋮⋮⋱⋮σ1",{"2":{"109":1}}],["⊆oe",{"2":{"285":1}}],["⊆o",{"2":{"109":1}}],["⊆r",{"2":{"99":1}}],["σ∣σ∈homoe",{"2":{"288":1}}],["σ",{"2":{"122":2,"166":5}}],["σr+2s",{"2":{"112":3,"134":1}}],["σr+2",{"2":{"109":1}}],["σr+s",{"2":{"109":5}}],["σr+1",{"2":{"109":7,"112":3,"134":1}}],["σr",{"2":{"109":4}}],["σ1",{"2":{"109":3}}],["σi=σi+s",{"2":{"109":1}}],["σi",{"2":{"109":2,"112":3,"134":1}}],["β⋅",{"2":{"109":1}}],["β",{"2":{"109":2}}],["|r|",{"2":{"254":1}}],["|x∈l",{"2":{"182":1,"190":1}}],["|−1",{"2":{"112":1}}],["|σr+s",{"2":{"112":1,"134":1}}],["|σr+1",{"2":{"112":1,"134":1}}],["|σr",{"2":{"112":1,"134":1}}],["|σ1",{"2":{"112":1,"134":1}}],["|",{"2":{"104":1,"112":5,"134":4,"186":1,"208":2}}],["|ι",{"2":{"104":1}}],["≥vp",{"2":{"93":1}}],["→li+1",{"2":{"193":1}}],["→",{"2":{"89":1}}],["∑i=1n1|o",{"2":{"186":1}}],["∑i=1nmi",{"2":{"13":1}}],["∑idxi2≤c2⋅t2",{"2":{"151":1}}],["∑aiωi",{"2":{"141":1}}],["∑zkmi",{"2":{"74":1}}],["∑cimi",{"2":{"74":2}}],["ω2",{"2":{"109":5}}],["ωd",{"2":{"109":6,"140":1}}],["ω1⋮ωd",{"2":{"140":1}}],["ω1",{"2":{"109":6,"140":1}}],["ωi∈o",{"2":{"141":1}}],["ωi∈l",{"2":{"141":1}}],["ωi∈v",{"2":{"73":1}}],["ωi",{"2":{"73":2,"151":1}}],["ω∈v",{"2":{"73":1}}],["αφ",{"2":{"162":1}}],["αi",{"2":{"146":1}}],["αd",{"2":{"140":1}}],["αd−1",{"2":{"109":3}}],["α1⋮αd",{"2":{"140":1}}],["α1",{"2":{"140":1}}],["α2",{"2":{"109":1}}],["αb=ae",{"2":{"146":1}}],["αb=a",{"2":{"61":1}}],["α",{"2":{"61":1,"109":14,"140":2,"146":6,"150":2,"152":1,"162":1}}],["$^3",{"2":{"157":1,"159":2}}],["$^2",{"2":{"146":20,"157":1,"159":2}}],["$n",{"2":{"116":1}}],["$1",{"2":{"96":1}}],["$",{"2":{"58":2,"116":3,"146":20,"157":1,"159":2,"240":6}}],["$e",{"2":{"46":1}}],["915",{"2":{"234":1}}],["998259",{"2":{"234":1}}],["99e",{"2":{"103":1,"104":1}}],["9",{"2":{"67":4,"68":1,"125":1,"146":3,"209":1,"254":18}}],["94",{"2":{"53":1}}],["97",{"2":{"53":1}}],["└──",{"2":{"38":3}}],["│",{"2":{"38":72}}],["├──",{"2":{"38":28}}],["570",{"2":{"278":1}}],["5313",{"2":{"234":1}}],["5>",{"2":{"146":2,"286":1}}],["5^",{"2":{"146":1}}],["5^2",{"2":{"51":1}}],["512",{"2":{"146":6}}],["5917",{"2":{"234":1}}],["59",{"2":{"106":2}}],["50",{"2":{"67":2}}],["5200",{"2":{"53":1}}],["58",{"2":{"53":1}}],["5",{"2":{"25":1,"28":1,"45":3,"46":4,"67":3,"68":10,"103":1,"105":1,"106":3,"107":6,"116":6,"124":3,"146":6,"176":1,"188":2,"190":1,"201":7,"215":1,"219":1,"227":1,"230":1,"232":1,"234":1,"238":1,"246":4,"249":2,"254":24,"261":2,"263":1,"280":3,"282":2,"284":9,"286":4,"297":2,"299":3,"301":1}}],["55",{"2":{"2":1,"104":1}}],["55ζ^5",{"2":{"2":1}}],["ϕi",{"2":{"19":1}}],["ϕ",{"2":{"19":1,"20":1}}],["⊗",{"2":{"18":1}}],["⊂",{"2":{"17":1}}],["ιk→k",{"2":{"120":1}}],["ι",{"2":{"17":5,"99":2,"104":1,"105":2,"106":1,"120":1}}],["^5",{"2":{"201":2}}],["^1",{"2":{"146":4}}],["^int",{"2":{"146":1}}],["^",{"2":{"133":1,"146":3}}],["^j",{"2":{"25":1}}],["^k",{"2":{"25":1}}],["^3",{"2":{"13":1,"17":1}}],["^2",{"2":{"13":1,"146":1,"196":5,"201":2,"301":1}}],["63",{"2":{"108":4}}],["62",{"2":{"105":1}}],["62e",{"2":{"104":1}}],["64",{"2":{"103":1,"151":1}}],["65",{"2":{"51":1}}],["6",{"2":{"13":2,"17":8,"54":2,"67":3,"68":2,"108":1,"146":2,"169":1,"201":6,"204":1,"206":3,"209":1,"225":2,"240":1,"246":3,"254":32,"255":3,"261":5,"284":4,"286":3,"295":1,"299":6}}],["vm",{"2":{"296":1}}],["vl",{"2":{"296":1}}],["vj",{"2":{"270":1}}],["v×v→e",{"2":{"270":1}}],["vol",{"2":{"300":4}}],["volume",{"2":{"228":1,"288":3,"289":1}}],["vocabulary",{"0":{"269":1},"1":{"270":1,"271":1},"2":{"269":1,"271":1}}],["vg",{"2":{"246":2}}],["vn",{"2":{"168":3,"270":1}}],["v1",{"2":{"168":3,"270":1}}],["v→vi",{"2":{"168":6}}],["v→v",{"2":{"164":1,"166":1}}],["v∈m∞",{"2":{"93":1}}],["vp×vp",{"2":{"172":1}}],["vp",{"2":{"93":1,"151":2,"166":1,"174":1}}],["vcat",{"2":{"87":2,"246":1}}],["v=dw",{"2":{"255":1}}],["v=qn",{"2":{"242":1}}],["v=",{"2":{"80":1}}],["vararg",{"2":{"168":3,"210":3,"257":3,"287":3}}],["varname=",{"2":{"116":1}}],["varname",{"2":{"116":2}}],["various",{"2":{"78":1,"88":3,"90":1}}],["variable=n",{"2":{"42":1}}],["variable",{"2":{"42":1,"116":1}}],["variety",{"2":{"15":1}}],["valence",{"2":{"88":6}}],["val",{"2":{"88":2,"239":2}}],["valuations",{"2":{"218":1,"239":2}}],["valuation",{"2":{"61":5,"111":3,"144":1,"147":16,"188":2,"218":5,"292":1}}],["valued",{"2":{"88":2}}],["valueiterator",{"2":{"68":2}}],["value",{"2":{"60":4,"63":1,"75":1,"84":1,"88":2,"103":1,"134":1,"184":2,"196":2,"197":6,"201":8,"202":2,"206":10,"218":4,"231":1,"246":1,"250":2,"253":6,"255":1,"266":1,"290":3,"292":1,"294":4,"296":5}}],["values",{"2":{"30":1,"67":2,"68":2,"195":1,"196":1,"209":1,"218":1,"229":1}}],["verlag",{"2":{"300":3}}],["verbose",{"2":{"96":1,"153":1}}],["vertically",{"2":{"87":2}}],["very",{"2":{"60":1,"68":2,"86":1,"116":1,"153":1}}],["version",{"2":{"60":1,"61":3,"148":1,"266":1,"278":2,"301":3}}],["versions",{"2":{"30":1,"121":1,"146":1}}],["versa",{"2":{"29":1}}],["vectors",{"0":{"264":1,"266":1,"267":1},"1":{"265":1,"266":1,"267":1},"2":{"60":2,"70":1,"71":1,"246":1,"248":1,"254":1,"266":13,"267":4,"276":1,"277":1}}],["vectorspace",{"2":{"14":1,"73":1}}],["vector",{"2":{"7":2,"8":2,"13":2,"14":1,"17":7,"18":1,"19":1,"23":1,"25":7,"32":2,"45":1,"47":1,"48":2,"53":3,"59":4,"61":1,"67":2,"68":1,"70":2,"71":2,"73":1,"74":3,"75":1,"80":4,"85":3,"87":1,"88":3,"90":2,"93":1,"94":1,"97":3,"98":2,"100":5,"106":1,"107":3,"108":1,"111":8,"112":8,"113":1,"116":2,"117":8,"120":2,"122":1,"124":6,"131":4,"132":3,"134":5,"138":1,"142":2,"144":4,"146":8,"147":3,"148":2,"150":5,"151":8,"152":1,"153":4,"158":1,"162":8,"164":1,"168":16,"180":2,"182":1,"186":1,"190":1,"195":2,"196":3,"199":2,"210":11,"211":4,"214":1,"215":1,"218":4,"219":5,"227":1,"229":1,"230":2,"231":2,"232":2,"234":1,"235":2,"238":1,"239":2,"240":2,"242":1,"248":2,"251":1,"253":2,"254":1,"255":7,"257":11,"258":1,"262":2,"266":4,"267":7,"270":1,"275":1,"276":1,"277":1,"278":4,"279":1,"280":3,"282":2,"283":6,"284":8,"286":2,"287":16,"289":1,"291":1,"292":3,"293":1,"294":1,"295":2,"297":2,"299":7}}],["vi",{"2":{"270":1}}],["view",{"2":{"270":1}}],["viewed",{"2":{"130":1}}],["vi→v",{"2":{"168":6}}],["vitepress",{"2":{"35":1}}],["vice",{"2":{"29":1}}],["via",{"2":{"13":1,"15":2,"68":1,"88":1,"131":1,"143":1,"146":2,"153":1,"181":1,"196":1}}],["v",{"2":{"8":1,"17":1,"68":4,"70":2,"71":2,"73":2,"80":1,"93":1,"111":3,"158":23,"160":18,"162":22,"164":12,"166":15,"168":9,"170":7,"172":6,"174":5,"193":2,"195":1,"196":2,"201":3,"242":2,"245":4,"246":10,"250":1,"255":13,"266":10,"267":3,"270":11,"271":4,"275":16,"285":4,"288":2,"290":2,"294":2,"298":4,"300":2}}],["02",{"2":{"151":1}}],["02e",{"2":{"107":2}}],["0≤bi",{"2":{"148":1}}],["0≤ij≤dj−1",{"2":{"117":1}}],["0≤n≤3",{"2":{"96":1}}],["09",{"2":{"108":4}}],["00",{"2":{"100":3,"108":8,"124":1,"230":1}}],["0",{"2":{"7":4,"11":3,"15":3,"17":10,"22":1,"25":40,"29":4,"32":4,"33":8,"48":6,"50":1,"64":22,"67":1,"68":3,"88":2,"93":1,"94":2,"100":3,"104":2,"105":2,"106":4,"107":1,"108":4,"118":1,"120":2,"122":1,"124":1,"134":1,"135":1,"142":3,"146":23,"157":10,"159":6,"161":2,"163":23,"165":6,"167":10,"169":6,"171":4,"188":3,"195":2,"196":9,"201":130,"208":2,"209":6,"215":32,"217":4,"219":28,"221":2,"223":2,"225":2,"227":32,"230":32,"232":31,"234":7,"236":2,"238":35,"240":1,"244":4,"246":554,"248":6,"249":2,"253":6,"254":84,"255":14,"261":92,"263":278,"266":2,"267":5,"278":80,"280":60,"282":17,"284":114,"286":39,"289":26,"291":23,"293":27,"294":4,"295":46,"296":4,"297":17,"299":64,"301":1}}],[">=",{"2":{"278":2}}],[">zmodh",{"2":{"246":1}}],[">",{"2":{"7":7,"8":2,"10":1,"13":5,"14":12,"15":2,"16":2,"17":22,"18":4,"19":2,"20":1,"22":1,"23":2,"24":2,"25":2,"26":3,"28":1,"32":2,"33":1,"45":2,"46":13,"48":5,"51":2,"52":2,"53":2,"54":1,"59":6,"60":5,"61":17,"64":1,"67":4,"68":4,"70":3,"71":3,"72":1,"74":3,"80":3,"81":3,"82":1,"83":7,"84":5,"85":1,"87":10,"88":21,"89":8,"90":10,"93":6,"94":7,"96":6,"97":5,"98":9,"100":2,"101":3,"102":1,"103":2,"107":7,"111":15,"112":6,"113":4,"114":7,"116":6,"117":8,"118":7,"119":12,"120":8,"121":4,"122":6,"123":4,"124":4,"125":3,"131":3,"132":6,"134":16,"136":9,"137":4,"138":9,"142":1,"144":17,"145":9,"146":24,"147":42,"148":10,"150":12,"151":29,"152":11,"154":2,"156":4,"158":8,"160":6,"162":7,"164":5,"166":2,"168":9,"169":4,"170":2,"172":1,"174":1,"178":1,"179":1,"180":1,"181":1,"182":11,"184":4,"185":1,"186":6,"187":1,"189":2,"190":13,"191":3,"192":1,"193":1,"195":1,"196":1,"197":9,"198":2,"199":2,"200":1,"201":10,"202":4,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":6,"214":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"229":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":5,"248":1,"249":4,"250":10,"251":2,"252":4,"253":5,"254":3,"255":11,"257":6,"258":2,"259":1,"261":6,"262":5,"263":2,"265":1,"266":5,"267":1,"275":4,"276":4,"277":4,"279":5,"281":4,"283":15,"285":9,"287":9,"288":3,"290":7,"292":3,"294":2,"296":3,"298":6}}],["8z",{"2":{"188":1,"209":1}}],["80",{"2":{"165":1}}],["81",{"2":{"106":2}}],["85",{"2":{"53":1,"54":2}}],["88",{"2":{"53":2}}],["8",{"2":{"4":1,"13":2,"17":3,"28":2,"67":1,"120":1,"213":1,"215":1,"219":1,"225":2,"227":2,"230":1,"232":1,"238":1,"240":1,"246":3,"254":38,"261":10,"263":1,"284":1}}],["yield",{"2":{"292":1}}],["yields",{"2":{"258":1}}],["y∈l",{"2":{"250":1,"288":1,"294":1}}],["y∈v",{"2":{"164":1}}],["y2=x3+a4x+a6which",{"2":{"57":1}}],["y2+h∗y=f",{"2":{"46":1}}],["y2+a1xy+a3y=x3+a2x2+a4x+a6specified",{"2":{"57":1}}],["y2+a1xy+a3y=x3+a2x2+a4x+a6",{"2":{"46":1}}],["yes",{"2":{"201":2}}],["yet",{"2":{"53":1}}],["year",{"2":{"4":1}}],["y",{"2":{"45":3,"46":2,"68":4,"90":6,"112":11,"132":2,"134":3,"144":6,"145":5,"147":4,"148":2,"164":2,"205":2,"250":1,"288":1,"294":2}}],["y^2",{"2":{"45":3,"46":2,"48":5,"50":1,"53":3,"54":2}}],["york",{"2":{"4":2,"300":2}}],["your",{"2":{"4":1,"36":1,"301":1}}],["j≤n∈en×n",{"2":{"270":1}}],["j≤d",{"2":{"151":1}}],["j2",{"2":{"246":1}}],["j=",{"2":{"80":3}}],["j$",{"2":{"42":1}}],["jordan",{"2":{"188":2,"190":2,"213":4,"214":1,"215":2,"216":1,"218":11,"224":2,"226":2,"238":1,"292":3,"293":1}}],["joins",{"2":{"87":2}}],["job",{"2":{"40":1}}],["johansson",{"2":{"4":2}}],["jl",{"2":{"38":23,"39":6,"43":1}}],["just",{"2":{"30":1,"43":1,"127":1,"129":1,"150":1,"151":2,"196":1,"262":2}}],["juliakissing",{"2":{"266":1}}],["juliakernel",{"2":{"262":1}}],["juliak3",{"2":{"246":1}}],["juliakummer",{"2":{"125":1}}],["juliauniformizer",{"2":{"222":1}}],["juliaunit",{"2":{"118":1,"146":2}}],["juliaoverlattice",{"2":{"261":1}}],["juliaoddity",{"2":{"190":1}}],["juliaorthogonal",{"2":{"162":1,"170":2,"200":1,"258":1,"285":1}}],["juliaorder",{"2":{"10":1,"14":1,"51":2,"138":1,"147":4,"150":5}}],["juliawitt",{"2":{"164":1,"281":1}}],["juliawildanger",{"2":{"116":1}}],["juliaquadratic",{"2":{"111":1,"116":1,"156":2,"186":1,"198":1,"276":4}}],["juliaquo",{"2":{"17":5,"148":1}}],["julia==",{"2":{"98":1,"132":1}}],["juliazzlocalgenus",{"2":{"188":1}}],["juliazzgenus",{"2":{"176":1}}],["juliazzmatrix",{"2":{"90":2}}],["juliazeta",{"2":{"152":1}}],["juliazero",{"2":{"22":1,"87":2}}],["juliadual",{"2":{"259":1,"285":1}}],["juliadot",{"2":{"90":3}}],["juliadenominator",{"2":{"134":1,"137":1}}],["juliadensity",{"2":{"88":1}}],["juliadense",{"2":{"85":1}}],["juliadecomposition",{"2":{"123":1}}],["juliadefining",{"2":{"97":1,"117":2}}],["juliadegree",{"2":{"97":1,"118":1,"147":1,"152":1,"283":1}}],["juliadets",{"2":{"218":1}}],["juliadet",{"2":{"88":2,"158":1,"182":1,"190":1,"218":2,"224":2,"250":1}}],["juliadivisibility",{"2":{"255":1}}],["juliadivision",{"2":{"48":1}}],["juliadim",{"2":{"158":1,"182":1,"190":1}}],["juliadimension",{"2":{"26":2}}],["juliadifferent",{"2":{"152":1}}],["juliadiagonal",{"2":{"88":1,"89":1,"162":2,"279":1}}],["juliadisc",{"2":{"54":1}}],["juliadiscriminant",{"2":{"46":3,"97":1,"118":1,"132":4,"134":4,"152":1,"158":1,"205":1,"218":2,"283":1}}],["juliadirect",{"2":{"18":1,"168":4,"181":1,"192":1,"210":2,"237":2,"257":2,"287":4}}],["juliavolume",{"2":{"288":1}}],["juliavalue",{"2":{"197":2}}],["juliavaluation",{"2":{"61":2,"111":1,"147":6}}],["juliavalence",{"2":{"88":1}}],["juliavcat",{"2":{"87":2}}],["juliavector",{"2":{"85":1}}],["julialang",{"2":{"301":1}}],["julialattice",{"2":{"245":1,"275":4}}],["julialocal",{"2":{"185":1,"231":1,"261":1,"292":1}}],["julialorenz",{"2":{"125":1}}],["julialeech",{"2":{"246":2}}],["julialevel",{"2":{"182":1,"190":1}}],["julialength",{"2":{"81":1,"216":1}}],["julialll",{"2":{"147":1,"150":1,"151":1,"265":1}}],["julialift",{"2":{"84":1,"199":1}}],["julianf",{"2":{"147":1,"151":1}}],["julianarrow",{"2":{"146":1}}],["julianumerator",{"2":{"137":1}}],["julianumber",{"2":{"14":2,"88":2,"96":1,"101":1,"116":2}}],["julianorms",{"2":{"218":1}}],["julianormal",{"2":{"98":1,"120":1,"123":1,"208":1}}],["julianorm",{"2":{"93":2,"114":2,"125":1,"134":1,"138":5,"147":5,"151":1,"182":1,"190":1,"218":2,"231":1,"250":1,"288":1}}],["julianorm2",{"2":{"83":1}}],["juliannz",{"2":{"88":1}}],["juliamukai",{"2":{"246":1}}],["juliamultiplicative",{"2":{"148":2}}],["juliamultiplicity",{"2":{"68":1}}],["juliamultiplicities",{"2":{"68":1}}],["juliamultiset",{"2":{"67":2}}],["juliamodulus",{"2":{"197":2}}],["juliamodular",{"2":{"61":1}}],["juliamod",{"2":{"84":3,"89":1,"148":1}}],["juliamass",{"2":{"186":1,"233":1,"251":1}}],["juliamap",{"2":{"89":1}}],["juliamatrix",{"2":{"75":1,"90":1}}],["juliamaximalorder",{"2":{"150":4}}],["juliamaximal",{"2":{"96":2,"261":1,"298":3}}],["juliamaximum",{"2":{"83":2,"84":1,"88":2}}],["juliamaxabs",{"2":{"63":1}}],["juliamax",{"2":{"63":1}}],["juliamset",{"2":{"67":1}}],["juliaminpoly",{"2":{"114":1,"134":1}}],["juliaminkowski",{"2":{"112":1,"134":1,"151":1}}],["juliaminimum",{"2":{"83":2,"88":1,"147":2,"266":1}}],["juliamin",{"2":{"63":1}}],["julia+",{"2":{"48":1,"151":1,"255":1,"285":1}}],["juliajordan",{"2":{"292":1}}],["juliaj",{"2":{"46":1}}],["juliajulia>",{"2":{"2":4,"17":4,"22":1,"24":1,"25":2,"26":3,"28":1,"29":3,"32":2,"33":1,"36":1,"43":2,"45":2,"46":2,"48":5,"50":1,"51":2,"52":2,"53":2,"54":1,"64":1,"67":3,"68":4,"100":2,"101":3,"102":1,"103":1,"104":1,"105":2,"106":1,"107":6,"108":1,"111":1,"116":6,"117":2,"118":2,"120":1,"124":3,"142":2,"146":2,"150":1,"196":2,"201":2,"206":1,"209":1,"244":1,"246":6,"248":1,"249":2,"254":5,"255":2,"261":2,"263":2,"267":1,"301":2}}],["juliabrown",{"2":{"209":1}}],["juliabiproduct",{"2":{"168":1,"210":1,"257":1,"287":1}}],["juliablock",{"2":{"87":1}}],["juliab",{"2":{"46":1}}],["juliabasis",{"2":{"23":1,"111":1,"117":2,"138":3,"147":4,"151":5,"249":1,"279":1}}],["juliabase",{"2":{"23":1,"46":4,"75":1,"97":2,"117":1,"158":1,"216":1,"231":1,"255":2,"283":2}}],["juliaade",{"2":{"254":1}}],["juliaadd",{"2":{"81":2,"89":2}}],["juliaambient",{"2":{"249":1,"279":1}}],["juliaany",{"2":{"150":1}}],["juliaautomorphism",{"2":{"122":2,"253":3,"294":2}}],["juliaalgebraic",{"2":{"111":1}}],["juliaabsolute",{"2":{"111":2,"114":3,"117":2,"118":2,"121":1,"134":2,"283":2}}],["juliaabelian",{"2":{"13":5,"53":1,"197":1}}],["juliaarray",{"2":{"90":1}}],["juliaa",{"2":{"46":1}}],["juliaglue",{"2":{"261":1}}],["juliagram",{"2":{"158":1,"162":2,"191":1,"197":2,"226":2,"249":1,"279":1,"283":1}}],["juliagroup",{"2":{"28":1}}],["juliagenerators",{"2":{"283":1}}],["juliagen",{"2":{"111":1,"151":1}}],["juliagenus",{"2":{"96":1,"178":1,"179":1,"189":2,"209":1,"235":1,"251":1}}],["juliagens",{"2":{"7":1,"25":2,"53":1,"111":1}}],["juliagetindex",{"2":{"7":1,"8":2,"81":1,"89":2}}],["juliacan",{"2":{"290":1}}],["juliacanonical",{"2":{"18":2}}],["juliaclose",{"2":{"267":1}}],["juliaclass",{"2":{"93":1,"118":1,"146":2}}],["juliacrt",{"2":{"148":1}}],["juliacyclotomic",{"2":{"116":1}}],["juliacharpoly",{"2":{"114":1,"134":1}}],["juliachange",{"2":{"82":1,"89":1}}],["juliacoinvariant",{"2":{"262":1}}],["juliacoxeter",{"2":{"254":1}}],["juliacover",{"2":{"197":1}}],["juliacodifferent",{"2":{"152":1}}],["juliacolon",{"2":{"145":1}}],["juliacoprime",{"2":{"144":1}}],["juliacoeff",{"2":{"111":1}}],["juliacoefficient",{"2":{"75":1,"283":1}}],["juliacoefficients",{"2":{"46":1,"111":1}}],["juliacoordinates",{"2":{"111":1,"132":1}}],["juliaconjugates",{"2":{"112":6,"134":2}}],["juliaconj",{"2":{"102":1}}],["juliaconductor",{"2":{"97":1}}],["juliacomponent",{"2":{"117":1}}],["juliacompositum",{"2":{"98":1,"120":1}}],["juliacomplex",{"2":{"100":1,"122":1,"124":1}}],["juliacompact",{"2":{"61":1}}],["juliac",{"2":{"46":1}}],["juliacenter",{"2":{"26":1}}],["juliatorquadmodule",{"2":{"196":1}}],["juliatorsion",{"2":{"14":1,"17":1,"111":1,"146":4,"195":1,"206":1}}],["juliat2",{"2":{"134":1}}],["juliatr",{"2":{"111":1,"134":1}}],["juliatranspose",{"2":{"87":1}}],["juliatransform",{"2":{"81":1,"89":1}}],["juliatrace",{"2":{"52":2,"151":1}}],["juliatensor",{"2":{"19":1}}],["juliairreducible",{"2":{"258":1}}],["juliaidempotents",{"2":{"147":2}}],["juliaideal",{"2":{"144":7}}],["juliaidentity",{"2":{"87":1}}],["juliainner",{"2":{"162":1,"198":1}}],["juliaindex",{"2":{"152":1}}],["juliain",{"2":{"145":1,"151":1,"235":2}}],["juliainteger",{"2":{"180":1,"244":1,"246":1}}],["juliaintegral",{"2":{"137":1}}],["juliaintersect",{"2":{"17":1,"98":1,"145":1,"255":1,"285":1}}],["juliainvariant",{"2":{"262":1}}],["juliainvariants",{"2":{"164":1}}],["juliainvolution",{"2":{"158":1,"283":1}}],["juliainv",{"2":{"136":1,"137":1}}],["juliainfinite",{"2":{"124":1}}],["juliainfinity",{"2":{"48":1}}],["juliainertia",{"2":{"123":1}}],["juliaiseven",{"2":{"182":1,"190":1,"250":1}}],["juliaisreal",{"2":{"124":1}}],["juliaiszero",{"2":{"88":1}}],["juliaisone",{"2":{"61":1,"88":1,"145":1}}],["juliaisfinite",{"2":{"14":1}}],["juliais",{"2":{"14":4,"15":1,"17":2,"24":3,"48":1,"64":1,"88":2,"97":4,"98":3,"101":2,"107":5,"113":5,"119":12,"120":1,"122":3,"124":1,"125":1,"145":3,"146":3,"147":3,"151":1,"152":3,"153":1,"154":2,"160":6,"164":2,"166":2,"172":1,"174":1,"182":2,"184":4,"201":2,"202":4,"203":1,"208":2,"209":1,"220":4,"231":1,"250":5,"252":3,"253":2,"255":4,"281":2,"290":6,"292":1,"296":3,"298":3}}],["juliapradical",{"2":{"151":1}}],["juliaprimitive",{"2":{"255":1,"285":1}}],["juliaprimes",{"2":{"182":1,"231":1}}],["juliaprime",{"2":{"98":1,"146":2,"190":1,"216":1}}],["juliaprincipal",{"2":{"120":1,"147":2}}],["juliapmaximal",{"2":{"151":1}}],["juliapoverorders",{"2":{"151":1}}],["juliapoverorder",{"2":{"151":1}}],["juliapower",{"2":{"146":3}}],["juliapicard",{"2":{"146":1}}],["juliapush",{"2":{"87":1}}],["juliapseudo",{"2":{"74":3,"75":2,"283":2}}],["juliapsubgroups",{"2":{"17":1}}],["juliaparent",{"2":{"7":1,"48":1,"132":1,"151":1}}],["juliahighest",{"2":{"254":1}}],["juliahilbert",{"2":{"94":1,"111":1}}],["juliahyperkaehler",{"2":{"246":1}}],["juliahyperbolic",{"2":{"246":1}}],["juliahyperelliptic",{"2":{"46":1}}],["juliahermitian",{"2":{"156":2,"239":2,"277":4}}],["juliahnf",{"2":{"88":4}}],["juliahadamard",{"2":{"88":1}}],["juliahasse",{"2":{"164":1,"190":1,"281":1}}],["juliahas",{"2":{"17":2,"147":3}}],["juliahcat",{"2":{"87":2}}],["juliahom",{"2":{"15":1,"19":1,"20":1}}],["juliashortest",{"2":{"266":1}}],["juliashort",{"2":{"266":2}}],["juliastable",{"2":{"211":1}}],["juliastructure",{"2":{"32":2,"33":1}}],["juliasymbol",{"2":{"190":1}}],["juliasylow",{"2":{"17":1}}],["juliasunit",{"2":{"146":3}}],["juliasubmodules",{"2":{"211":1}}],["juliasubfields",{"2":{"98":1,"120":1}}],["juliasubsets",{"2":{"70":4,"71":4,"72":1}}],["juliasubgroups",{"2":{"17":1}}],["juliasub",{"2":{"17":6,"87":1}}],["juliasimplified",{"2":{"121":1}}],["juliasimplify",{"2":{"61":2,"121":1}}],["juliasimple",{"2":{"121":1}}],["juliasignatures",{"2":{"231":1}}],["juliasignature",{"2":{"118":1,"151":1,"182":1,"190":1,"252":1}}],["juliasigns",{"2":{"107":1}}],["juliasign",{"2":{"107":1}}],["juliascales",{"2":{"218":1}}],["juliascale",{"2":{"89":1,"182":1,"190":1,"218":2,"231":1,"250":1,"288":1}}],["juliaswap",{"2":{"89":2}}],["juliasetindex",{"2":{"89":1}}],["juliasolve",{"2":{"88":1}}],["juliasparsity",{"2":{"88":1}}],["juliasparse",{"2":{"80":3,"85":1,"87":5,"90":1}}],["juliasaturate",{"2":{"17":1,"88":1}}],["juliasnf",{"2":{"16":1,"88":1,"203":1}}],["juliafractional",{"2":{"136":8}}],["juliafree",{"2":{"13":1}}],["juliafixed",{"2":{"122":1,"158":1,"283":2}}],["juliafind",{"2":{"16":1,"89":1}}],["juliafactor",{"2":{"61":5,"134":1,"144":2,"146":2}}],["juliafacelem",{"2":{"59":5}}],["juliaflat",{"2":{"18":1}}],["juliaembed",{"2":{"263":2}}],["juliaembedding",{"2":{"120":1}}],["juliaeuler",{"2":{"148":1}}],["juliaexcess",{"2":{"190":1}}],["juliaextend",{"2":{"106":1}}],["juliaexponent",{"2":{"14":1}}],["juliaevaluation",{"2":{"103":1}}],["juliaevaluate",{"2":{"60":4,"61":1}}],["juliaechelon",{"2":{"88":1}}],["juliaequationorder",{"2":{"150":1}}],["juliaequation",{"2":{"46":1}}],["juliaelem",{"2":{"132":1}}],["juliaelementary",{"2":{"14":1,"88":1}}],["juliaelliptic",{"2":{"45":2}}],["juliaroot",{"2":{"246":1,"254":2}}],["juliaring",{"2":{"94":1,"146":1,"151":1}}],["juliarational",{"2":{"186":1,"249":1,"279":1}}],["juliarationals",{"2":{"116":1}}],["juliaranks",{"2":{"218":1}}],["juliarank",{"2":{"158":1,"182":1,"190":1,"218":2,"231":1,"250":1,"283":1}}],["juliarand",{"2":{"7":2,"89":1,"134":1}}],["juliaramified",{"2":{"152":1}}],["juliaramification",{"2":{"123":1,"147":1}}],["juliaradical",{"2":{"116":1,"208":2}}],["juliaray",{"2":{"93":1,"94":4,"96":1}}],["juliarepresents",{"2":{"187":1,"193":1}}],["juliarepresentatives",{"2":{"186":1,"235":1}}],["juliarepresentative",{"2":{"186":1,"191":1,"199":1,"235":2}}],["juliarepresentation",{"2":{"111":1,"134":2}}],["juliarescale",{"2":{"186":1,"191":1,"207":1,"241":2,"248":1,"285":1}}],["juliaresidue",{"2":{"148":2}}],["juliarestrict",{"2":{"105":2,"162":1}}],["juliaregulator",{"2":{"118":1}}],["juliarelations",{"2":{"197":1}}],["juliarelative",{"2":{"118":1,"120":1}}],["juliarels",{"2":{"14":1}}],["juliareal",{"2":{"100":1,"124":1}}],["juliareverse",{"2":{"89":1}}],["juliareduced",{"2":{"152":1}}],["juliareduce",{"2":{"61":1,"88":1,"89":3}}],["julia>",{"2":{"2":10,"11":2,"13":2,"15":7,"17":16,"24":1,"25":3,"26":4,"29":3,"32":1,"33":1,"36":1,"45":2,"46":2,"48":9,"50":1,"51":5,"52":2,"53":5,"54":3,"64":3,"67":6,"68":9,"95":4,"96":7,"100":3,"101":3,"102":1,"103":3,"104":3,"105":6,"106":3,"107":13,"108":6,"111":4,"116":3,"117":4,"118":4,"120":2,"124":3,"142":11,"146":22,"150":2,"151":3,"157":5,"159":10,"161":8,"163":10,"165":9,"167":13,"169":6,"171":4,"173":7,"175":7,"196":7,"201":20,"206":3,"209":2,"215":11,"217":10,"219":15,"221":8,"223":8,"225":9,"227":12,"230":15,"232":14,"234":10,"236":15,"238":16,"240":7,"244":3,"246":30,"248":1,"249":2,"254":5,"255":14,"261":10,"263":5,"267":2,"278":22,"280":15,"282":12,"284":21,"286":14,"289":10,"291":14,"293":9,"295":10,"297":11,"299":15,"301":7}}],["julia",{"0":{"85":1},"2":{"2":1,"4":2,"7":2,"11":1,"13":2,"15":2,"17":1,"36":3,"42":2,"47":1,"59":1,"61":1,"68":2,"83":1,"85":1,"87":2,"90":7,"95":1,"96":1,"98":1,"103":1,"111":1,"120":1,"131":5,"142":1,"144":1,"146":1,"147":2,"151":6,"157":1,"159":1,"161":1,"163":1,"165":1,"167":1,"169":1,"171":1,"173":1,"175":1,"214":2,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"229":2,"230":1,"232":1,"234":1,"236":1,"238":1,"240":1,"255":1,"278":3,"280":1,"282":1,"284":1,"285":3,"286":1,"289":1,"291":1,"293":1,"295":1,"297":1,"299":1,"301":5}}],["jej=0",{"2":{"13":1}}],["j",{"2":{"13":1,"15":1,"17":1,"25":3,"32":2,"45":5,"46":2,"80":7,"81":3,"89":12,"132":2,"134":2,"164":1,"190":1,"300":2}}],["ub",{"2":{"266":4,"267":2}}],["u2",{"2":{"201":2}}],["u→o×",{"2":{"146":2}}],["u∈kr×n",{"2":{"73":1}}],["upperright",{"2":{"75":2}}],["upper",{"2":{"73":1,"75":2,"88":7,"89":4}}],["up",{"2":{"36":2,"112":1,"146":6,"166":1,"246":1,"266":3,"268":1,"278":1}}],["unvariate",{"2":{"128":1}}],["unsuccessful",{"2":{"125":1}}],["unspecified",{"2":{"64":1}}],["undefvarerror",{"2":{"169":1,"230":2}}],["undefined",{"2":{"116":1}}],["under",{"2":{"103":1,"112":1,"123":1,"134":1,"146":2,"211":1,"213":1,"222":1}}],["underlying",{"0":{"196":1},"2":{"68":1,"190":2,"195":1,"196":1,"197":1,"202":4,"203":2,"208":1,"250":1,"255":1,"283":1,"285":1}}],["until",{"2":{"88":1}}],["unlike",{"2":{"86":1}}],["unless",{"2":{"32":1,"40":1}}],["un",{"2":{"59":4}}],["universitext",{"2":{"300":1}}],["university",{"2":{"272":1,"300":1}}],["univariate",{"2":{"46":1,"116":1,"119":1,"127":1,"129":1}}],["uniformizer",{"0":{"222":1},"1":{"223":1},"2":{"222":1,"223":1,"224":1}}],["uniformly",{"2":{"7":2,"134":1}}],["unimodular",{"2":{"88":2,"184":2,"228":1,"246":3,"250":2,"254":1,"263":4}}],["union",{"2":{"68":4,"94":1,"111":2,"119":1,"164":3,"172":1,"184":2,"195":1,"202":2,"239":3,"241":2,"250":2,"255":2,"276":3,"281":3,"292":1}}],["unique",{"2":{"6":1,"14":1,"58":1,"61":2,"67":1,"68":2,"137":1,"143":1,"148":2,"149":1,"230":1,"236":1,"238":1,"240":1,"246":1,"283":1}}],["unitgroup",{"2":{"146":2,"153":1}}],["unitary",{"2":{"141":1,"149":1}}],["unity",{"2":{"96":1,"119":1}}],["units",{"2":{"58":1,"125":1,"146":16,"153":3}}],["unit",{"2":{"3":1,"58":1,"111":4,"113":4,"118":3,"134":1,"145":1,"146":11,"148":3,"153":3}}],["u⊂v",{"2":{"17":1}}],["u∩v",{"2":{"17":1}}],["u+v",{"2":{"17":1}}],["u",{"2":{"17":52,"73":2,"138":3,"146":10,"147":3,"162":1,"166":7,"188":2,"201":10,"246":1,"255":4,"263":1}}],["url",{"2":{"4":1}}],["usually",{"2":{"73":1,"97":1,"142":1}}],["usual",{"2":{"42":1,"81":1,"90":1,"133":1,"145":1}}],["users",{"2":{"268":1}}],["user",{"2":{"168":1,"287":1}}],["useful",{"2":{"61":1,"129":1,"204":1,"248":1}}],["uses",{"2":{"60":1,"61":1,"88":3,"125":1}}],["use",{"2":{"30":1,"40":1,"61":1,"97":1,"146":1,"150":1,"196":1,"230":1,"235":6,"254":1,"285":1,"301":2}}],["used",{"2":{"7":1,"14":1,"20":1,"61":1,"62":1,"75":2,"97":1,"116":7,"138":1,"139":1,"146":2,"147":1,"195":2,"253":3,"278":3,"283":1,"294":2,"296":2}}],["using",{"2":{"8":1,"18":1,"29":2,"36":1,"42":1,"46":1,"61":2,"78":1,"88":3,"94":1,"96":1,"97":1,"116":2,"121":2,"147":1,"148":1,"149":1,"151":1,"167":1,"301":3}}],["usage",{"2":{"168":1,"287":1}}],["usa",{"2":{"4":2}}],["us",{"2":{"4":1}}],["lxxiv+703",{"2":{"300":1}}],["lherm",{"2":{"278":3,"280":4,"284":16,"289":4,"291":6,"299":7}}],["lquad2",{"2":{"282":4,"286":3,"297":3}}],["lquad",{"2":{"278":1,"280":3,"282":5,"286":6,"293":4,"295":4,"297":3}}],["l⊗oee",{"2":{"271":1}}],["l⊗zp≅m⊗zp",{"2":{"253":1}}],["lb",{"2":{"266":4,"267":3}}],["lk3",{"2":{"263":3}}],["lg",{"2":{"262":3}}],["l=⨁i=1naixi",{"2":{"283":1}}],["l=⨁ili",{"2":{"258":1}}],["l=zrb",{"2":{"242":1}}],["l=k",{"2":{"111":2,"116":1,"117":3,"129":2}}],["l2",{"2":{"236":3}}],["ln",{"2":{"233":1,"246":3,"257":3,"287":3}}],["l1",{"2":{"233":1,"236":3,"257":3,"287":3}}],["lcm",{"2":{"145":1}}],["lmfdb",{"2":{"121":1}}],["lll",{"0":{"264":1,"265":2},"1":{"265":1,"266":1,"267":1},"2":{"121":2,"147":2,"150":2,"151":2,"265":2}}],["l→l",{"2":{"294":1}}],["l→li",{"2":{"257":6,"287":6}}],["l→k",{"2":{"120":1}}],["l→r",{"2":{"104":1}}],["l→c",{"2":{"99":1,"104":1,"120":1}}],["lp=⊥i=1tliwhere",{"2":{"213":1}}],["lp",{"2":{"93":2,"142":2,"144":4,"146":4,"213":1,"290":2,"292":1,"298":4}}],["lt",{"2":{"68":1,"103":1,"112":7,"134":2,"148":1,"151":1,"164":1,"190":1,"196":2,"213":2,"266":4,"267":2}}],["leech",{"2":{"246":6}}],["left",{"2":{"136":2,"144":1,"196":1,"283":1,"285":1}}],["less",{"2":{"112":2,"134":3,"151":1,"152":1}}],["let",{"2":{"73":1,"86":1,"109":1,"112":1,"141":1,"158":1,"160":1,"164":1,"166":2,"172":2,"174":2,"182":2,"186":1,"190":2,"208":1,"209":1,"213":3,"224":1,"228":3,"233":2,"270":2,"271":1,"283":1,"285":1,"288":1,"290":1,"294":1}}],["level",{"2":{"43":1,"96":1,"153":1,"182":2,"190":1}}],["least",{"2":{"40":1}}],["length",{"2":{"7":1,"45":1,"47":2,"48":1,"67":1,"68":1,"81":1,"111":1,"120":1,"216":1,"217":1,"230":1,"236":2,"254":1,"266":1,"276":1,"277":1,"292":1}}],["lower",{"2":{"136":2,"144":1}}],["lowerleft",{"2":{"75":2}}],["lorenz",{"2":{"125":2}}],["log⁡",{"2":{"112":2,"134":2}}],["log",{"2":{"54":3,"104":3,"112":5,"134":2,"152":2}}],["logarithmic",{"0":{"104":1},"2":{"104":1}}],["logarithms",{"2":{"78":1,"112":1}}],["logarithm",{"0":{"54":1},"2":{"54":1,"153":1}}],["long",{"0":{"40":1},"2":{"40":4,"42":2}}],["local",{"0":{"185":1,"188":1,"213":1,"214":1,"222":1,"292":1},"1":{"189":1,"190":1,"191":1,"192":1,"193":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":2,"224":1,"225":1,"226":1,"227":1,"293":1},"2":{"98":6,"111":1,"113":3,"164":1,"176":2,"182":1,"185":2,"188":1,"189":2,"190":2,"191":4,"192":1,"193":1,"213":3,"214":2,"215":2,"216":3,"218":22,"220":4,"222":1,"224":4,"226":4,"228":1,"229":1,"230":1,"231":3,"235":3,"237":2,"238":2,"239":3,"240":16,"241":2,"246":13,"251":1,"261":2,"263":2,"272":1,"292":1,"293":1}}],["locally",{"2":{"3":1,"151":1,"166":4,"167":3,"172":1,"174":3,"175":1,"253":2,"261":2,"290":1,"296":2,"297":1,"298":2}}],["located",{"2":{"34":1}}],["l",{"2":{"32":4,"67":3,"99":1,"105":5,"111":12,"113":3,"114":3,"116":3,"117":13,"118":13,"119":16,"120":14,"121":5,"122":12,"123":5,"129":3,"141":4,"164":4,"178":2,"182":6,"186":2,"189":2,"190":6,"193":1,"196":2,"205":6,"209":2,"213":12,"214":2,"215":2,"219":2,"227":2,"228":15,"229":2,"230":2,"232":2,"233":14,"234":2,"235":11,"238":3,"242":6,"244":4,"246":33,"247":1,"248":4,"249":14,"250":29,"251":4,"252":8,"253":15,"254":14,"255":22,"257":9,"258":5,"259":2,"260":1,"261":12,"262":19,"263":2,"265":5,"266":12,"267":7,"271":10,"278":1,"279":10,"281":8,"283":39,"285":25,"287":9,"288":20,"290":19,"292":10,"294":16,"296":12,"298":33}}],["li→l",{"2":{"257":6,"287":6}}],["li",{"2":{"186":1,"213":8,"233":2,"258":1,"292":1}}],["limit",{"2":{"146":4}}],["library",{"2":{"128":1}}],["link",{"2":{"94":1}}],["line",{"2":{"88":1}}],["linearly",{"2":{"119":2}}],["linear",{"0":{"77":1},"1":{"78":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1},"2":{"3":1,"6":1,"32":1,"73":1,"78":3,"88":1,"109":1,"119":1,"121":2,"131":1,"141":1,"164":1,"166":1,"270":1}}],["like",{"2":{"88":1,"116":1}}],["lifting",{"2":{"84":1,"88":1}}],["lift",{"0":{"199":1},"2":{"84":1,"196":3,"199":3,"246":1}}],["live",{"2":{"58":1,"255":1}}],["lies",{"2":{"47":1,"48":1,"151":1,"255":2}}],["lists",{"2":{"67":1,"188":1,"190":1,"254":1,"292":1}}],["list",{"2":{"13":1,"29":1,"48":1,"53":1,"57":2,"67":2,"68":1,"93":1,"98":1,"111":1,"116":1,"122":3,"152":1,"180":1,"182":1,"186":2,"188":3,"231":1,"262":2,"266":1,"275":1,"276":1,"277":1,"283":1}}],["la",{"2":{"285":2,"290":1}}],["lazy",{"2":{"94":1}}],["last",{"2":{"88":1}}],["lasvegas",{"2":{"88":1}}],["larger",{"2":{"87":1,"89":1,"151":1}}],["largest",{"2":{"63":2,"83":2,"84":1,"88":2,"94":2,"111":1,"147":5,"152":1,"213":1,"222":1,"258":1,"285":1}}],["large",{"2":{"58":3,"93":1,"116":1,"127":1}}],["latest",{"2":{"301":1}}],["later",{"2":{"18":1}}],["latter",{"2":{"160":1}}],["lattices",{"0":{"176":1,"212":1,"242":1,"243":1,"246":1,"254":1,"271":1,"273":1,"274":1,"294":1,"298":1},"1":{"177":1,"178":1,"179":1,"180":1,"181":1,"182":1,"183":1,"184":1,"185":1,"186":1,"187":1,"188":1,"189":1,"190":1,"191":1,"192":1,"193":1,"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"243":1,"244":2,"245":2,"246":2,"247":2,"248":2,"249":1,"250":1,"251":1,"252":1,"253":1,"255":1,"256":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1,"274":1,"275":2,"276":2,"277":2,"278":2,"279":1,"280":1,"281":1,"282":1,"283":1,"284":1,"285":1,"286":1,"287":1,"288":1,"289":1,"290":1,"291":1,"292":1,"293":1,"294":1,"295":2,"296":1,"297":1,"298":1,"299":2},"2":{"3":1,"158":1,"176":3,"180":1,"182":1,"184":4,"186":1,"191":1,"195":1,"196":2,"204":1,"209":4,"213":1,"214":1,"215":2,"216":3,"218":14,"220":4,"222":1,"224":3,"226":2,"229":1,"230":2,"231":5,"235":4,"237":2,"238":2,"239":2,"240":21,"241":2,"242":2,"246":6,"247":1,"248":1,"250":2,"253":1,"255":9,"257":3,"261":2,"263":2,"265":1,"268":4,"271":4,"272":2,"278":5,"281":2,"285":5,"287":4,"294":3,"296":3,"300":1}}],["lattice",{"0":{"178":1,"205":1,"259":1,"276":1,"277":1},"1":{"278":1},"2":{"3":1,"118":1,"176":2,"178":1,"179":1,"182":2,"189":1,"190":4,"191":1,"195":1,"196":3,"201":2,"205":1,"209":3,"213":3,"214":1,"215":1,"218":3,"219":1,"226":2,"227":1,"228":2,"229":1,"230":1,"231":4,"232":1,"233":4,"234":1,"235":5,"236":2,"238":1,"242":2,"244":5,"245":3,"246":51,"248":3,"249":5,"250":9,"251":2,"252":3,"253":2,"254":29,"255":14,"258":1,"259":2,"261":17,"262":14,"263":8,"265":2,"267":1,"271":5,"275":13,"276":19,"277":13,"278":13,"279":5,"280":2,"281":4,"282":4,"283":16,"284":1,"285":17,"286":2,"288":4,"289":1,"290":9,"291":1,"292":6,"293":1,"294":3,"295":1,"297":2,"298":15,"299":7}}],["language",{"2":{"4":2,"92":2,"270":1,"271":1}}],["lying",{"2":{"2":1,"113":1,"146":1,"218":3,"239":1,"241":2}}],["48",{"2":{"295":1}}],["488",{"2":{"234":1}}],["40",{"2":{"282":1,"286":1,"297":1}}],["4^1",{"2":{"246":1}}],["4653462",{"2":{"234":1}}],["4>",{"2":{"230":1,"232":1,"238":1}}],["4197",{"2":{"234":1}}],["41",{"2":{"104":2}}],["41e",{"2":{"103":1}}],["4331",{"2":{"234":1}}],["4348",{"2":{"234":1}}],["43",{"2":{"54":2,"300":1}}],["426",{"2":{"278":1}}],["42",{"2":{"53":1}}],["45",{"2":{"17":1,"165":1}}],["4",{"2":{"2":1,"11":2,"13":1,"15":1,"17":8,"45":2,"46":4,"48":1,"64":10,"67":11,"68":9,"96":1,"104":1,"116":1,"117":1,"139":1,"142":1,"146":4,"190":2,"196":4,"201":14,"209":2,"215":2,"219":2,"227":5,"230":2,"232":4,"233":1,"234":1,"238":5,"240":2,"244":2,"246":4,"249":2,"254":29,"255":1,"261":16,"272":1,"278":10,"280":5,"284":7,"289":2,"291":2,"299":15}}],["347",{"2":{"272":1}}],["346573590",{"2":{"104":1}}],["346573590279972654708616060729088284037750067180127627",{"2":{"104":1}}],["337",{"2":{"272":1}}],["3345554",{"2":{"234":1}}],["3780",{"2":{"234":1}}],["371",{"2":{"190":1}}],["370",{"2":{"190":1}}],["3^2",{"2":{"146":1}}],["3^1",{"2":{"146":1,"246":1}}],["32",{"2":{"103":1,"134":1}}],["35",{"2":{"68":1,"282":1,"286":1,"297":1}}],["30250",{"2":{"278":1}}],["3088",{"2":{"234":1}}],["3087611",{"2":{"4":2}}],["3087604",{"2":{"4":2}}],["3004",{"2":{"234":1}}],["30",{"2":{"17":2,"240":1,"261":1,"282":1,"286":1,"297":1,"300":1}}],["39",{"2":{"4":1,"111":2,"117":1,"121":1,"146":2,"162":1,"193":2,"197":2,"214":1,"228":1,"233":1,"246":2,"283":3}}],["3",{"2":{"2":1,"11":2,"13":1,"15":3,"17":12,"25":2,"32":1,"33":2,"42":2,"45":5,"46":4,"47":1,"50":1,"67":5,"68":10,"100":2,"101":4,"102":1,"103":2,"105":2,"107":2,"108":1,"111":2,"116":4,"117":1,"125":1,"139":1,"146":23,"157":2,"159":3,"161":1,"163":1,"164":1,"167":1,"169":1,"173":1,"175":1,"188":1,"193":1,"196":1,"201":60,"206":5,"209":1,"213":1,"215":2,"219":3,"227":4,"230":3,"232":3,"234":6,"236":4,"238":3,"240":7,"246":6,"254":27,"255":7,"261":18,"263":2,"267":1,"278":11,"280":8,"282":6,"284":12,"286":7,"289":1,"291":1,"293":2,"295":2,"297":4,"299":3,"301":1}}],["sssr",{"2":{"300":1}}],["s+r⊆l",{"2":{"261":2}}],["s→t",{"2":{"203":1}}],["s2",{"2":{"192":1}}],["s1",{"2":{"192":1,"213":3}}],["sqrt",{"2":{"116":1}}],["squared",{"2":{"254":1,"266":1}}],["squares",{"2":{"164":1,"288":1}}],["square",{"2":{"60":2,"88":2,"156":2}}],["swap",{"2":{"89":4}}],["sloane",{"2":{"176":1,"300":1}}],["slp",{"2":{"88":1}}],["slices",{"2":{"87":1}}],["sf",{"2":{"88":3}}],["scales",{"2":{"218":2,"219":1}}],["scale",{"2":{"89":1,"180":8,"182":3,"190":6,"213":2,"215":2,"218":4,"228":1,"231":2,"238":1,"239":10,"246":1,"250":3,"288":3,"289":1,"290":3,"291":1,"292":1}}],["scaled",{"2":{"81":4,"89":4,"207":1}}],["scalars",{"2":{"81":1,"90":2,"162":5}}],["sctable",{"2":{"32":2}}],["srow",{"2":{"79":3,"80":3,"81":10,"82":2,"83":5,"84":9,"85":1,"86":1,"87":1,"88":4,"89":9,"90":4,"146":1}}],["src",{"2":{"34":1,"35":1,"38":3,"39":4}}],["sheaves",{"2":{"246":2}}],["sharing",{"2":{"98":1}}],["share",{"2":{"30":1}}],["shape",{"2":{"75":2}}],["shapes",{"2":{"17":3}}],["shortest",{"2":{"248":1,"266":2}}],["shortcut",{"2":{"93":1}}],["shortcuts",{"2":{"13":1}}],["short",{"0":{"264":1,"266":1},"1":{"265":1,"266":1,"267":1},"2":{"30":1,"57":1,"61":1,"141":1,"266":4}}],["shorthand",{"2":{"28":1}}],["should",{"2":{"18":2,"39":1,"58":1,"94":1,"116":2,"168":6,"201":2,"210":6,"257":6,"287":6}}],["show",{"2":{"17":2,"121":1}}],["springer",{"2":{"300":4}}],["spheres",{"2":{"266":1}}],["sphere",{"2":{"266":2,"300":1}}],["splitting",{"2":{"93":1,"98":1,"258":1}}],["split",{"2":{"61":2,"111":2,"137":2,"201":2,"220":3,"221":1,"228":1}}],["spans",{"2":{"281":2,"292":1}}],["spanned",{"2":{"245":1,"254":1,"275":3,"276":3,"277":3}}],["span",{"0":{"279":1},"1":{"280":1},"2":{"88":1,"162":1,"228":1,"231":1,"242":1,"249":5,"252":3,"255":1,"271":1,"279":12,"280":4,"281":2,"283":3,"290":3}}],["sparsity",{"2":{"88":2}}],["sparsematrixcsc",{"2":{"90":2}}],["sparse",{"0":{"77":1,"79":1,"84":1,"86":1},"1":{"78":1,"79":1,"80":2,"81":2,"82":2,"83":2,"84":2,"85":2,"86":1,"87":2,"88":2,"89":2,"90":2},"2":{"3":1,"78":3,"79":5,"80":6,"81":1,"82":1,"84":1,"85":2,"86":7,"87":16,"88":3,"89":11,"90":3,"127":1}}],["space",{"0":{"245":1,"275":1,"279":1},"1":{"280":1},"2":{"86":1,"117":1,"156":12,"157":4,"158":11,"159":2,"160":9,"161":2,"162":10,"163":2,"164":2,"165":2,"167":4,"169":11,"170":2,"171":1,"172":2,"173":1,"174":3,"175":1,"186":4,"195":1,"196":1,"199":1,"201":1,"213":1,"242":3,"244":1,"245":1,"246":3,"248":1,"249":7,"250":1,"253":1,"255":9,"261":1,"262":3,"265":1,"270":6,"271":2,"275":4,"276":8,"277":8,"279":4,"280":3,"283":2,"285":9,"286":2,"288":1,"294":1,"298":4,"299":1}}],["spaces",{"0":{"155":1,"156":1,"172":1,"174":1,"270":1},"1":{"156":1,"157":2,"158":1,"159":1,"160":1,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"167":1,"168":1,"169":1,"170":1,"171":1,"172":1,"173":2,"174":1,"175":2},"2":{"38":2,"157":1,"158":1,"164":5,"166":3,"167":2,"168":6,"257":3,"268":4,"270":6,"287":3,"294":2,"296":2}}],["special",{"0":{"61":1,"246":1},"2":{"58":1,"87":1,"147":2,"268":1}}],["specify",{"2":{"74":1}}],["specifying",{"2":{"29":1,"109":1,"111":1,"140":1}}],["specifies",{"2":{"116":2}}],["specified",{"2":{"45":1,"46":1,"47":1,"57":1,"75":2,"94":1,"146":1,"244":2}}],["specifically",{"2":{"40":1,"92":1}}],["specific",{"2":{"17":2,"30":1,"57":1,"196":1}}],["speed",{"2":{"36":2}}],["solution",{"2":{"113":1}}],["solve",{"2":{"88":2,"196":1}}],["sometimes",{"2":{"270":1,"271":1,"287":1}}],["some",{"2":{"27":1,"73":5,"75":3,"92":1,"113":1,"116":2,"119":2,"131":1,"150":1,"166":1,"167":1,"184":2,"187":2,"191":1,"202":2,"246":2,"250":2,"255":1,"263":2,"278":1,"300":1}}],["so",{"2":{"17":1,"68":1,"92":1,"112":1,"141":1,"159":1,"266":3,"290":1}}],["sophisticated",{"2":{"17":1}}],["source",{"2":{"7":7,"8":2,"10":1,"13":6,"14":12,"15":2,"16":2,"17":21,"18":4,"19":2,"20":1,"22":1,"23":2,"24":3,"25":2,"26":3,"28":1,"32":2,"33":1,"38":1,"43":1,"45":2,"46":14,"48":5,"51":2,"52":2,"53":2,"54":1,"59":6,"60":4,"61":15,"63":3,"64":1,"67":3,"68":4,"70":4,"71":4,"72":1,"74":3,"75":5,"80":3,"81":5,"82":1,"83":6,"84":5,"85":3,"87":16,"88":27,"89":19,"90":12,"93":4,"94":6,"96":5,"97":10,"98":10,"100":2,"101":3,"102":1,"103":1,"105":2,"106":1,"107":7,"111":15,"112":7,"113":5,"114":7,"116":7,"117":8,"118":9,"119":12,"120":8,"121":4,"122":7,"123":4,"124":5,"125":4,"131":5,"132":8,"134":19,"136":9,"137":4,"138":9,"144":11,"145":7,"146":24,"147":37,"148":8,"150":12,"151":26,"152":11,"153":1,"154":2,"156":4,"158":8,"160":6,"162":7,"164":5,"166":2,"168":5,"170":2,"172":1,"174":1,"176":1,"178":1,"179":1,"180":1,"181":1,"182":11,"184":4,"185":1,"186":6,"187":1,"188":1,"189":2,"190":13,"191":3,"192":1,"193":1,"195":1,"196":1,"197":9,"198":2,"199":2,"200":1,"201":2,"202":4,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":3,"211":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":8,"248":1,"249":4,"250":10,"251":2,"252":4,"253":5,"254":5,"255":12,"257":3,"258":2,"259":1,"261":4,"262":3,"263":2,"265":1,"266":5,"267":1,"275":4,"276":4,"277":4,"278":2,"279":5,"281":4,"283":15,"285":9,"287":5,"288":3,"290":7,"292":3,"294":2,"296":3,"298":6}}],["system",{"2":{"73":3,"84":3,"89":2,"254":2,"301":1}}],["syntax",{"2":{"28":1,"29":2}}],["sylow",{"2":{"17":3}}],["symmetric",{"2":{"84":2,"89":2,"156":1,"190":1,"270":1,"300":1}}],["sym",{"2":{"84":4,"89":2,"133":1}}],["symbols",{"0":{"180":1,"181":1,"188":1,"213":1,"214":1,"228":1,"229":1},"1":{"189":1,"190":1,"191":1,"192":1,"193":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"229":1,"230":2,"231":1,"232":1,"233":1,"234":1},"2":{"75":1,"164":1,"176":2,"182":1,"188":1,"228":1,"229":2,"230":2,"231":3,"237":2,"238":1,"239":2,"246":1}}],["symbol",{"0":{"185":1},"2":{"19":1,"20":1,"75":1,"111":3,"116":2,"168":2,"176":2,"182":1,"185":3,"186":2,"188":5,"189":2,"190":1,"191":2,"213":1,"214":3,"215":2,"216":3,"218":17,"220":4,"222":1,"224":3,"226":4,"228":1,"229":2,"230":1,"231":9,"235":7,"237":2,"238":2,"240":21,"241":4,"246":22,"254":3,"263":3,"287":2}}],["symbolic",{"2":{"4":1}}],["symposium",{"2":{"4":1}}],["small",{"2":{"28":1,"58":1,"61":3,"111":1,"121":1,"122":1,"146":3,"272":1}}],["smaller",{"2":{"25":2,"58":1,"121":1}}],["smallest",{"2":{"17":1,"63":1,"83":2,"88":1,"89":1,"111":1,"134":1,"137":1,"147":2,"151":1}}],["smatslp",{"2":{"88":1}}],["smat",{"2":{"17":2,"85":1,"86":2,"87":25,"88":38,"89":20,"90":12}}],["smith",{"0":{"203":1},"2":{"14":1,"16":1,"88":2,"195":1,"203":2}}],["s",{"0":{"186":1},"2":{"17":7,"59":2,"67":1,"68":15,"70":6,"71":6,"72":2,"88":2,"93":2,"96":1,"109":1,"113":1,"116":6,"117":1,"121":1,"125":2,"137":1,"138":5,"145":1,"146":6,"147":5,"151":8,"154":2,"162":3,"188":3,"190":14,"191":2,"200":2,"203":2,"213":1,"214":1,"228":2,"229":3,"233":1,"246":14,"258":2,"261":9,"263":6,"283":3,"288":1}}],["superlattice",{"2":{"292":1}}],["supermodule",{"2":{"292":1}}],["suppose",{"2":{"213":1,"233":1}}],["supports",{"2":{"176":1}}],["support",{"2":{"7":1,"16":1,"81":1,"90":1}}],["supported",{"2":{"5":1,"87":1,"105":1,"109":1,"145":1,"153":1,"176":1,"180":1}}],["supplemented",{"2":{"113":1}}],["supply",{"2":{"51":1}}],["supplied",{"2":{"32":1,"54":1,"116":2,"150":2,"276":4,"277":4}}],["surface",{"2":{"246":3}}],["surrounding",{"2":{"131":1}}],["sunits",{"2":{"146":1}}],["sunit",{"2":{"146":4,"153":3}}],["successful",{"2":{"113":1}}],["such",{"2":{"14":1,"15":1,"16":1,"25":1,"38":1,"46":3,"48":2,"61":1,"64":1,"73":1,"88":1,"89":2,"92":1,"99":1,"109":2,"111":2,"112":3,"113":1,"117":1,"123":1,"134":2,"135":1,"136":1,"137":2,"140":1,"145":1,"146":5,"147":7,"148":1,"151":3,"162":3,"164":1,"166":1,"172":1,"174":2,"180":1,"188":1,"196":1,"201":1,"203":1,"209":1,"213":1,"226":2,"255":2,"261":2,"265":1,"266":2,"267":1,"283":2,"290":4,"292":1,"294":1,"298":2}}],["suitable",{"2":{"96":1,"301":1}}],["suite",{"2":{"40":2,"42":1}}],["submodule",{"2":{"200":4,"242":1,"258":3,"271":1,"285":3,"292":1}}],["submodules",{"0":{"200":1,"211":1},"2":{"211":12}}],["submatrix",{"2":{"17":1,"87":1}}],["sublattices",{"0":{"258":1,"262":1},"2":{"254":3,"261":1,"292":1}}],["sublattice",{"2":{"195":1,"196":1,"254":4,"255":7,"262":1,"292":1}}],["subspace",{"2":{"170":2}}],["subsetitr",{"2":{"70":1,"71":1}}],["subsetsizeitr",{"2":{"70":1,"71":1,"72":1}}],["subsets",{"2":{"70":1,"71":1,"72":1}}],["subset",{"0":{"43":1},"2":{"25":2,"38":1,"43":1}}],["subrings",{"2":{"149":1}}],["subring",{"2":{"109":1,"139":1}}],["subfields",{"0":{"120":1},"2":{"96":1,"98":3,"120":6}}],["subfield",{"2":{"94":2,"96":6,"98":3,"105":2,"106":1,"114":1,"120":8,"157":2,"159":3,"161":1,"162":1,"163":1,"165":4,"167":1,"171":1,"173":1,"175":1,"240":1}}],["subtype",{"2":{"17":4,"211":2}}],["subtraction",{"2":{"15":1}}],["sub",{"0":{"65":1,"69":1,"70":1,"71":1,"72":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2},"2":{"17":8,"70":4,"71":4,"72":1,"87":1,"201":2}}],["subgroup",{"2":{"17":23,"93":2,"94":1,"123":6,"146":3}}],["subgroups",{"0":{"17":1},"2":{"16":1,"17":11}}],["sums",{"0":{"192":1},"2":{"18":1,"168":4,"209":1,"210":3,"257":3,"287":4}}],["sum",{"0":{"237":1},"1":{"238":1},"2":{"15":2,"18":2,"32":1,"68":2,"73":1,"112":1,"168":16,"174":1,"181":4,"192":3,"201":2,"210":8,"237":8,"238":2,"255":1,"257":8,"261":1,"263":1,"285":1,"287":14}}],["snf",{"2":{"14":2,"16":1,"88":3,"195":2,"203":3}}],["say",{"2":{"39":2,"160":2,"213":1,"228":1}}],["satisfied",{"2":{"134":1}}],["satisfies",{"2":{"32":1,"112":4,"134":2,"226":2,"266":2}}],["satisfying",{"2":{"298":3}}],["satisfy",{"2":{"103":2,"229":1}}],["saturation",{"2":{"88":1}}],["saturate",{"2":{"17":1,"88":1,"285":1}}],["said",{"2":{"12":1,"73":1,"158":1,"160":1,"166":1,"172":1,"174":1,"176":1,"290":2}}],["same",{"2":{"7":1,"17":2,"30":1,"36":1,"39":1,"67":1,"79":1,"87":1,"90":5,"98":1,"105":1,"116":2,"119":1,"139":1,"143":1,"144":1,"146":2,"149":1,"150":1,"164":1,"166":3,"168":1,"176":1,"213":1,"228":1,"233":1,"235":1,"237":1,"255":8,"265":3,"285":5,"292":1,"294":1,"298":1}}],["sample",{"0":{"0":1}}],["st",{"2":{"213":3}}],["store",{"2":{"196":1}}],["stored",{"2":{"8":1,"278":1}}],["stops",{"2":{"93":1}}],["style",{"2":{"88":1}}],["strictly",{"2":{"213":1}}],["strict",{"2":{"93":1,"146":1}}],["string",{"2":{"67":3,"116":4}}],["straight",{"2":{"88":1}}],["stronger",{"2":{"68":1}}],["str",{"2":{"67":2}}],["structureconstantalgebra",{"2":{"22":1,"26":1,"32":1,"33":1,"168":4,"287":4}}],["structure",{"0":{"31":1,"33":1,"38":1,"53":1},"1":{"32":1,"33":1,"39":1,"40":1},"2":{"22":2,"26":1,"30":1,"32":7,"33":4,"43":1,"58":1,"73":2,"95":1,"96":1,"98":1,"141":2,"143":1,"149":4,"196":1}}],["structural",{"0":{"16":1},"1":{"17":1,"18":1,"19":1,"20":1},"2":{"16":1}}],["still",{"2":{"61":1,"73":1,"167":1}}],["steps",{"2":{"301":1}}],["step",{"2":{"36":2}}],["stable",{"2":{"211":2,"246":2,"301":1}}],["stabilises",{"2":{"88":1}}],["statement",{"2":{"193":1}}],["started",{"0":{"301":1}}],["starts",{"2":{"94":1,"142":1}}],["starting",{"2":{"89":2}}],["stay",{"2":{"30":1}}],["standard",{"2":{"7":1,"9":1,"275":1}}],["si",{"2":{"213":1,"292":2}}],["side",{"2":{"196":1,"246":1}}],["sig",{"2":{"180":2}}],["sigma",{"2":{"122":1}}],["sign",{"2":{"62":1,"107":2,"116":1,"180":1,"266":3}}],["signs",{"0":{"62":1,"107":1},"2":{"62":2,"107":3}}],["signatures",{"2":{"209":1,"228":1,"229":5,"231":3,"232":1,"239":3,"246":6,"263":1}}],["signature",{"2":{"30":1,"109":1,"118":3,"151":2,"176":1,"180":1,"182":3,"190":3,"209":4,"230":1,"238":1,"246":1,"252":1,"263":1}}],["size",{"0":{"72":1},"2":{"70":1,"71":1,"72":1,"97":1,"146":1,"148":1,"276":3,"277":3}}],["simply",{"2":{"270":3,"271":1}}],["simplfies",{"2":{"61":1}}],["simplification",{"2":{"61":1}}],["simplified",{"2":{"60":1,"61":3,"121":1}}],["simplifies",{"2":{"57":1}}],["simplify",{"2":{"61":4,"121":1,"122":2}}],["simpler",{"2":{"121":1}}],["simplenumfieldelem",{"2":{"111":2}}],["simplenumfield",{"2":{"32":1,"111":1,"117":3,"118":2,"119":4,"120":4,"121":2,"122":5}}],["simple",{"0":{"128":1},"2":{"3":2,"26":1,"96":4,"108":7,"111":4,"113":1,"116":5,"117":6,"119":3,"120":5,"121":11,"127":10,"129":2,"131":1,"140":1,"143":1}}],["similar",{"2":{"39":1,"68":1,"73":1,"143":1,"153":1,"158":1}}],["similarly",{"2":{"17":1,"213":1,"229":1,"294":1}}],["situations",{"2":{"15":1}}],["single",{"2":{"14":1}}],["since",{"2":{"8":1,"30":1,"58":1,"73":1,"94":1,"130":1,"168":1,"182":1,"196":1,"213":1,"233":1}}],["separable",{"2":{"270":1}}],["sense",{"2":{"233":1}}],["sentence",{"2":{"67":2,"68":4}}],["sek",{"2":{"230":3,"236":2,"238":2,"240":3}}],["sesquilinear",{"2":{"213":2,"270":1}}],["session",{"2":{"36":1}}],["self",{"2":{"209":1}}],["selected",{"2":{"17":1}}],["several",{"2":{"127":3,"278":1}}],["second",{"2":{"64":2,"75":3,"88":1,"119":1,"129":1,"143":1,"162":1,"184":4,"202":4,"250":4,"254":1,"255":1,"290":3,"296":1,"298":7}}],["section",{"2":{"30":2,"148":1,"157":1,"188":1,"215":1,"230":1,"278":1,"282":1}}],["sections",{"2":{"22":1}}],["search",{"2":{"25":6}}],["ser",{"2":{"300":1}}],["server",{"2":{"153":1}}],["servers",{"2":{"40":1}}],["serving",{"2":{"17":1}}],["series",{"2":{"4":1}}],["seen",{"2":{"166":1,"249":1,"257":3,"276":3,"287":3}}],["see",{"2":{"14":1,"17":4,"22":1,"23":1,"33":1,"40":1,"62":1,"109":1,"141":1,"153":1,"157":1,"164":1,"176":1,"184":4,"201":4,"202":4,"204":1,"208":1,"242":1,"247":1,"250":4,"254":1,"260":1,"262":1,"266":3,"301":1}}],["sequence",{"2":{"7":1,"162":1,"213":1,"283":1}}],["semi",{"2":{"201":2,"208":3}}],["semisimple",{"2":{"3":1}}],["semsimple",{"2":{"3":1}}],["setindex",{"2":{"89":1}}],["setdiff",{"2":{"68":3}}],["sets",{"0":{"65":1,"66":1,"70":1,"71":1,"72":1},"1":{"66":1,"67":2,"68":2,"69":1,"70":1,"71":1,"72":1},"2":{"67":1,"68":3,"70":3,"71":3,"72":1}}],["setting",{"2":{"42":1,"45":1,"47":1,"96":1,"122":1,"195":1,"245":1,"253":3,"265":1,"267":1,"275":2,"276":2,"277":2,"294":2,"296":2}}],["set",{"0":{"65":1,"69":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2},"2":{"2":1,"19":1,"20":1,"42":1,"48":1,"67":5,"68":5,"70":2,"71":2,"72":1,"88":1,"89":1,"93":4,"94":1,"95":1,"96":2,"97":1,"98":2,"121":1,"125":1,"136":2,"143":1,"144":2,"146":6,"148":1,"150":7,"151":2,"162":1,"180":1,"195":1,"209":2,"228":2,"229":1,"233":1,"239":1,"253":6,"254":1,"283":3,"288":1,"294":5,"296":4}}],["e=k",{"2":{"270":3,"271":1}}],["e=1moda",{"2":{"125":1}}],["etale",{"2":{"270":1}}],["effect",{"2":{"235":1,"246":1}}],["efficiency",{"2":{"143":1}}],["efficient",{"2":{"60":1,"61":1,"130":1,"146":1}}],["ep",{"2":{"213":1}}],["e2",{"2":{"174":4,"255":2}}],["e→e",{"2":{"270":1,"271":1}}],["e→k",{"2":{"162":1}}],["e→a",{"2":{"53":1}}],["e×",{"2":{"158":1}}],["euler",{"2":{"148":1}}],["emb",{"2":{"108":3}}],["embs",{"2":{"107":8}}],["embed",{"2":{"167":1,"263":4}}],["embeds",{"2":{"166":2}}],["embedings",{"2":{"106":1}}],["embeddding",{"2":{"99":1}}],["embeddings",{"0":{"100":1,"103":1,"166":1,"187":1,"193":1,"256":1,"263":1},"1":{"167":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1},"2":{"99":1,"100":9,"101":3,"102":1,"103":1,"105":2,"106":1,"107":8,"108":1,"109":3,"204":1}}],["embedding",{"0":{"99":1,"102":1,"104":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1},"2":{"99":1,"100":6,"101":3,"102":1,"103":2,"104":4,"105":7,"106":6,"107":10,"108":8,"109":1,"112":1,"117":1,"120":6,"122":2,"124":7,"134":1,"164":1,"165":3,"166":1,"230":4,"232":1,"238":1,"263":3,"294":1}}],["employed",{"2":{"96":1}}],["empty",{"2":{"17":1,"48":1,"67":1,"87":1,"275":1,"276":1,"277":1}}],["echelon",{"2":{"75":2,"88":1,"143":1}}],["essentially",{"2":{"73":1,"75":2,"127":1,"128":1}}],["everything",{"2":{"120":2,"122":1}}],["every",{"2":{"112":5,"130":1,"134":2,"190":1}}],["even=true",{"2":{"263":2}}],["even=false",{"2":{"180":1}}],["even",{"2":{"13":1,"92":1,"93":1,"127":1,"180":2,"182":1,"188":1,"190":4,"205":1,"206":2,"209":2,"246":2,"250":2,"263":2,"268":1}}],["evaluating",{"0":{"103":1},"2":{"267":1}}],["evaluation",{"2":{"61":1,"103":2}}],["evaluated",{"2":{"61":1}}],["evaluates",{"2":{"60":4,"61":1}}],["evaluate",{"2":{"60":6,"61":1,"146":1}}],["equipped",{"2":{"205":2}}],["equivalence",{"0":{"164":1,"281":1},"1":{"165":1,"282":1}}],["equivalently",{"2":{"88":1}}],["equivalent",{"2":{"17":1,"246":2}}],["equals",{"2":{"156":3}}],["equal",{"2":{"52":1,"89":1,"98":1,"109":1,"129":1,"132":1,"149":1,"164":1,"208":1,"226":1,"239":4,"249":1,"261":2}}],["equationorder",{"2":{"150":1,"151":1}}],["equations",{"2":{"97":1}}],["equation",{"2":{"45":4,"46":3,"48":5,"50":1,"53":3,"54":2,"57":2,"96":1,"109":1,"121":1,"125":2,"140":1,"142":1,"150":3,"151":3,"152":4,"209":1}}],["ellcrviso",{"2":{"253":1}}],["ellipticcurvepoint",{"2":{"48":8,"51":1,"53":3,"54":2}}],["ellipticcurve",{"2":{"45":2,"46":13,"47":1,"48":3,"50":1,"51":1,"52":2,"53":2,"132":1,"134":1,"253":1}}],["elliptic",{"0":{"49":1,"55":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"45":10,"46":5,"48":12,"50":3,"51":4,"52":4,"53":6,"54":3,"57":2}}],["elsewhere",{"2":{"246":1}}],["elts",{"2":{"142":1}}],["eltype",{"2":{"67":1,"68":1}}],["elemenentary",{"2":{"250":1}}],["elementary",{"0":{"88":1,"202":1},"2":{"14":2,"17":2,"88":3,"152":1,"184":9,"202":7,"250":8}}],["element",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"2":1,"7":6,"8":2,"9":1,"11":2,"13":1,"15":3,"17":4,"23":1,"25":1,"29":5,"32":2,"48":1,"53":2,"57":1,"58":1,"59":4,"60":6,"61":2,"63":3,"67":1,"68":3,"70":1,"71":1,"73":2,"79":1,"86":1,"100":3,"103":1,"106":1,"107":6,"108":1,"109":1,"111":11,"113":3,"114":9,"116":2,"117":6,"123":1,"124":3,"127":1,"130":1,"131":9,"132":3,"134":6,"142":2,"143":1,"146":3,"147":2,"148":1,"152":1,"158":2,"164":1,"172":1,"187":2,"196":3,"219":4,"230":1,"232":1,"240":2,"241":2,"248":1,"267":3,"280":1,"284":4,"285":1,"290":1,"295":1,"299":3}}],["elements",{"0":{"6":1,"29":1,"58":1,"103":1,"130":1,"198":1},"1":{"7":1,"8":1,"9":1,"10":1,"11":1,"59":1,"60":1,"61":1,"62":1,"63":1,"131":1,"132":1,"133":1,"134":1},"2":{"2":3,"6":1,"7":1,"8":1,"11":1,"13":1,"15":1,"17":7,"27":1,"29":1,"58":9,"59":4,"60":1,"61":1,"62":2,"67":8,"68":10,"73":1,"75":2,"79":1,"80":1,"82":1,"86":1,"88":6,"89":3,"93":1,"109":1,"111":2,"112":6,"117":2,"127":1,"130":4,"131":4,"134":4,"136":1,"141":1,"142":1,"143":4,"146":8,"147":2,"150":2,"151":4,"152":1,"153":1,"160":1,"162":4,"196":7,"262":1,"276":2,"277":2}}],["elem",{"2":{"132":1,"146":11,"147":2,"153":3,"266":6}}],["easily",{"2":{"58":1}}],["easy",{"2":{"43":1,"127":1,"157":1}}],["each",{"2":{"13":3,"29":1,"61":1,"94":1,"96":1,"117":1,"164":1,"188":1,"228":2,"231":1,"239":1}}],["edition",{"2":{"300":1}}],["edit",{"2":{"35":1}}],["e",{"2":{"32":4,"46":27,"47":3,"48":16,"50":4,"51":10,"52":10,"53":10,"54":3,"57":1,"58":2,"60":4,"61":1,"67":3,"68":7,"88":3,"94":1,"97":2,"98":1,"101":6,"102":3,"103":4,"104":5,"105":4,"106":5,"107":21,"112":1,"118":1,"122":1,"125":1,"131":1,"132":3,"134":4,"139":1,"142":3,"144":1,"145":1,"146":3,"147":6,"152":1,"156":9,"157":2,"158":2,"159":2,"160":2,"161":2,"162":1,"163":3,"164":2,"166":6,"167":4,"169":4,"172":1,"173":2,"174":3,"175":2,"213":4,"214":3,"215":16,"216":3,"217":2,"218":13,"219":15,"220":4,"221":2,"222":2,"223":2,"224":2,"225":2,"226":6,"227":15,"228":6,"229":2,"230":17,"231":4,"232":15,"233":3,"234":6,"235":5,"236":3,"237":2,"238":17,"239":3,"240":5,"241":2,"242":1,"246":1,"253":3,"254":1,"261":2,"270":10,"271":3,"277":16,"278":21,"280":7,"283":1,"284":7,"285":6,"288":1,"289":7,"290":2,"291":7,"294":1,"295":1,"299":7}}],["eigenvalues",{"2":{"182":2}}],["ei",{"2":{"58":1}}],["ei∈z",{"2":{"58":1}}],["ei≠1",{"2":{"14":1}}],["ei∣ei+1",{"2":{"14":1}}],["either",{"2":{"7":1,"17":1,"29":1,"45":1,"47":1,"67":1,"94":1,"111":1,"131":1,"160":1,"206":1,"209":2,"214":2,"229":1,"298":2}}],["ekz",{"2":{"14":1}}],["ek",{"2":{"14":1}}],["e1z×⋯×z",{"2":{"14":1}}],["e1",{"2":{"14":1,"174":4,"255":2,"270":1}}],["ej",{"2":{"13":1}}],["encyclopedia",{"2":{"300":1}}],["encompassing",{"2":{"30":1}}],["encoded",{"2":{"16":1,"176":1}}],["en",{"2":{"270":1}}],["enabled",{"2":{"235":2}}],["enough",{"2":{"93":1}}],["ensure",{"2":{"93":1}}],["entries",{"2":{"67":1,"68":1,"81":1,"84":4,"85":1,"88":1,"89":3,"107":1,"111":1,"134":1,"146":1,"148":1,"151":1,"197":2,"206":1,"246":1,"270":2,"276":1,"277":1}}],["entry",{"2":{"13":1,"83":4,"84":1,"88":4,"89":1,"112":5,"134":2,"232":1,"235":1}}],["env",{"2":{"61":1}}],["environment",{"2":{"36":1,"42":1}}],["endowed",{"2":{"270":1}}],["endomorphisms",{"0":{"262":1},"2":{"211":1,"262":2}}],["endomorphism",{"2":{"52":2,"170":1,"262":7}}],["end",{"2":{"11":1,"17":3}}],["enumeration",{"0":{"180":1,"239":1},"1":{"240":1},"2":{"3":1,"16":1,"17":1,"38":2}}],["error",{"2":{"2":2,"125":1,"147":2,"152":2,"169":1,"209":1,"230":3,"249":1,"279":1}}],["except",{"2":{"261":1}}],["excess",{"2":{"190":4}}],["extra",{"2":{"88":2,"113":2}}],["extremely",{"2":{"58":1}}],["extensions`",{"2":{"169":1}}],["extensions",{"2":{"92":4,"98":1,"106":1,"109":1,"116":1,"117":1,"127":2,"141":1,"149":1,"169":1,"268":1}}],["extension",{"0":{"106":1,"277":1},"1":{"278":1},"2":{"73":1,"92":1,"93":2,"94":3,"96":6,"97":2,"98":2,"106":1,"111":4,"113":1,"114":1,"116":5,"117":3,"119":6,"120":5,"121":7,"127":5,"129":5,"141":1,"156":2,"164":1,"166":1,"172":1,"213":2,"214":1,"229":1,"235":1,"261":2,"270":1,"271":1,"294":1}}],["extending",{"2":{"98":1,"162":1,"213":1}}],["extended",{"2":{"2":5,"246":6}}],["extend",{"2":{"2":3,"88":3,"106":2}}],["existence",{"2":{"73":1}}],["exists",{"2":{"64":1,"113":1,"135":1,"160":1,"172":1,"174":1,"201":1,"209":1,"290":1}}],["exist",{"2":{"48":1,"89":1}}],["execute",{"2":{"36":1}}],["exp⁡",{"2":{"209":1}}],["exp⁡d",{"2":{"58":1}}],["expensive",{"2":{"144":1,"283":2}}],["experimental",{"2":{"30":1}}],["explicit",{"2":{"131":1}}],["expands",{"2":{"60":4}}],["expanded",{"2":{"59":4,"111":2}}],["exp",{"2":{"59":2,"63":6}}],["expressing",{"2":{"25":1}}],["exponents",{"2":{"58":3,"61":2}}],["exponent",{"2":{"14":2,"59":1,"60":2,"63":3,"94":2}}],["example",{"0":{"95":1,"108":1,"151":1,"169":1,"171":1,"173":1,"175":1,"223":1,"234":1},"2":{"12":1,"38":1,"43":1,"51":1,"78":1,"79":1,"86":1,"106":1,"108":1,"134":1,"150":1,"206":1,"261":2,"301":1}}],["examples",{"0":{"0":1,"48":1,"76":1,"142":1,"157":1,"159":1,"161":1,"163":1,"165":1,"167":1,"215":1,"217":1,"219":1,"221":1,"225":1,"227":1,"230":1,"232":1,"236":1,"238":1,"240":1,"278":1,"280":1,"282":1,"284":1,"286":1,"289":1,"291":1,"293":1,"295":1,"297":1,"299":1},"2":{"17":3,"22":1,"24":1,"25":2,"26":3,"28":1,"32":2,"33":1,"45":2,"46":2,"48":4,"51":2,"52":1,"53":1,"67":3,"68":4,"100":2,"101":3,"102":1,"103":1,"105":2,"107":5,"116":6,"117":2,"118":2,"120":1,"124":3,"157":1,"196":2,"201":2,"209":1,"215":1,"244":1,"246":5,"248":1,"249":2,"254":5,"255":2,"267":1,"278":1,"282":1}}],["d=±1",{"2":{"255":1}}],["dt",{"2":{"213":2}}],["d1",{"2":{"213":2}}],["dyadic",{"2":{"213":1,"220":3,"221":1,"228":1}}],["d→q",{"2":{"205":1}}],["d→gi",{"2":{"18":2}}],["d×d→q",{"2":{"205":1}}],["dual",{"0":{"259":1},"2":{"152":1,"205":1,"255":1,"259":2,"285":3,"290":1}}],["due",{"2":{"130":1,"135":1,"141":1,"146":1}}],["d∗a",{"2":{"137":1}}],["da",{"2":{"135":1,"137":1}}],["datum",{"2":{"228":1,"283":1}}],["dated",{"2":{"92":1}}],["database",{"2":{"278":2}}],["databases",{"2":{"278":1}}],["data",{"2":{"25":5,"61":1,"142":1,"146":3,"214":2}}],["drop",{"2":{"68":1,"87":1}}],["dn",{"2":{"61":1}}],["d",{"2":{"18":5,"32":5,"58":2,"59":4,"61":1,"67":4,"81":1,"88":3,"89":1,"109":1,"111":3,"116":1,"117":1,"118":2,"135":1,"137":3,"151":4,"164":3,"188":4,"196":9,"205":1,"209":2,"215":2,"219":2,"227":2,"230":2,"232":2,"234":2,"238":2,"246":1,"254":2,"255":2,"267":3,"278":8,"280":4,"282":4,"284":2,"286":4,"289":2,"291":2,"293":2,"295":2,"297":4,"299":2,"300":1}}],["di=−1",{"2":{"213":1}}],["di=1",{"2":{"213":1}}],["dim",{"2":{"158":1,"159":1,"182":1,"190":1}}],["dimensions",{"2":{"32":1}}],["dimensional",{"2":{"30":1,"32":1,"73":1,"90":1,"270":1}}],["dimension",{"2":{"14":1,"22":1,"26":7,"32":2,"156":2,"157":2,"158":3,"164":2,"169":1,"182":1,"190":1,"249":1,"270":1,"280":2,"283":1,"286":1}}],["dichotomy",{"2":{"129":1}}],["dictionary",{"2":{"29":1,"59":1,"67":3,"68":1,"107":1,"144":1,"229":1,"231":1}}],["dictionaries",{"2":{"16":1}}],["dict",{"2":{"16":2,"29":1,"59":4,"61":5,"67":3,"68":2,"93":1,"107":2,"144":3,"146":1,"164":1,"165":1,"231":1,"232":1,"239":1,"240":2}}],["di",{"2":{"117":1,"213":1,"214":1}}],["dixon",{"2":{"88":4}}],["diagonalization",{"0":{"162":1},"1":{"163":1},"2":{"188":1}}],["diagonal",{"2":{"75":2,"87":4,"88":5,"89":2,"148":1,"160":1,"162":5,"163":2,"190":1,"197":2,"206":1,"246":1,"279":2,"280":1}}],["digits",{"2":{"58":1}}],["distinction",{"2":{"268":1}}],["distributed",{"2":{"134":1}}],["distributivity",{"2":{"32":1}}],["display",{"2":{"196":1}}],["disable",{"2":{"116":2}}],["disabled",{"2":{"45":1,"47":1,"122":1,"235":1,"245":1,"265":1,"267":1,"275":2,"276":2,"277":2}}],["disjoint",{"2":{"68":2,"119":3}}],["discarded",{"2":{"146":2}}],["disc",{"2":{"54":2,"152":1,"158":1,"214":1}}],["discrete",{"0":{"54":1},"2":{"54":1,"78":1,"153":1}}],["discriminant",{"0":{"183":1,"194":1,"204":1,"260":1},"1":{"195":1,"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1,"204":1,"205":2,"206":2,"207":2,"208":2,"209":2,"210":2,"211":2},"2":{"45":1,"46":4,"61":1,"96":1,"97":3,"118":10,"132":5,"134":5,"150":4,"152":5,"158":3,"159":1,"183":1,"184":8,"196":2,"204":1,"205":6,"209":3,"213":3,"214":1,"218":6,"219":1,"250":8,"260":1,"261":1,"283":2,"284":1}}],["differents",{"2":{"152":1}}],["differently",{"2":{"139":1,"141":1}}],["different",{"2":{"30":2,"68":1,"109":1,"116":1,"127":1,"143":1,"152":3,"230":1,"285":1,"298":1}}],["difference",{"2":{"17":1,"68":2}}],["divide",{"2":{"152":1}}],["divides",{"2":{"125":1,"145":1,"151":1}}],["divided",{"2":{"88":2}}],["dividing",{"2":{"94":1,"146":2,"150":1,"228":2}}],["divisor",{"2":{"151":4,"152":1}}],["divisors",{"2":{"14":3,"17":2,"88":4,"144":2,"146":2,"150":1}}],["divisible",{"2":{"113":3,"146":3,"151":1,"190":1,"246":1}}],["divisibility",{"2":{"88":1,"255":3}}],["division",{"2":{"48":2}}],["div",{"2":{"81":1,"90":1}}],["divexact",{"2":{"17":1,"81":1,"90":1,"145":1}}],["directories",{"2":{"38":1}}],["directory",{"2":{"34":1,"38":1,"39":1,"43":2}}],["directly",{"2":{"35":1}}],["direct",{"0":{"18":1,"192":1},"2":{"13":1,"15":3,"16":1,"18":9,"73":1,"168":26,"181":3,"192":2,"201":2,"209":1,"210":20,"237":6,"238":2,"257":20,"263":1,"287":24}}],["dfg",{"2":{"5":1}}],["downloads",{"2":{"301":1}}],["don",{"2":{"228":1}}],["done",{"2":{"4":1,"121":1,"282":1}}],["dollar",{"2":{"116":1}}],["dot",{"2":{"90":9}}],["do",{"2":{"61":1,"79":1,"201":2,"301":1}}],["document",{"2":{"127":1}}],["documentation",{"0":{"34":1,"35":1,"36":1},"1":{"35":1,"36":1},"2":{"34":1,"35":1}}],["doctest",{"2":{"36":1}}],["doc",{"2":{"36":2}}],["docs>",{"2":{"36":1}}],["docs",{"2":{"34":1,"35":1,"36":2}}],["does",{"2":{"12":1,"60":2,"61":1,"89":1,"97":1,"146":1}}],["doi",{"2":{"4":2}}],["domain",{"2":{"2":2,"15":1,"73":1,"94":1,"123":3,"141":2,"149":1,"261":1}}],["de",{"2":{"278":2}}],["der",{"2":{"272":1,"300":1}}],["depth",{"2":{"253":18,"294":12,"296":12}}],["depend",{"2":{"146":1}}],["depending",{"2":{"60":1,"107":1,"139":1,"168":1,"218":5,"224":1,"253":3,"287":1,"294":2,"296":2}}],["depends",{"2":{"4":1,"196":1}}],["dealing",{"2":{"158":1}}],["deal",{"2":{"149":1}}],["deals",{"2":{"57":1,"73":1,"78":1,"92":2,"139":1,"268":1}}],["degenerate",{"2":{"164":2,"170":1,"176":1,"208":3}}],["deg⁡",{"2":{"146":2}}],["degree",{"0":{"277":1},"1":{"278":1},"2":{"95":1,"96":1,"97":2,"98":4,"109":1,"111":3,"113":1,"116":5,"117":2,"118":7,"127":1,"142":3,"146":8,"147":2,"149":1,"151":2,"152":2,"156":2,"159":2,"215":2,"230":1,"236":4,"238":2,"246":3,"248":1,"254":7,"255":3,"261":4,"263":1,"268":2,"270":1,"277":4,"278":8,"280":1,"282":2,"283":1,"284":6,"286":5,"299":3}}],["decide",{"2":{"97":2,"167":1,"195":1}}],["decomposed",{"2":{"174":1}}],["decomposition",{"2":{"2":1,"98":2,"123":2,"142":1,"165":1,"167":1,"173":1,"175":1,"213":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"236":1,"238":1,"240":1,"282":1,"286":1,"291":1,"292":4,"293":2,"297":1,"299":1}}],["decom",{"2":{"61":2}}],["denominator",{"2":{"134":1,"135":1,"137":2,"182":1,"206":1}}],["denoted",{"2":{"254":1}}],["denotes",{"2":{"246":1}}],["denote",{"2":{"89":2}}],["density",{"2":{"88":2}}],["dense",{"2":{"85":2,"86":1,"87":2,"88":2,"90":3,"127":1}}],["descibing",{"2":{"98":1}}],["describe",{"2":{"99":1}}],["described",{"2":{"30":1,"121":1}}],["describes",{"2":{"13":3,"30":1}}],["desired",{"2":{"75":2,"98":1,"195":1}}],["dedekind",{"2":{"73":1,"135":1,"141":1,"143":1,"149":1}}],["delete",{"2":{"68":3}}],["dets",{"2":{"218":1,"219":1}}],["details",{"2":{"141":1}}],["determinants",{"2":{"218":2,"224":1}}],["determinant",{"0":{"224":1},"1":{"225":1},"2":{"88":4,"109":1,"158":3,"164":1,"180":6,"182":1,"190":1,"213":5,"214":1,"218":4,"224":5,"239":11,"250":1,"254":1,"272":1}}],["determined",{"2":{"164":1,"246":1}}],["determines",{"2":{"22":1,"98":1,"168":1,"287":1}}],["determine",{"2":{"2":3,"64":1,"96":1,"98":1,"106":1,"164":1}}],["det",{"2":{"64":1,"88":2,"109":2,"132":1,"134":1,"158":3,"159":1,"182":1,"188":2,"190":1,"214":2,"215":3,"217":1,"218":2,"219":1,"221":1,"223":1,"224":2,"225":3,"230":1,"236":1,"238":2,"239":2,"246":2,"250":1}}],["developed",{"2":{"36":1}}],["development",{"2":{"5":1,"36":1}}],["deformation",{"2":{"246":3}}],["defect",{"2":{"111":3}}],["definite",{"0":{"294":1},"1":{"295":1},"2":{"160":12,"161":2,"182":3,"186":1,"233":4,"235":1,"248":1,"252":9,"253":2,"254":2,"258":1,"265":1,"266":3,"267":1,"272":1,"290":9,"291":1,"294":2,"295":1}}],["definitions",{"0":{"269":1},"1":{"270":1,"271":1},"2":{"149":1,"176":1,"269":1,"272":1}}],["definition",{"2":{"121":1,"129":1,"164":1,"213":1,"233":2}}],["defining",{"2":{"2":1,"33":1,"46":1,"94":2,"96":5,"97":4,"105":1,"116":6,"117":2,"118":2,"119":4,"121":3,"122":1,"125":3,"150":1,"157":2,"159":3,"217":2,"232":2,"280":2,"284":3}}],["define",{"2":{"59":1,"107":1,"116":2,"138":1,"147":1,"158":1,"213":1,"228":1,"233":1,"283":2,"285":1,"288":1,"294":1,"301":1}}],["defines",{"2":{"48":1,"73":1,"75":1,"94":1,"144":1,"150":4,"231":1,"285":1}}],["defined",{"0":{"262":1},"2":{"46":2,"48":1,"50":1,"60":1,"68":1,"75":3,"93":1,"94":1,"95":1,"96":2,"97":4,"101":1,"104":1,"105":1,"107":1,"108":2,"116":3,"119":1,"121":1,"124":2,"129":2,"133":1,"140":1,"146":3,"158":3,"169":1,"181":1,"182":3,"186":3,"190":2,"198":1,"207":2,"209":1,"213":3,"230":2,"235":1,"250":2,"266":1,"283":2,"285":2}}],["default",{"2":{"22":1,"45":1,"47":1,"75":2,"107":1,"116":2,"121":1,"122":1,"146":1,"162":1,"180":3,"184":2,"202":2,"209":2,"235":1,"245":1,"250":2,"253":7,"262":3,"265":1,"267":1,"275":2,"276":2,"277":2,"294":5,"296":5,"298":2}}],["deutsche",{"2":{"5":1}}],["hlb",{"2":{"278":2}}],["h3",{"2":{"169":1}}],["h2",{"2":{"167":3,"169":2}}],["hypothesis",{"2":{"146":1}}],["hyperkaehler",{"2":{"246":8}}],["hyperbolic",{"0":{"174":1},"1":{"175":1},"2":{"174":6,"175":1,"246":5,"255":1}}],["hyperelliptic",{"2":{"46":2}}],["hypellcrv",{"2":{"46":2,"132":1,"134":1}}],["http",{"2":{"121":1,"278":2}}],["https",{"2":{"4":1,"301":1}}],["highest",{"2":{"254":3}}],["hilbert",{"2":{"94":2,"111":2,"164":1,"229":1}}],["hierarchy",{"2":{"38":1}}],["hcat",{"2":{"87":2}}],["hnf",{"2":{"73":3,"75":4,"88":6,"136":6,"143":1,"144":3,"148":1}}],["huge",{"2":{"61":1}}],["h=h1⊗⋅⊗hn",{"2":{"19":1}}],["h=g",{"2":{"17":2}}],["h→g",{"2":{"17":3}}],["h+h",{"2":{"15":1}}],["h",{"2":{"15":8,"17":9,"19":1,"20":2,"46":1,"157":1,"159":10,"161":4,"163":4,"164":2,"167":5,"169":2,"173":2,"174":2,"175":2,"246":10,"254":1,"300":4}}],["holy",{"2":{"246":1}}],["holds",{"2":{"88":2,"113":1,"145":1}}],["hold",{"2":{"85":1,"156":2}}],["horizontally",{"2":{"87":2}}],["homomorpisms",{"2":{"20":1}}],["homomorphisms",{"2":{"15":1,"20":1,"196":1,"294":1}}],["homomorphism",{"2":{"15":1,"164":1,"294":2}}],["homology",{"2":{"16":1}}],["hom",{"0":{"20":1},"2":{"15":3,"16":2,"19":1,"20":1,"108":1}}],["hofmann",{"2":{"4":2}}],["however",{"2":{"61":1,"73":1,"87":1,"116":1,"149":1}}],["how",{"0":{"1":1},"2":{"116":2,"157":1,"246":1,"301":1}}],["habilitationsschrift",{"2":{"272":1}}],["half",{"2":{"208":2}}],["hand",{"2":{"130":1}}],["handle",{"2":{"58":1}}],["hadamard",{"2":{"88":1}}],["having",{"2":{"12":1,"17":1}}],["have",{"2":{"6":1,"9":1,"12":1,"13":3,"30":1,"45":1,"48":1,"58":1,"61":1,"67":1,"68":1,"79":1,"86":2,"87":1,"94":1,"98":1,"116":2,"125":1,"127":1,"129":2,"130":2,"141":1,"143":2,"151":2,"153":1,"201":2,"206":1,"208":1,"255":3,"285":2}}],["hart",{"2":{"4":2}}],["hasse",{"2":{"164":4,"165":1,"190":3,"281":2,"282":1}}],["has",{"2":{"2":1,"17":8,"61":1,"67":1,"74":1,"93":1,"94":1,"109":1,"113":1,"117":1,"125":1,"141":1,"146":1,"147":3,"149":1,"150":3,"151":1,"160":1,"164":1,"209":2,"218":3,"230":1,"231":1,"235":1,"239":1,"242":1,"246":1,"285":1,"294":1,"298":5}}],["heuristically",{"2":{"253":3,"294":2,"296":2}}],["hessian",{"2":{"190":1}}],["helper",{"2":{"153":1}}],["hence",{"2":{"93":1,"143":1,"149":1}}],["hermgenus",{"2":{"229":2,"231":8,"235":3,"237":3,"239":1,"240":1,"241":2}}],["hermlocalgenus",{"2":{"214":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"229":1,"231":1,"235":2,"237":3,"239":1,"240":2,"241":2}}],["hermlat",{"2":{"214":2,"215":1,"217":1,"221":1,"223":1,"225":1,"229":1,"230":1,"233":1,"235":7,"236":1,"238":1,"277":4}}],["hermspace",{"2":{"156":2,"174":1}}],["hermitan",{"2":{"277":1}}],["hermite",{"2":{"75":2,"88":3}}],["hermitian",{"0":{"212":1,"270":1,"271":1,"277":1},"1":{"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"278":1},"2":{"3":1,"156":5,"157":2,"159":2,"160":5,"161":2,"163":1,"166":1,"167":2,"168":3,"169":11,"173":1,"174":1,"175":1,"213":2,"214":2,"215":3,"216":3,"218":17,"219":1,"220":4,"222":1,"224":3,"226":4,"227":1,"228":1,"229":2,"230":3,"231":9,"232":1,"233":2,"234":1,"235":9,"236":2,"237":2,"238":3,"239":4,"240":23,"241":2,"245":2,"268":3,"270":10,"271":6,"272":3,"275":8,"277":12,"278":8,"280":2,"284":1,"287":3,"289":1,"291":1,"299":4}}],["herm",{"2":{"38":2}}],["here",{"2":{"38":1,"68":1,"92":1,"108":1,"109":1,"141":1,"143":1,"153":3,"157":1,"164":1,"196":1,"215":1,"229":1,"246":1,"268":1,"272":1,"278":1,"301":1}}],["hecke",{"0":{"4":1},"2":{"4":3,"5":1,"12":1,"36":4,"38":3,"42":4,"43":2,"58":1,"92":1,"93":12,"94":1,"97":1,"105":1,"106":1,"109":2,"116":1,"127":1,"129":1,"146":1,"149":2,"196":1,"209":1,"215":1,"219":1,"227":1,"230":3,"232":1,"234":1,"238":1,"239":6,"240":3,"246":1,"254":1,"278":10,"280":1,"284":8,"289":1,"291":1,"299":10,"301":5}}],["m∩e⊗n",{"2":{"285":1}}],["m∩qn",{"2":{"255":1}}],["m2",{"2":{"255":2}}],["mz=2nz+∑x∈nzφ",{"2":{"195":1}}],["mz",{"2":{"195":1,"197":1}}],["m⊗r≅n⊗r",{"2":{"176":1}}],["m⊗zp",{"2":{"176":1}}],["m−1",{"2":{"158":1,"213":1}}],["mfp",{"2":{"142":2}}],["m→l",{"2":{"121":1}}],["m→k",{"2":{"121":1}}],["mr",{"2":{"93":4}}],["m0=zk",{"2":{"93":1}}],["m0",{"2":{"93":3}}],["m0≤zk",{"2":{"93":1}}],["m∞=",{"2":{"93":1}}],["m∞",{"2":{"93":3}}],["mc",{"2":{"88":4,"95":2,"96":2,"146":6,"301":1}}],["m⊂v",{"2":{"73":1}}],["ms",{"2":{"146":2}}],["msubsetit",{"2":{"70":1,"71":1}}],["msets",{"2":{"67":1}}],["mset",{"2":{"17":3,"67":14,"68":20,"70":1,"71":1}}],["meara",{"2":{"193":2}}],["meanwhile",{"2":{"270":1}}],["mean",{"2":{"109":1}}],["means",{"2":{"67":1,"233":1,"246":1}}],["metric",{"2":{"147":1,"150":1,"151":1}}],["method",{"2":{"88":1}}],["methods",{"2":{"58":1,"78":1,"168":1,"248":1,"268":1}}],["mentioned",{"2":{"108":1,"153":1}}],["me",{"2":{"61":2}}],["mp=lp",{"2":{"292":1}}],["mp=q",{"2":{"54":1}}],["mpolyringelem",{"2":{"46":1}}],["mpolyring",{"2":{"46":1}}],["mq=p",{"2":{"48":1}}],["mukai",{"2":{"246":8}}],["mu",{"2":{"146":4}}],["mutable",{"2":{"86":1}}],["mult",{"2":{"68":2}}],["multivariate",{"2":{"127":1}}],["multiset",{"2":{"67":9,"68":6}}],["multi",{"0":{"65":1,"66":1,"70":1},"1":{"66":1,"67":2,"68":2,"69":1,"70":1,"71":1,"72":1},"2":{"67":4,"68":5,"70":1,"71":1}}],["multiply",{"2":{"60":2,"89":1}}],["multipliers",{"2":{"151":2}}],["multiplied",{"2":{"58":1}}],["multiplicities",{"2":{"68":4}}],["multiplicity",{"2":{"67":3,"68":6}}],["multiplicatively",{"2":{"144":1,"153":1}}],["multiplicative",{"2":{"58":1,"135":1,"148":2}}],["multiplication",{"2":{"17":2,"28":1,"81":1,"90":1,"111":1}}],["multiple",{"2":{"17":2,"51":1,"54":1,"97":1,"111":1,"125":1,"180":2}}],["much",{"2":{"68":1,"127":1}}],["must",{"2":{"39":3,"45":1,"46":1,"48":1,"80":1,"85":1,"94":1,"96":1,"107":2,"113":1,"118":1,"146":1,"156":6,"186":1,"246":1,"255":2,"276":1,"277":1,"281":2,"285":2}}],["mts",{"2":{"35":1}}],["mh",{"2":{"17":1}}],["mg",{"2":{"17":1}}],["m",{"2":{"13":16,"17":4,"48":1,"54":1,"67":4,"68":19,"73":2,"74":6,"75":5,"87":4,"88":1,"89":3,"93":5,"94":9,"97":2,"121":2,"123":9,"125":2,"136":10,"144":6,"148":2,"150":3,"151":4,"158":2,"162":4,"164":6,"170":4,"176":1,"188":5,"195":10,"196":8,"197":1,"201":2,"213":2,"226":6,"253":4,"255":26,"261":19,"281":4,"285":12,"292":4,"296":10,"298":5,"300":1}}],["miscaellenous",{"0":{"138":1,"147":1}}],["miscellaneous",{"0":{"63":1,"125":1,"134":1}}],["minpoly",{"2":{"114":3,"134":1}}],["minkowski",{"2":{"109":3,"112":2,"134":2,"147":1,"150":1,"151":3}}],["min",{"2":{"63":1,"180":5,"239":3}}],["minimal",{"2":{"17":1,"25":2,"88":1,"113":1,"114":2,"134":1,"150":1,"283":8,"298":2}}],["minimum",{"0":{"83":1},"2":{"2":1,"83":4,"88":1,"142":2,"146":8,"147":10,"217":1,"218":2,"232":2,"246":2,"266":3,"282":1,"289":1,"292":1}}],["mirrors",{"2":{"38":1,"43":1,"196":1}}],["might",{"2":{"30":1,"154":1}}],["mi",{"2":{"13":3,"74":3,"292":2}}],["m=∑aiωi",{"2":{"73":1}}],["m=",{"2":{"13":1}}],["move",{"2":{"196":1}}],["morphisms",{"0":{"122":1}}],["morphism",{"2":{"99":1,"105":1,"106":3,"120":2,"122":1,"166":1,"270":2}}],["moreover",{"2":{"68":1,"282":1,"290":1}}],["more",{"2":{"7":1,"12":1,"58":1,"79":1,"86":1,"92":2,"109":1,"130":1,"141":1,"146":2,"149":1,"153":1,"254":1}}],["monomorphism",{"2":{"164":1,"294":1}}],["monic",{"2":{"125":1,"150":1}}],["monitored",{"2":{"96":1}}],["monte",{"2":{"88":1}}],["modification",{"2":{"261":3}}],["modern",{"2":{"92":1}}],["modelled",{"2":{"79":1,"86":1}}],["mod",{"2":{"61":2,"84":3,"89":1,"95":1,"96":1,"133":2,"146":2,"148":1,"153":1,"190":1}}],["moduli",{"2":{"246":2}}],["modulus",{"2":{"94":1,"97":4,"195":5,"196":1,"197":4,"201":2,"209":2}}],["modular",{"2":{"61":3,"88":1,"213":1,"290":9,"291":2,"292":1}}],["module$",{"2":{"294":1}}],["module",{"0":{"255":1,"285":1},"1":{"286":1},"2":{"43":2,"73":4,"74":3,"75":3,"109":1,"125":2,"135":1,"139":1,"141":2,"143":2,"149":3,"195":4,"196":4,"197":8,"201":30,"202":4,"203":3,"206":21,"207":1,"208":1,"209":1,"242":1,"250":1,"255":2,"261":6,"283":1,"285":1}}],["modules",{"0":{"195":1,"202":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"12":1,"13":1,"73":3,"149":1,"196":2,"201":2,"208":1,"209":1,"210":3}}],["modulo",{"0":{"2":1},"2":{"2":1,"84":3,"88":2,"89":5,"93":3,"94":2,"146":3,"148":2,"164":1,"207":2}}],["mostly",{"2":{"13":1}}],["most",{"2":{"12":1,"128":1,"196":1,"235":1,"255":1,"272":1}}],["marcus",{"2":{"300":1}}],["markus",{"2":{"272":1,"278":2}}],["magma",{"2":{"272":1}}],["may",{"2":{"253":3,"292":1,"294":2,"296":2}}],["makes",{"2":{"233":1}}],["mass",{"0":{"233":1},"1":{"234":1},"2":{"186":3,"233":4,"234":1,"235":3,"251":2}}],["main",{"2":{"246":1}}],["maintaining",{"2":{"73":1}}],["mainly",{"2":{"15":1,"149":1,"269":1}}],["maximum",{"0":{"83":1},"2":{"83":2,"84":1,"88":2}}],["maximalorder",{"2":{"150":3}}],["maximal",{"0":{"298":1},"1":{"299":1},"2":{"2":2,"61":1,"73":1,"75":1,"83":1,"93":2,"94":1,"95":1,"96":8,"97":1,"113":1,"118":3,"121":2,"142":4,"143":1,"145":1,"146":4,"147":2,"149":4,"150":7,"151":1,"154":4,"157":1,"159":2,"165":4,"166":1,"167":1,"173":1,"175":1,"190":1,"215":3,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":2,"232":1,"236":3,"238":3,"240":8,"246":1,"258":1,"261":3,"278":4,"282":2,"283":1,"284":12,"286":5,"289":2,"291":1,"293":1,"297":1,"298":16,"299":19,"301":1}}],["maxabs",{"2":{"63":1}}],["max",{"2":{"63":1,"180":5,"235":2,"239":5}}],["made",{"2":{"61":1,"143":1,"268":1}}],["manifold",{"2":{"246":1}}],["manifolds",{"2":{"246":2}}],["manipulation",{"0":{"89":1}}],["manual",{"0":{"56":1},"2":{"34":1,"56":1}}],["many",{"2":{"18":1,"58":2,"88":1,"116":1,"149":1,"272":1}}],["matspaceelem",{"2":{"293":2,"295":1}}],["matches",{"2":{"261":1}}],["match",{"2":{"209":1}}],["math",{"2":{"278":2}}],["mathematischen",{"2":{"300":1}}],["mathematics",{"2":{"300":3}}],["mathematically",{"2":{"58":1,"127":1,"129":1}}],["mathematik",{"2":{"272":1}}],["mathbb",{"2":{"261":1}}],["mathcal",{"2":{"152":2}}],["matd×d",{"2":{"151":1}}],["matn×m",{"2":{"86":1}}],["mat",{"2":{"74":3,"111":1,"138":2,"147":2,"151":2,"300":1}}],["matelem",{"2":{"64":3,"85":1,"87":1,"90":2,"111":1,"156":2,"158":1,"162":5,"170":2,"179":1,"191":1,"226":2,"244":1,"245":1,"253":1,"262":5,"275":1,"276":2,"277":2,"279":2,"283":2,"292":3,"294":1,"296":1}}],["matrices",{"0":{"64":1,"73":1,"86":1,"226":1},"1":{"74":1,"75":1,"76":1,"87":1,"88":1,"89":1,"90":1,"227":1},"2":{"64":1,"73":1,"78":1,"79":1,"86":6,"87":4,"90":1,"141":2,"254":1,"255":1,"262":2,"270":2,"292":2,"296":2}}],["matrixelem",{"2":{"90":2,"254":1}}],["matrixalgebra",{"2":{"22":1}}],["matrix",{"0":{"179":1,"206":1,"244":1},"2":{"7":1,"11":1,"13":4,"14":2,"15":2,"24":1,"25":2,"26":3,"30":1,"64":4,"73":5,"74":11,"75":4,"85":1,"87":30,"88":9,"89":10,"90":12,"109":6,"111":7,"134":6,"136":2,"138":4,"140":2,"142":1,"143":1,"144":1,"146":4,"147":4,"148":1,"150":4,"151":14,"152":1,"156":8,"157":2,"158":5,"159":1,"160":2,"162":12,"163":2,"164":1,"169":2,"170":3,"171":1,"179":1,"182":1,"189":1,"190":2,"191":3,"196":3,"197":6,"201":7,"206":5,"213":1,"215":1,"217":1,"219":1,"226":8,"227":3,"228":1,"230":1,"231":1,"232":3,"234":1,"238":1,"242":2,"244":12,"245":1,"246":10,"248":1,"249":12,"250":1,"254":6,"255":9,"261":6,"262":3,"263":1,"265":2,"266":2,"267":2,"270":3,"275":4,"276":15,"277":15,"278":4,"279":6,"280":6,"282":2,"283":12,"284":14,"286":11,"289":4,"291":1,"292":3,"293":2,"295":1,"297":2,"299":13}}],["matalgebraelem",{"2":{"25":1}}],["mapping",{"2":{"120":2,"122":1,"164":1}}],["mapclassgrp",{"2":{"94":2,"146":1}}],["maprayclassgrp",{"2":{"93":5,"94":2}}],["maps",{"0":{"15":1},"2":{"15":3,"17":1,"19":3,"94":1,"153":1,"168":1,"257":3,"261":1,"287":4}}],["map",{"2":{"2":15,"15":5,"17":20,"19":7,"20":6,"26":1,"32":3,"46":1,"53":3,"89":1,"93":3,"94":6,"95":1,"109":1,"112":2,"117":1,"120":8,"121":3,"122":5,"123":6,"134":2,"142":1,"146":20,"148":7,"153":2,"159":1,"162":1,"169":4,"201":6,"215":12,"219":12,"227":12,"230":12,"232":12,"234":3,"238":12,"246":1,"261":10,"278":15,"280":7,"282":6,"283":1,"284":5,"286":6,"289":4,"291":4,"293":3,"295":3,"297":6,"299":4}}],["rwth",{"2":{"272":1,"278":2}}],["rt",{"2":{"213":2}}],["r2",{"2":{"148":1}}],["r1",{"2":{"148":1,"213":2}}],["r+2≤i≤r+s",{"2":{"134":1}}],["r+1≤i≤r+s",{"2":{"109":1,"112":3}}],["ri",{"2":{"213":2}}],["rich",{"2":{"149":1}}],["riemann",{"2":{"146":1}}],["right",{"2":{"88":3,"246":1}}],["rincipal",{"2":{"61":1}}],["ringelement",{"2":{"207":1}}],["ringelem",{"2":{"81":1}}],["rings",{"0":{"148":1},"2":{"60":1,"78":1,"127":1}}],["ring",{"0":{"82":1},"2":{"2":2,"22":1,"23":2,"28":2,"32":2,"46":2,"58":2,"59":1,"75":2,"79":2,"80":3,"82":4,"86":3,"87":9,"89":5,"90":1,"94":2,"95":1,"96":1,"97":2,"98":1,"109":1,"116":2,"134":2,"139":1,"141":2,"142":1,"143":2,"146":3,"148":8,"149":1,"151":2,"158":3,"159":1,"162":1,"188":1,"196":1,"201":4,"206":4,"234":2,"246":1,"270":1,"271":3,"276":3,"278":2,"283":7,"284":2,"292":2,"298":3}}],["root",{"0":{"254":1},"1":{"255":1,"256":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1},"2":{"96":1,"196":1,"230":3,"246":2,"254":26,"255":2,"261":2,"263":2}}],["roots",{"2":{"93":1,"119":3,"254":1}}],["role",{"2":{"78":1}}],["rows",{"0":{"79":1,"84":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1},"2":{"7":1,"17":3,"73":1,"74":3,"79":4,"81":1,"86":5,"87":3,"88":5,"89":7,"136":1,"162":3,"242":1,"245":1,"275":1,"276":1,"277":1,"283":1}}],["row",{"2":{"7":1,"13":3,"73":1,"74":3,"80":9,"81":9,"82":1,"84":1,"85":6,"87":2,"88":6,"89":21,"90":1,"111":1,"143":1,"249":1,"255":1,"284":4,"286":12,"292":1}}],["running",{"0":{"41":1,"42":1,"43":1},"1":{"42":1,"43":1},"2":{"40":2,"278":1}}],["run",{"2":{"36":3,"40":2,"42":3,"43":4}}],["runtime",{"2":{"25":2}}],["ramify",{"2":{"228":1}}],["ramification",{"2":{"98":1,"119":1,"123":2,"147":2}}],["ramified",{"2":{"94":1,"119":9,"147":3,"150":4,"152":1,"165":1,"213":1,"220":3,"221":1,"228":1}}],["raise",{"2":{"209":1}}],["raises",{"2":{"125":1}}],["raised",{"2":{"58":1,"147":2,"249":1,"279":1}}],["radical",{"2":{"111":1,"116":3,"119":2,"151":2,"164":1,"201":4,"208":7}}],["radius",{"2":{"103":1,"112":9,"134":5,"151":1,"152":1}}],["ray",{"0":{"93":1,"94":1},"1":{"95":1},"2":{"92":2,"93":6,"94":16,"95":1,"96":4,"98":1}}],["rationally",{"2":{"281":4,"282":2}}],["rationalunion",{"2":{"180":3,"186":1,"191":1,"195":2,"209":2,"241":2,"246":2,"248":1,"255":1}}],["rationals",{"0":{"55":1},"2":{"57":1,"111":1,"114":2,"116":2,"117":1,"278":2,"280":1,"282":1,"284":1,"286":1,"289":1,"291":1,"293":1,"295":1,"297":1,"299":1}}],["rational",{"0":{"53":1,"279":1,"281":1},"1":{"280":1,"282":1},"2":{"28":1,"53":2,"64":1,"88":2,"92":1,"96":1,"105":1,"111":1,"116":1,"125":1,"127":1,"129":3,"147":1,"157":1,"159":2,"180":3,"186":1,"190":1,"207":1,"217":1,"228":1,"231":1,"232":1,"242":1,"249":4,"250":1,"252":3,"271":1,"279":11,"280":5,"281":4,"283":3,"284":2,"290":3}}],["range",{"2":{"16":1,"30":1}}],["ranks",{"2":{"218":2,"219":1,"261":1}}],["rank",{"2":{"13":1,"14":4,"88":1,"109":1,"118":3,"139":1,"143":1,"146":2,"149":1,"158":5,"159":1,"160":1,"174":1,"182":2,"188":2,"190":2,"196":1,"213":2,"215":2,"218":4,"219":1,"231":2,"232":1,"236":2,"238":1,"239":6,"240":6,"242":1,"245":1,"246":5,"248":1,"250":2,"253":3,"254":10,"255":3,"261":5,"263":1,"275":2,"276":2,"277":2,"278":6,"282":1,"283":2,"284":1,"294":2,"296":2,"299":3}}],["random",{"0":{"50":1},"2":{"7":2,"50":1,"89":1}}],["rand",{"2":{"7":2,"50":2,"89":1,"134":1}}],["r",{"2":{"17":2,"28":2,"32":4,"46":3,"52":2,"59":3,"68":4,"73":7,"75":3,"79":1,"80":6,"82":2,"85":2,"86":3,"87":16,"89":2,"93":2,"98":6,"103":2,"109":3,"116":2,"151":9,"152":6,"154":4,"196":2,"230":4,"236":4,"238":4,"240":4,"242":1,"246":4,"248":2,"254":4,"261":9,"292":1}}],["regarding",{"2":{"213":1,"268":1}}],["regulator",{"2":{"118":2}}],["regular",{"2":{"68":1,"158":2,"160":3,"161":2,"201":2,"208":5}}],["redo",{"2":{"146":2}}],["reducible",{"2":{"116":1}}],["reduced",{"2":{"121":1,"143":1,"147":1,"150":1,"151":1,"152":2,"265":1}}],["reduces",{"2":{"88":1,"89":3}}],["reduce",{"2":{"2":2,"61":1,"88":1,"89":3,"146":2}}],["reduction",{"0":{"2":1},"2":{"2":10,"84":3,"89":1}}],["recursively",{"2":{"129":1}}],["recall",{"2":{"112":3,"134":1}}],["recognizable",{"2":{"254":1}}],["recognition",{"2":{"254":9}}],["recomputation",{"2":{"146":1}}],["reconstruction",{"2":{"88":1}}],["record",{"2":{"32":1}}],["reverse",{"2":{"89":1}}],["required",{"2":{"153":1}}],["require",{"2":{"121":1,"141":1}}],["requires",{"2":{"87":1,"90":1,"96":1,"134":1,"141":1,"201":4,"229":1,"235":1}}],["requirements",{"2":{"30":1}}],["remove",{"2":{"68":2}}],["refining",{"2":{"61":2}}],["references",{"0":{"272":1}}],["reference",{"2":{"188":1,"190":1,"209":1}}],["referred",{"2":{"109":1,"127":2,"140":1,"270":2,"271":1}}],["refer",{"2":{"57":1,"58":1,"127":1,"129":1,"242":1,"270":1,"271":3,"294":1}}],["repl",{"2":{"278":1}}],["repeated",{"2":{"36":1}}],["represented",{"2":{"73":1,"128":1,"135":1,"141":2,"149":1,"166":7,"167":4,"253":2,"262":6,"294":2,"296":2}}],["represents",{"2":{"61":1,"187":3,"191":1,"193":2}}],["represent",{"2":{"58":1,"79":1,"86":1,"116":1,"176":1,"196":1}}],["representing",{"2":{"17":1,"74":3,"104":1,"109":1,"111":1,"190":1}}],["representatives",{"0":{"224":1,"235":1},"1":{"225":1,"236":1},"2":{"168":1,"181":1,"186":3,"192":1,"218":1,"233":2,"235":6,"236":2,"237":2,"247":1,"251":3,"287":1}}],["representative",{"0":{"186":1,"191":1},"2":{"6":1,"182":2,"186":5,"190":3,"191":3,"198":1,"199":3,"224":7,"225":2,"235":2,"236":2,"241":2,"247":1}}],["representations",{"0":{"187":1,"193":1},"2":{"130":1,"193":1}}],["representation",{"2":{"6":1,"14":2,"96":1,"109":1,"111":2,"127":1,"130":2,"134":4,"143":1,"166":2,"253":2,"262":8,"294":2,"296":2}}],["real",{"0":{"252":1},"2":{"32":1,"93":2,"97":1,"99":1,"100":5,"101":5,"103":2,"104":1,"105":1,"107":10,"109":1,"112":6,"116":1,"119":5,"124":7,"134":1,"146":1,"151":1,"157":2,"159":3,"160":1,"161":1,"163":1,"164":1,"165":4,"167":1,"171":1,"173":1,"175":1,"228":1,"231":1,"240":1}}],["relnumfieldorder",{"2":{"147":1,"151":5}}],["relnumfieldorderfractionalideal",{"2":{"137":2,"138":1,"147":2,"239":3,"284":2,"299":3}}],["relnumfieldorderideal",{"2":{"83":3,"137":1,"138":1,"147":7,"151":1,"239":3}}],["relnonsimplenumfield",{"2":{"93":1,"96":1,"127":2}}],["related",{"2":{"58":1,"146":1}}],["relation",{"2":{"11":1,"13":7,"14":1,"146":2,"292":1}}],["relations",{"2":{"11":1,"13":1,"14":3,"17":3,"197":1,"255":2}}],["relatively",{"2":{"213":1}}],["relative",{"0":{"141":1},"2":{"3":1,"94":2,"96":2,"97":2,"98":1,"111":1,"118":2,"120":2,"127":1,"139":2,"141":1,"149":2,"157":1,"159":3,"215":4,"217":1,"230":5,"232":1,"236":4,"238":4,"240":12,"278":4,"280":1,"284":16,"289":2,"299":12}}],["relsimplenumfieldembedding",{"2":{"230":1}}],["relsimplenumfieldelem",{"2":{"127":1,"215":1,"219":1,"227":1,"230":1,"232":1,"234":1,"238":1,"278":3,"280":1,"284":6,"289":1,"291":1,"299":7}}],["relsimplenumfield",{"2":{"93":1,"96":2,"120":1,"127":5,"230":2,"240":3}}],["rels",{"2":{"14":1}}],["returned",{"2":{"17":1,"19":1,"25":2,"75":1,"88":1,"94":2,"98":2,"100":1,"112":5,"113":1,"134":2,"144":1,"145":1,"146":1,"150":1,"151":1,"184":2,"202":2,"218":5,"235":1,"250":2,"267":1,"290":3,"292":1,"296":1}}],["return",{"2":{"7":1,"13":1,"14":12,"15":2,"16":1,"17":8,"18":4,"22":1,"23":2,"24":3,"25":2,"26":2,"28":1,"30":1,"32":2,"33":1,"45":1,"46":11,"47":1,"48":3,"50":1,"51":1,"52":2,"53":2,"54":1,"67":1,"68":6,"70":4,"71":4,"72":1,"75":1,"81":1,"84":1,"87":7,"88":8,"89":3,"90":7,"93":1,"96":1,"97":1,"100":2,"101":2,"103":2,"105":2,"107":7,"113":1,"116":1,"117":2,"118":2,"119":3,"120":3,"122":3,"123":6,"124":5,"132":1,"134":5,"138":1,"146":2,"147":1,"148":1,"150":1,"151":2,"152":2,"153":1,"158":8,"160":6,"162":7,"164":3,"166":2,"168":4,"170":2,"172":1,"174":1,"178":1,"179":1,"180":4,"181":1,"182":11,"184":6,"185":1,"186":5,"187":1,"189":2,"190":13,"191":3,"192":1,"193":1,"195":1,"197":7,"198":2,"200":1,"201":2,"202":6,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":3,"211":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":8,"248":1,"249":4,"250":12,"251":2,"252":4,"253":5,"254":5,"255":12,"257":3,"258":2,"259":1,"261":4,"262":3,"263":2,"266":5,"267":1,"275":4,"276":4,"277":4,"279":5,"281":4,"283":14,"285":9,"287":4,"288":3,"290":7,"292":3,"294":2,"296":3,"298":6}}],["returns",{"2":{"7":5,"8":2,"10":1,"16":1,"17":4,"18":1,"26":1,"46":1,"48":1,"59":4,"74":3,"75":3,"81":4,"83":6,"84":1,"87":1,"88":1,"89":1,"93":2,"101":1,"102":1,"111":12,"112":2,"113":3,"114":7,"116":4,"117":7,"118":4,"119":6,"120":5,"121":2,"122":5,"123":1,"131":2,"132":6,"134":10,"137":3,"138":7,"144":3,"145":3,"146":8,"147":24,"148":4,"150":11,"151":20,"152":6,"153":1,"164":3,"168":1,"184":2,"197":2,"198":1,"199":2,"201":2,"202":2,"246":2,"250":2,"255":1,"275":1,"276":1,"277":1,"283":1,"287":1}}],["rescaled",{"2":{"186":1,"191":1,"201":2,"241":2,"246":1,"285":2,"290":1}}],["rescale",{"2":{"186":1,"191":1,"196":1,"201":2,"207":1,"241":2,"248":2,"263":1,"285":1,"286":1}}],["rescaling",{"0":{"207":1,"241":1,"248":1},"2":{"162":1,"285":1}}],["rest",{"2":{"127":1,"157":1,"215":1,"230":1,"282":1}}],["restricting",{"2":{"162":1}}],["restriction",{"0":{"105":1},"2":{"105":2,"122":1,"162":1}}],["restrict",{"2":{"105":4,"106":1,"108":2,"162":2,"211":2,"236":2,"238":2,"240":2}}],["restricts",{"2":{"105":1,"106":1}}],["restricted",{"2":{"12":1}}],["resulting",{"2":{"125":1}}],["result",{"2":{"88":1,"93":1,"111":1,"116":1,"134":1,"146":1,"151":1}}],["results",{"2":{"61":1,"153":1,"272":1}}],["reshape",{"2":{"32":1,"33":1}}],["respec",{"2":{"196":1}}],["respectively",{"2":{"112":2,"134":1,"167":1,"195":1,"213":1,"255":1,"296":2}}],["respective",{"2":{"67":1,"201":2,"218":1,"237":2,"261":1,"294":1}}],["respect",{"2":{"23":1,"27":1,"29":1,"54":1,"89":1,"109":1,"111":5,"114":1,"132":1,"138":1,"150":3,"151":3,"156":1,"162":3,"166":1,"209":1,"246":1,"253":2,"255":2,"262":6,"265":1,"267":1,"270":2,"294":2,"296":2}}],["responsibility",{"2":{"93":1}}],["resp",{"2":{"18":1,"160":2,"213":4,"245":2,"275":8,"290":3}}],["resolutions",{"2":{"16":1}}],["research",{"2":{"4":1,"5":1}}],["residue",{"2":{"2":3,"61":1,"84":3,"89":2,"142":2,"148":5,"152":3,"188":1,"246":1}}],["n=|vgvt|",{"2":{"266":2}}],["n=t",{"2":{"198":1}}],["ns",{"2":{"263":2}}],["n2",{"2":{"255":2}}],["n⊆e⊗m",{"2":{"285":1}}],["n⊆qm",{"2":{"255":1}}],["n⊆m",{"2":{"195":1,"255":1}}],["n∗j2",{"2":{"246":1}}],["nt",{"2":{"213":1}}],["n1",{"2":{"213":1}}],["nz",{"2":{"196":1,"197":1}}],["nz=φ",{"2":{"195":1}}],["nzas",{"2":{"195":1}}],["n→q",{"2":{"195":2}}],["n×m",{"2":{"195":1}}],["n×d",{"2":{"111":1}}],["n⊗zp",{"2":{"176":1}}],["nx",{"2":{"125":1}}],["nf",{"2":{"121":1,"132":2,"147":1,"151":3}}],["n−ibxi",{"2":{"116":1}}],["nlog⁡|n",{"2":{"112":1}}],["nnz",{"2":{"88":1}}],["nrows",{"2":{"85":1}}],["nrels",{"2":{"14":1}}],["ncring",{"2":{"80":1}}],["ncols",{"2":{"13":3}}],["nikulin",{"2":{"300":1}}],["niemeier",{"2":{"246":4}}],["nice",{"2":{"67":2,"68":4,"125":2}}],["ni",{"2":{"61":1,"213":2}}],["npm",{"2":{"36":1}}],["nauk",{"2":{"300":1}}],["named",{"2":{"116":2}}],["names",{"2":{"30":1}}],["nature",{"2":{"93":1}}],["naturally",{"2":{"105":1}}],["natural",{"2":{"27":1,"109":1,"140":1}}],["narrow",{"2":{"93":1,"146":2,"153":1}}],["naive",{"2":{"60":3}}],["navigate",{"2":{"36":1}}],["ng",{"2":{"17":2}}],["ngens",{"2":{"7":3}}],["n⋅g→g",{"2":{"17":2}}],["n⋅g",{"2":{"17":2}}],["n",{"2":{"13":5,"17":8,"42":3,"52":1,"54":2,"61":2,"67":1,"68":10,"84":6,"85":4,"87":10,"88":2,"89":2,"93":3,"94":6,"96":1,"111":3,"113":4,"116":5,"119":1,"125":6,"134":2,"137":1,"145":2,"156":4,"158":1,"164":2,"176":1,"182":2,"186":1,"188":4,"190":1,"195":6,"196":2,"197":3,"199":2,"201":2,"207":2,"208":3,"213":1,"246":25,"254":5,"255":15,"266":4,"285":3,"288":1,"300":1}}],["numerator",{"2":{"137":1,"146":1,"206":1}}],["numfieldordelem",{"2":{"133":1}}],["numfieldorderfractionalideal",{"2":{"285":1}}],["numfieldorderideal",{"2":{"145":3,"147":4,"285":1}}],["numfieldorderelem",{"2":{"131":4,"132":5,"133":8,"134":9,"145":1}}],["numfieldorder",{"2":{"131":3,"132":1,"150":2,"151":4,"152":2}}],["numfieldhom",{"2":{"105":1,"106":1,"119":1,"120":2,"121":1,"122":3,"158":1}}],["numfieldelem",{"2":{"103":1,"107":7,"111":15,"113":2,"114":9,"116":6,"117":4,"118":1,"123":1,"131":1,"132":1,"134":1,"145":1,"147":2,"150":2,"151":4,"222":1,"224":2,"285":2,"290":1}}],["numfieldemb",{"2":{"100":2,"101":3,"102":2,"103":2,"105":2,"106":1,"107":7}}],["numfield",{"2":{"100":2,"101":1,"105":1,"113":1,"114":1,"116":3,"117":4,"118":4,"119":5,"120":6,"121":2,"122":2,"123":1,"124":3,"150":1,"151":1,"156":4,"158":2,"214":1,"216":1,"231":1,"239":2,"277":4}}],["numpages",{"2":{"4":1}}],["numbers",{"2":{"58":1,"61":1,"92":1,"113":1,"116":1,"127":1,"129":2,"132":1,"134":1,"146":1,"149":1,"152":1,"176":1,"242":1}}],["number",{"0":{"2":1,"55":1,"115":1,"116":1,"127":1,"140":1,"141":1,"276":1},"1":{"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1},"2":{"3":2,"4":2,"14":3,"25":4,"32":1,"42":2,"52":1,"57":1,"58":2,"61":1,"62":1,"73":1,"78":1,"79":1,"81":1,"86":2,"88":10,"92":3,"95":2,"96":8,"97":1,"98":1,"99":2,"101":3,"105":5,"107":5,"108":9,"109":4,"111":17,"113":3,"114":11,"116":25,"117":7,"118":11,"119":6,"120":1,"121":3,"122":6,"123":4,"124":2,"125":1,"127":3,"128":1,"129":5,"130":1,"131":2,"132":1,"134":2,"135":1,"139":4,"141":2,"142":4,"145":1,"146":6,"147":2,"149":6,"150":6,"151":12,"152":2,"153":1,"156":2,"157":3,"159":6,"161":1,"163":1,"167":1,"173":1,"175":1,"180":3,"182":2,"184":4,"188":1,"202":4,"207":1,"215":6,"216":1,"217":4,"219":2,"221":2,"223":2,"225":2,"227":2,"230":8,"232":4,"234":2,"236":6,"238":7,"240":7,"246":1,"250":4,"252":1,"254":5,"261":1,"266":4,"268":1,"270":1,"272":2,"276":2,"277":6,"278":16,"280":5,"282":2,"283":1,"284":14,"285":1,"286":6,"289":2,"291":2,"293":1,"295":2,"297":1,"299":2,"300":4,"301":2}}],["ny",{"2":{"4":2}}],["neg",{"2":{"263":2}}],["negative",{"2":{"14":1,"58":1,"62":1,"107":7,"147":2,"160":5,"164":1,"180":1,"182":1,"228":1,"231":1,"252":4,"255":1,"290":3}}],["neighbor",{"2":{"246":1}}],["necessary",{"2":{"213":1,"269":1,"301":1}}],["necessarily",{"2":{"61":1}}],["needs",{"2":{"61":1}}],["neat",{"2":{"17":5}}],["neutral",{"2":{"7":1}}],["new",{"2":{"4":2,"25":1,"39":4,"82":1,"89":2,"148":1,"207":1,"282":1,"300":2}}],["nemo",{"2":{"4":3,"93":1,"128":1,"209":1}}],["next",{"2":{"2":1,"127":1}}],["no",{"2":{"48":1,"58":1,"94":1,"142":1,"196":1,"209":1,"230":1,"235":1,"246":1,"272":1,"298":2}}],["nonsimplenumfield",{"2":{"111":1,"117":3,"121":2}}],["nonzero",{"2":{"81":1,"88":1,"146":2}}],["nonethelss",{"2":{"278":1}}],["none",{"2":{"20":1,"168":1,"287":1}}],["non",{"2":{"3":1,"14":1,"17":1,"45":1,"58":2,"88":3,"96":4,"108":7,"111":1,"116":3,"117":3,"121":2,"127":4,"129":1,"134":1,"141":1,"143":1,"146":3,"147":2,"153":1,"156":1,"160":1,"164":2,"170":1,"176":2,"180":2,"188":1,"207":1,"213":2,"222":1,"233":1,"255":1,"266":5,"270":1,"271":1,"285":1}}],["nothing",{"2":{"32":1,"94":1,"195":2,"239":1,"267":1,"276":3,"277":3}}],["noted",{"2":{"58":1,"94":1}}],["note",{"2":{"8":1,"17":1,"26":1,"30":1,"36":1,"68":1,"79":1,"96":1,"98":1,"99":1,"103":1,"116":1,"145":1,"160":1,"162":1,"164":1,"166":1,"168":1,"176":1,"182":1,"184":2,"193":1,"202":2,"213":2,"215":1,"228":1,"229":1,"233":1,"235":1,"250":2,"266":3,"268":2,"278":1,"283":3,"285":1,"292":1}}],["not",{"2":{"2":4,"12":1,"20":1,"25":2,"40":1,"53":1,"58":3,"61":3,"67":1,"68":1,"73":3,"79":1,"88":1,"89":1,"92":1,"97":1,"98":1,"101":1,"111":1,"116":2,"118":2,"119":1,"120":1,"124":2,"141":3,"145":1,"146":3,"147":2,"149":1,"151":3,"169":1,"184":2,"201":4,"202":2,"224":1,"228":1,"230":2,"244":2,"249":1,"250":2,"267":1,"276":3,"277":3,"278":1,"279":1,"283":1,"292":1,"298":2}}],["now",{"2":{"2":1,"150":1,"162":1,"263":1,"268":1,"278":1,"282":1}}],["norms",{"2":{"88":1,"218":3,"219":1,"224":1}}],["norm2",{"2":{"83":1}}],["normliased",{"2":{"6":1}}],["normalized",{"2":{"188":1}}],["normalization",{"2":{"149":1}}],["normalising",{"2":{"143":1}}],["normalised",{"2":{"112":1}}],["normalise",{"2":{"112":3}}],["normalisation",{"2":{"75":2}}],["normalform",{"2":{"38":2}}],["normal",{"0":{"203":1},"2":{"2":1,"14":1,"15":1,"16":1,"87":2,"88":5,"96":1,"97":5,"98":9,"120":6,"122":1,"123":2,"137":1,"142":2,"146":8,"195":1,"203":2,"208":3,"217":1,"232":2,"282":1,"289":1}}],["norm",{"0":{"83":1},"2":{"2":1,"61":1,"93":8,"96":1,"98":6,"113":9,"114":7,"118":1,"125":1,"134":6,"138":6,"142":3,"146":14,"147":9,"151":1,"182":3,"190":3,"213":4,"215":2,"217":1,"218":11,"224":2,"231":2,"232":2,"238":1,"250":3,"261":1,"282":1,"288":3,"289":2,"298":11}}],["zassenhaus",{"2":{"300":1}}],["zmodh",{"2":{"246":1}}],["zeta",{"2":{"152":2}}],["zero",{"2":{"7":1,"22":3,"24":3,"29":4,"45":1,"58":1,"87":6,"88":5,"107":1,"112":1,"134":1,"143":1,"146":3,"153":1,"169":1,"207":1,"252":1,"266":4,"275":1,"276":1,"277":1,"285":1}}],["z^",{"2":{"146":1}}],["z^2",{"2":{"15":6}}],["zn",{"2":{"130":1}}],["zk",{"2":{"74":3,"96":2,"135":3,"143":3,"146":6}}],["zlattices",{"2":{"38":2}}],["zgenus",{"2":{"38":2}}],["zzlocalgenus",{"2":{"185":1,"188":1,"189":2,"190":13,"191":4,"192":3,"193":2}}],["zzlat",{"2":{"178":1,"186":2,"189":1,"191":1,"195":2,"197":2,"205":1,"242":3,"244":1,"246":6,"248":2,"249":3,"250":8,"251":4,"252":1,"253":2,"254":4,"255":13,"257":15,"258":5,"260":1,"261":6,"262":10,"263":2,"265":2,"266":5,"267":1,"276":6}}],["zzgenus",{"2":{"176":2,"178":1,"179":1,"180":1,"181":3,"182":12,"183":1,"184":4,"185":1,"186":7,"187":2,"209":1,"247":1}}],["zzpolyringelem",{"2":{"134":3}}],["zzmodmatrix",{"2":{"88":2}}],["zzmodringelem",{"2":{"84":1,"88":1,"190":3,"209":1}}],["zzmatrix",{"2":{"7":1,"8":1,"13":1,"14":1,"17":2,"90":4,"134":1,"136":2,"144":1,"147":1,"150":1,"151":1,"254":1}}],["zz",{"2":{"64":2,"90":1,"116":1,"134":1,"196":1,"209":1,"244":2,"246":4,"249":2}}],["zzring",{"2":{"58":2}}],["zzringelem|integer",{"2":{"151":1}}],["zzringelem",{"2":{"7":3,"8":2,"10":1,"11":1,"14":3,"17":13,"51":3,"52":1,"54":1,"58":1,"59":4,"60":2,"61":8,"79":1,"84":11,"86":1,"88":30,"89":10,"90":1,"111":1,"113":4,"116":1,"118":2,"119":1,"131":2,"132":1,"133":2,"134":3,"136":3,"137":1,"144":5,"145":1,"146":5,"147":14,"148":1,"150":5,"151":3,"152":4,"182":1,"184":4,"190":1,"202":4,"248":1,"250":4,"266":3,"267":2}}],["z",{"2":{"2":10,"12":2,"13":8,"17":9,"53":2,"58":1,"88":1,"95":2,"96":1,"109":5,"116":1,"136":1,"138":1,"139":1,"140":2,"142":5,"143":2,"146":6,"147":1,"149":3,"150":2,"151":5,"152":2,"157":2,"159":2,"176":3,"179":1,"180":1,"182":1,"184":4,"186":1,"188":1,"189":1,"191":1,"195":1,"196":9,"201":11,"205":1,"206":10,"209":1,"242":4,"244":1,"246":2,"250":6,"254":2,"255":4,"257":3,"261":3,"262":3,"265":1,"276":3,"283":2,"301":1}}],["18",{"2":{"263":1}}],["18802",{"2":{"52":1}}],["111",{"2":{"300":1}}],["113",{"2":{"272":1}}],["11",{"2":{"254":2}}],["1145",{"2":{"4":2}}],["1979",{"2":{"300":1}}],["1999",{"2":{"300":1}}],["1997",{"2":{"300":1}}],["1993",{"2":{"300":1}}],["193",{"2":{"300":1}}],["19",{"2":{"230":3,"246":1,"263":2}}],["195",{"2":{"5":1}}],["1+4ω",{"2":{"193":1}}],["1+i",{"2":{"146":2}}],["1+ζ7+ζ72",{"2":{"2":1}}],["1^10",{"2":{"246":1}}],["1^8",{"2":{"246":1}}],["1^22",{"2":{"246":1,"263":1}}],["1^26",{"2":{"246":1}}],["1^24",{"2":{"246":1}}],["1^",{"2":{"146":1,"246":2}}],["1=10",{"2":{"145":1}}],["1st",{"2":{"143":1}}],["1>",{"2":{"95":1,"96":2,"146":2,"215":4,"230":2,"236":4,"238":4,"240":12,"278":4,"284":36,"286":4,"289":7,"299":48}}],["144",{"2":{"146":1}}],["14473970623176763",{"2":{"146":2}}],["14",{"2":{"67":2,"286":1,"299":6}}],["1507194",{"2":{"234":2}}],["15670329078123133",{"2":{"146":2}}],["15",{"2":{"67":1,"68":2,"176":1,"188":1,"201":1,"240":1,"261":2,"280":2}}],["157",{"2":{"4":2}}],["16",{"2":{"53":1,"209":1,"254":4,"263":1}}],["164",{"2":{"4":2}}],["126>",{"2":{"286":1}}],["128",{"2":{"104":1}}],["12",{"2":{"17":2,"146":1,"254":20,"261":2}}],["1≤i",{"2":{"151":1,"270":1}}],["1≤i≤t",{"2":{"213":1}}],["1≤i≤d",{"2":{"148":1}}],["1≤i≤2s",{"2":{"109":1}}],["1≤i≤r",{"2":{"73":1,"109":1}}],["1≤i≤n",{"2":{"13":1,"213":1,"283":3}}],["1≤j≤n",{"2":{"117":1}}],["1≤j≤m",{"2":{"13":1}}],["177",{"2":{"300":1}}],["17",{"2":{"4":2,"51":1}}],["138",{"2":{"300":1}}],["13",{"2":{"2":1,"54":1,"146":2,"246":3}}],["10>",{"2":{"286":1}}],["1024",{"2":{"234":1}}],["1047",{"2":{"234":1}}],["1000",{"2":{"61":1}}],["100",{"2":{"51":3,"61":1}}],["101",{"2":{"51":2,"52":3,"53":3,"54":1}}],["10",{"2":{"2":1,"4":2,"95":1,"96":2,"104":1,"107":2,"112":2,"116":1,"142":1,"146":1,"201":1,"254":12,"261":1,"280":1,"282":1,"284":1,"286":2,"297":1}}],["1",{"2":{"2":8,"7":4,"11":3,"15":5,"17":27,"25":7,"26":3,"29":7,"32":4,"33":7,"36":1,"42":2,"45":5,"46":2,"48":21,"50":2,"51":3,"52":3,"53":7,"54":3,"58":1,"61":1,"64":4,"67":8,"68":14,"73":1,"85":2,"88":1,"89":1,"95":2,"96":6,"100":6,"101":3,"102":1,"103":2,"104":2,"105":6,"106":1,"107":12,"108":20,"109":3,"111":5,"116":2,"117":3,"120":1,"124":1,"125":1,"134":1,"139":1,"141":2,"142":9,"145":1,"146":49,"147":2,"150":1,"151":1,"152":1,"157":10,"159":9,"161":2,"162":1,"163":20,"164":1,"165":14,"167":9,"169":6,"171":5,"173":2,"175":2,"184":4,"186":1,"188":4,"190":2,"196":17,"201":30,"202":4,"206":6,"209":10,"213":1,"215":28,"217":7,"218":5,"219":12,"221":6,"223":6,"225":6,"227":6,"230":26,"232":9,"233":1,"234":8,"236":24,"238":34,"239":2,"240":48,"244":6,"246":128,"248":7,"249":2,"250":4,"253":6,"254":31,"255":17,"261":35,"263":36,"267":18,"268":1,"270":1,"278":49,"280":23,"282":10,"284":179,"286":62,"289":40,"291":11,"293":14,"294":4,"295":22,"296":4,"297":6,"299":189,"301":1}}],["+z",{"2":{"205":1}}],["+t",{"2":{"201":4}}],["+nz",{"2":{"198":1}}],["+4",{"2":{"17":1}}],["+2z",{"2":{"205":1}}],["+2",{"2":{"17":1}}],["+",{"2":{"2":18,"17":1,"29":2,"45":9,"46":12,"48":12,"50":2,"52":1,"53":10,"54":4,"68":3,"81":1,"90":1,"96":1,"100":2,"101":1,"103":3,"104":2,"105":2,"106":2,"107":2,"108":6,"111":3,"120":1,"124":1,"133":1,"145":1,"146":31,"147":2,"150":1,"151":1,"157":3,"159":4,"215":4,"219":1,"227":2,"230":7,"232":2,"234":11,"238":8,"240":1,"255":2,"278":5,"280":2,"284":25,"285":1,"286":1,"289":3,"291":1,"295":1,"299":13}}],["7>",{"2":{"282":1,"284":2,"286":2,"289":2}}],["765",{"2":{"234":1}}],["728381",{"2":{"234":1}}],["72",{"2":{"146":1}}],["7182642479841784",{"2":{"146":2}}],["73205080756887729353",{"2":{"103":1}}],["73",{"2":{"100":5,"105":1,"107":2}}],["74",{"2":{"54":2}}],["7^4",{"2":{"2":1}}],["7^3",{"2":{"2":1}}],["7^5",{"2":{"2":2}}],["7^2",{"2":{"2":2}}],["77",{"2":{"2":2,"103":1}}],["7",{"2":{"2":7,"67":3,"68":2,"107":1,"146":5,"157":4,"159":5,"161":1,"163":1,"165":6,"167":2,"169":1,"171":1,"173":2,"175":2,"188":2,"230":1,"232":5,"234":1,"238":1,"246":3,"278":3,"280":2,"282":6,"284":11,"286":3,"289":3,"291":2,"293":1,"295":1,"297":1,"299":2,"301":1}}],["=lp",{"2":{"290":1}}],["=l",{"2":{"290":2}}],["=l1×",{"2":{"257":1,"287":1}}],["=l1⊕",{"2":{"257":2,"287":2}}],["=∑i=1n1",{"2":{"233":1}}],["=g",{"2":{"213":2,"228":1}}],["=ordp",{"2":{"213":1}}],["=rank",{"2":{"213":1}}],["=psi",{"2":{"213":1}}],["=t1×",{"2":{"210":1}}],["=t1⊕",{"2":{"210":2}}],["=1d∑x∈dexp⁡",{"2":{"209":1}}],["=1",{"2":{"174":1}}],["=ψ",{"2":{"174":1}}],["=0",{"2":{"172":1,"174":1,"208":1}}],["=v1×",{"2":{"168":1}}],["=v1⊕",{"2":{"168":2}}],["=φ",{"2":{"164":1,"166":1,"294":1}}],["=deg⁡",{"2":{"146":1}}],["=hom⁡",{"2":{"145":1}}],["=z",{"2":{"140":1}}],["=b",{"2":{"140":1}}],["=a",{"2":{"113":1,"125":1}}],["=σi+s",{"2":{"112":3,"134":1}}],["=q",{"2":{"109":1,"140":1}}],["=infplc",{"2":{"97":1}}],["=mα",{"2":{"109":1}}],["=m",{"2":{"73":1}}],["=>9",{"2":{"67":1}}],["=>",{"2":{"29":4,"67":5,"107":2,"146":4,"230":3,"232":1,"238":3,"240":2}}],["==2",{"2":{"156":2}}],["==",{"2":{"25":1,"29":2,"47":2,"48":1,"52":1,"64":1,"68":1,"81":1,"85":1,"90":1,"98":1,"102":1,"103":1,"111":1,"116":2,"132":1,"142":1,"145":1,"193":1,"196":1,"201":2,"209":4,"239":1,"244":2,"246":9,"253":1,"255":1,"261":1,"283":2,"292":3,"294":1,"296":1}}],["===",{"2":{"2":1}}],["=",{"2":{"2":9,"4":11,"11":2,"13":7,"15":4,"17":29,"18":1,"19":1,"20":1,"22":1,"24":1,"25":8,"26":4,"28":2,"29":4,"32":5,"33":4,"36":1,"42":3,"45":6,"46":3,"47":2,"48":12,"50":2,"51":4,"52":2,"53":7,"54":5,"61":3,"64":3,"67":3,"68":7,"87":1,"88":6,"93":4,"94":2,"95":4,"96":7,"100":4,"101":6,"102":2,"103":4,"104":2,"105":6,"106":3,"107":12,"108":5,"111":3,"112":2,"113":1,"116":14,"117":4,"118":4,"120":2,"121":1,"122":2,"124":3,"131":2,"134":2,"136":2,"138":2,"142":9,"144":3,"145":1,"146":18,"147":4,"148":1,"150":12,"151":4,"156":4,"157":5,"159":4,"161":5,"162":1,"163":5,"165":5,"167":9,"168":2,"169":4,"171":3,"173":6,"175":6,"180":2,"188":12,"190":1,"195":5,"196":10,"201":18,"205":1,"208":3,"209":4,"213":3,"214":2,"215":13,"217":8,"219":11,"221":8,"223":8,"225":8,"227":11,"230":16,"232":11,"234":12,"235":5,"236":12,"238":16,"239":2,"240":5,"244":3,"245":1,"246":32,"248":1,"249":2,"253":7,"254":6,"255":11,"261":10,"262":5,"263":4,"265":2,"266":12,"267":6,"275":2,"276":5,"277":5,"278":34,"280":12,"282":11,"283":2,"284":8,"285":1,"286":11,"287":2,"288":2,"289":8,"291":10,"292":1,"293":7,"294":5,"295":8,"296":5,"297":11,"299":10,"301":5}}],["ζm",{"2":{"125":2}}],["ζn",{"2":{"116":1}}],["ζ^2",{"2":{"2":1}}],["ζ",{"2":{"2":3}}],["ζ7",{"2":{"2":1}}],["ζ7+77",{"2":{"2":1}}],["kum",{"2":{"246":2}}],["kummer",{"2":{"96":1,"119":3,"125":1}}],["k3",{"2":{"246":8}}],["kp",{"2":{"213":1}}],["kp×",{"2":{"213":1}}],["kw",{"2":{"211":2}}],["kir19",{"2":{"272":1}}],["kir16",{"2":{"164":1,"213":1,"233":1,"269":1,"272":1}}],["kirschmer",{"2":{"272":1,"278":4}}],["kissing",{"2":{"266":2}}],["kind",{"2":{"168":1}}],["k×",{"2":{"158":3,"224":2}}],["k⋅a",{"2":{"134":1}}],["k⊃k",{"2":{"120":1}}],["kt",{"2":{"116":1,"157":1,"159":1,"161":1,"163":1,"167":1,"171":1,"173":1,"175":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"240":1,"278":3,"280":1,"284":1,"289":1,"291":1,"295":1,"299":1}}],["ktok",{"2":{"105":2,"106":2}}],["k∈z≥1",{"2":{"111":1}}],["k⟶rdα⟼",{"2":{"109":1}}],["k=q",{"2":{"109":2,"117":1,"140":1,"276":3}}],["k→r",{"2":{"109":1}}],["k→l",{"2":{"105":1,"120":1}}],["k→k",{"2":{"105":1,"106":2,"109":1}}],["k→c",{"2":{"103":1,"105":1,"106":2,"109":1,"120":1}}],["kronnecker",{"2":{"92":1}}],["kannan",{"2":{"88":3}}],["ker⁡",{"2":{"262":1}}],["kernel",{"2":{"164":1,"196":1,"246":1,"255":1,"261":4,"262":1}}],["keep",{"2":{"157":1}}],["keepzrows",{"2":{"87":2}}],["key",{"2":{"78":1}}],["keys",{"2":{"67":1,"68":1,"144":3,"146":1,"229":1,"231":1}}],["keyword",{"2":{"42":1,"93":1,"98":3,"146":1,"211":2,"244":1}}],["kn",{"2":{"73":1}}],["knowledgeable",{"2":{"268":1}}],["knowledge",{"2":{"121":1}}],["known",{"2":{"54":1,"58":2,"120":1,"147":2,"149":1,"150":2,"242":1,"249":1,"279":1}}],["knows",{"2":{"40":1,"147":4}}],["know",{"2":{"17":1}}],["kx",{"2":{"2":1}}],["k",{"2":{"2":8,"22":2,"23":4,"24":2,"25":5,"26":3,"27":1,"28":1,"32":7,"45":3,"46":2,"58":3,"70":4,"71":4,"72":2,"73":5,"93":6,"94":2,"95":2,"96":15,"97":2,"98":1,"100":9,"101":6,"102":2,"103":3,"104":2,"105":14,"106":6,"107":12,"108":5,"109":9,"111":18,"113":4,"114":11,"116":9,"117":16,"118":18,"119":22,"120":25,"121":7,"122":15,"123":12,"124":10,"125":7,"129":2,"134":4,"135":1,"139":5,"140":4,"141":3,"142":8,"145":1,"146":6,"150":17,"151":4,"152":1,"156":4,"157":4,"158":1,"159":2,"160":4,"161":4,"162":3,"163":7,"164":3,"165":6,"166":3,"167":7,"171":5,"172":3,"173":3,"174":3,"175":3,"207":4,"208":2,"213":2,"214":2,"215":3,"216":2,"217":3,"218":17,"219":3,"220":4,"221":3,"222":1,"223":3,"224":2,"225":3,"226":4,"227":3,"228":5,"229":2,"230":3,"231":5,"232":3,"233":2,"234":2,"235":5,"236":5,"237":2,"238":5,"239":1,"240":5,"270":15,"271":2,"276":16,"278":11,"280":7,"282":12,"283":1,"284":2,"285":4,"286":12,"288":1,"289":2,"290":1,"291":3,"293":7,"294":1,"295":7,"297":12,"299":3,"301":2}}],["c1",{"2":{"151":1}}],["cm",{"2":{"118":1,"119":3,"160":1,"169":2}}],["cf",{"2":{"96":1,"97":1}}],["cilog⁡|x",{"2":{"112":1}}],["ci",{"2":{"74":2}}],["citation",{"2":{"4":1}}],["citing",{"0":{"4":1}}],["crt",{"2":{"61":1,"148":1}}],["creating",{"2":{"214":1}}],["creation",{"0":{"7":1,"13":1,"22":1,"28":1,"32":1,"45":1,"74":1,"80":1,"111":1,"116":1,"131":1,"136":1,"144":1,"150":1,"156":1,"177":1,"189":1,"214":1,"229":1,"243":1,"274":1},"1":{"112":1,"113":1,"114":1,"151":1,"157":1,"178":1,"179":1,"180":1,"181":1,"215":1,"230":1,"244":1,"245":1,"246":1,"247":1,"248":1,"275":1,"276":1,"277":1,"278":1},"2":{"7":1,"13":1}}],["created",{"2":{"15":2,"18":3,"67":1,"87":1,"111":1,"116":1,"142":1,"247":1}}],["creates",{"2":{"13":6,"94":1,"116":1,"136":6,"144":5,"265":1}}],["create",{"2":{"7":1,"13":1,"17":7,"29":1,"67":2,"74":1,"82":1,"89":1,"94":1,"97":1,"103":1,"116":2,"142":1,"156":4}}],["close",{"0":{"264":1,"267":1},"1":{"265":1,"266":1,"267":1},"2":{"267":3}}],["closure",{"2":{"57":1,"93":3,"96":3,"98":3,"120":3,"149":1,"255":5,"285":3}}],["clm",{"2":{"93":1}}],["claus",{"2":{"4":2}}],["classes",{"2":{"186":2,"233":1,"235":2,"251":1}}],["classgrpctx",{"2":{"146":1}}],["classgroup",{"2":{"95":1,"146":1,"153":1}}],["classfield",{"2":{"94":7,"96":9,"97":10,"98":20}}],["classifies",{"2":{"92":1}}],["classical",{"2":{"73":1}}],["class",{"0":{"91":1,"93":1,"94":1,"146":1},"1":{"92":1,"93":1,"94":1,"95":2,"96":1,"97":1,"98":1},"2":{"3":3,"61":1,"78":1,"92":5,"93":13,"94":30,"95":3,"96":9,"97":3,"98":4,"111":1,"116":2,"118":5,"134":1,"146":21,"153":2,"158":1,"164":1,"168":1,"176":1,"213":2,"214":2,"224":5,"239":1,"272":1,"278":2,"287":1,"301":2}}],["c6",{"2":{"46":1}}],["curvers",{"2":{"57":1}}],["curves",{"0":{"49":1,"55":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"57":1}}],["curve",{"2":{"45":12,"46":5,"48":16,"50":3,"51":4,"52":4,"53":6,"54":3,"57":2}}],["currently",{"2":{"14":1,"58":1,"68":1,"98":1,"141":1,"149":1}}],["current",{"2":{"14":3,"36":1}}],["ctoa",{"2":{"26":1}}],["c→a",{"2":{"26":1}}],["central",{"2":{"24":3,"97":3}}],["center",{"0":{"26":1},"2":{"5":1,"24":1,"26":11}}],["c2",{"2":{"17":1,"151":1}}],["c2×c4",{"2":{"17":1}}],["c4",{"2":{"17":1,"46":1}}],["cambridge",{"2":{"300":2}}],["cache",{"2":{"146":1,"186":1}}],["cached",{"2":{"28":1,"116":8,"150":4,"156":4,"234":2,"278":2}}],["caching",{"2":{"116":1}}],["cai+daj",{"2":{"89":1}}],["carlo",{"2":{"88":1}}],["cardinality",{"0":{"51":1},"2":{"147":1}}],["categorical",{"0":{"168":1,"210":1,"257":1,"287":1},"1":{"169":1}}],["cat",{"2":{"87":1}}],["ca+db",{"2":{"81":1}}],["ca+b",{"2":{"81":2}}],["calculus",{"2":{"78":1}}],["callers",{"2":{"93":1}}],["called",{"2":{"17":2,"18":1,"73":2,"92":1,"99":1,"109":5,"127":2,"140":1,"141":1,"146":1,"149":1,"164":2,"166":1,"168":5,"190":2,"210":3,"250":1,"255":1,"257":3,"270":3,"271":3,"287":4,"294":2}}],["callable",{"2":{"89":1}}],["call",{"2":{"17":1,"18":3,"73":1,"94":1,"109":2,"129":1,"168":6,"210":6,"213":2,"255":1,"257":6,"270":1,"271":2,"283":1,"287":7}}],["caputured",{"2":{"58":1}}],["cases",{"2":{"58":1,"61":1,"129":1,"160":1,"166":1,"270":1}}],["case",{"2":{"25":2,"39":1,"61":1,"88":1,"93":1,"105":1,"109":1,"129":1,"141":1,"145":1,"149":1,"150":2,"158":1,"160":2,"165":1,"166":1,"184":2,"201":2,"202":4,"235":1,"250":2,"255":1,"268":1,"270":2,"290":2,"296":1}}],["cannot",{"2":{"2":1,"98":1}}],["canonically",{"2":{"94":2}}],["canonical",{"2":{"2":1,"16":1,"18":4,"58":1,"94":1,"111":5,"117":2,"121":4,"148":1,"168":1,"203":1,"270":2,"283":1,"287":1}}],["can",{"2":{"2":3,"7":1,"11":1,"15":2,"20":1,"22":1,"29":2,"36":1,"38":1,"40":1,"42":3,"43":2,"45":1,"47":2,"51":1,"54":1,"58":4,"59":1,"60":1,"61":3,"62":1,"67":3,"68":2,"73":1,"75":2,"79":1,"87":2,"93":1,"96":1,"98":1,"103":1,"104":1,"106":1,"111":2,"113":1,"116":6,"122":1,"127":1,"129":1,"130":1,"142":1,"143":3,"146":2,"149":1,"150":2,"153":1,"162":1,"165":1,"166":2,"167":1,"168":3,"174":1,"195":1,"229":1,"235":2,"245":1,"247":1,"248":1,"265":1,"267":1,"272":1,"275":2,"276":2,"277":2,"278":2,"283":1,"285":2,"287":2,"290":1,"291":1}}],["c",{"2":{"17":2,"26":6,"46":6,"67":6,"68":5,"74":4,"81":3,"87":2,"89":7,"93":2,"95":1,"96":1,"97":14,"98":5,"103":2,"111":3,"112":2,"120":1,"124":2,"128":1,"132":2,"134":2,"146":9,"265":2,"301":2}}],["cyclic",{"2":{"13":2,"14":3,"96":2,"97":3}}],["cyclotomix",{"2":{"169":1}}],["cyclotomic",{"2":{"2":3,"92":1,"105":1,"106":3,"116":3,"157":2,"159":3,"161":1,"163":1,"165":4,"167":1,"171":1,"173":1,"175":1,"240":1}}],["cyclomotic",{"2":{"2":1}}],["choosing",{"2":{"214":1,"229":1}}],["choose",{"2":{"143":1}}],["chosen",{"2":{"7":2,"215":1,"253":3,"294":2,"296":2}}],["check=true",{"2":{"261":1}}],["checkisunit",{"2":{"113":2}}],["checking",{"2":{"97":1}}],["checked",{"2":{"45":1,"47":1,"111":1,"113":1,"116":1,"120":1,"131":2,"144":1,"148":1,"150":5,"151":2,"245":1,"266":3,"267":1,"275":2,"276":2,"277":2}}],["checks",{"2":{"32":1,"97":1,"113":1,"151":1,"154":1}}],["check",{"2":{"32":2,"45":2,"47":2,"97":2,"116":5,"119":1,"131":4,"144":2,"148":2,"150":9,"195":1,"214":1,"245":2,"266":3,"267":2,"275":4,"276":4,"277":4}}],["cham",{"2":{"300":1}}],["changing",{"2":{"87":1,"89":1}}],["changed",{"2":{"88":1}}],["change",{"0":{"82":1},"2":{"30":1,"46":6,"82":1,"89":1,"151":2}}],["charpoly",{"2":{"114":3,"134":2}}],["char",{"2":{"67":1,"68":7}}],["characteristic",{"2":{"2":3,"45":1,"114":2,"134":1,"142":1}}],["chapter",{"2":{"57":1,"73":1,"78":1,"92":1,"139":1,"141":1,"149":1,"176":1,"188":1,"268":1,"270":1,"271":1}}],["coinvariant",{"2":{"262":2}}],["coxeter",{"2":{"246":1,"254":4}}],["cover",{"0":{"199":1},"2":{"197":1,"199":1}}],["corollary",{"2":{"209":1}}],["core",{"2":{"149":1}}],["correctness",{"2":{"146":2}}],["correct",{"2":{"88":1,"93":1,"193":1}}],["corresponds",{"2":{"213":1,"237":2,"254":1}}],["correspond",{"2":{"17":2,"27":1,"87":2,"228":1}}],["corresponding",{"2":{"15":1,"17":2,"22":1,"29":2,"39":3,"87":3,"93":1,"97":2,"100":5,"101":1,"103":1,"104":2,"105":2,"106":2,"107":2,"108":8,"117":1,"124":10,"134":1,"136":1,"143":1,"165":6,"168":1,"170":1,"228":1,"229":1,"230":7,"231":1,"232":2,"238":1,"246":2,"254":2,"257":3,"283":3,"287":3}}],["course",{"2":{"300":1}}],["couple",{"2":{"153":1}}],["counterparts",{"2":{"86":1}}],["could",{"2":{"18":1,"159":1}}],["cohen",{"2":{"73":1,"75":2,"300":2}}],["coords",{"2":{"47":4,"48":3}}],["coordinate",{"2":{"29":2,"32":1}}],["coordinates",{"2":{"23":2,"47":3,"48":1,"111":7,"132":1,"196":1,"254":1,"283":1}}],["coerces",{"2":{"131":3}}],["coercing",{"2":{"82":1,"89":1}}],["coercion",{"2":{"46":1,"131":1,"196":1}}],["coeff",{"2":{"111":1,"151":2}}],["coefficient",{"2":{"75":2,"83":1,"88":1,"111":1,"127":1,"131":2,"132":1,"134":1,"147":2,"148":1,"151":1,"283":3,"284":1,"285":1}}],["coefficients",{"2":{"2":2,"7":1,"45":1,"46":3,"57":1,"58":1,"111":3,"113":1,"130":1,"141":1,"226":2}}],["copies",{"2":{"168":1}}],["copy",{"2":{"33":1,"68":1,"138":2,"147":2}}],["coprimes",{"2":{"61":1}}],["coprime",{"2":{"17":1,"60":1,"61":18,"93":2,"94":1,"137":1,"144":4,"146":3,"147":2,"151":1}}],["co",{"2":{"16":1,"152":1}}],["codifferent",{"2":{"152":2}}],["codomain",{"2":{"15":1,"17":1,"94":1,"261":1}}],["code",{"0":{"0":1},"2":{"61":4,"88":1,"93":1}}],["colon",{"2":{"145":1}}],["col",{"2":{"89":2}}],["cols",{"2":{"89":2}}],["collecting",{"2":{"269":1}}],["collections",{"2":{"68":3,"287":1}}],["collection",{"2":{"16":1,"168":4,"176":2,"210":3,"229":1,"257":3,"287":3}}],["collects",{"2":{"251":1}}],["collect",{"2":{"68":1,"146":1}}],["collaborative",{"2":{"5":1}}],["column",{"2":{"7":1,"88":1,"89":3}}],["columns",{"2":{"7":1,"17":1,"73":1,"79":1,"86":1,"87":1,"88":3,"89":1,"276":2,"277":2}}],["coming",{"2":{"143":1}}],["comes",{"2":{"129":1,"203":1,"205":1}}],["come",{"2":{"127":1}}],["commands",{"2":{"278":1}}],["common",{"2":{"30":1,"73":1,"139":1}}],["commutative",{"2":{"24":4,"78":1,"86":1}}],["complicated",{"2":{"141":1}}],["completions",{"2":{"166":2,"176":1,"228":1,"261":1,"282":1,"292":2,"296":1}}],["completion",{"2":{"164":1,"172":1,"174":2,"213":2,"214":1,"218":3,"226":2,"235":2,"237":1,"281":1,"290":1,"292":2,"298":3}}],["completely",{"2":{"164":1}}],["complete",{"2":{"127":1,"146":1,"186":1}}],["complex",{"0":{"99":1,"100":1,"103":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1},"2":{"99":2,"100":9,"101":3,"102":1,"103":2,"104":2,"105":5,"106":4,"107":8,"108":9,"109":2,"112":6,"119":4,"122":2,"124":11,"134":1,"165":3,"228":1,"230":4,"232":1,"238":1}}],["complexes",{"2":{"16":1}}],["complements",{"2":{"68":1}}],["complement",{"2":{"17":9,"68":1,"170":4,"171":1,"262":1}}],["compare",{"2":{"255":1}}],["compared",{"2":{"58":1}}],["compact",{"2":{"61":1}}],["compose",{"2":{"169":2}}],["compositum",{"2":{"96":1,"98":3,"120":2}}],["composition",{"2":{"15":1}}],["component",{"2":{"8":1,"18":2,"117":2,"188":4,"190":1}}],["components",{"2":{"7":3,"8":1,"196":1,"258":3}}],["computing",{"0":{"263":1},"2":{"60":1,"61":1,"96":1,"97":1,"105":1,"150":1,"272":1,"283":2}}],["computed",{"2":{"20":1,"61":4,"88":2,"93":1,"94":4,"106":1,"146":1,"168":1,"218":1,"266":3,"287":1}}],["compute",{"2":{"19":2,"20":1,"46":2,"48":1,"51":1,"88":2,"96":3,"97":1,"98":1,"111":1,"112":4,"120":1,"132":1,"134":2,"146":4,"186":1,"265":1,"301":1}}],["computes",{"2":{"17":1,"20":1,"25":1,"60":4,"61":2,"88":2,"93":2,"111":1,"118":1,"121":1,"125":1,"134":2,"136":1,"137":1,"144":1,"145":1,"146":6,"147":5,"151":1,"152":1}}],["computer",{"2":{"4":2,"58":1}}],["computational",{"2":{"300":2}}],["computation",{"2":{"4":1,"61":1,"78":1,"88":1,"96":1,"146":1,"154":1,"235":1}}],["computations",{"0":{"16":1},"1":{"17":1,"18":1,"19":1,"20":1},"2":{"3":1,"4":1}}],["combinations",{"2":{"131":1}}],["combination",{"2":{"6":1}}],["congruent",{"2":{"190":1}}],["conway",{"2":{"176":1,"300":1}}],["conj",{"2":{"102":2}}],["conjugation",{"2":{"119":1,"122":3}}],["conjugated",{"0":{"102":1},"2":{"100":1}}],["conjugates",{"0":{"112":1},"2":{"100":3,"112":14,"134":4}}],["conjugate",{"2":{"64":3,"102":1}}],["conjugacy",{"0":{"64":1}}],["conductor",{"2":{"94":1,"97":8,"98":1,"142":1}}],["condition",{"2":{"88":1}}],["conditions",{"2":{"67":1,"180":1}}],["concatenation",{"2":{"88":1}}],["concatenates",{"2":{"87":2}}],["concatenated",{"2":{"87":1}}],["concretely",{"2":{"2":1}}],["convention",{"2":{"182":1}}],["conventions",{"0":{"109":1},"2":{"30":1,"73":1,"139":1}}],["convenience",{"2":{"103":1}}],["conversely",{"2":{"283":1}}],["conversions",{"0":{"96":1}}],["conversion",{"0":{"60":1,"85":1,"121":1},"2":{"90":1}}],["converting",{"2":{"153":1}}],["convert",{"2":{"85":2}}],["continuity",{"2":{"213":1}}],["continuous",{"2":{"40":1,"172":1}}],["context",{"2":{"168":1,"270":1,"271":1,"287":1}}],["controls",{"2":{"116":3}}],["contrast",{"2":{"86":1,"270":1}}],["containment",{"2":{"292":1}}],["contain",{"2":{"141":1,"151":1}}],["contained",{"2":{"92":1,"96":2,"111":1,"131":2,"134":1,"137":1,"145":1,"147":5,"154":3,"162":2,"290":1}}],["contains",{"2":{"17":1,"93":1,"111":1,"119":1,"150":1,"151":1,"152":1,"164":2}}],["containing",{"2":{"15":1,"17":1,"39":1,"59":1,"73":1,"117":1,"120":1,"125":2,"134":1,"150":1,"151":2,"222":1,"254":1}}],["config",{"2":{"35":1}}],["consequence",{"2":{"86":1}}],["consuming",{"2":{"32":1,"116":1}}],["consists",{"2":{"67":1,"292":1}}],["consisting",{"2":{"25":1,"116":1,"120":2,"122":1,"147":2,"228":1,"254":1,"262":1,"283":1}}],["considered",{"2":{"98":1,"132":1,"134":1,"138":2,"147":2}}],["consider",{"2":{"4":1}}],["const",{"2":{"151":2}}],["constant",{"0":{"31":1,"33":1},"1":{"32":1,"33":1},"2":{"22":2,"26":1,"30":1,"32":9,"33":5}}],["constructing",{"2":{"214":1,"229":2}}],["construction",{"0":{"59":1,"87":1,"100":1},"2":{"28":1,"94":2}}],["constructions",{"0":{"168":1,"210":1,"257":1,"287":1},"1":{"169":1},"2":{"16":1,"246":1}}],["constructor",{"2":{"87":1}}],["constructors",{"0":{"67":1},"2":{"87":1,"116":1,"157":1}}],["constructs",{"2":{"80":3,"87":3,"111":1,"116":1}}],["construct",{"2":{"45":1,"58":1,"89":1,"168":1,"215":1,"230":1,"287":1}}],["constructed",{"2":{"15":1,"29":1,"96":1,"103":1,"104":1,"109":1,"116":1,"117":2,"131":1,"140":1,"150":1,"246":1}}],["b=",{"2":{"270":1}}],["bn",{"2":{"255":1}}],["bn==a",{"2":{"145":1}}],["bm",{"2":{"255":1}}],["bbm=bn",{"2":{"255":1}}],["br",{"2":{"209":1}}],["brown",{"2":{"209":5}}],["b+m∈m",{"2":{"198":1}}],["bd",{"2":{"148":1}}],["b1",{"2":{"148":1}}],["b∈k",{"2":{"119":2}}],["b∈matd×d",{"2":{"109":1,"140":1}}],["b^2",{"2":{"111":1}}],["back",{"2":{"162":1,"278":1}}],["bacher",{"2":{"253":9,"294":6,"296":6}}],["bachem",{"2":{"88":3}}],["bach",{"2":{"146":3}}],["bad",{"2":{"146":2,"213":2,"215":1,"228":1}}],["balls",{"2":{"151":1}}],["ball",{"2":{"103":2}}],["bass",{"2":{"152":3}}],["bashhecke",{"2":{"36":1}}],["basically",{"2":{"196":1}}],["basics",{"0":{"21":1,"44":1},"1":{"22":1,"23":1,"24":1,"25":1,"26":1,"45":1,"46":1,"47":1,"48":1}}],["basic",{"0":{"13":1,"23":1,"46":1,"81":1,"117":1,"132":1,"150":1},"1":{"151":1},"2":{"128":1}}],["basis",{"2":{"2":1,"23":2,"25":4,"27":1,"32":1,"58":2,"61":2,"73":2,"88":1,"95":1,"96":1,"109":6,"111":10,"117":10,"121":2,"123":3,"130":1,"131":1,"132":1,"136":3,"138":7,"140":5,"142":5,"143":1,"144":1,"146":6,"147":10,"148":1,"150":9,"151":26,"160":1,"162":4,"163":1,"170":3,"174":1,"195":1,"196":2,"213":1,"215":2,"217":1,"230":1,"232":2,"236":2,"238":2,"240":6,"242":2,"244":2,"245":4,"246":3,"249":2,"253":1,"254":2,"255":5,"262":3,"265":2,"267":1,"270":3,"275":5,"276":5,"277":5,"278":4,"279":2,"280":1,"282":1,"283":17,"284":24,"285":1,"286":4,"289":5,"292":3,"293":1,"294":1,"299":27}}],["based",{"2":{"88":1,"96":1,"193":1,"272":1}}],["bases",{"2":{"23":1,"285":1,"296":3}}],["base",{"0":{"82":1},"2":{"2":1,"23":1,"46":7,"48":1,"54":1,"58":2,"59":3,"60":1,"61":4,"75":1,"79":2,"82":2,"86":2,"87":2,"89":2,"90":1,"96":2,"97":5,"98":5,"105":3,"111":1,"114":2,"117":2,"118":1,"119":2,"129":3,"134":2,"144":4,"146":6,"149":1,"158":2,"159":1,"162":2,"216":1,"217":1,"230":3,"231":1,"232":1,"239":1,"241":2,"270":1,"271":2,"283":3,"284":2,"290":1,"292":2}}],["block",{"2":{"87":2,"190":1,"213":4,"218":7,"224":1,"226":2}}],["blocks",{"2":{"79":1,"87":1,"188":2,"214":1,"215":2,"216":1,"218":4,"224":1,"238":1}}],["bf",{"2":{"61":1}}],["bibliography",{"0":{"300":1}}],["bijection",{"2":{"270":2}}],["bijective",{"2":{"201":2,"261":1}}],["bigger",{"2":{"246":1}}],["bilinear",{"2":{"162":1,"182":2,"184":2,"190":2,"195":2,"196":2,"197":8,"201":4,"205":1,"206":4,"208":4,"209":2,"270":1,"300":1}}],["bi⋅bj",{"2":{"151":1}}],["binding",{"2":{"128":1}}],["bivariate",{"2":{"46":2}}],["biproduct",{"2":{"18":2,"168":7,"169":1,"210":7,"257":7,"287":7}}],["biproducts",{"2":{"18":1,"168":4,"210":3,"257":3,"287":4}}],["b8",{"2":{"46":1}}],["b6",{"2":{"46":1}}],["b4",{"2":{"46":1}}],["b2",{"2":{"46":1,"201":2}}],["bu",{"2":{"255":3}}],["build",{"2":{"36":3}}],["building",{"0":{"36":1},"2":{"79":1}}],["but",{"2":{"2":1,"8":1,"58":1,"61":2,"68":1,"73":1,"90":5,"98":1,"149":1,"150":1,"285":1}}],["bogomolov",{"2":{"246":2}}],["bound",{"2":{"146":7}}],["bound2",{"2":{"88":2}}],["bounded",{"2":{"7":1,"61":1,"146":2,"239":2}}],["both",{"2":{"17":1,"121":1,"129":1,"141":1,"151":1,"166":1,"168":1,"201":4,"235":1,"255":1,"265":1,"267":1,"270":1,"287":1}}],["bool=true",{"2":{"263":1}}],["boolean",{"2":{"116":1,"180":1}}],["bool",{"2":{"14":5,"15":1,"17":5,"24":2,"25":2,"28":1,"32":1,"33":1,"45":1,"47":1,"48":1,"61":2,"64":1,"87":1,"88":3,"93":4,"96":1,"97":2,"98":3,"100":1,"101":2,"107":5,"113":5,"116":3,"119":12,"120":2,"121":1,"122":4,"124":1,"131":2,"132":1,"136":2,"138":2,"144":2,"145":5,"146":7,"147":8,"148":1,"150":9,"151":3,"152":3,"154":2,"156":4,"160":6,"164":2,"166":2,"172":1,"174":1,"182":3,"184":4,"187":1,"190":1,"193":1,"195":2,"201":6,"202":4,"203":1,"208":2,"209":1,"214":1,"220":4,"231":1,"235":2,"245":1,"246":1,"250":6,"252":3,"253":3,"255":6,"262":5,"263":2,"265":1,"266":3,"267":1,"275":2,"276":2,"277":2,"281":2,"283":1,"290":7,"292":1,"294":1,"296":4,"298":3}}],["booktitle",{"2":{"4":1}}],["b",{"2":{"7":2,"25":5,"46":2,"59":20,"61":3,"64":4,"67":5,"81":4,"87":11,"88":4,"89":4,"90":4,"98":10,"105":2,"108":1,"109":2,"111":6,"116":6,"132":3,"134":3,"136":7,"137":1,"145":6,"146":10,"157":2,"159":2,"161":2,"163":2,"167":2,"169":1,"173":2,"175":2,"182":6,"190":6,"195":1,"196":2,"198":4,"201":2,"208":3,"215":10,"217":2,"219":8,"221":2,"223":2,"225":2,"227":8,"230":9,"232":8,"234":10,"236":4,"238":10,"240":1,"242":2,"244":3,"249":2,"255":1,"265":1,"267":1,"270":2,"275":4,"276":5,"277":5,"278":11,"280":3,"284":31,"289":5,"291":3,"295":2,"299":15}}],["berlin",{"2":{"300":1}}],["beauville",{"2":{"246":2}}],["before",{"2":{"230":1}}],["beta",{"2":{"121":1}}],["between",{"2":{"15":2,"17":1,"196":1,"201":1,"239":1,"257":3,"270":1,"287":3,"292":1}}],["belong",{"2":{"80":1}}],["below",{"2":{"40":1}}],["behaviour",{"2":{"68":1,"116":1}}],["because",{"2":{"43":1}}],["being",{"2":{"9":1,"116":1,"129":1,"141":1,"144":1,"148":1,"150":1,"213":1,"235":1}}],["be",{"2":{"2":2,"7":1,"12":1,"15":2,"20":1,"22":1,"29":1,"36":1,"38":1,"39":4,"40":1,"42":3,"45":1,"47":2,"54":1,"58":3,"60":1,"61":5,"62":1,"67":1,"68":1,"73":3,"75":4,"79":1,"86":1,"87":2,"88":2,"93":2,"94":3,"96":3,"98":3,"103":2,"104":1,"106":1,"107":2,"109":1,"111":3,"112":1,"113":3,"114":2,"116":9,"117":1,"118":1,"120":1,"121":1,"122":1,"125":2,"127":2,"129":1,"130":1,"131":4,"134":1,"141":2,"143":5,"146":8,"149":2,"150":2,"152":1,"153":1,"156":4,"158":6,"160":2,"164":1,"166":5,"168":2,"172":3,"174":4,"176":1,"182":2,"186":2,"190":2,"195":3,"201":2,"208":1,"209":3,"213":4,"224":1,"228":4,"229":1,"233":3,"235":3,"239":1,"245":2,"246":1,"247":1,"248":1,"265":1,"267":2,"270":2,"271":1,"272":1,"275":4,"276":8,"277":8,"278":2,"281":2,"282":1,"283":2,"285":4,"287":1,"288":4,"290":3,"292":3,"294":2}}],["begin",{"2":{"2":1,"269":1}}],["by",{"0":{"262":1},"2":{"2":3,"5":1,"7":1,"17":10,"29":2,"30":1,"42":1,"45":2,"46":4,"47":2,"57":3,"58":2,"59":1,"60":2,"61":9,"63":1,"68":3,"75":2,"79":1,"81":1,"82":1,"84":1,"86":1,"88":2,"89":3,"90":2,"92":1,"93":5,"94":4,"96":4,"97":1,"98":3,"101":1,"104":1,"105":1,"107":1,"108":2,"109":2,"111":1,"113":1,"116":4,"119":1,"121":2,"122":2,"124":2,"127":3,"128":2,"129":1,"131":1,"136":2,"140":1,"143":3,"144":3,"145":1,"146":12,"147":1,"150":2,"151":1,"152":1,"162":4,"166":7,"167":4,"182":2,"184":2,"186":3,"188":1,"190":2,"191":1,"195":1,"196":2,"197":2,"202":2,"206":1,"207":1,"209":3,"213":2,"214":2,"224":1,"229":2,"231":1,"235":3,"239":2,"241":2,"245":3,"246":5,"249":1,"250":4,"253":3,"254":4,"262":1,"265":2,"266":1,"267":1,"269":1,"270":1,"271":3,"275":7,"276":7,"277":7,"278":1,"285":2,"288":1,"294":2,"296":3,"298":2}}],["qld",{"2":{"278":2}}],["qmodnzelem",{"2":{"198":2}}],["qmodnz",{"2":{"197":2}}],["qf",{"2":{"195":2}}],["q2",{"2":{"165":4,"167":3}}],["q×",{"2":{"148":1}}],["qx",{"2":{"95":1,"96":1,"108":1,"111":1,"116":1,"117":2,"118":2,"120":1,"142":1,"150":1,"151":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"278":1,"301":1}}],["q⊗m∩zn",{"2":{"88":1}}],["q+1−n",{"2":{"52":1}}],["qg",{"2":{"28":1,"29":8}}],["qqfield",{"2":{"162":1,"186":2}}],["qqfieldelem",{"2":{"25":1,"33":1,"48":1,"60":2,"61":3,"67":2,"111":2,"114":1,"118":1,"138":2,"147":1,"150":2,"151":1,"182":4,"186":1,"190":4,"195":2,"196":1,"197":2,"199":2,"233":1,"250":3,"251":1,"255":1,"266":5,"267":3}}],["qqmatrix",{"2":{"25":1,"136":1,"150":2,"151":1,"186":2,"189":1,"197":2,"206":1,"246":1,"249":2,"255":4}}],["qq",{"2":{"22":2,"24":1,"25":2,"26":4,"28":1,"29":1,"32":3,"33":1,"45":1,"46":2,"48":5,"95":2,"96":1,"108":1,"111":1,"116":6,"117":2,"118":3,"120":1,"142":4,"146":4,"150":1,"151":2,"180":8,"201":7,"206":4,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"244":2,"254":1,"255":1,"261":3,"267":1,"278":3,"280":1,"282":1,"284":1,"286":5,"301":1}}],["quick",{"2":{"301":1}}],["quickly",{"2":{"103":1}}],["quadlat",{"2":{"276":4}}],["quadspacecls",{"2":{"168":3,"287":3}}],["quadspace",{"2":{"156":2,"162":1,"164":3,"186":2,"249":1}}],["quadbin",{"2":{"38":2}}],["quad",{"2":{"38":2,"39":2,"43":2}}],["quadform",{"2":{"38":6,"39":6,"43":3}}],["quadratic",{"0":{"195":1,"245":1,"248":1,"270":1,"271":1,"276":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"3":1,"32":2,"43":1,"100":7,"101":4,"102":1,"103":1,"104":2,"105":2,"107":8,"108":3,"111":2,"116":5,"124":8,"156":6,"157":2,"158":1,"160":5,"161":2,"162":1,"163":1,"164":2,"165":2,"166":1,"167":2,"168":3,"171":1,"186":3,"188":1,"190":1,"193":1,"195":8,"196":6,"197":10,"198":2,"201":37,"202":4,"203":3,"204":1,"205":1,"206":20,"207":2,"208":8,"209":7,"210":3,"242":3,"244":1,"245":2,"248":1,"249":3,"250":1,"255":2,"261":6,"268":2,"270":6,"271":5,"272":2,"275":8,"276":13,"278":6,"280":2,"281":2,"282":4,"286":3,"287":3,"293":1,"295":1,"297":2}}],["quaternion",{"2":{"30":1}}],["quomap",{"2":{"94":1}}],["quo",{"2":{"17":7,"93":3,"94":5,"148":2}}],["quot",{"2":{"19":2,"20":4,"42":8,"60":4,"61":4,"111":2,"112":2,"121":6,"168":12,"287":12}}],["quotype",{"2":{"17":4,"211":4}}],["quotient",{"0":{"148":1},"2":{"17":8,"93":1,"94":5,"96":1,"111":1,"125":1,"127":1,"128":1,"146":1,"148":2,"195":1,"211":2}}],["quotients",{"0":{"17":1},"2":{"92":2,"127":1,"196":1}}],["q",{"2":{"2":1,"12":1,"14":1,"48":2,"54":4,"58":1,"61":5,"92":2,"94":3,"97":2,"98":3,"109":5,"114":2,"116":1,"117":1,"118":1,"119":1,"121":2,"127":2,"129":3,"139":1,"140":1,"148":4,"151":1,"157":1,"161":4,"162":1,"163":4,"165":6,"167":5,"171":2,"195":1,"196":4,"197":2,"201":10,"206":13,"208":2,"209":4}}],["2πi8br",{"2":{"209":1}}],["2z",{"2":{"196":2,"201":5,"205":1,"206":4,"209":1}}],["2i",{"2":{"193":1}}],["2im",{"2":{"109":8}}],["2>",{"2":{"146":8,"286":2}}],["24",{"2":{"124":5,"246":4}}],["2log⁡",{"2":{"112":2,"134":2}}],["2re",{"2":{"109":5}}],["2s",{"2":{"109":1}}],["26",{"2":{"108":2,"280":1}}],["2168244",{"2":{"234":2}}],["21",{"2":{"103":1,"246":2}}],["2^m",{"2":{"188":1}}],["2^4",{"2":{"146":1}}],["2^",{"2":{"103":1,"112":9,"134":5,"146":1,"151":1}}],["2^2",{"2":{"51":1}}],["2000",{"2":{"300":1}}],["2018",{"2":{"300":1}}],["2019",{"2":{"272":1}}],["2016",{"2":{"272":1}}],["2017",{"2":{"4":3}}],["20",{"2":{"68":2,"146":1,"246":2,"261":1,"282":1,"286":1,"297":1}}],["25>",{"2":{"286":1}}],["25",{"2":{"67":1,"146":1,"165":1,"282":1,"286":2,"297":1}}],["22",{"2":{"53":1,"263":1}}],["22>",{"2":{"2":1}}],["2×2×2",{"2":{"33":1}}],["2nd",{"2":{"17":1}}],["28>",{"2":{"284":2}}],["28",{"2":{"2":1}}],["290",{"2":{"300":1}}],["29",{"2":{"2":9}}],["238",{"2":{"300":1}}],["236067977",{"2":{"107":2}}],["23",{"2":{"2":2,"53":1,"246":2}}],["23+55ζ75",{"2":{"2":1}}],["2",{"0":{"83":1,"277":1},"1":{"278":1},"2":{"2":4,"11":4,"13":5,"15":6,"17":35,"24":1,"26":3,"29":6,"32":7,"33":6,"45":4,"46":4,"47":1,"48":21,"50":3,"51":2,"52":4,"53":10,"54":3,"59":1,"61":2,"67":8,"68":23,"88":1,"95":3,"96":4,"100":2,"102":1,"104":3,"106":1,"107":7,"108":1,"111":5,"113":1,"116":2,"117":3,"118":4,"120":1,"124":7,"132":1,"134":1,"139":1,"142":18,"143":1,"146":55,"150":1,"151":2,"157":2,"158":2,"159":4,"163":6,"164":1,"165":1,"169":1,"171":1,"174":1,"182":2,"190":2,"193":1,"196":11,"201":30,"206":6,"209":6,"213":1,"215":14,"217":11,"219":10,"221":4,"223":4,"225":5,"227":5,"230":12,"232":11,"233":1,"234":7,"236":6,"238":14,"240":18,"244":10,"246":38,"248":3,"249":9,"254":53,"255":4,"261":23,"263":17,"267":6,"268":1,"270":2,"277":4,"278":13,"280":15,"282":7,"284":52,"286":9,"289":6,"291":1,"293":7,"295":4,"297":7,"299":22,"301":2}}],["izv",{"2":{"300":1}}],["ir",{"2":{"261":2,"263":1}}],["irreducibility",{"2":{"116":2}}],["irreducible",{"2":{"109":1,"116":1,"129":1,"134":1,"254":4,"258":2}}],["illustrate",{"2":{"246":1}}],["iπq",{"2":{"209":1}}],["ignored",{"2":{"180":1}}],["i2",{"2":{"148":1}}],["i1",{"2":{"148":1}}],["i→o",{"2":{"148":1}}],["ij",{"2":{"80":3}}],["i∈rn∣xi=0",{"2":{"79":1}}],["i∈v",{"2":{"8":1}}],["ie",{"2":{"61":3,"92":1,"98":1,"146":4}}],["i^int",{"2":{"146":1}}],["i^k",{"2":{"59":1}}],["i^",{"2":{"58":1}}],["imag",{"2":{"112":3,"134":1}}],["imaginary",{"2":{"99":1,"100":4,"101":5,"108":2,"124":1}}],["images",{"2":{"15":1,"17":1,"195":2}}],["image",{"2":{"15":1,"17":2,"103":1,"112":1,"134":1}}],["im",{"2":{"99":1,"103":1}}],["improve",{"2":{"253":3,"294":2,"296":2}}],["impossible",{"2":{"141":1}}],["important",{"2":{"58":1,"78":1,"79":1}}],["implicit",{"2":{"270":2}}],["implicitly",{"2":{"98":2,"109":1,"140":1}}],["implementation",{"2":{"272":1}}],["implements",{"2":{"246":1}}],["implemented",{"2":{"30":1,"53":1,"86":1,"149":1,"268":1,"272":1}}],["i",{"2":{"7":2,"8":3,"15":1,"18":2,"25":4,"32":2,"58":1,"59":2,"60":4,"61":3,"67":3,"68":6,"73":3,"79":1,"80":3,"81":2,"88":4,"89":23,"94":6,"97":2,"100":3,"106":2,"108":15,"111":6,"112":2,"117":2,"118":1,"122":2,"124":1,"132":3,"134":3,"136":6,"138":6,"144":2,"145":1,"146":22,"147":13,"148":9,"151":6,"152":1,"164":3,"166":2,"193":1,"213":3,"218":6,"224":1,"226":1,"228":1,"230":1,"233":1,"242":1,"246":1,"253":1,"254":3,"263":2,"270":1,"271":1,"285":1,"290":1,"292":3}}],["idempotents",{"2":{"147":2,"148":1}}],["identical",{"2":{"116":3}}],["identity",{"2":{"9":1,"87":2,"88":1,"119":1,"122":1,"156":2,"244":2,"246":1,"270":1,"276":3,"277":3}}],["idel",{"2":{"92":1}}],["idealp",{"2":{"239":1}}],["ideals",{"0":{"135":1,"143":1},"1":{"136":1,"137":1,"138":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"3":2,"58":1,"61":3,"73":2,"74":3,"75":3,"83":1,"93":3,"94":1,"95":1,"134":1,"135":2,"137":1,"141":1,"142":1,"143":6,"144":2,"146":26,"147":4,"151":3,"153":1,"228":2,"231":1,"283":6,"284":1,"285":1}}],["ideal",{"0":{"2":1},"2":{"2":2,"59":3,"61":7,"73":2,"83":1,"93":2,"97":3,"113":1,"119":1,"123":3,"125":3,"135":3,"136":25,"137":2,"138":3,"141":1,"143":2,"144":24,"145":4,"146":7,"147":11,"148":4,"149":1,"151":1,"152":4,"166":1,"174":2,"182":2,"190":2,"213":3,"214":2,"215":2,"216":1,"218":9,"220":4,"222":2,"226":2,"231":2,"235":1,"237":1,"238":1,"239":1,"241":1,"250":2,"255":1,"282":1,"283":2,"284":13,"285":1,"288":3,"289":2,"290":5,"292":4,"296":1,"298":3,"299":12}}],["id",{"2":{"7":1}}],["iff",{"2":{"88":1}}],["if",{"2":{"4":1,"17":3,"18":2,"19":1,"20":1,"25":2,"32":1,"39":2,"40":1,"43":1,"46":2,"48":2,"54":1,"57":1,"61":1,"64":1,"68":1,"73":3,"87":1,"88":7,"89":1,"92":2,"93":4,"94":2,"96":1,"97":5,"98":7,"99":1,"100":1,"101":2,"103":1,"106":1,"109":3,"113":3,"116":8,"117":1,"119":13,"120":2,"121":1,"122":4,"125":3,"129":1,"131":5,"134":1,"136":2,"139":1,"140":2,"144":3,"145":3,"146":9,"147":4,"148":2,"150":8,"151":2,"154":2,"158":1,"160":3,"164":1,"166":1,"168":6,"172":1,"174":1,"176":1,"180":1,"182":2,"184":2,"187":2,"188":2,"190":4,"195":2,"196":1,"201":4,"202":2,"205":1,"206":1,"207":1,"208":3,"209":2,"210":6,"213":4,"228":1,"230":1,"233":1,"235":1,"236":1,"238":1,"239":1,"240":1,"244":2,"245":1,"246":4,"249":1,"250":3,"253":4,"254":1,"255":2,"257":6,"262":3,"267":2,"270":1,"271":1,"275":5,"276":7,"277":4,"279":1,"283":2,"287":6,"290":5,"292":4,"294":3,"296":4,"298":3}}],["inherits",{"2":{"195":1}}],["inj",{"2":{"169":3}}],["injective",{"2":{"17":1}}],["injections",{"2":{"18":3,"168":7,"210":4,"257":6,"287":7}}],["injection",{"2":{"17":6,"18":3,"120":2}}],["inner",{"0":{"162":1},"1":{"163":1},"2":{"162":2,"163":1,"198":2,"246":2}}],["inert",{"2":{"220":3,"221":1}}],["inertia",{"2":{"98":1,"123":2,"147":1,"164":1,"228":1,"231":1,"252":1}}],["inegtral",{"2":{"184":1}}],["inefficient",{"2":{"8":1}}],["infp",{"2":{"230":2}}],["infplc",{"2":{"93":1,"94":1,"95":1,"96":1,"97":3,"124":6,"164":4,"165":1,"172":1,"229":1,"230":2,"231":1,"232":1,"239":1,"240":1,"281":3,"292":1}}],["information",{"2":{"109":1,"146":1,"150":2,"153":1,"159":1}}],["inf",{"2":{"93":1,"94":1,"97":2,"111":1,"235":1}}],["infinity",{"2":{"48":3}}],["infinite",{"0":{"124":1},"2":{"7":1,"93":1,"94":1,"98":1,"111":1,"124":11,"165":3,"228":1,"229":1,"230":5,"231":2,"232":1,"236":1,"238":2,"240":1}}],["ingredients",{"2":{"78":1}}],["init",{"2":{"61":1}}],["inplace",{"2":{"84":3,"87":2,"88":1,"89":7}}],["input",{"2":{"60":1,"111":1,"144":1,"254":2,"261":1,"267":1,"278":1}}],["inproceedings",{"2":{"4":1}}],["ins",{"2":{"263":3}}],["install",{"2":{"301":1}}],["installed",{"2":{"301":1}}],["instances",{"2":{"68":1}}],["instance",{"2":{"68":1,"159":1,"165":1,"255":1}}],["instructions",{"2":{"301":1}}],["instead",{"2":{"40":1,"62":1,"88":1}}],["inside",{"0":{"275":1},"2":{"40":1,"170":1,"244":1,"245":1,"249":1,"255":1,"275":2,"276":4,"277":4,"285":4,"294":1}}],["increasing",{"2":{"213":1}}],["increase",{"2":{"25":2}}],["inctions",{"2":{"210":2}}],["including",{"2":{"40":1}}],["include",{"2":{"282":1}}],["included",{"2":{"39":2,"67":1}}],["includes",{"2":{"32":1}}],["inclusion",{"2":{"15":1,"17":2,"26":1,"261":1}}],["inducing",{"2":{"262":3}}],["induced",{"2":{"15":1,"196":1}}],["indicating",{"2":{"75":2}}],["indicated",{"2":{"30":1}}],["indefinite",{"0":{"265":1},"2":{"160":1,"235":1,"265":1}}],["independent",{"2":{"73":1,"141":1,"153":3}}],["indexed",{"2":{"143":1}}],["index",{"2":{"17":3,"78":1,"81":1,"89":5,"109":2,"121":1,"146":3,"147":3,"150":2,"151":11,"152":2,"164":1,"211":3,"228":1,"231":1,"246":1,"283":1,"288":1}}],["inv",{"2":{"105":1,"106":1,"136":1,"137":1,"138":2,"147":2,"151":4,"239":2}}],["invertable",{"2":{"146":2}}],["invertible",{"2":{"64":1,"88":1,"145":3,"146":1}}],["inverses",{"2":{"151":1}}],["inverse",{"2":{"136":1,"138":1,"145":1,"146":1,"147":1,"148":1,"151":1,"152":1,"153":1,"182":1}}],["inversion",{"2":{"89":1}}],["involution",{"2":{"122":3,"158":2,"159":1,"213":1,"222":1,"270":4,"271":2,"283":3,"284":1}}],["involved",{"2":{"60":1,"92":1}}],["invoke",{"2":{"43":1}}],["invoked",{"2":{"42":1}}],["invoking",{"2":{"2":1}}],["invariant",{"2":{"17":1,"45":4,"46":3,"164":7,"165":2,"190":4,"209":6,"213":1,"222":1,"262":3,"281":6,"282":2}}],["invariants",{"0":{"10":1,"14":1,"97":1,"114":1,"118":1,"152":1,"208":1,"218":1,"250":1,"252":1,"288":1},"1":{"219":1,"251":1,"252":1,"289":1},"2":{"46":8,"158":1,"164":3,"165":1,"188":1,"213":1,"229":1,"251":1}}],["introduced",{"2":{"73":1}}],["introduction",{"0":{"12":1,"30":1,"57":1,"78":1,"92":1,"129":1,"139":1,"268":1},"1":{"13":1,"14":1,"140":1,"141":1,"142":1,"269":1,"270":1,"271":1,"272":1},"2":{"141":1}}],["int64",{"2":{"67":3,"68":5,"107":1,"142":1,"146":1,"165":2,"219":4,"232":1,"240":1,"254":1}}],["into",{"2":{"18":1,"60":1,"61":1,"73":1,"75":2,"82":1,"88":1,"89":1,"93":1,"122":1,"124":2,"131":3,"134":1,"136":1,"153":1,"166":2,"167":1,"201":2,"228":1,"261":1,"263":2,"292":1}}],["int",{"2":{"7":1,"8":2,"13":2,"14":3,"17":1,"18":2,"25":2,"26":2,"48":1,"52":2,"61":4,"67":3,"68":2,"70":2,"71":2,"72":1,"80":4,"81":3,"85":2,"87":6,"88":8,"89":17,"93":2,"98":4,"103":2,"107":2,"111":4,"112":7,"116":3,"117":1,"118":3,"119":1,"125":4,"133":3,"134":4,"144":1,"145":4,"146":6,"147":3,"151":4,"152":1,"156":2,"158":2,"164":4,"180":1,"182":3,"190":5,"209":4,"211":5,"216":1,"218":17,"224":1,"226":1,"229":1,"231":2,"239":6,"246":3,"250":1,"252":3,"253":8,"254":1,"263":2,"266":1,"267":1,"281":2,"283":2,"290":1,"292":1,"294":5,"296":4}}],["intended",{"2":{"248":1}}],["intermediate",{"2":{"153":1}}],["interpreted",{"2":{"149":1}}],["interaction",{"2":{"139":1}}],["interesting",{"2":{"58":1}}],["interface",{"2":{"30":1,"139":1,"153":1}}],["intersect",{"2":{"17":1,"68":2,"98":1,"145":1,"246":2,"255":1,"285":1,"286":1}}],["intersection",{"2":{"17":2,"98":1,"246":1,"255":1,"285":1}}],["internal",{"2":{"278":1}}],["internals",{"0":{"126":1},"1":{"127":1,"128":1}}],["internally",{"2":{"6":1,"8":1,"86":1,"127":1,"128":1}}],["international",{"2":{"4":1}}],["integration",{"2":{"40":1}}],["integrality",{"2":{"150":1}}],["integral",{"0":{"64":1,"84":1,"178":1,"298":1},"1":{"299":1},"2":{"2":3,"61":2,"64":2,"88":1,"93":1,"113":4,"125":2,"135":2,"137":2,"141":2,"143":1,"147":1,"149":1,"150":1,"176":1,"180":1,"182":3,"184":3,"193":1,"204":1,"205":1,"209":1,"231":3,"239":2,"250":7,"251":1,"254":2,"255":1,"261":6,"263":2,"265":1,"290":5,"291":1,"298":24,"299":5}}],["integer",{"0":{"176":1,"242":1,"243":1},"1":{"177":1,"178":1,"179":1,"180":1,"181":1,"182":1,"183":1,"184":1,"185":1,"186":1,"187":1,"188":1,"189":1,"190":1,"191":1,"192":1,"193":1,"243":1,"244":2,"245":2,"246":2,"247":2,"248":2,"249":1,"250":1,"251":1,"252":1,"253":1},"2":{"13":1,"17":4,"58":1,"59":2,"84":1,"88":1,"89":1,"90":1,"113":1,"116":1,"119":1,"125":1,"131":2,"134":3,"135":1,"137":1,"143":1,"144":4,"146":3,"147":3,"151":2,"176":1,"180":3,"184":2,"191":1,"195":1,"196":2,"201":4,"202":2,"204":1,"206":4,"209":2,"242":2,"244":3,"246":14,"247":1,"248":2,"249":3,"250":3,"251":1,"254":10,"255":4,"261":4,"263":4,"267":1,"290":3,"300":1}}],["integerunion",{"2":{"13":4,"17":1,"54":1,"116":1,"131":1,"134":1,"189":2}}],["integers",{"2":{"2":1,"7":1,"14":1,"58":1,"61":1,"67":2,"79":1,"86":1,"89":1,"98":1,"109":1,"111":1,"139":1,"141":1,"149":1,"150":1,"180":1,"188":1,"190":1,"213":1,"240":15,"242":1,"253":1}}],["in",{"0":{"245":1},"2":{"3":3,"4":1,"6":1,"7":1,"14":3,"15":1,"16":1,"17":14,"19":1,"25":7,"30":3,"32":1,"34":1,"36":2,"38":2,"39":5,"42":1,"43":1,"45":1,"58":11,"59":2,"60":1,"61":10,"63":3,"67":1,"68":12,"73":5,"74":3,"78":3,"79":1,"84":2,"86":1,"87":1,"88":5,"89":1,"92":2,"93":2,"94":2,"96":5,"98":4,"105":1,"107":3,"109":5,"111":6,"113":5,"116":3,"119":1,"121":1,"127":5,"129":4,"130":6,"131":4,"132":2,"134":4,"135":2,"136":6,"137":1,"139":1,"141":8,"143":6,"144":5,"145":6,"146":17,"147":13,"149":8,"150":5,"151":4,"152":1,"153":1,"154":1,"158":2,"160":3,"162":2,"166":5,"168":2,"170":1,"172":2,"176":2,"182":1,"184":2,"186":2,"187":2,"188":3,"193":1,"195":2,"196":1,"198":1,"201":2,"202":4,"203":2,"208":2,"209":2,"211":1,"213":4,"218":5,"220":3,"224":3,"226":2,"228":4,"229":1,"230":1,"233":5,"235":6,"236":4,"238":1,"240":1,"241":2,"242":1,"246":2,"248":1,"250":3,"251":1,"255":16,"261":1,"262":1,"263":4,"265":1,"266":2,"270":10,"271":2,"275":2,"276":2,"277":2,"278":2,"283":2,"285":5,"287":1,"288":1,"290":3,"292":2,"298":6,"300":4}}],["its",{"2":{"96":1,"97":1,"111":1,"117":1,"146":1,"147":2,"158":8,"176":2,"184":1,"186":1,"196":1,"203":1,"208":1,"218":1,"224":2,"226":2,"231":1,"233":1,"242":1,"250":4,"251":1,"254":1,"290":1,"300":1,"301":1}}],["itself",{"2":{"26":1,"176":1,"294":1}}],["itrs",{"2":{"68":5}}],["iter",{"2":{"67":3}}],["iterated",{"2":{"18":2}}],["iterate",{"2":{"11":1,"68":1}}],["iterators",{"0":{"65":1,"69":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2}}],["iterator",{"0":{"11":1},"2":{"17":2,"67":3,"68":1,"70":3,"71":3,"72":1,"211":2,"266":6}}],["ith",{"2":{"13":1,"18":2,"218":5,"224":1,"226":2}}],["it",{"2":{"2":1,"10":1,"14":2,"16":1,"17":1,"18":1,"25":2,"29":1,"43":1,"45":1,"46":1,"47":1,"58":2,"61":1,"78":1,"79":1,"86":1,"89":1,"92":1,"93":2,"94":1,"96":2,"97":1,"107":1,"111":1,"113":1,"116":1,"119":1,"120":1,"125":1,"131":2,"134":1,"136":2,"141":1,"142":1,"144":2,"146":1,"147":3,"149":2,"150":4,"151":4,"160":1,"184":4,"186":1,"195":1,"198":1,"201":6,"202":2,"203":1,"205":1,"213":2,"218":1,"224":1,"231":1,"235":1,"237":2,"239":1,"242":1,"246":2,"250":2,"265":1,"266":3,"267":1,"278":1,"287":1,"290":3,"298":1}}],["iseven",{"2":{"182":1,"190":1,"250":1}}],["isempty",{"2":{"68":1}}],["isbasis=false",{"2":{"246":1}}],["isbasis",{"2":{"150":3}}],["isreal",{"2":{"124":1,"230":2,"236":2,"238":2,"240":2}}],["issubset",{"2":{"17":1,"68":1}}],["issac",{"2":{"4":2}}],["isotropic",{"0":{"172":1},"1":{"173":1},"2":{"172":4,"173":1,"292":3,"293":1}}],["isometries",{"0":{"253":1},"2":{"294":1}}],["isometric",{"2":{"162":2,"164":7,"165":2,"176":1,"201":9,"203":1,"208":1,"233":2,"253":6,"261":1,"281":6,"282":2,"296":9,"297":2}}],["isometry",{"0":{"201":1,"296":1},"1":{"297":1},"2":{"164":2,"168":1,"186":2,"201":11,"203":1,"233":1,"235":2,"246":1,"251":1,"287":1,"294":1,"296":5}}],["isomorphic",{"2":{"15":3,"16":2,"17":2,"53":1,"94":3,"121":2,"122":6,"211":3,"261":1}}],["isomorphisms",{"2":{"16":1}}],["isomorphism",{"2":{"15":1,"16":3,"18":2,"94":1,"120":1,"121":3,"122":1,"146":2,"148":1}}],["isolated",{"2":{"17":1}}],["isone",{"2":{"9":1,"61":2,"64":1,"88":1,"96":1,"145":1}}],["iszero",{"2":{"9":1,"88":1}}],["is",{"2":{"2":1,"5":2,"6":1,"7":1,"8":1,"9":1,"10":2,"12":2,"13":5,"14":16,"15":1,"16":3,"17":25,"18":1,"19":2,"20":2,"24":9,"25":8,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"38":1,"39":2,"42":2,"43":1,"45":2,"46":7,"47":1,"48":3,"52":2,"53":1,"54":2,"56":1,"57":3,"58":4,"59":1,"60":1,"61":6,"62":3,"64":4,"68":4,"73":8,"75":1,"78":2,"79":5,"83":1,"85":1,"86":5,"87":4,"88":28,"89":4,"92":7,"93":14,"94":12,"96":7,"97":13,"98":13,"99":2,"100":2,"101":7,"103":3,"105":3,"106":1,"107":17,"108":1,"109":19,"111":8,"112":1,"113":16,"116":8,"117":2,"118":2,"119":38,"120":9,"121":6,"122":6,"123":1,"124":3,"125":5,"127":2,"128":2,"129":4,"130":2,"131":4,"132":1,"134":8,"135":2,"136":7,"137":2,"139":5,"140":6,"141":6,"142":3,"143":3,"144":8,"145":10,"146":21,"147":27,"148":4,"149":6,"150":14,"151":23,"152":9,"153":1,"154":4,"156":2,"158":6,"160":21,"161":6,"162":7,"164":12,"165":2,"166":6,"167":4,"169":2,"172":4,"173":1,"174":4,"175":1,"176":2,"180":3,"181":1,"182":12,"184":26,"186":1,"187":1,"188":3,"190":13,"193":2,"195":3,"196":5,"198":1,"201":8,"202":16,"203":3,"205":3,"206":1,"207":2,"208":7,"209":9,"213":9,"215":1,"218":12,"220":8,"221":4,"224":1,"226":4,"231":4,"233":6,"235":3,"239":4,"242":3,"244":4,"245":3,"246":10,"249":4,"250":32,"252":6,"253":8,"254":5,"255":13,"261":5,"262":10,"263":2,"265":1,"266":11,"267":4,"268":1,"270":10,"271":4,"275":11,"276":9,"277":6,"278":1,"279":2,"281":2,"282":3,"283":9,"285":1,"287":1,"288":1,"290":25,"291":4,"292":4,"293":1,"294":6,"295":1,"296":13,"297":2,"298":23,"299":3,"301":3}}],["tgmtt=gl",{"2":{"296":1}}],["tvmtt=vl",{"2":{"296":1}}],["t→ti",{"2":{"210":6}}],["t→u",{"2":{"201":2}}],["tn",{"2":{"210":3}}],["t1",{"2":{"210":3}}],["t=m",{"2":{"197":2}}],["t+1",{"2":{"157":1,"159":1,"161":1,"163":1,"167":1,"173":1,"175":1}}],["t^2",{"2":{"157":2,"159":2,"161":1,"163":1,"167":1,"173":1,"175":1,"215":1,"217":2,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":2,"234":1,"236":1,"238":1,"240":1,"278":3,"280":2,"284":2,"289":1,"291":1,"295":1,"299":1}}],["t^3",{"2":{"116":1}}],["tutorials",{"0":{"302":1}}],["turns",{"2":{"136":1}}],["tuple",{"2":{"25":1,"46":8,"73":1,"80":2,"81":1,"98":1,"116":1,"120":2,"142":1,"147":2,"151":2,"164":2,"165":1,"209":2,"213":1,"246":1,"252":3,"254":1,"261":1,"266":2,"267":3,"283":1,"284":1,"299":3}}],["tuples",{"2":{"19":1,"120":1,"229":1,"266":2,"267":1}}],["t2",{"2":{"134":2,"151":1,"201":2}}],["t∈k",{"2":{"113":1,"125":1}}],["twice",{"2":{"67":1}}],["two",{"2":{"2":1,"17":1,"48":1,"57":1,"64":1,"79":1,"90":1,"111":1,"116":1,"119":1,"120":1,"129":1,"130":1,"142":2,"146":8,"151":1,"157":1,"158":1,"166":3,"168":1,"176":1,"192":1,"195":1,"208":1,"213":1,"214":1,"215":1,"217":1,"228":1,"229":1,"230":1,"232":2,"237":2,"254":1,"255":2,"278":1,"282":1,"285":1,"287":1,"289":1,"294":1}}],["typo",{"2":{"193":1}}],["typically",{"2":{"58":1,"73":1,"88":1}}],["types",{"0":{"85":1,"127":1},"2":{"30":1,"38":1,"60":1,"108":1,"109":1,"127":2,"254":2}}],["type",{"0":{"67":1,"196":1},"2":{"6":1,"7":1,"12":1,"13":8,"15":1,"17":1,"22":1,"30":1,"58":4,"59":3,"67":4,"79":4,"86":4,"87":3,"90":1,"96":2,"98":5,"103":2,"109":2,"112":6,"116":1,"127":2,"128":1,"129":1,"131":6,"134":3,"135":1,"143":3,"151":1,"152":1,"168":3,"210":3,"214":2,"215":1,"217":1,"221":1,"223":1,"225":1,"229":1,"230":2,"236":1,"238":1,"242":1,"246":3,"254":7,"257":3,"266":6,"276":3,"287":3,"292":4}}],["ti→t",{"2":{"210":6}}],["tied",{"2":{"146":1}}],["tip",{"2":{"116":1}}],["times",{"2":{"87":4,"89":2,"118":1,"213":1}}],["time",{"2":{"32":1,"40":1,"116":1}}],["title",{"2":{"4":1}}],["talk",{"2":{"270":1}}],["tamely",{"2":{"119":6}}],["ta",{"2":{"88":3}}],["ta=e",{"2":{"88":1}}],["ta=bt",{"2":{"64":1}}],["taken",{"2":{"166":1,"272":1,"292":1}}],["take",{"2":{"40":1}}],["takes",{"2":{"36":1}}],["table",{"0":{"33":1},"2":{"28":1,"33":4}}],["tasks",{"2":{"146":1}}],["task",{"2":{"19":2,"20":3,"168":3,"287":3}}],["targeted",{"2":{"7":1}}],["texts",{"2":{"300":2}}],["terms",{"2":{"198":1,"224":1,"242":1}}],["terminology",{"2":{"73":1,"139":1,"269":1}}],["terminal",{"2":{"36":1}}],["tend",{"2":{"116":1}}],["tensors",{"2":{"19":1}}],["tensor",{"0":{"19":1},"2":{"16":2,"18":1,"19":5}}],["technical",{"2":{"75":2}}],["tested",{"2":{"116":1,"166":1}}],["testtt",{"2":{"113":1}}],["testlong=1",{"2":{"42":1}}],["tests",{"0":{"39":1,"40":1,"41":1,"42":1,"43":1},"1":{"42":1,"43":1},"2":{"17":1,"38":1,"39":1,"40":2,"42":2,"43":3,"61":1,"88":2,"97":1,"98":3,"119":2,"125":1,"145":1,"146":3,"154":1,"160":1}}],["testing",{"0":{"37":1},"1":{"38":1,"39":1,"40":1,"41":1,"42":1,"43":1},"2":{"15":1,"121":1,"146":1}}],["test",{"2":{"9":1,"38":3,"39":7,"40":6,"42":7,"43":4,"116":1,"245":1,"275":2,"276":2,"277":2}}],["t",{"2":{"13":6,"22":1,"46":22,"60":9,"64":6,"67":10,"68":9,"70":5,"71":5,"72":1,"79":2,"80":4,"81":14,"83":10,"85":2,"86":2,"87":5,"88":12,"89":15,"90":29,"111":4,"113":2,"116":4,"125":1,"132":2,"134":2,"138":5,"147":5,"150":1,"151":3,"153":2,"157":3,"159":3,"161":2,"163":2,"166":6,"167":2,"168":18,"170":5,"171":2,"173":2,"175":2,"188":3,"196":1,"197":15,"200":2,"201":24,"202":14,"203":5,"207":1,"208":16,"209":10,"210":9,"211":4,"215":2,"217":2,"219":2,"221":2,"223":2,"225":2,"227":2,"228":1,"230":2,"232":2,"234":2,"236":2,"238":2,"240":3,"278":6,"280":2,"284":2,"287":18,"289":2,"291":2,"295":2,"296":1,"299":2}}],["tr∘φ",{"2":{"162":1}}],["trk",{"2":{"151":1}}],["treated",{"2":{"139":1}}],["try",{"2":{"113":1,"125":1}}],["tr",{"2":{"111":3,"132":1,"134":4,"162":1}}],["trans",{"2":{"88":3}}],["transpose",{"2":{"87":3,"88":1,"246":1}}],["transformations",{"2":{"88":1,"253":2,"294":2}}],["transformation",{"2":{"75":1,"89":1}}],["transform",{"2":{"75":2,"81":1,"88":5,"89":1,"162":2}}],["transforms",{"2":{"73":1,"75":2}}],["trace",{"2":{"52":6,"111":2,"134":2,"151":2,"152":2,"162":1,"188":1}}],["trigger",{"2":{"146":1,"154":1}}],["tries",{"2":{"89":1,"121":1,"122":1,"151":1}}],["triangular",{"2":{"73":1,"75":2,"88":5,"89":4}}],["triple",{"2":{"25":1,"246":1}}],["trivial",{"2":{"9":1,"14":3,"17":1,"88":1,"116":1,"119":1,"134":1,"145":1,"156":1,"164":1,"202":2,"208":1,"222":1,"270":1}}],["trr",{"2":{"5":1}}],["true",{"2":{"2":1,"17":5,"25":5,"28":1,"29":2,"32":1,"33":1,"45":1,"47":1,"48":3,"52":1,"64":2,"87":1,"88":3,"93":3,"96":2,"100":1,"101":4,"102":1,"103":1,"107":3,"113":2,"116":7,"119":3,"120":2,"121":1,"122":4,"131":4,"138":2,"142":2,"145":2,"146":6,"147":2,"148":2,"150":7,"156":4,"161":5,"165":2,"167":3,"169":2,"173":1,"180":1,"184":2,"195":3,"196":1,"201":8,"202":2,"208":1,"221":2,"235":2,"236":3,"244":2,"245":1,"246":6,"250":2,"253":2,"255":3,"261":2,"262":8,"263":1,"265":1,"266":3,"267":1,"275":2,"276":2,"277":2,"282":2,"283":2,"291":3,"293":1,"294":2,"295":1,"296":1,"297":1}}],["throughout",{"2":{"270":1}}],["throw",{"2":{"2":1}}],["three",{"2":{"168":1,"261":1,"292":1}}],["than",{"2":{"92":1,"97":1,"130":1,"134":1,"151":1,"246":1,"285":1}}],["that",{"2":{"2":2,"7":1,"10":1,"12":2,"13":3,"14":5,"15":1,"16":1,"17":6,"18":3,"19":1,"20":1,"24":1,"25":3,"26":1,"38":1,"40":1,"46":3,"48":1,"54":1,"58":2,"59":1,"61":2,"68":1,"73":2,"75":1,"78":1,"79":2,"85":1,"86":1,"87":1,"88":7,"89":4,"93":2,"94":2,"96":1,"97":3,"98":2,"99":1,"101":1,"103":1,"107":1,"109":3,"111":5,"112":6,"113":5,"116":2,"117":3,"119":8,"120":1,"123":1,"125":1,"128":1,"130":1,"131":2,"134":6,"135":1,"136":4,"137":2,"138":1,"140":1,"141":1,"143":1,"144":1,"145":1,"146":6,"147":16,"148":1,"149":4,"150":1,"151":13,"152":4,"156":2,"160":4,"162":4,"164":2,"166":1,"168":1,"172":1,"174":2,"176":1,"180":1,"182":1,"184":6,"187":1,"193":1,"196":3,"201":4,"202":2,"203":1,"208":1,"213":4,"215":1,"226":4,"228":2,"229":1,"233":3,"235":1,"246":2,"250":6,"255":3,"261":3,"265":1,"266":8,"267":1,"268":1,"278":1,"283":5,"285":1,"290":4,"292":2,"294":1,"296":3,"298":3}}],["though",{"2":{"93":1,"127":1,"268":1}}],["those",{"2":{"58":1,"74":1,"98":3,"149":1,"168":1,"228":1,"267":1}}],["thorough",{"2":{"25":6}}],["third",{"2":{"300":1}}],["think",{"2":{"58":1,"196":1}}],["things",{"2":{"36":1}}],["this",{"2":{"6":1,"7":2,"8":2,"13":1,"16":1,"17":3,"20":1,"25":2,"28":1,"30":2,"32":1,"36":1,"39":3,"43":1,"45":1,"47":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":3,"60":1,"61":2,"73":1,"75":3,"78":1,"88":2,"89":4,"92":2,"93":4,"94":3,"96":2,"97":2,"98":2,"105":2,"108":1,"111":9,"113":1,"114":6,"116":4,"117":5,"118":3,"119":3,"120":1,"121":3,"122":4,"123":1,"125":1,"127":4,"128":1,"131":3,"139":1,"141":1,"143":1,"145":1,"146":1,"149":2,"150":2,"151":6,"152":2,"154":1,"157":1,"164":1,"166":1,"168":1,"182":9,"184":2,"186":6,"190":7,"191":2,"197":2,"198":1,"199":2,"202":2,"209":1,"215":1,"224":1,"229":1,"230":1,"233":1,"245":1,"246":2,"248":1,"250":2,"255":1,"258":1,"263":1,"265":1,"266":1,"267":1,"268":1,"270":3,"271":2,"275":2,"276":2,"277":2,"278":1,"282":1,"285":1,"287":1,"288":1,"290":1,"296":1,"298":3}}],["th",{"2":{"7":1,"8":2,"52":1,"73":2,"88":4,"89":11,"93":1,"111":1,"113":1,"116":1,"117":1,"118":1,"119":1,"125":3,"137":1,"145":1}}],["thus",{"2":{"2":1,"17":1,"58":1,"73":1,"88":1,"127":2,"141":1,"146":1,"151":1,"196":1}}],["theoretically",{"2":{"268":1}}],["theorem",{"2":{"92":1,"146":1,"193":1}}],["theory",{"0":{"91":1,"123":1},"1":{"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"98":1},"2":{"3":1,"4":2,"58":1,"73":1,"78":1,"92":2,"96":1,"125":1,"204":1,"300":3}}],["their",{"2":{"58":1,"67":1,"86":1,"143":1,"166":1,"168":3,"176":1,"201":2,"210":3,"237":2,"257":3,"287":4,"294":1,"300":1}}],["them",{"2":{"58":1,"73":1,"196":1,"201":2,"239":1,"242":1}}],["these",{"2":{"30":1,"116":1,"157":1,"158":1,"233":1,"278":1}}],["then",{"2":{"20":1,"39":2,"61":2,"68":1,"87":1,"88":3,"93":2,"94":3,"96":1,"98":3,"103":1,"109":3,"112":3,"113":1,"117":1,"121":1,"134":2,"136":2,"139":1,"140":2,"141":1,"144":3,"146":2,"148":1,"150":2,"151":2,"152":1,"190":1,"196":1,"205":1,"206":1,"207":1,"208":1,"213":1,"233":2,"245":1,"246":1,"254":1,"255":1,"267":2,"275":4,"276":3,"283":1,"290":1,"296":1}}],["they",{"2":{"15":1,"17":1,"18":1,"61":1,"67":1,"79":1,"86":1,"116":1,"130":3,"135":1,"150":2,"153":2,"168":4,"176":1,"201":4,"204":1,"208":1,"210":3,"233":1,"257":3,"287":4}}],["therefore",{"2":{"18":1,"168":3,"210":3,"257":3,"270":1,"271":1,"287":3}}],["there",{"2":{"13":1,"17":1,"64":1,"73":1,"87":1,"113":1,"135":1,"139":1,"149":2,"153":1,"160":1,"172":1,"174":1,"193":1,"196":1,"201":1,"209":1,"214":1,"229":1,"268":1,"270":1,"290":2,"292":1}}],["the",{"0":{"35":1,"36":1,"41":1,"182":1,"196":1,"199":1,"207":1,"248":1,"251":1},"1":{"42":1,"43":1,"183":1,"184":1,"185":1},"2":{"2":18,"4":3,"5":4,"6":1,"7":11,"8":5,"9":1,"10":2,"11":1,"12":1,"13":11,"14":15,"15":3,"16":1,"17":57,"18":11,"19":4,"20":2,"22":6,"23":4,"24":3,"25":8,"26":5,"27":2,"28":3,"29":5,"30":9,"32":6,"33":2,"34":3,"35":2,"36":3,"38":5,"39":4,"40":4,"42":7,"43":4,"45":3,"46":18,"47":2,"48":6,"50":1,"51":4,"52":8,"53":3,"54":3,"56":1,"57":6,"58":22,"59":9,"60":16,"61":24,"62":1,"63":6,"64":2,"67":6,"68":21,"73":13,"74":11,"75":18,"78":2,"79":6,"80":5,"81":5,"82":1,"83":7,"84":5,"85":1,"86":6,"87":16,"88":48,"89":24,"90":14,"92":5,"93":36,"94":32,"96":14,"97":21,"98":23,"100":2,"101":4,"102":1,"103":8,"104":1,"105":3,"107":7,"109":23,"111":40,"112":19,"113":8,"114":11,"116":37,"117":12,"118":27,"119":17,"120":9,"121":4,"122":6,"123":8,"124":4,"125":4,"127":8,"128":4,"129":12,"130":7,"131":13,"132":11,"133":1,"134":36,"135":3,"136":12,"137":7,"138":13,"139":5,"140":6,"141":5,"143":13,"144":18,"145":4,"146":59,"147":46,"148":22,"149":16,"150":30,"151":50,"152":23,"153":7,"154":3,"156":11,"157":2,"158":24,"159":2,"160":14,"162":34,"164":19,"165":2,"166":6,"167":1,"168":24,"170":4,"172":3,"174":6,"176":6,"178":2,"179":1,"180":5,"181":3,"182":21,"184":9,"185":1,"186":7,"187":2,"188":11,"189":4,"190":28,"191":1,"192":2,"193":1,"195":13,"196":10,"197":19,"198":2,"199":3,"200":2,"201":2,"202":8,"203":1,"204":1,"205":6,"206":3,"207":3,"208":10,"209":17,"210":12,"211":5,"213":29,"214":7,"215":2,"216":1,"218":41,"222":3,"224":8,"226":4,"228":13,"229":10,"230":1,"231":12,"233":10,"235":16,"237":6,"239":3,"240":15,"241":5,"242":4,"244":7,"245":3,"246":23,"248":2,"249":11,"250":19,"251":5,"252":7,"253":20,"254":25,"255":30,"257":15,"258":3,"259":2,"261":12,"262":18,"263":3,"265":3,"266":11,"267":1,"269":2,"270":15,"271":9,"272":3,"275":13,"276":33,"277":27,"278":6,"279":13,"281":16,"282":5,"283":44,"285":35,"287":22,"288":15,"290":18,"292":17,"294":17,"296":21,"298":19,"301":3}}],["topics",{"2":{"300":1}}],["touching",{"2":{"266":1}}],["torquadmodulemap",{"2":{"201":2,"203":1,"208":3,"210":8,"211":1,"261":4}}],["torquadmoduleelem",{"2":{"198":3,"199":2}}],["torquadmodule",{"2":{"195":1,"196":1,"197":9,"200":3,"201":4,"202":4,"203":3,"205":1,"206":1,"207":2,"208":8,"209":3,"210":15,"211":2}}],["torsion",{"0":{"195":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"14":5,"17":2,"38":2,"111":3,"113":3,"141":1,"146":10,"153":1,"195":3,"196":2,"201":6,"202":4,"203":3,"206":6,"207":1,"208":2,"209":3,"210":3}}],["totient",{"2":{"148":1}}],["totally",{"2":{"62":1,"107":3,"119":6,"160":3,"165":1,"290":4,"291":1}}],["too",{"2":{"127":1}}],["tol",{"2":{"112":12,"134":9,"151":2}}],["together",{"2":{"17":10,"18":3,"32":1,"73":2,"111":1,"117":1,"120":2,"121":2,"146":1,"148":2,"162":1,"168":3,"176":1,"196":1,"210":3,"242":1,"257":3,"270":1,"287":3}}],["tommy",{"2":{"4":2}}],["to",{"0":{"1":1,"35":1,"85":1,"199":1},"2":{"2":8,"6":1,"7":2,"9":1,"12":2,"13":1,"15":3,"16":1,"17":8,"18":2,"19":2,"20":4,"23":2,"27":2,"29":2,"35":2,"36":3,"39":3,"42":1,"43":3,"52":1,"53":1,"54":1,"57":2,"58":6,"61":2,"68":2,"73":2,"74":2,"75":1,"79":1,"80":1,"84":3,"85":2,"86":2,"87":10,"88":5,"89":8,"90":1,"92":1,"93":6,"94":7,"96":3,"97":3,"98":3,"100":5,"103":2,"104":1,"105":4,"106":4,"107":2,"108":8,"109":3,"111":4,"112":1,"113":2,"114":1,"116":5,"117":1,"120":5,"121":3,"122":4,"124":10,"125":2,"127":4,"129":2,"130":2,"132":1,"135":1,"136":1,"138":2,"140":1,"141":3,"142":2,"143":4,"146":12,"147":1,"149":2,"150":4,"151":4,"153":1,"156":4,"157":1,"158":6,"159":1,"160":1,"162":8,"164":3,"165":6,"166":2,"168":7,"170":1,"172":2,"174":1,"176":1,"180":1,"195":1,"196":3,"199":1,"200":1,"203":1,"204":1,"209":3,"210":6,"211":5,"213":6,"224":1,"226":1,"228":2,"229":1,"230":7,"232":2,"233":2,"235":1,"237":2,"238":1,"239":5,"241":1,"242":2,"245":2,"246":9,"248":1,"249":1,"253":11,"254":1,"255":2,"257":6,"258":1,"261":3,"262":6,"265":1,"266":3,"267":2,"268":1,"270":7,"271":6,"275":4,"276":4,"277":4,"278":4,"282":1,"283":2,"284":1,"285":4,"287":7,"288":3,"290":2,"294":13,"296":9,"301":4}}],["www",{"2":{"278":2}}],["writes",{"2":{"61":2,"111":1,"145":1}}],["written",{"2":{"58":1}}],["wrt",{"2":{"2":1,"58":2,"130":1,"142":2,"146":8,"150":1,"217":1,"232":2,"282":1,"289":1}}],["work",{"2":{"142":1,"157":1,"204":1,"270":1}}],["works",{"2":{"43":1,"60":1,"108":1,"158":1,"263":1,"265":1}}],["words",{"2":{"25":1}}],["would",{"2":{"39":1}}],["w",{"2":{"25":5,"162":3,"170":4,"255":1}}],["warning",{"2":{"53":1}}],["ways",{"2":{"129":1,"214":1,"229":1}}],["way",{"2":{"38":1,"87":1,"96":1,"149":1,"278":1}}],["was",{"2":{"18":2,"67":1,"75":1,"138":1,"147":1,"207":1}}],["wants",{"2":{"18":2,"43":1,"168":6,"210":6,"257":6,"287":6}}],["want",{"2":{"2":2}}],["while",{"2":{"30":1,"68":1,"73":1,"92":1,"127":3,"158":1,"160":1,"278":1}}],["which",{"2":{"2":2,"12":1,"16":1,"25":2,"30":1,"39":1,"45":1,"46":2,"47":1,"48":1,"57":2,"68":1,"79":1,"106":1,"107":1,"109":3,"111":2,"116":1,"120":1,"121":1,"122":1,"132":1,"134":2,"135":1,"139":1,"140":1,"143":2,"144":2,"146":3,"147":1,"150":3,"151":3,"158":2,"160":1,"162":1,"164":1,"168":1,"191":1,"209":1,"211":1,"228":6,"230":1,"231":1,"235":1,"246":2,"249":1,"270":1,"272":1,"278":2,"282":1,"283":2,"287":2,"292":1,"298":3}}],["whose",{"2":{"17":1,"67":2,"109":1,"162":1,"180":1,"190":1,"209":3,"211":2,"218":3,"231":1,"235":1,"242":1,"246":2,"283":1,"298":2}}],["whole",{"2":{"2":1,"42":1}}],["whether",{"2":{"14":5,"15":1,"24":4,"45":1,"47":1,"64":1,"107":7,"111":1,"113":6,"116":3,"119":9,"124":2,"132":1,"139":1,"144":1,"145":1,"147":6,"150":4,"151":2,"152":3,"153":1,"160":7,"164":2,"166":4,"167":1,"172":1,"174":1,"182":1,"184":8,"193":1,"201":2,"202":4,"203":1,"208":1,"218":5,"220":4,"224":1,"231":1,"235":2,"250":10,"252":3,"253":3,"255":6,"267":1,"281":2,"290":7,"292":1,"296":3,"298":3}}],["when",{"2":{"2":1,"40":1,"58":1,"93":1,"111":2,"146":1,"190":1,"213":1}}],["whereas",{"2":{"197":1}}],["where",{"2":{"2":1,"7":1,"8":1,"13":1,"16":1,"17":1,"42":2,"52":1,"58":1,"61":4,"67":1,"70":1,"71":1,"74":3,"79":1,"80":3,"83":1,"86":1,"87":2,"88":1,"89":3,"90":4,"92":1,"94":3,"96":1,"109":2,"111":1,"116":1,"117":2,"118":1,"121":1,"125":1,"129":2,"130":1,"137":1,"138":1,"145":1,"147":4,"151":1,"158":1,"162":1,"164":1,"166":2,"168":6,"170":2,"172":1,"182":1,"188":2,"195":1,"196":1,"207":1,"213":3,"218":3,"235":1,"239":1,"242":1,"246":2,"254":1,"255":1,"261":1,"266":2,"267":1,"283":1,"287":6,"290":1,"296":2}}],["wissenschaften",{"2":{"300":1}}],["wise",{"2":{"153":1}}],["witt",{"2":{"164":2,"165":1,"281":2,"282":1}}],["without",{"2":{"61":1,"88":1,"96":1}}],["within",{"2":{"5":1,"12":1,"36":1}}],["with",{"2":{"2":1,"4":1,"7":5,"11":1,"13":5,"14":1,"16":1,"17":16,"18":3,"23":1,"25":4,"26":1,"27":1,"28":1,"29":1,"32":3,"36":1,"40":1,"42":2,"45":5,"47":1,"48":6,"50":1,"53":3,"54":3,"57":2,"64":1,"67":8,"68":9,"73":3,"75":4,"78":2,"80":3,"86":1,"87":2,"88":5,"89":3,"92":2,"93":1,"94":2,"95":1,"96":4,"98":1,"105":1,"107":1,"109":2,"111":9,"112":2,"114":1,"116":3,"117":2,"119":1,"120":2,"121":3,"122":2,"128":2,"131":2,"132":1,"134":2,"136":2,"138":1,"139":1,"140":2,"141":1,"142":7,"144":1,"145":1,"146":11,"148":3,"149":1,"150":5,"151":6,"152":1,"156":5,"157":4,"158":2,"159":3,"162":6,"166":1,"168":9,"170":2,"179":1,"180":1,"182":2,"184":4,"189":1,"190":2,"196":4,"201":8,"202":4,"203":1,"204":1,"205":2,"206":1,"207":1,"208":1,"209":2,"210":9,"215":2,"217":2,"226":4,"229":1,"230":1,"231":4,"232":3,"236":2,"238":2,"239":2,"240":6,"242":1,"244":2,"246":9,"248":2,"249":2,"250":4,"253":2,"254":6,"255":8,"257":9,"261":6,"262":6,"263":1,"265":3,"267":2,"268":1,"270":8,"272":2,"275":1,"276":6,"277":6,"278":6,"280":4,"282":1,"284":28,"285":2,"286":17,"287":9,"289":4,"292":1,"294":2,"296":4,"298":5,"299":24}}],["wildanger",{"2":{"116":2,"146":1}}],["wil",{"2":{"98":1}}],["william",{"2":{"4":2}}],["will",{"2":{"2":2,"13":3,"25":2,"30":1,"40":3,"58":1,"61":1,"68":5,"75":2,"87":1,"89":1,"93":1,"96":1,"98":2,"103":2,"111":1,"113":2,"114":2,"116":2,"117":1,"125":1,"127":3,"131":4,"134":1,"141":1,"143":1,"146":9,"151":1,"152":1,"157":1,"195":3,"215":1,"230":2,"242":1,"267":1,"270":1,"276":3,"277":3,"278":1,"282":1,"292":2,"301":1}}],["wide",{"2":{"16":1,"30":1}}],["weakly",{"2":{"119":3}}],["weighted",{"2":{"112":1}}],["weierstrass",{"2":{"45":1,"46":2,"57":2}}],["weber",{"2":{"92":1}}],["well",{"2":{"15":1,"19":2,"87":1,"90":1,"137":1,"142":1,"146":1,"149":2,"168":1,"176":1,"195":1,"254":1,"261":1,"287":1}}],["we",{"2":{"2":8,"7":1,"9":1,"57":1,"58":1,"67":1,"73":3,"93":2,"99":1,"103":1,"109":3,"112":3,"125":1,"127":2,"129":4,"134":1,"139":1,"141":1,"142":1,"143":2,"149":1,"151":1,"157":1,"158":1,"160":2,"167":1,"196":5,"213":6,"215":1,"228":2,"230":2,"233":1,"242":1,"246":1,"255":1,"269":1,"270":5,"271":4,"283":2,"288":1,"294":2}}],["xviii+203",{"2":{"300":1}}],["xvi+578",{"2":{"300":1}}],["x↦φ",{"2":{"205":1}}],["x↦log⁡",{"2":{"104":1}}],["xk∈po",{"2":{"151":2}}],["xk=1",{"2":{"111":1}}],["x∈l",{"2":{"250":1}}],["x∈v∣φ",{"2":{"285":1}}],["x∈vp",{"2":{"172":1}}],["x∈v",{"2":{"166":1}}],["x∈k",{"2":{"151":1}}],["x∈k|xb⊆a",{"2":{"145":1}}],["x∈o∣∃k∈z≥0",{"2":{"151":2}}],["x≡r2modi2",{"2":{"148":1}}],["x≡r1modi1",{"2":{"148":1}}],["x≡ymodi",{"2":{"148":1}}],["x∩y",{"2":{"145":1}}],["x−1",{"2":{"116":1}}],["x¯n",{"2":{"111":1}}],["x¯1",{"2":{"111":1}}],["xn−b",{"2":{"119":2}}],["xn−a",{"2":{"116":1}}],["xn+∑i=0n−1",{"2":{"116":1}}],["xn=1",{"2":{"113":1}}],["xn",{"2":{"111":1,"116":2,"129":2}}],["x1",{"2":{"111":1,"116":2,"129":2}}],["xa=bd",{"2":{"88":1}}],["xs",{"2":{"87":2}}],["xj",{"2":{"80":3}}],["xiv+499",{"2":{"300":1}}],["xii+534",{"2":{"300":1}}],["xinl",{"2":{"250":1}}],["xi⊆i",{"2":{"151":1}}],["xi",{"2":{"79":1,"80":1,"283":4}}],["x=∑i=1dxiωi∈o",{"2":{"151":1}}],["x=",{"2":{"73":1}}],["x2−d",{"2":{"116":1}}],["x26",{"2":{"64":2,"230":2,"236":2,"238":2,"240":2}}],["x2+",{"2":{"2":1}}],["x3c",{"2":{"2":1,"13":3,"15":1,"19":1,"50":1,"51":1,"52":1,"53":2,"67":1,"90":1,"95":1,"96":3,"116":1,"142":3,"146":12,"150":2,"166":2,"168":6,"170":2,"195":1,"215":6,"217":1,"230":4,"232":2,"236":4,"238":7,"240":12,"278":4,"282":1,"284":40,"286":12,"287":6,"289":9,"299":48}}],["x^4",{"2":{"120":1}}],["x^8",{"2":{"120":1}}],["x^2",{"2":{"2":3,"45":1,"46":2,"95":1,"96":3,"101":1,"104":1,"105":2,"108":3,"111":1,"116":3,"117":3,"118":2,"142":1,"151":1,"215":1,"217":2,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":2,"234":1,"236":1,"238":1,"301":1}}],["x^3",{"2":{"2":3,"45":3,"46":3,"48":5,"50":1,"53":3,"54":2,"67":1,"108":1,"150":1}}],["x+",{"2":{"2":1}}],["x",{"2":{"2":7,"7":7,"8":4,"13":2,"17":3,"29":4,"45":6,"46":4,"48":5,"50":1,"53":4,"54":2,"60":5,"61":14,"67":1,"68":10,"73":1,"88":1,"90":6,"95":2,"96":2,"103":6,"104":1,"105":1,"107":3,"108":2,"109":2,"111":14,"112":28,"113":4,"116":8,"117":6,"118":4,"120":2,"125":2,"129":3,"132":2,"134":13,"140":3,"142":4,"144":13,"145":5,"146":3,"147":6,"148":3,"150":2,"151":4,"153":1,"164":3,"166":4,"168":12,"172":2,"182":2,"190":2,"195":2,"196":2,"205":4,"208":5,"209":1,"210":12,"215":2,"217":2,"219":2,"221":2,"223":2,"225":2,"227":2,"230":2,"232":2,"234":2,"236":2,"238":2,"246":2,"250":6,"257":12,"267":6,"270":3,"271":1,"278":3,"280":1,"284":2,"285":1,"287":12,"288":3,"294":3,"301":2}}],["f^4+f^3+f^2+f+1",{"2":{"261":1}}],["f^2+f+1",{"2":{"261":1}}],["f+1",{"2":{"255":1}}],["fp",{"2":{"142":1}}],["f2",{"2":{"122":1}}],["f1",{"2":{"111":1,"116":2,"117":1,"129":2}}],["f∈z",{"2":{"140":1}}],["f∈q",{"2":{"109":1}}],["f∈k",{"2":{"2":1,"116":1,"129":1}}],["fn∈k",{"2":{"129":1}}],["fn",{"2":{"103":2,"111":1,"116":2,"129":1}}],["flavour",{"2":{"285":1}}],["flat",{"2":{"18":2}}],["float64",{"2":{"88":2,"151":2,"152":1}}],["fl",{"2":{"64":1,"142":1}}],["fxied",{"2":{"58":1}}],["fqpolyrepfieldelem",{"2":{"61":1}}],["fqfieldelem",{"2":{"53":2,"142":1}}],["fq",{"2":{"52":2}}],["far",{"2":{"139":1}}],["fakefracfldmat",{"2":{"138":1,"147":1,"151":1}}],["fakefmpqmat",{"2":{"134":1,"138":1}}],["family",{"2":{"132":1,"134":1}}],["famous",{"2":{"92":1}}],["failure",{"2":{"125":2}}],["faster",{"2":{"60":1,"97":1,"127":1}}],["fast",{"2":{"58":1,"130":1}}],["fact",{"2":{"61":1,"109":1,"143":1}}],["factors",{"2":{"61":2,"144":1,"146":1}}],["factorised",{"2":{"61":1}}],["factorisation",{"2":{"61":9}}],["factorization",{"2":{"51":1,"93":1,"134":2,"144":1}}],["factored",{"0":{"58":1},"1":{"59":1,"60":1,"61":1,"62":1,"63":1},"2":{"58":5,"59":3,"60":5,"61":3,"62":1,"63":3,"113":1,"146":6,"147":1}}],["factor",{"2":{"51":1,"61":7,"134":1,"144":3,"146":6,"162":1}}],["facelem",{"2":{"58":4,"59":11,"60":5,"61":25,"63":3,"112":1,"146":2,"147":1}}],["fac",{"2":{"51":4,"61":1,"134":4,"146":11,"147":2,"153":3}}],["false",{"2":{"17":4,"24":1,"25":2,"32":1,"36":1,"45":1,"47":1,"48":2,"87":1,"88":3,"93":2,"96":1,"97":1,"100":2,"107":1,"113":2,"116":4,"119":1,"120":2,"121":1,"122":4,"136":2,"142":1,"144":2,"145":1,"146":7,"150":2,"161":1,"167":1,"175":1,"180":1,"214":1,"221":2,"234":2,"235":2,"245":1,"246":1,"255":1,"265":1,"267":2,"275":2,"276":2,"277":2,"278":2,"283":2,"291":2,"296":1,"297":1,"299":3}}],["follows",{"2":{"73":1,"103":1,"106":1,"269":1}}],["follow",{"2":{"73":1,"139":1}}],["following",{"2":{"30":1,"42":1,"68":1,"73":1,"103":1,"116":2,"129":1,"148":1,"157":1,"159":1,"168":1,"209":2,"278":2,"285":1,"287":1,"301":1}}],["found",{"2":{"38":1,"121":1,"272":1}}],["forschungsgemeinschaft",{"2":{"5":1}}],["for",{"0":{"84":1,"212":1,"294":1},"1":{"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"295":1},"2":{"4":2,"7":1,"9":1,"11":1,"13":1,"17":13,"18":2,"25":3,"28":1,"29":1,"30":3,"32":1,"33":1,"34":1,"38":1,"40":1,"43":2,"51":1,"57":2,"58":2,"59":2,"60":1,"61":3,"62":1,"67":2,"68":8,"70":1,"71":1,"73":2,"75":3,"78":1,"79":4,"86":2,"88":6,"89":1,"92":3,"93":3,"94":2,"96":5,"97":2,"98":3,"99":1,"103":1,"108":1,"109":2,"112":3,"113":1,"116":3,"117":2,"118":1,"119":2,"121":1,"125":2,"134":3,"135":1,"139":1,"141":2,"142":1,"143":3,"144":2,"146":14,"147":4,"148":3,"149":1,"150":2,"151":3,"152":1,"153":3,"157":1,"159":1,"160":1,"162":3,"164":2,"165":2,"166":1,"168":5,"176":3,"184":4,"188":4,"190":1,"193":1,"195":1,"197":2,"198":1,"199":3,"202":2,"204":1,"209":4,"210":3,"213":5,"214":1,"215":3,"216":3,"218":13,"220":4,"222":2,"224":3,"226":2,"228":1,"229":2,"230":4,"231":4,"235":5,"236":1,"237":2,"238":3,"239":2,"240":22,"246":6,"248":1,"250":5,"251":2,"253":1,"254":1,"255":4,"257":3,"263":3,"266":2,"268":1,"270":3,"271":1,"272":1,"282":2,"285":2,"287":5,"294":2,"301":2}}],["format",{"2":{"278":1}}],["formally",{"2":{"58":1}}],["formal",{"2":{"4":1,"94":3,"96":1,"98":2}}],["former",{"2":{"160":1}}],["formula",{"2":{"97":1,"229":1}}],["form",{"0":{"203":1,"207":1,"248":1},"2":{"14":1,"16":1,"17":2,"58":2,"59":1,"61":2,"73":1,"75":4,"79":1,"86":1,"87":1,"88":7,"109":1,"113":1,"117":1,"119":2,"143":1,"146":5,"147":1,"150":1,"162":4,"182":2,"184":6,"188":2,"190":5,"195":3,"196":1,"197":14,"201":4,"203":2,"205":2,"206":5,"207":3,"208":7,"209":8,"213":2,"246":3,"248":1}}],["forms",{"2":{"3":1,"43":1,"146":1,"193":1,"195":1,"208":1,"242":1,"272":1,"278":2,"300":1}}],["fujiki",{"2":{"246":2}}],["full",{"2":{"88":3,"160":1,"196":1,"245":1,"275":2,"276":2,"277":2}}],["further",{"2":{"61":1,"73":1}}],["fundamental",{"2":{"58":1,"146":2,"254":6}}],["functors",{"2":{"16":1}}],["functions",{"0":{"61":1,"68":1},"2":{"16":1,"17":1,"30":3,"62":1,"68":2,"74":1,"111":2,"116":2,"149":1,"153":3,"287":1}}],["functionality",{"0":{"84":1},"2":{"12":1,"30":2,"39":1,"57":1,"99":1,"108":1,"196":1}}],["function",{"2":{"2":1,"7":3,"8":2,"25":1,"75":1,"89":4,"93":1,"103":7,"109":1,"111":7,"114":4,"116":2,"117":4,"118":2,"119":4,"120":3,"121":3,"122":5,"123":1,"131":3,"134":1,"146":3,"148":1,"150":1,"151":6,"152":2,"160":1,"184":2,"196":1,"202":2,"250":2,"275":1,"276":1,"277":1,"278":1}}],["future",{"2":{"30":1,"150":1}}],["features",{"0":{"3":1},"2":{"57":1}}],["fbar",{"2":{"2":2}}],["fi",{"2":{"117":1}}],["fixed",{"2":{"79":1,"86":1,"98":1,"122":2,"149":1,"158":4,"159":1,"162":2,"166":2,"172":1,"262":2,"270":3,"271":3,"283":4,"284":2,"288":1,"298":3}}],["fix",{"2":{"73":1}}],["filter",{"2":{"68":2,"267":2}}],["file",{"2":{"35":1,"38":1,"39":5}}],["files",{"0":{"35":1},"2":{"34":1,"35":1}}],["first",{"2":{"22":1,"60":1,"85":1,"113":1,"254":1}}],["finitly",{"2":{"141":1}}],["finite",{"0":{"49":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"10":1,"11":1,"14":4,"17":2,"18":3,"30":1,"50":1,"51":2,"57":1,"60":1,"67":3,"73":1,"93":1,"98":1,"109":1,"127":3,"129":2,"141":1,"146":1,"166":2,"168":7,"195":1,"196":2,"201":18,"202":4,"205":1,"206":4,"210":6,"233":1,"257":6,"261":6,"270":1,"287":7}}],["finitely",{"2":{"6":1,"11":1,"12":2,"13":1,"17":4,"18":1,"73":1,"242":1,"270":1,"271":1}}],["fingengrpabmap",{"2":{"93":4}}],["fingengrpab",{"2":{"93":4}}],["fingenabgrouphom",{"2":{"15":1,"16":1,"17":11,"18":4,"94":1}}],["fingenabgroup",{"2":{"7":9,"13":13,"14":12,"15":6,"16":2,"17":41,"18":5,"19":6,"20":3,"53":1,"93":2,"146":5,"148":4,"197":1}}],["fingenabgroupelem",{"2":{"6":1,"7":7,"8":2,"10":1,"13":1,"17":9,"146":1}}],["finfieldelem",{"2":{"50":1,"51":1,"52":2,"53":2}}],["finding",{"2":{"96":1}}],["finds",{"2":{"63":3,"88":3,"125":1,"146":1,"151":1}}],["find",{"2":{"16":1,"17":1,"88":2,"89":3,"98":2,"113":1,"121":1,"122":1,"125":1,"127":1,"146":4,"147":2,"148":1,"151":1}}],["finally",{"2":{"2":1,"68":1,"271":1,"278":1}}],["fieker",{"2":{"4":2}}],["fieldelem",{"2":{"45":1,"46":2,"111":2,"132":1,"134":1,"158":2,"162":5,"164":1,"241":2}}],["field",{"0":{"91":1,"115":1,"276":1},"1":{"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"98":1,"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1},"2":{"2":10,"3":1,"22":2,"23":1,"28":1,"32":3,"45":2,"46":8,"48":1,"50":1,"51":2,"58":2,"62":1,"73":1,"89":2,"92":4,"93":2,"94":21,"95":4,"96":23,"97":10,"98":8,"99":1,"100":7,"101":8,"102":1,"103":1,"104":2,"105":12,"106":3,"107":13,"108":11,"109":3,"111":18,"113":3,"114":13,"116":38,"117":10,"118":8,"119":10,"120":1,"121":6,"122":9,"123":4,"124":10,"125":1,"127":5,"128":1,"129":9,"130":4,"131":5,"132":1,"134":2,"135":1,"139":3,"140":2,"141":1,"142":7,"143":1,"145":1,"146":11,"147":2,"148":4,"149":5,"150":6,"151":11,"152":2,"153":1,"156":2,"157":5,"158":5,"159":11,"161":1,"162":2,"163":1,"165":3,"166":2,"167":1,"169":2,"172":1,"173":1,"175":1,"215":6,"216":2,"217":6,"219":2,"221":2,"223":2,"225":2,"227":2,"230":12,"231":2,"232":6,"234":2,"236":6,"238":7,"239":1,"240":7,"241":2,"249":1,"270":5,"271":3,"276":8,"277":4,"278":12,"280":6,"282":2,"283":8,"284":18,"285":1,"286":6,"288":1,"289":2,"291":2,"293":1,"295":2,"297":1,"299":2,"301":2}}],["fields",{"0":{"2":1,"49":1,"55":1,"94":1,"116":1,"127":1,"128":1,"140":1,"141":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1,"95":1},"2":{"3":2,"57":3,"58":1,"61":1,"78":1,"92":5,"98":1,"99":1,"108":1,"109":2,"116":6,"119":1,"120":2,"127":8,"139":3,"141":2,"142":1,"143":1,"149":5,"193":1,"213":1,"268":1,"272":2,"300":1}}],["fr",{"2":{"117":1}}],["fraction",{"2":{"141":1}}],["fractional",{"0":{"135":1},"1":{"136":1,"137":1,"138":1},"2":{"59":1,"73":1,"135":2,"136":16,"137":1,"138":2,"141":1,"147":2,"255":1,"283":1,"284":13,"285":1,"288":1,"289":2,"290":2,"299":12}}],["frakp",{"2":{"2":2}}],["frobenius",{"0":{"52":1},"2":{"52":8,"94":1}}],["from",{"0":{"85":1,"178":1,"179":1,"181":1,"205":1,"206":1,"244":1,"247":1},"2":{"2":2,"15":2,"18":1,"20":1,"45":3,"61":1,"67":2,"87":2,"90":1,"93":2,"94":1,"116":2,"120":2,"122":2,"123":3,"129":1,"143":1,"146":2,"159":1,"164":1,"246":1,"272":1,"284":1,"294":2,"296":1,"298":1}}],["frequently",{"2":{"58":1,"73":1,"116":1}}],["fredrik",{"2":{"4":2}}],["free",{"2":{"3":1,"13":2,"14":3,"15":2,"16":1,"73":1,"74":1,"109":1,"139":1,"141":1,"143":1,"149":1,"276":1,"277":1}}],["f",{"2":{"2":6,"16":2,"17":1,"46":3,"51":2,"88":2,"89":3,"93":3,"98":1,"101":4,"102":2,"103":4,"105":7,"106":6,"109":1,"111":1,"116":4,"117":2,"122":2,"129":1,"140":2,"146":10,"147":6,"148":1,"162":1,"164":3,"203":1,"234":2,"255":1,"261":4,"262":3,"278":2,"294":3,"301":2}}],["f=x3+",{"2":{"2":1}}],["f=ok",{"2":{"2":2}}],["f¯∈f",{"2":{"2":1}}],["gm",{"2":{"296":1}}],["gb=",{"2":{"270":1}}],["gc",{"2":{"265":1}}],["gcd",{"2":{"61":1,"145":1}}],["g2",{"2":{"168":1,"181":2,"187":3,"193":2,"215":1,"219":8,"227":3,"230":1,"232":5,"237":6,"238":4,"287":1}}],["good",{"2":{"213":1}}],["gorenstein",{"2":{"152":4}}],["going",{"2":{"93":1,"282":1}}],["g∘f",{"2":{"105":1}}],["galois",{"0":{"123":1},"2":{"98":1,"123":1}}],["glue",{"2":{"261":10}}],["globally",{"2":{"167":1}}],["global",{"0":{"228":1,"229":1},"1":{"229":1,"230":2,"231":1,"232":1,"233":1,"234":1},"2":{"92":1,"228":1,"229":2,"230":1,"231":8,"235":4,"237":2,"239":1,"241":2}}],["gl",{"2":{"88":1,"296":1}}],["glz",{"2":{"64":3}}],["gf",{"2":{"45":2,"50":1,"51":2,"52":2,"53":3,"54":1,"142":1}}],["gt",{"2":{"42":2,"89":1,"93":1,"103":1,"135":1,"146":2,"151":1,"196":4,"208":1,"213":1}}],["guarenteed",{"2":{"146":1}}],["guaranteed",{"2":{"25":2,"93":1,"103":1}}],["guides",{"0":{"1":1}}],["g=g1⊗⋯⊗gn",{"2":{"19":1}}],["g1",{"2":{"168":1,"181":2,"187":3,"193":2,"213":1,"215":1,"217":4,"221":5,"223":2,"225":3,"230":3,"236":9,"237":6,"238":5,"287":1}}],["g1×⋯×gn",{"2":{"19":1}}],["g1⊗⋯⊗gn",{"2":{"19":2}}],["g→o×",{"2":{"146":1}}],["g→h",{"2":{"17":5}}],["g→a⊕b⊕c",{"2":{"18":1}}],["g→a",{"2":{"16":2}}],["gi→hi",{"2":{"19":1}}],["gi→hj",{"2":{"15":1}}],["gi",{"2":{"18":1,"19":1,"213":2,"292":2}}],["give",{"2":{"127":1,"146":2}}],["gives",{"2":{"73":1}}],["given",{"0":{"72":1,"275":1},"2":{"2":1,"6":1,"7":2,"13":1,"14":1,"15":1,"16":1,"17":4,"18":3,"19":2,"23":2,"25":2,"26":2,"29":1,"32":3,"33":1,"45":1,"46":3,"51":2,"57":1,"61":1,"64":1,"67":1,"68":2,"81":1,"88":3,"89":7,"93":6,"94":4,"96":2,"97":1,"98":4,"103":1,"104":1,"105":3,"106":3,"107":3,"109":1,"111":10,"113":1,"114":5,"116":6,"117":5,"118":2,"119":4,"120":2,"121":4,"122":4,"123":4,"127":2,"131":3,"146":4,"150":1,"151":3,"153":1,"162":3,"166":2,"168":3,"170":2,"172":1,"180":1,"184":4,"186":1,"188":1,"190":1,"191":1,"195":1,"196":1,"197":2,"202":4,"203":2,"206":1,"208":1,"209":2,"210":3,"213":1,"216":3,"218":14,"220":4,"222":1,"224":3,"226":2,"229":2,"231":6,"233":1,"235":3,"237":2,"239":1,"241":2,"242":1,"245":1,"246":2,"249":1,"250":4,"253":2,"254":2,"255":2,"257":3,"261":3,"262":3,"265":1,"266":1,"275":4,"276":4,"277":4,"278":1,"283":2,"285":1,"287":4,"292":1,"294":2,"298":6}}],["giving",{"2":{"4":1,"59":1,"98":1,"130":1,"180":1}}],["g≅z",{"2":{"14":1}}],["grundlehren",{"2":{"300":1}}],["graduate",{"2":{"300":2}}],["gram=zz",{"2":{"248":1,"254":2}}],["gram=2",{"2":{"246":1}}],["gram=matrix",{"2":{"209":1}}],["gram",{"0":{"179":1,"226":1,"244":1},"1":{"227":1},"2":{"156":7,"157":2,"158":4,"159":1,"160":2,"162":7,"163":2,"164":1,"179":1,"182":1,"189":1,"191":2,"196":2,"197":4,"201":4,"206":5,"213":1,"215":1,"219":1,"226":6,"227":3,"228":1,"230":1,"231":1,"232":1,"234":1,"238":1,"244":8,"246":6,"248":1,"249":6,"250":1,"254":8,"255":3,"261":4,"263":1,"265":1,"266":2,"270":2,"276":22,"277":22,"278":4,"279":2,"280":5,"282":2,"283":2,"284":2,"286":3,"289":1,"291":1,"292":1,"293":1,"295":1,"296":2,"297":2,"299":1}}],["grptogrp",{"2":{"123":3}}],["grp",{"2":{"123":3}}],["grpgentonfmorset",{"2":{"122":1}}],["grpabfingemmap",{"2":{"17":1}}],["grpab",{"2":{"12":1,"16":1,"146":4}}],["grh",{"2":{"119":1,"146":8}}],["groupalgebra",{"2":{"28":1}}],["groups",{"0":{"93":1,"194":1,"204":1},"1":{"195":1,"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1,"204":1,"205":2,"206":2,"207":2,"208":2,"209":2,"210":2,"211":2},"2":{"3":2,"12":2,"13":7,"15":3,"16":1,"17":2,"18":2,"19":2,"78":1,"92":3,"94":1,"116":1,"153":1,"202":2,"204":1,"261":1,"272":1,"300":1}}],["group",{"0":{"20":1,"27":1,"53":1,"146":1,"183":1,"260":1},"1":{"28":1,"29":1},"2":{"3":1,"6":1,"7":1,"11":5,"12":1,"13":20,"14":3,"15":5,"16":3,"17":15,"18":4,"20":2,"27":1,"28":8,"29":8,"30":1,"53":6,"58":1,"92":1,"93":30,"94":13,"95":1,"96":3,"97":3,"98":1,"118":3,"119":1,"122":3,"123":10,"134":1,"135":1,"146":56,"148":8,"153":11,"183":1,"184":8,"195":2,"196":6,"197":3,"201":4,"202":12,"203":2,"205":6,"206":4,"209":2,"211":5,"233":1,"235":1,"250":12,"253":8,"260":1,"294":7,"295":2,"301":2}}],["geometric",{"2":{"300":1}}],["getting",{"0":{"301":1}}],["get",{"2":{"23":1,"88":1,"93":1,"159":1,"165":1,"224":1,"278":1}}],["getindex",{"2":{"7":1,"8":2,"81":1,"89":2}}],["genordidl",{"2":{"138":1,"147":1,"151":1}}],["gengrp",{"2":{"122":1}}],["genusrep",{"2":{"38":2}}],["genus",{"0":{"180":1,"181":1,"182":1,"188":1,"209":1,"213":1,"214":1,"228":1,"229":1,"235":1,"247":1,"251":1},"1":{"183":1,"184":1,"185":1,"189":1,"190":1,"191":1,"192":1,"193":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"229":1,"230":2,"231":1,"232":1,"233":1,"234":1,"236":1},"2":{"38":4,"39":2,"43":2,"96":1,"176":7,"178":2,"179":2,"181":1,"182":10,"184":6,"186":9,"187":2,"188":4,"189":4,"190":5,"191":4,"192":1,"209":5,"213":2,"214":4,"215":4,"216":3,"217":1,"218":17,"219":1,"220":4,"221":1,"222":1,"223":1,"224":3,"225":1,"226":4,"227":1,"228":3,"229":5,"230":5,"231":11,"232":1,"233":6,"235":9,"236":3,"237":4,"238":6,"239":2,"240":21,"241":4,"246":19,"247":1,"251":5,"263":5}}],["gen",{"2":{"15":7,"111":1,"146":2,"147":2,"151":1}}],["genera",{"0":{"176":1,"177":1,"184":1,"212":1,"237":1,"239":1},"1":{"177":1,"178":2,"179":2,"180":2,"181":2,"182":1,"183":1,"184":1,"185":1,"186":1,"187":1,"188":1,"189":1,"190":1,"191":1,"192":1,"193":1,"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":2,"239":1,"240":2,"241":1},"2":{"176":2,"180":7,"184":2,"209":2,"239":4,"240":2,"263":1}}],["generalized",{"2":{"90":3,"109":1,"146":1,"151":1,"283":1}}],["generally",{"2":{"58":1}}],["general",{"2":{"12":1,"16":1,"25":2,"58":3,"59":1,"73":1,"74":1,"92":1,"94":1,"96":1,"116":1,"127":1,"141":2,"146":2,"149":1,"204":1,"270":1,"271":1}}],["generator",{"2":{"116":3,"143":1,"146":7,"147":6,"222":1,"250":2,"255":1,"282":1,"289":1}}],["generators",{"0":{"25":1},"2":{"6":1,"7":1,"11":1,"13":4,"14":3,"15":1,"17":3,"25":5,"53":1,"141":1,"148":3,"195":2,"253":5,"275":1,"283":7,"284":2,"294":3,"295":1}}],["generating",{"2":{"73":2,"283":2}}],["generate",{"2":{"73":1}}],["generates",{"2":{"25":2}}],["generated",{"2":{"6":1,"11":1,"12":1,"17":9,"61":4,"73":1,"93":1,"136":2,"141":1,"143":1,"144":4,"145":1,"146":3,"147":1,"150":1,"152":1,"182":1,"190":1,"242":1,"250":2,"270":1,"271":1,"288":1}}],["generically",{"2":{"61":1}}],["generic",{"2":{"12":1,"28":1,"74":3,"293":2,"295":1}}],["gensl",{"2":{"246":2}}],["gens",{"2":{"7":1,"17":8,"25":5,"53":3,"111":1,"195":3,"201":2,"215":2,"219":2,"227":2,"230":2,"232":2,"234":2,"238":2,"275":4,"276":5,"277":5,"278":8,"280":4,"282":4,"284":2,"286":4,"289":2,"291":2,"293":2,"295":2,"297":4,"299":2}}],["g",{"2":{"7":6,"11":4,"13":1,"14":14,"15":17,"16":5,"17":68,"18":10,"19":2,"20":2,"25":5,"27":2,"28":3,"29":9,"58":1,"88":2,"89":10,"98":1,"105":3,"106":2,"122":2,"131":1,"139":1,"146":1,"156":3,"182":14,"184":10,"185":1,"186":8,"191":3,"201":2,"213":6,"216":7,"218":41,"220":8,"222":2,"224":8,"226":8,"228":2,"231":17,"233":2,"234":2,"235":16,"241":9,"254":2,"262":9,"263":4,"266":2,"278":6,"280":2,"284":2,"289":2,"291":2,"295":2,"299":2}}],["pv",{"2":{"290":1}}],["pvlp",{"2":{"290":1}}],["p=7∗ok",{"2":{"282":1}}],["p=29",{"2":{"2":1}}],["pdf",{"2":{"272":2}}],["pp",{"2":{"190":1}}],["pmaximal",{"2":{"151":2}}],["pmatrix",{"2":{"151":2}}],["pmat",{"2":{"73":1,"74":4,"75":7,"150":1,"151":1,"275":1,"276":1,"277":1,"283":1}}],["phi",{"2":{"148":2,"201":10,"248":1}}],["p^",{"2":{"196":2}}],["p^m",{"2":{"188":1}}],["p^2",{"2":{"142":1}}],["p^e",{"2":{"134":1}}],["p−j=0",{"2":{"89":1}}],["p−subgroup",{"2":{"17":1}}],["p≠0",{"2":{"89":1}}],["pi",{"2":{"111":1,"147":5}}],["picard",{"2":{"94":1,"146":4,"153":1}}],["pivot",{"2":{"88":1}}],["pid",{"2":{"58":1,"73":1}}],["psi",{"2":{"213":1}}],["pseudo",{"0":{"73":1},"1":{"74":1,"75":1,"76":1},"2":{"73":12,"74":7,"75":4,"96":1,"141":2,"150":1,"151":6,"215":2,"230":1,"236":2,"238":2,"240":6,"253":1,"275":2,"276":2,"277":2,"278":2,"283":11,"284":23,"285":2,"286":8,"289":4,"294":1,"296":2,"299":27}}],["psubgroups",{"2":{"17":2}}],["performance",{"2":{"253":3,"294":2,"296":2}}],["performant",{"2":{"86":1}}],["per",{"2":{"45":1,"47":1,"100":1}}],["pkg",{"2":{"42":2,"301":2}}],["plc",{"2":{"93":1,"97":2,"124":2}}],["plane",{"2":{"174":1,"246":5,"255":1}}],["planes",{"2":{"174":1}}],["play",{"2":{"142":1}}],["plays",{"2":{"78":1}}],["places",{"0":{"124":1},"2":{"93":3,"94":1,"97":1,"98":2,"124":12,"146":1,"166":2,"228":2,"229":2,"230":1,"231":2,"236":1,"238":1,"240":1,"298":1}}],["place",{"2":{"36":1,"111":1,"124":5,"164":1,"165":3,"172":2,"228":1,"230":7,"231":1,"232":1,"238":1,"281":3,"292":1}}],["please",{"2":{"4":1,"301":1}}],["push",{"2":{"17":1,"68":1,"87":1}}],["pure",{"2":{"17":10,"19":1,"119":1}}],["publisher",{"2":{"4":1}}],["pohst",{"2":{"300":1}}],["po",{"2":{"151":2}}],["poverorders",{"2":{"151":1}}],["poverorder",{"2":{"151":2}}],["polredabs",{"2":{"121":2}}],["poly",{"2":{"116":1}}],["polyringelem",{"2":{"46":2,"93":2,"114":4,"116":1,"117":2}}],["polyring",{"2":{"46":1}}],["polynomial",{"2":{"2":3,"46":3,"88":1,"93":1,"95":1,"96":3,"105":2,"109":1,"113":1,"114":4,"116":9,"117":2,"118":2,"119":5,"121":2,"122":1,"125":3,"127":1,"129":1,"130":1,"134":2,"142":2,"150":1,"151":1,"157":2,"159":3,"217":2,"232":2,"234":2,"278":2,"280":2,"284":3}}],["polynomials",{"0":{"2":1},"2":{"46":4,"96":2,"116":3,"117":2,"127":2,"129":1,"150":1}}],["pop",{"2":{"68":3}}],["point",{"2":{"47":2,"48":7,"50":2,"51":3,"53":3,"54":2,"94":1,"153":1}}],["points",{"0":{"47":1,"50":1,"53":1},"1":{"48":1},"2":{"48":6,"52":1,"53":2}}],["pointwise",{"2":{"15":1,"148":1}}],["pos",{"2":{"263":2}}],["posinf",{"2":{"111":1}}],["positivity",{"0":{"62":1,"107":1},"2":{"62":1}}],["positive",{"2":{"13":1,"62":2,"67":2,"84":1,"98":1,"107":15,"125":1,"134":1,"137":1,"146":1,"160":5,"161":1,"182":1,"248":1,"250":2,"252":4,"253":3,"258":1,"267":1,"290":7,"291":2,"294":2,"296":2}}],["position",{"2":{"7":1}}],["possible",{"2":{"29":1,"46":1,"61":1,"75":2,"96":1,"139":1,"142":1,"145":1,"211":2,"224":1,"287":1}}],["possibly",{"2":{"25":2,"138":2,"147":2}}],["powermod",{"2":{"133":1}}],["powers",{"2":{"58":1,"61":1,"224":1}}],["power",{"2":{"17":1,"52":1,"58":1,"60":1,"61":1,"96":2,"109":2,"111":2,"118":1,"125":1,"145":6,"146":3,"150":3,"151":2}}],["potentially",{"2":{"7":1,"116":1}}],["packings",{"2":{"300":1}}],["packing",{"2":{"266":1}}],["packages",{"2":{"4":2}}],["pass",{"2":{"113":1}}],["passed",{"2":{"61":1,"93":1}}],["pairwise",{"2":{"144":1,"168":1,"233":1}}],["pair",{"2":{"16":1,"67":1,"122":1,"176":1,"180":3,"209":4}}],["pairs",{"2":{"15":1,"29":1,"59":1,"100":1,"120":1,"283":1}}],["parity",{"2":{"209":15}}],["pari",{"2":{"121":1}}],["pariwise",{"2":{"61":3}}],["parametried",{"2":{"127":1}}],["parametrized",{"2":{"58":1,"79":1,"86":1,"92":1,"131":1}}],["parameters",{"2":{"253":3,"294":2,"296":2}}],["parameter",{"2":{"116":3,"246":2}}],["parallel",{"2":{"42":1}}],["parentof",{"2":{"143":1}}],["parent",{"2":{"7":2,"48":2,"58":1,"61":1,"111":2,"116":1,"132":1,"151":2,"199":1}}],["partial=false",{"2":{"208":1}}],["partial",{"2":{"61":3}}],["particularly",{"2":{"204":1}}],["particular",{"2":{"40":1,"68":1,"79":1,"150":1,"213":1,"233":1,"268":1,"270":1}}],["part",{"2":{"5":1,"75":3,"164":1,"196":1}}],["pages",{"2":{"4":2}}],["pradical",{"2":{"151":3}}],["practical",{"2":{"92":1}}],["press",{"2":{"300":1}}],["prescribed",{"2":{"98":1}}],["preserves",{"2":{"75":2}}],["present>",{"2":{"142":1}}],["presentation",{"2":{"58":1,"61":3,"127":1,"143":1}}],["presented",{"2":{"12":1,"13":1}}],["precision",{"2":{"112":1}}],["precisely",{"2":{"79":1,"86":1,"146":1}}],["prec",{"2":{"61":2,"103":4}}],["preimages",{"2":{"20":1}}],["preimage",{"2":{"15":1,"19":1}}],["predicates",{"0":{"9":1,"24":1,"113":1,"119":1,"154":1,"160":1,"220":1,"290":1},"1":{"120":1,"161":1,"221":1,"291":1},"2":{"9":1}}],["primary",{"0":{"184":1,"202":1},"2":{"130":1,"184":7,"202":5,"250":7}}],["primitive=true",{"2":{"263":1}}],["primitive",{"2":{"111":1,"116":1,"117":3,"127":1,"204":1,"255":13,"261":3,"263":4,"285":2}}],["primes",{"2":{"17":1,"61":1,"88":3,"94":1,"98":1,"146":1,"150":4,"152":2,"176":1,"182":2,"231":1,"232":1}}],["prime",{"0":{"2":1},"2":{"2":7,"17":1,"45":1,"61":1,"88":2,"96":2,"98":2,"111":1,"113":2,"119":2,"123":3,"134":1,"142":2,"144":3,"146":13,"147":9,"148":2,"151":5,"152":1,"165":2,"166":1,"167":1,"173":1,"174":2,"175":1,"176":1,"184":8,"188":3,"189":2,"190":2,"202":8,"213":2,"214":2,"215":4,"216":2,"217":2,"218":12,"219":1,"220":4,"221":1,"222":1,"223":1,"225":1,"226":2,"227":1,"228":3,"230":1,"231":1,"232":1,"235":2,"236":1,"237":1,"238":2,"239":2,"240":1,"241":1,"250":8,"261":1,"282":2,"286":1,"290":2,"291":1,"292":2,"293":1,"296":1,"297":1,"298":3,"299":1}}],["princ",{"2":{"147":2}}],["principal",{"2":{"61":3,"120":3,"134":1,"136":2,"141":1,"142":2,"144":5,"146":18,"147":4,"282":1,"289":1}}],["prints",{"2":{"278":1}}],["printed",{"2":{"116":2}}],["printing",{"2":{"116":3}}],["println",{"2":{"11":1}}],["prompt",{"2":{"301":1}}],["proper",{"2":{"298":3}}],["property",{"2":{"33":1,"94":1,"135":1,"148":1,"166":1,"298":3}}],["properties",{"0":{"23":1,"46":1,"88":1,"101":1,"117":1,"132":1,"150":1,"292":1},"1":{"151":1,"293":1}}],["progress",{"2":{"96":1,"153":1}}],["program",{"2":{"88":1}}],["programming",{"2":{"4":2}}],["probabilistic",{"2":{"93":1,"96":1,"119":1}}],["provide",{"2":{"103":1}}],["provided",{"2":{"30":1,"105":1,"116":2,"128":2,"137":1,"267":1}}],["proven",{"2":{"88":1}}],["proj",{"2":{"61":2,"169":3}}],["projective",{"2":{"47":1,"57":1,"73":1}}],["projections",{"2":{"18":3,"168":7,"210":6,"257":6,"287":7}}],["projection",{"2":{"17":5,"18":3,"94":1,"146":1,"148":2,"170":3,"196":1,"208":1}}],["project",{"2":{"5":1,"48":1,"61":1}}],["processing",{"2":{"153":1}}],["processes",{"2":{"42":2}}],["process",{"2":{"36":1,"60":1}}],["proceedings",{"2":{"4":2}}],["prod",{"2":{"25":2,"58":1,"59":1,"134":1,"168":2,"287":2}}],["producs",{"0":{"19":1}}],["product",{"2":{"13":1,"18":6,"19":4,"60":1,"61":2,"88":1,"90":7,"146":2,"162":3,"163":1,"164":1,"168":10,"198":6,"210":8,"229":1,"246":2,"257":8,"287":10}}],["products",{"0":{"18":1,"162":1},"1":{"163":1},"2":{"13":1,"15":1,"16":1,"18":3,"58":1,"61":1,"90":1,"168":4,"210":3,"257":3,"287":4}}],["p",{"2":{"2":10,"17":13,"47":1,"48":9,"51":5,"54":5,"59":2,"61":5,"75":6,"88":3,"89":1,"98":6,"111":6,"112":5,"113":3,"119":6,"123":9,"124":4,"134":1,"142":3,"144":3,"146":8,"147":23,"148":2,"151":19,"164":7,"165":5,"166":3,"167":3,"172":5,"173":2,"174":4,"175":2,"176":1,"182":2,"184":14,"185":2,"188":2,"189":4,"190":12,"193":1,"196":3,"202":12,"213":13,"214":4,"215":3,"216":2,"217":2,"218":24,"219":2,"220":8,"221":2,"222":2,"223":2,"225":2,"226":4,"227":2,"228":3,"230":2,"232":1,"235":2,"236":2,"237":2,"238":3,"239":5,"240":2,"241":1,"250":14,"253":2,"261":6,"281":6,"282":4,"286":2,"290":4,"291":2,"292":10,"293":4,"296":2,"297":2,"298":15,"299":4,"300":5}}],["akad",{"2":{"300":1}}],["aφ",{"2":{"285":1}}],["again",{"2":{"271":1,"294":1}}],["agrees",{"2":{"298":1}}],["agree",{"2":{"18":1,"158":1,"168":3,"210":3,"235":2,"257":3,"287":3}}],["a+n∈m",{"2":{"199":2}}],["a∩z",{"2":{"147":2}}],["a∩o",{"2":{"83":1,"147":2}}],["ae",{"2":{"146":1}}],["a∗b⊊order",{"2":{"145":1}}],["a∗o",{"2":{"59":1}}],["a∈k",{"2":{"113":1,"285":1}}],["a∈k∗",{"2":{"93":1}}],["am",{"2":{"255":1}}],["among",{"2":{"149":1,"266":1}}],["amounts",{"2":{"98":1}}],["ambient",{"0":{"275":1,"279":1},"1":{"280":1},"2":{"107":1,"131":2,"132":1,"134":2,"148":1,"151":10,"152":2,"158":1,"196":1,"199":1,"213":1,"242":2,"245":1,"246":1,"249":4,"253":3,"255":9,"257":3,"261":1,"262":11,"265":3,"271":1,"275":4,"276":3,"277":3,"279":3,"280":1,"283":2,"285":6,"286":1,"287":3,"294":4,"296":4,"298":3,"299":1}}],["amp",{"0":{"62":1,"107":1},"2":{"62":1,"186":2,"190":2}}],["a>",{"2":{"96":1,"142":2,"215":2,"217":1,"230":1,"232":1,"238":2}}],["a−1",{"2":{"93":1}}],["automatically",{"2":{"278":1}}],["automorphism",{"2":{"94":3,"97":1,"122":4,"123":3,"156":1,"164":1,"233":1,"235":1,"253":5,"294":6,"295":2}}],["automorphisms",{"0":{"294":1},"1":{"295":1},"2":{"92":1,"98":2,"122":2}}],["auto",{"2":{"235":3}}],["aut",{"2":{"233":1}}],["author",{"2":{"4":1,"278":2}}],["a⋅b",{"2":{"90":4}}],["a⋅at",{"2":{"83":1}}],["aachen",{"2":{"272":1,"278":2}}],["aai+baj",{"2":{"89":1}}],["aa+bb",{"2":{"81":1}}],["a=a1×⋯×ak",{"2":{"168":1,"287":1}}],["a=re",{"2":{"145":1}}],["a=nd−1",{"2":{"137":1}}],["a=",{"2":{"89":1,"146":2}}],["a=∏aini",{"2":{"61":1}}],["avoiding",{"2":{"146":1}}],["avoided",{"2":{"88":1}}],["available",{"2":{"17":1,"57":2,"60":1,"68":3,"74":1,"149":1,"153":1,"278":1}}],["aj→aj+c⋅ai",{"2":{"89":2}}],["aj",{"2":{"81":1,"89":1,"164":1,"190":1}}],["aω",{"2":{"73":1}}],["appearance",{"2":{"116":1}}],["appearing",{"2":{"105":1}}],["appears",{"2":{"105":1,"266":3}}],["appended",{"2":{"87":1}}],["appends",{"2":{"87":1}}],["appropriate",{"2":{"67":1}}],["apply",{"2":{"39":1,"149":1,"248":1}}],["applying",{"2":{"2":1,"89":1}}],["applicable",{"2":{"92":1}}],["applications",{"2":{"30":1,"58":1,"300":2}}],["applies",{"2":{"89":1}}],["applied",{"2":{"2":2,"96":1}}],["ai⊂k",{"2":{"141":1}}],["aij",{"2":{"89":2}}],["aij=xj",{"2":{"80":3}}],["aiωi|i",{"2":{"73":1}}],["ai",{"2":{"58":2,"61":1,"73":4,"80":3,"81":1,"89":6,"117":1,"141":1,"148":1,"162":1,"164":1,"190":1,"283":4}}],["affine",{"2":{"47":1}}],["a6",{"2":{"46":3,"57":2}}],["a4x",{"2":{"46":1}}],["a4",{"2":{"46":2,"57":2}}],["a3y",{"2":{"46":1}}],["a3",{"2":{"46":2,"57":1}}],["a2x^2",{"2":{"46":1}}],["a2",{"2":{"46":2,"57":1,"116":1,"117":3}}],["a1i1⋯adid",{"2":{"117":1}}],["a1=a2=a3=0",{"2":{"57":1}}],["a1xy",{"2":{"46":1}}],["a1",{"2":{"46":2,"57":1,"116":1,"117":4,"148":1,"162":4,"164":1}}],["a→q×",{"2":{"148":1}}],["a→i",{"2":{"94":1}}],["a→l",{"2":{"32":1}}],["a→g",{"2":{"16":1}}],["advanced",{"2":{"300":1}}],["ade",{"2":{"254":10}}],["admitting",{"2":{"246":1}}],["admits",{"2":{"19":1,"235":2}}],["ad∈z≥1",{"2":{"148":1}}],["ad−1",{"2":{"117":1}}],["adic",{"2":{"88":1,"111":1,"144":1,"147":5,"182":1,"188":1,"190":3,"218":3,"237":1,"240":15,"253":1,"292":1}}],["added",{"2":{"39":3,"58":1,"79":1}}],["adds",{"2":{"39":2,"112":1}}],["add",{"2":{"35":1,"43":1,"48":1,"81":2,"86":1,"87":1,"88":1,"89":4,"301":1}}],["additive",{"2":{"209":1}}],["additionally",{"2":{"88":1}}],["additional",{"2":{"25":1,"86":1,"113":1,"135":1,"150":2}}],["addition",{"2":{"7":1,"15":1,"96":1}}],["adding",{"0":{"35":1,"39":1,"40":1},"2":{"42":1}}],["address",{"2":{"4":1}}],["a⊕b",{"2":{"18":1}}],["a⊗zq",{"2":{"14":1}}],["attributes",{"0":{"158":1,"182":1,"190":1,"197":1,"216":1,"231":1,"249":1,"283":1},"1":{"159":1,"183":1,"184":1,"185":1,"217":1,"232":1,"284":1}}],["at",{"0":{"103":1},"2":{"7":3,"40":1,"48":1,"61":2,"94":2,"98":2,"107":6,"111":1,"113":1,"122":1,"146":1,"147":1,"149":1,"151":1,"152":1,"164":3,"166":3,"172":2,"174":2,"176":1,"185":1,"189":2,"213":2,"214":1,"216":1,"218":9,"220":4,"222":1,"226":4,"228":2,"229":1,"231":2,"235":4,"237":1,"239":1,"241":1,"246":7,"261":3,"263":1,"281":3,"282":1,"290":2,"292":3,"296":1,"298":9,"301":1}}],["archiv",{"2":{"272":1}}],["arr",{"2":{"131":4}}],["arranges",{"2":{"61":1}}],["arrays",{"2":{"59":1,"87":1}}],["array",{"2":{"7":1,"17":1,"32":2,"33":2,"48":1,"86":1,"88":2,"89":1,"90":3,"93":1,"112":4,"117":1,"134":2,"144":1,"146":3,"153":1}}],["artin",{"2":{"94":1}}],["arithmetic",{"0":{"90":1,"133":1,"137":1,"145":1,"153":1},"2":{"127":1,"128":1,"130":1,"133":1,"149":1}}],["arbmatrix",{"2":{"151":1}}],["arbfieldelem",{"2":{"112":6,"134":5,"151":1,"152":2}}],["arb",{"2":{"61":1,"112":5,"134":4}}],["arbitrary",{"2":{"27":1,"57":1,"99":1,"270":1,"271":1}}],["args",{"2":{"42":2}}],["arguments",{"2":{"116":1,"146":1,"180":1,"188":1,"211":2}}],["argument",{"2":{"22":1,"42":1,"54":1,"64":2,"75":2,"93":1,"98":1,"209":2}}],["are",{"2":{"2":1,"6":2,"8":1,"12":2,"13":2,"15":3,"16":1,"17":2,"18":1,"30":2,"34":1,"38":1,"58":5,"61":2,"67":4,"68":3,"73":2,"74":4,"75":2,"79":2,"86":2,"87":2,"88":1,"89":1,"92":1,"93":1,"98":3,"107":1,"109":3,"113":1,"116":2,"119":3,"122":2,"127":5,"129":1,"130":2,"131":1,"132":1,"133":1,"134":1,"135":2,"137":1,"139":1,"140":1,"141":1,"142":1,"143":2,"144":2,"145":2,"146":5,"147":2,"148":1,"149":5,"150":3,"151":1,"153":3,"157":1,"160":1,"162":2,"164":2,"166":1,"168":7,"176":3,"180":1,"196":3,"197":2,"201":3,"204":1,"208":1,"210":3,"211":3,"213":2,"214":1,"218":3,"224":2,"228":5,"229":1,"233":2,"235":1,"242":1,"246":2,"253":4,"255":1,"257":3,"261":1,"266":3,"267":2,"268":2,"270":3,"271":1,"272":2,"278":2,"281":2,"282":1,"283":2,"287":6,"292":1,"294":2,"296":5}}],["asymptotically",{"2":{"130":1}}],["asked",{"2":{"40":1}}],["associated",{"2":{"68":2,"160":1,"184":4,"195":1,"213":1,"231":1,"241":1,"246":3,"270":1}}],["associativity",{"2":{"32":1}}],["associative",{"2":{"3":2,"30":1,"32":1,"33":1}}],["asscciated",{"2":{"67":1}}],["assumes",{"2":{"61":1,"88":1,"93":1,"97":1,"119":1,"120":1}}],["assume",{"2":{"39":1,"140":1,"255":1}}],["assumed",{"2":{"10":1,"14":2,"16":1,"88":1,"89":1,"119":1,"134":1,"136":2,"144":1,"147":1,"150":1,"151":2,"266":3}}],["assuming",{"2":{"17":1,"113":1,"120":2,"146":1,"152":1}}],["as",{"2":{"6":1,"7":1,"12":1,"13":1,"14":1,"15":4,"16":2,"17":3,"18":4,"19":3,"20":1,"22":1,"25":3,"27":1,"32":2,"42":1,"46":5,"54":1,"57":1,"58":4,"60":1,"61":4,"67":1,"68":1,"73":2,"74":1,"75":5,"85":1,"86":2,"87":2,"90":10,"93":3,"94":2,"96":1,"98":4,"103":1,"104":1,"105":3,"106":1,"107":1,"108":1,"109":2,"111":1,"112":5,"116":4,"117":3,"120":3,"122":1,"123":3,"127":3,"128":1,"129":2,"130":4,"131":1,"132":1,"134":7,"135":1,"137":1,"138":2,"139":4,"140":2,"141":3,"142":1,"143":1,"144":2,"146":5,"147":2,"148":3,"149":3,"150":2,"151":2,"153":1,"158":3,"166":1,"168":7,"169":2,"174":1,"176":2,"182":2,"184":2,"186":1,"188":1,"190":2,"195":3,"196":3,"202":2,"209":2,"210":6,"211":5,"213":1,"218":1,"230":1,"231":1,"235":2,"242":2,"246":1,"247":1,"250":4,"254":2,"257":9,"258":1,"261":2,"265":1,"268":1,"270":4,"271":5,"276":3,"278":2,"280":1,"282":1,"284":1,"285":1,"286":1,"287":10,"289":1,"291":1,"293":1,"294":1,"295":1,"297":1,"299":1}}],["al",{"2":{"285":4,"290":2}}],["alpha",{"2":{"142":2,"162":1}}],["already",{"2":{"136":2,"144":1,"150":2}}],["along",{"2":{"106":1,"208":1,"278":1}}],["almost",{"2":{"79":1}}],["alias",{"2":{"68":1,"199":1,"285":1}}],["algassrelord",{"2":{"138":1,"147":1,"150":1}}],["algassrelordidl",{"2":{"138":1,"147":1}}],["algassabsord",{"2":{"138":1,"147":1,"148":2,"150":2}}],["algassabsordidl",{"2":{"138":1,"147":1,"148":2}}],["algerbaic",{"2":{"58":1}}],["algebrae",{"2":{"239":1}}],["algebraic",{"2":{"4":1,"61":2,"78":1,"111":2,"132":1,"134":1,"300":2}}],["algebras",{"0":{"22":1,"27":1,"31":1},"1":{"28":1,"29":1,"32":1,"33":1},"2":{"3":3,"22":1,"30":7,"168":2,"287":2}}],["algebra",{"0":{"77":1},"1":{"78":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1},"2":{"3":1,"4":2,"22":6,"23":2,"24":3,"25":6,"26":7,"27":1,"28":5,"29":4,"32":12,"33":3,"78":3,"158":1,"162":1,"166":2,"168":1,"239":1,"270":1,"283":1,"287":1,"290":1}}],["algssrelord",{"2":{"46":1,"132":1,"134":1}}],["algorithmic",{"2":{"300":1}}],["algorithms",{"2":{"78":1,"92":1,"272":1}}],["algorithm",{"2":{"17":1,"60":1,"61":1,"73":1,"88":5,"93":2,"96":3,"147":1,"151":1}}],["allowed",{"2":{"113":1,"246":1}}],["allowing",{"2":{"58":1}}],["allows",{"2":{"20":1,"61":2,"146":1}}],["allow",{"2":{"15":2,"127":1,"153":1}}],["all",{"0":{"42":1},"2":{"13":1,"17":7,"20":1,"42":1,"43":2,"58":1,"61":2,"68":3,"70":4,"71":4,"72":1,"73":1,"79":1,"82":1,"84":4,"87":1,"88":3,"89":4,"92":1,"93":2,"96":1,"98":3,"106":2,"107":6,"108":1,"119":2,"120":1,"122":1,"124":3,"125":1,"133":1,"134":1,"137":1,"143":1,"144":1,"145":1,"146":3,"149":1,"151":4,"152":1,"153":1,"160":3,"164":1,"166":1,"176":1,"180":1,"206":1,"213":2,"228":1,"239":2,"250":1,"255":1,"261":1,"266":2,"267":1,"278":1,"282":1,"294":1,"298":1}}],["alternatively",{"2":{"13":1}}],["also",{"2":{"7":1,"14":1,"15":1,"17":8,"18":1,"20":1,"23":1,"29":1,"39":1,"43":1,"68":1,"74":1,"87":3,"103":1,"111":1,"127":1,"130":1,"143":2,"146":2,"149":2,"152":1,"153":2,"166":1,"168":1,"180":1,"184":2,"190":1,"201":1,"202":2,"233":1,"242":1,"246":1,"250":2,"254":1,"266":3,"267":1,"271":1,"285":1,"287":2}}],["always",{"2":{"6":1,"96":1,"109":2,"143":1,"149":1,"158":1,"182":2,"190":1,"270":1}}],["action",{"2":{"222":1}}],["act",{"2":{"211":2}}],["actually",{"2":{"60":4,"61":1,"94":1,"96":1,"127":1,"131":1}}],["actual",{"2":{"20":1}}],["acbfield",{"2":{"112":1}}],["acbfieldelem",{"2":{"103":2,"112":6,"134":2}}],["access",{"0":{"8":1,"89":1},"2":{"68":1,"127":1,"242":1,"278":1}}],["acknowledgement",{"0":{"5":1}}],["acm",{"2":{"4":4}}],["anti",{"2":{"201":10}}],["antic",{"2":{"128":1}}],["anticnumerfield",{"2":{"125":1}}],["ans",{"2":{"146":4}}],["another",{"2":{"129":1,"285":1}}],["anonymous",{"2":{"103":2}}],["annotated",{"2":{"40":1,"42":1}}],["any",{"2":{"25":2,"61":1,"67":3,"68":1,"73":2,"79":1,"87":1,"105":1,"109":1,"118":1,"131":2,"141":1,"143":1,"146":1,"149":1,"150":1,"186":1,"191":1,"213":2,"218":2,"226":2,"231":3,"233":1,"241":2,"266":1,"270":1,"283":2,"285":2,"292":3,"294":2}}],["an",{"0":{"178":1},"2":{"2":1,"7":3,"9":1,"12":1,"16":4,"17":10,"20":1,"22":1,"23":1,"25":2,"26":1,"29":1,"32":1,"33":1,"45":2,"48":1,"51":2,"53":1,"54":1,"57":1,"58":2,"61":2,"64":1,"67":1,"68":4,"70":3,"71":3,"72":1,"73":2,"75":1,"78":1,"81":1,"85":1,"86":1,"87":1,"88":5,"89":8,"90":2,"93":4,"96":2,"97":1,"99":1,"103":2,"104":2,"105":2,"106":3,"108":2,"109":5,"111":7,"113":2,"114":4,"116":3,"117":3,"119":1,"120":5,"121":3,"122":5,"123":2,"125":5,"127":2,"129":2,"131":4,"132":2,"134":5,"135":4,"138":2,"139":2,"140":2,"141":2,"142":1,"143":2,"144":1,"145":3,"146":11,"147":5,"148":2,"150":5,"151":2,"152":1,"153":2,"158":2,"160":1,"162":6,"164":4,"166":2,"172":1,"174":1,"180":2,"184":2,"190":1,"191":1,"196":2,"199":1,"201":3,"202":2,"203":1,"205":1,"209":3,"211":5,"241":2,"242":1,"245":1,"246":3,"249":1,"250":5,"251":2,"261":1,"262":1,"265":1,"266":2,"267":1,"270":3,"271":1,"275":4,"279":1,"290":4,"292":2,"294":3,"296":1}}],["and",{"0":{"0":1,"17":1,"51":1,"55":1,"65":1,"67":1,"83":1,"85":1,"150":1,"162":1,"187":1,"202":1,"264":1,"265":1,"269":1,"270":1,"271":1,"279":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"151":1,"163":1,"265":1,"266":1,"267":1,"270":1,"271":1,"280":1},"2":{"2":5,"3":6,"4":7,"5":1,"6":1,"7":3,"9":1,"11":2,"13":5,"14":1,"15":5,"16":8,"17":13,"18":3,"19":1,"22":1,"25":1,"26":1,"29":1,"32":2,"36":2,"38":2,"48":1,"53":1,"57":3,"58":4,"59":1,"60":2,"61":5,"62":1,"67":2,"68":5,"73":5,"74":3,"75":2,"78":2,"80":1,"81":1,"86":2,"87":5,"88":9,"89":10,"92":4,"93":6,"94":4,"96":2,"98":5,"99":1,"103":1,"105":2,"106":3,"107":3,"109":3,"111":1,"112":3,"113":3,"116":6,"117":1,"119":8,"120":8,"121":1,"122":7,"123":3,"125":3,"127":3,"131":3,"132":1,"134":2,"135":1,"137":1,"139":4,"140":1,"141":5,"142":1,"143":2,"144":2,"145":3,"146":10,"148":4,"149":1,"150":1,"151":3,"153":2,"156":4,"158":1,"160":1,"162":2,"164":5,"165":1,"166":7,"167":1,"168":10,"170":2,"172":2,"174":2,"176":3,"181":1,"182":1,"184":4,"195":4,"196":4,"198":1,"201":6,"202":2,"206":1,"208":2,"209":3,"210":9,"213":7,"214":1,"222":1,"228":2,"229":2,"231":1,"233":3,"235":3,"236":2,"237":4,"239":3,"241":2,"242":2,"245":1,"246":7,"248":1,"250":4,"253":5,"254":13,"255":11,"257":9,"261":11,"262":3,"263":1,"265":1,"266":8,"267":1,"268":3,"269":1,"270":5,"271":4,"272":3,"275":3,"276":4,"277":4,"278":5,"281":2,"282":2,"283":3,"285":5,"287":10,"292":4,"294":5,"296":10,"298":10,"299":3,"300":5,"301":1}}],["abuse",{"2":{"270":1,"271":1}}],["ab",{"2":{"246":3}}],["abgrp",{"2":{"196":1}}],["about",{"2":{"159":1,"270":1}}],["above",{"2":{"2":1,"39":1,"98":1,"143":1,"146":1,"165":1,"239":1}}],["ab=o",{"2":{"137":1}}],["ab=ok",{"2":{"136":1}}],["abelian",{"2":{"3":1,"6":1,"7":1,"11":5,"12":3,"13":16,"15":7,"16":4,"17":14,"18":2,"29":1,"53":3,"92":5,"93":6,"94":3,"96":9,"97":2,"119":3,"146":2,"153":2,"195":2,"196":4,"197":2,"201":4,"202":8,"203":2,"205":1,"206":4,"211":6,"246":1}}],["absalgassmor",{"2":{"168":4,"287":4}}],["absordquoring",{"2":{"148":2}}],["absolute",{"0":{"128":1,"140":1},"2":{"3":1,"63":1,"84":1,"88":1,"108":1,"109":4,"111":4,"114":4,"117":3,"118":3,"119":3,"121":2,"127":2,"129":1,"131":1,"134":4,"139":2,"140":1,"141":1,"143":1,"149":2,"266":2,"283":2,"284":2}}],["absnonsimplenumfield",{"2":{"127":2}}],["absnonsimplenumfieldelem",{"2":{"116":1,"117":1}}],["absnonsimplenumfieldembedding",{"2":{"108":1}}],["absnumfieldorderset",{"2":{"151":1}}],["absnumfieldorderfractionalideal",{"2":{"136":7,"137":3,"138":4,"147":3,"151":1,"288":1}}],["absnumfieldorderfractionalidealset",{"2":{"61":4}}],["absnumfieldorderelem",{"2":{"98":2,"131":1,"132":1,"133":2,"134":6,"136":1,"144":1,"151":1}}],["absnumfieldorder",{"2":{"94":1,"131":3,"136":7,"138":1,"144":1,"146":1,"147":1,"150":5,"151":6,"152":3,"154":3}}],["absnumfieldorderidealset",{"2":{"58":1,"61":5,"143":1,"144":1}}],["absnumfieldorderideal",{"2":{"58":1,"61":13,"74":2,"83":1,"93":2,"94":2,"97":4,"98":2,"111":2,"119":1,"123":3,"125":1,"136":4,"137":2,"138":1,"143":2,"144":19,"145":12,"146":12,"147":32,"148":7,"151":3,"152":2,"153":3,"164":4,"166":1,"172":1,"174":1,"214":2,"216":1,"231":1,"239":1,"281":3,"283":1,"292":3,"296":1,"298":3}}],["abs",{"2":{"64":1,"84":1,"88":1,"104":3,"112":12,"134":9,"151":2,"180":4}}],["abssimplenumfieldembedding",{"2":{"95":1,"96":1,"100":3,"106":1,"107":1,"124":3,"165":1,"230":1,"232":1,"240":1}}],["abssimplenumfieldelem",{"2":{"2":1,"58":1,"59":1,"61":30,"74":6,"83":1,"93":5,"95":1,"96":3,"97":4,"109":1,"111":6,"112":8,"113":3,"116":3,"117":1,"119":1,"123":3,"125":3,"127":2,"136":1,"138":2,"142":3,"143":1,"144":8,"145":3,"146":18,"147":27,"148":6,"150":2,"151":3,"152":1,"153":3,"163":2,"164":4,"166":1,"172":1,"174":1,"214":2,"215":1,"216":1,"219":1,"227":1,"230":3,"231":1,"232":1,"234":1,"238":1,"239":1,"240":3,"278":6,"280":3,"281":2,"282":3,"283":1,"284":9,"286":6,"289":1,"291":1,"292":3,"293":3,"295":2,"296":1,"297":2,"298":3,"299":10}}],["abssimplenumfieldorderquoringelem",{"2":{"148":1}}],["abssimplenumfieldorderquoring",{"2":{"148":7}}],["abssimplenumfieldorderideal",{"2":{"142":1,"146":4,"165":1,"232":1,"240":3}}],["abssimplenumfieldorderelem",{"2":{"74":2,"131":1,"134":2,"144":8,"146":4,"147":8,"148":4,"151":1}}],["abssimplenumfieldorderfractionalideal",{"2":{"61":5,"74":3,"135":1,"136":2,"145":6,"146":2,"218":2,"231":2,"283":1,"284":2,"288":2,"290":1,"299":3}}],["abssimplenumfieldorder",{"2":{"59":1,"119":1,"134":2,"136":1,"144":12,"146":13,"147":3,"148":3,"150":5,"151":17,"152":6,"153":6}}],["abssimplenumfield",{"2":{"58":1,"59":1,"61":28,"74":2,"83":1,"93":3,"94":1,"95":1,"96":4,"97":4,"109":1,"111":2,"112":1,"113":1,"116":3,"118":3,"119":6,"120":11,"121":4,"122":5,"123":6,"124":3,"125":3,"127":4,"128":1,"134":1,"138":1,"143":1,"144":7,"145":3,"146":12,"147":24,"148":6,"150":4,"151":2,"152":1,"153":3,"164":4,"165":1,"166":1,"172":1,"174":1,"214":2,"216":1,"231":1,"232":1,"239":1,"240":1,"281":2,"283":1,"292":3,"296":1,"298":3}}],["abstractlat",{"2":{"245":1,"249":1,"250":2,"252":3,"253":4,"255":8,"259":2,"261":2,"275":4,"279":5,"281":6,"283":15,"285":22,"287":9,"288":3,"290":7,"292":3,"294":2,"296":6,"298":11}}],["abstractly",{"2":{"214":1,"229":1}}],["abstractspacemor",{"2":{"168":8,"169":2,"170":1,"257":8,"287":8}}],["abstractspaceres",{"2":{"162":1}}],["abstractspace",{"2":{"158":8,"160":6,"162":7,"164":4,"166":2,"168":9,"170":2,"172":1,"245":1,"249":1,"275":4,"279":2,"298":1}}],["abstractstring",{"2":{"116":1}}],["abstractset",{"2":{"67":1}}],["abstractalgebra",{"0":{"85":1},"2":{"85":1,"293":2,"295":1}}],["abstractassociativealgebra",{"2":{"22":1,"23":2,"24":3,"25":2,"26":3,"30":1,"150":2}}],["abstractunitrange",{"2":{"17":2,"87":2}}],["abstractmatrix",{"2":{"13":2,"90":1}}],["abstract",{"2":{"12":1,"20":1,"93":1,"96":1,"148":1}}],["abstractvector",{"2":{"8":1,"13":1,"90":3}}],["a",{"0":{"2":1,"43":1,"72":1,"179":1,"205":1,"206":1,"235":1,"244":1,"245":1,"247":1,"275":1,"276":1,"277":1},"1":{"236":1,"278":1},"2":{"2":3,"4":1,"6":3,"7":11,"8":1,"10":2,"11":1,"12":1,"13":4,"14":15,"15":5,"16":8,"17":24,"18":9,"19":3,"20":1,"22":1,"23":7,"24":9,"25":20,"26":14,"27":1,"29":17,"30":2,"32":5,"33":5,"38":2,"39":6,"40":2,"43":1,"46":7,"48":1,"50":2,"51":4,"53":5,"54":1,"57":1,"58":2,"59":5,"60":2,"61":33,"63":6,"64":5,"67":16,"68":13,"70":1,"71":1,"73":16,"74":3,"75":5,"79":1,"81":8,"82":2,"83":12,"84":10,"85":8,"86":4,"87":27,"88":75,"89":60,"90":26,"92":1,"93":7,"94":12,"95":4,"96":19,"97":11,"98":25,"99":3,"100":2,"101":3,"102":1,"103":4,"104":3,"105":14,"106":8,"107":35,"108":3,"109":3,"111":50,"112":2,"113":17,"114":31,"116":18,"117":15,"118":7,"119":6,"120":10,"121":11,"122":11,"123":15,"125":4,"127":9,"128":1,"129":5,"130":3,"131":8,"132":6,"134":28,"135":4,"136":10,"137":6,"138":12,"139":3,"140":2,"141":5,"142":7,"143":4,"144":18,"145":13,"146":35,"147":74,"148":5,"149":6,"150":23,"151":14,"153":5,"156":2,"157":2,"158":2,"159":2,"160":1,"161":2,"162":6,"163":2,"164":5,"165":1,"166":3,"167":2,"168":10,"170":5,"171":1,"172":4,"173":2,"174":3,"175":2,"176":5,"179":3,"180":5,"182":6,"184":8,"186":6,"188":19,"189":3,"190":8,"191":4,"193":1,"195":5,"196":17,"198":5,"199":7,"201":12,"202":8,"203":3,"206":1,"207":1,"209":1,"210":9,"213":8,"214":3,"215":14,"216":4,"217":4,"218":32,"219":14,"220":8,"221":3,"222":3,"223":4,"224":6,"225":5,"226":6,"227":20,"228":1,"229":4,"230":15,"231":8,"232":16,"233":4,"234":18,"235":6,"236":3,"238":15,"239":1,"240":3,"241":8,"242":4,"245":2,"246":8,"247":1,"250":6,"253":5,"254":10,"255":9,"257":9,"258":1,"261":7,"262":7,"263":4,"265":1,"268":3,"270":12,"271":7,"275":7,"276":11,"277":8,"278":4,"279":1,"280":1,"282":1,"283":15,"284":1,"285":10,"286":2,"287":9,"288":2,"289":1,"290":8,"291":1,"292":9,"293":1,"294":6,"295":1,"296":2,"297":1,"298":17,"299":1,"300":2,"301":6}}],["og10",{"2":{"246":2}}],["og6",{"2":{"246":2}}],["oe",{"2":{"213":1,"218":3,"220":3,"222":1,"239":1,"271":2,"283":1,"285":1,"288":2,"290":2,"294":1}}],["old",{"2":{"207":1}}],["oddity",{"2":{"188":1,"190":4}}],["odd",{"2":{"188":2,"190":1,"209":2,"246":1,"254":2}}],["o→o",{"2":{"148":1}}],["occur",{"2":{"113":1}}],["other",{"0":{"181":1},"2":{"90":1,"130":1,"149":1,"150":1,"160":1,"167":1,"266":1}}],["otherwise",{"2":{"17":1,"18":1,"48":1,"64":1,"99":1,"113":1,"119":1,"120":2,"122":3,"146":2,"151":1,"195":1,"213":1,"253":1,"262":3,"294":1,"298":3}}],["obvious",{"2":{"60":1}}],["objects",{"2":{"67":1,"68":2,"79":1,"86":1,"146":1,"153":1,"168":3,"210":3,"257":3,"287":3}}],["object",{"2":{"58":1,"89":1,"104":1,"111":1,"116":1}}],["obtained",{"2":{"84":1,"88":1,"146":2,"153":1,"162":1,"285":1}}],["obtaining",{"2":{"60":1}}],["obtain",{"2":{"2":1,"18":2,"20":1,"29":1,"61":2,"93":1,"168":7,"210":6,"257":6,"287":6,"301":1}}],["o",{"2":{"46":2,"53":4,"58":1,"59":1,"83":1,"94":2,"109":8,"119":2,"131":14,"132":2,"134":6,"136":16,"138":4,"139":1,"140":3,"141":3,"144":21,"146":34,"147":10,"148":8,"150":7,"151":52,"152":19,"188":2,"193":2}}],["operatinos",{"2":{"133":1}}],["operation",{"2":{"15":1,"16":1,"75":2}}],["operations",{"0":{"75":1,"81":1,"98":1,"110":1,"115":1,"170":1,"255":1,"285":1},"1":{"111":1,"112":1,"113":1,"114":1,"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1,"171":1,"286":1},"2":{"15":1,"16":1,"81":1,"88":1,"90":1,"130":1,"137":1,"145":1,"255":1}}],["operate",{"2":{"73":1}}],["options",{"2":{"42":1}}],["optionally",{"2":{"51":1}}],["optional",{"2":{"22":1,"54":1,"75":2,"98":3}}],["op",{"2":{"16":2}}],["output",{"2":{"111":2,"152":1,"162":1,"182":1,"184":2,"202":2,"231":1,"245":1,"250":2,"254":2,"261":1,"267":1,"275":4,"276":3,"298":7}}],["outputs",{"2":{"8":1}}],["outside",{"2":{"36":1}}],["outer",{"2":{"16":1}}],["oscar",{"2":{"5":1}}],["original",{"2":{"168":1}}],["orthogonality",{"0":{"170":1},"1":{"171":1}}],["orthogonal",{"0":{"200":1,"258":1},"2":{"160":1,"162":3,"163":1,"168":1,"170":3,"171":1,"174":1,"200":2,"258":3,"262":1,"285":2}}],["ord",{"2":{"151":1}}],["ordered",{"2":{"70":1,"71":1,"109":1,"188":1}}],["ordering",{"2":{"27":1}}],["orders",{"0":{"51":1,"140":1,"141":1,"149":1},"1":{"150":1,"151":1,"152":1,"153":1,"154":1},"2":{"3":4,"109":1,"130":1,"139":3,"141":1,"142":1,"143":2,"146":1,"149":6,"151":2,"152":1}}],["order",{"2":{"2":4,"10":3,"13":1,"14":2,"17":5,"28":1,"51":9,"52":1,"54":1,"61":1,"73":1,"75":1,"83":1,"93":3,"95":1,"96":3,"97":1,"106":2,"109":3,"111":4,"112":3,"113":1,"118":4,"121":2,"130":3,"131":2,"132":2,"134":4,"137":1,"138":3,"139":1,"140":3,"141":3,"142":6,"143":1,"146":15,"147":11,"148":1,"149":6,"150":29,"151":9,"152":7,"154":2,"157":1,"159":2,"165":4,"166":1,"167":1,"173":1,"175":1,"211":3,"215":3,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":2,"232":1,"236":3,"238":3,"239":2,"240":8,"253":3,"278":4,"282":2,"283":2,"284":12,"286":5,"289":2,"291":1,"292":1,"293":1,"294":3,"295":1,"297":1,"299":13,"301":1}}],["orbit",{"2":{"123":1}}],["or",{"2":{"7":1,"13":1,"17":3,"18":2,"22":1,"29":1,"30":2,"36":1,"42":1,"45":1,"47":1,"59":1,"60":4,"64":1,"67":1,"73":1,"93":1,"94":4,"105":1,"107":2,"109":1,"111":1,"116":5,"124":2,"125":1,"129":2,"131":2,"139":2,"141":2,"142":1,"145":1,"146":5,"149":2,"150":2,"160":1,"167":2,"168":4,"188":2,"206":1,"209":2,"214":2,"218":5,"224":2,"228":2,"229":2,"246":4,"262":2,"270":3,"278":2,"287":4,"290":1,"298":2}}],["organized",{"2":{"38":1}}],["org",{"2":{"4":1,"121":1,"301":1}}],["once",{"2":{"142":1,"271":1,"301":1}}],["only",{"2":{"43":1,"88":2,"92":1,"94":1,"98":4,"100":1,"116":2,"119":2,"121":1,"131":2,"146":5,"149":1,"162":1,"164":1,"180":3,"208":1,"211":5,"213":1,"255":1,"263":1,"266":3,"267":1,"268":1}}],["onto",{"2":{"18":1,"61":1,"146":1,"170":1,"196":1}}],["ones",{"2":{"87":1,"98":1,"213":1}}],["one",{"2":{"7":1,"11":1,"13":3,"18":5,"29":1,"32":3,"39":2,"40":3,"43":3,"51":1,"58":1,"59":1,"68":3,"73":1,"74":1,"78":1,"100":1,"113":1,"116":1,"122":1,"129":1,"142":1,"143":1,"158":1,"159":1,"162":2,"164":1,"165":1,"168":14,"169":1,"180":4,"195":1,"201":2,"209":2,"210":12,"233":1,"254":2,"257":12,"262":2,"266":3,"278":2,"283":1,"285":3,"287":14,"294":1}}],["on",{"2":{"4":3,"18":1,"22":1,"42":2,"43":1,"47":1,"48":7,"50":1,"51":1,"52":3,"53":1,"60":3,"68":1,"70":2,"71":2,"72":1,"73":2,"87":1,"88":2,"96":1,"107":1,"109":1,"130":1,"139":1,"141":1,"146":2,"153":1,"162":1,"168":1,"193":1,"195":1,"196":1,"208":2,"209":2,"218":5,"224":1,"246":4,"253":3,"262":1,"272":1,"287":1,"294":2,"296":2,"301":1}}],["ok→f",{"2":{"2":1}}],["ok",{"2":{"2":9,"109":1,"139":1,"141":4,"151":4,"165":3,"166":1,"167":2,"173":2,"174":2,"175":2,"213":1,"214":2,"215":2,"216":1,"217":2,"218":9,"219":2,"220":4,"221":2,"222":1,"223":2,"225":2,"226":2,"227":2,"228":1,"230":2,"231":1,"232":2,"235":1,"236":2,"237":1,"238":2,"239":1,"271":1,"282":2,"286":2,"288":1,"290":1,"291":2,"293":2,"297":2,"298":3,"299":2,"301":2}}],["overlapping",{"2":{"266":1}}],["overlattice",{"2":{"261":3,"298":6}}],["overlattices",{"0":{"261":1}}],["overorder",{"2":{"151":3}}],["overorders",{"2":{"151":2}}],["overall",{"2":{"30":1}}],["overgroup",{"2":{"17":1}}],["over",{"0":{"2":1,"49":1,"55":1,"276":1,"277":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1,"278":1},"2":{"2":1,"7":1,"11":1,"22":2,"25":2,"26":3,"28":2,"32":3,"46":3,"48":1,"50":1,"51":2,"52":2,"57":2,"68":1,"78":1,"79":2,"80":2,"86":1,"87":6,"89":3,"95":1,"96":4,"97":7,"98":5,"105":1,"111":5,"114":4,"116":6,"117":1,"118":2,"119":2,"141":1,"142":3,"146":6,"149":1,"151":1,"156":4,"157":4,"158":3,"159":5,"160":1,"164":2,"166":3,"172":1,"174":3,"188":1,"193":1,"196":1,"201":4,"206":4,"213":4,"214":1,"215":4,"216":2,"217":2,"218":15,"220":4,"222":1,"224":2,"226":4,"228":2,"230":2,"231":3,"232":2,"233":2,"235":5,"236":4,"237":2,"238":4,"239":2,"240":21,"242":2,"249":1,"253":1,"261":1,"268":1,"270":5,"271":1,"272":2,"276":11,"277":8,"278":8,"280":5,"281":1,"282":2,"283":4,"284":9,"285":5,"286":10,"288":1,"290":1,"294":1}}],["oft",{"2":{"197":1}}],["offset",{"2":{"88":1}}],["off",{"2":{"75":2,"197":1}}],["of",{"0":{"2":1,"22":1,"43":1,"53":1,"64":1,"72":1,"82":1,"100":1,"116":1,"127":1,"140":1,"141":1,"156":1,"176":1,"177":1,"180":1,"182":1,"214":1,"229":1,"235":1,"237":1,"239":1,"243":1,"274":1},"1":{"157":1,"177":1,"178":2,"179":2,"180":2,"181":2,"182":1,"183":2,"184":2,"185":2,"186":1,"187":1,"188":1,"189":1,"190":1,"191":1,"192":1,"193":1,"215":1,"230":1,"236":1,"238":1,"240":1,"244":1,"245":1,"246":1,"247":1,"248":1,"275":1,"276":1,"277":1,"278":1},"2":{"2":11,"3":2,"4":2,"5":1,"6":2,"7":10,"8":2,"10":1,"11":1,"12":3,"13":11,"14":14,"15":4,"16":2,"17":39,"18":1,"19":1,"20":1,"22":2,"23":2,"24":1,"25":7,"26":8,"27":2,"28":3,"29":3,"30":4,"32":4,"33":1,"36":1,"38":1,"40":1,"42":2,"43":1,"45":1,"46":10,"47":1,"48":6,"50":1,"51":4,"52":10,"53":8,"54":5,"57":2,"58":9,"59":3,"60":2,"61":14,"62":1,"67":6,"68":13,"70":6,"71":6,"72":2,"73":8,"74":4,"75":6,"78":2,"79":5,"81":2,"83":6,"84":7,"85":1,"86":7,"87":4,"88":46,"89":18,"90":2,"92":8,"93":19,"94":13,"95":6,"96":14,"97":10,"98":10,"99":2,"100":7,"101":1,"102":1,"103":4,"104":1,"105":10,"106":7,"107":7,"108":10,"109":20,"111":40,"112":17,"113":7,"114":18,"116":16,"117":6,"118":24,"119":7,"120":11,"121":3,"122":9,"123":16,"124":8,"125":3,"127":8,"128":1,"129":6,"131":13,"132":9,"134":28,"135":2,"136":11,"137":2,"138":12,"139":8,"140":6,"141":3,"142":7,"143":6,"144":10,"145":1,"146":49,"147":32,"148":12,"149":13,"150":13,"151":43,"152":15,"153":6,"154":1,"156":1,"157":5,"158":15,"159":6,"160":3,"162":18,"164":12,"165":11,"166":4,"168":14,"169":1,"170":4,"172":3,"174":7,"176":5,"178":1,"179":1,"180":5,"181":2,"182":19,"184":4,"186":9,"187":2,"188":16,"189":2,"190":16,"191":5,"192":2,"193":1,"195":6,"196":14,"197":14,"198":3,"199":1,"200":1,"201":4,"202":6,"203":1,"204":2,"205":2,"206":2,"208":5,"209":12,"210":6,"211":4,"213":20,"214":6,"215":5,"216":3,"218":45,"220":4,"222":4,"224":12,"226":8,"228":15,"229":5,"230":7,"231":13,"233":10,"235":9,"236":6,"237":8,"238":5,"239":3,"240":12,"241":8,"242":3,"245":2,"246":13,"247":1,"248":1,"249":8,"250":10,"251":4,"252":5,"253":13,"254":21,"255":16,"257":6,"258":3,"259":1,"261":17,"262":13,"263":5,"265":2,"266":8,"267":2,"268":3,"270":15,"271":10,"272":4,"275":4,"276":20,"277":21,"278":16,"279":14,"280":6,"281":6,"282":4,"283":37,"284":18,"285":12,"286":10,"287":10,"288":9,"289":2,"290":9,"292":16,"294":14,"296":11,"298":17,"299":15,"300":6,"301":2}}]],"serializationVersion":2}';export{e as default}; +const e='{"documentCount":303,"nextId":303,"documentIds":{"0":"/v0.34.8/examples#Examples-and-sample-code","1":"/v0.34.8/howto/#How-to-guides","2":"/v0.34.8/howto/reduction#Reduction-of-polynomials-over-number-fields-modulo-a-prime-ideal","3":"/v0.34.8/#features","4":"/v0.34.8/#Citing-Hecke","5":"/v0.34.8/#acknowledgement","6":"/v0.34.8/manual/abelian/elements#elements","7":"/v0.34.8/manual/abelian/elements#creation","8":"/v0.34.8/manual/abelian/elements#access","9":"/v0.34.8/manual/abelian/elements#predicates","10":"/v0.34.8/manual/abelian/elements#invariants","11":"/v0.34.8/manual/abelian/elements#iterator","12":"/v0.34.8/manual/abelian/introduction#AbelianGroupLink2","13":"/v0.34.8/manual/abelian/introduction#Basic-Creation","14":"/v0.34.8/manual/abelian/introduction#invariants","15":"/v0.34.8/manual/abelian/maps#maps","16":"/v0.34.8/manual/abelian/structural#Structural-Computations","17":"/v0.34.8/manual/abelian/structural#Subgroups-and-Quotients","18":"/v0.34.8/manual/abelian/structural#Direct-Products","19":"/v0.34.8/manual/abelian/structural#Tensor-Producs","20":"/v0.34.8/manual/abelian/structural#hom-group","21":"/v0.34.8/manual/algebras/basics#basics","22":"/v0.34.8/manual/algebras/basics#Creation-of-algebras","23":"/v0.34.8/manual/algebras/basics#Basic-properties","24":"/v0.34.8/manual/algebras/basics#predicates","25":"/v0.34.8/manual/algebras/basics#generators","26":"/v0.34.8/manual/algebras/basics#center","27":"/v0.34.8/manual/algebras/groupalgebras#Group-algebras","28":"/v0.34.8/manual/algebras/groupalgebras#creation","29":"/v0.34.8/manual/algebras/groupalgebras#elements","30":"/v0.34.8/manual/algebras/intro#Algebras","31":"/v0.34.8/manual/algebras/structureconstant#SCA","32":"/v0.34.8/manual/algebras/structureconstant#creation","33":"/v0.34.8/manual/algebras/structureconstant#Structure-constant-table","34":"/v0.34.8/manual/developer/documentation#documentation","35":"/v0.34.8/manual/developer/documentation#Adding-files-to-the-documentation","36":"/v0.34.8/manual/developer/documentation#Building-the-documentation","37":"/v0.34.8/manual/developer/test#testing","38":"/v0.34.8/manual/developer/test#structure","39":"/v0.34.8/manual/developer/test#Adding-tests","40":"/v0.34.8/manual/developer/test#Adding-long-tests","41":"/v0.34.8/manual/developer/test#Running-the-tests","42":"/v0.34.8/manual/developer/test#Running-all-tests","43":"/v0.34.8/manual/developer/test#Running-a-subset-of-tests","44":"/v0.34.8/manual/elliptic_curves/basics#basics","45":"/v0.34.8/manual/elliptic_curves/basics#creation","46":"/v0.34.8/manual/elliptic_curves/basics#Basic-properties","47":"/v0.34.8/manual/elliptic_curves/basics#points","48":"/v0.34.8/manual/elliptic_curves/basics#examples","49":"/v0.34.8/manual/elliptic_curves/finite_fields#Elliptic-curves-over-finite-fields","50":"/v0.34.8/manual/elliptic_curves/finite_fields#Random-points","51":"/v0.34.8/manual/elliptic_curves/finite_fields#Cardinality-and-orders","52":"/v0.34.8/manual/elliptic_curves/finite_fields#frobenius","53":"/v0.34.8/manual/elliptic_curves/finite_fields#Group-structure-of-rational-points","54":"/v0.34.8/manual/elliptic_curves/finite_fields#Discrete-logarithm","55":"/v0.34.8/manual/elliptic_curves/number_fields#Elliptic-curves-over-rationals-and-number-fields","56":"/v0.34.8/manual/#manual","57":"/v0.34.8/manual/elliptic_curves/intro#introduction","58":"/v0.34.8/manual/misc/FacElem#Factored-Elements","59":"/v0.34.8/manual/misc/FacElem#construction","60":"/v0.34.8/manual/misc/FacElem#conversion","61":"/v0.34.8/manual/misc/FacElem#Special-functions","62":"/v0.34.8/manual/misc/FacElem#Positivity-and-Signs","63":"/v0.34.8/manual/misc/FacElem#miscellaneous","64":"/v0.34.8/manual/misc/conjugacy#Conjugacy-of-integral-matrices","65":"/v0.34.8/manual/misc/mset#Multi-sets-and-sub-set-iterators","66":"/v0.34.8/manual/misc/mset#multi-sets","67":"/v0.34.8/manual/misc/mset#Type-and-constructors","68":"/v0.34.8/manual/misc/mset#functions","69":"/v0.34.8/manual/misc/mset#Sub-set-iterators","70":"/v0.34.8/manual/misc/mset#sub-multi-sets","71":"/v0.34.8/manual/misc/mset#sub-sets","72":"/v0.34.8/manual/misc/mset#Sub-sets-of-a-given-size","73":"/v0.34.8/manual/misc/pmat#PMatLink","74":"/v0.34.8/manual/misc/pmat#creation","75":"/v0.34.8/manual/misc/pmat#operations","76":"/v0.34.8/manual/misc/pmat#examples","77":"/v0.34.8/manual/misc/sparse#Sparse-linear-algebra","78":"/v0.34.8/manual/misc/sparse#introduction","79":"/v0.34.8/manual/misc/sparse#Sparse-rows","80":"/v0.34.8/manual/misc/sparse#creation","81":"/v0.34.8/manual/misc/sparse#Basic-operations","82":"/v0.34.8/manual/misc/sparse#Change-of-base-ring","83":"/v0.34.8/manual/misc/sparse#Maximum,-minimum-and-2-norm","84":"/v0.34.8/manual/misc/sparse#Functionality-for-integral-sparse-rows","85":"/v0.34.8/manual/misc/sparse#Conversion-to/from-julia-and-AbstractAlgebra-types","86":"/v0.34.8/manual/misc/sparse#Sparse-matrices","87":"/v0.34.8/manual/misc/sparse#construction","88":"/v0.34.8/manual/misc/sparse#Elementary-Properties","89":"/v0.34.8/manual/misc/sparse#Manipulation/-Access","90":"/v0.34.8/manual/misc/sparse#arithmetic","91":"/v0.34.8/manual/number_fields/class_fields#Class-Field-Theory","92":"/v0.34.8/manual/number_fields/class_fields#introduction","93":"/v0.34.8/manual/number_fields/class_fields#Ray-Class-Groups","94":"/v0.34.8/manual/number_fields/class_fields#Ray-Class-Fields","95":"/v0.34.8/manual/number_fields/class_fields#example","96":"/v0.34.8/manual/number_fields/class_fields#conversions","97":"/v0.34.8/manual/number_fields/class_fields#invariants","98":"/v0.34.8/manual/number_fields/class_fields#operations","99":"/v0.34.8/manual/number_fields/complex_embeddings#Complex-embedding","100":"/v0.34.8/manual/number_fields/complex_embeddings#Construction-of-complex-embeddings","101":"/v0.34.8/manual/number_fields/complex_embeddings#properties","102":"/v0.34.8/manual/number_fields/complex_embeddings#Conjugated-embedding","103":"/v0.34.8/manual/number_fields/complex_embeddings#Evaluating-elements-at-complex-embeddings","104":"/v0.34.8/manual/number_fields/complex_embeddings#Logarithmic-embedding","105":"/v0.34.8/manual/number_fields/complex_embeddings#restriction","106":"/v0.34.8/manual/number_fields/complex_embeddings#extension","107":"/v0.34.8/manual/number_fields/complex_embeddings#positivity_and_signs2","108":"/v0.34.8/manual/number_fields/complex_embeddings#example","109":"/v0.34.8/manual/number_fields/conventions#conventions","110":"/v0.34.8/manual/number_fields/elements#Element-operations","111":"/v0.34.8/manual/number_fields/elements#creation","112":"/v0.34.8/manual/number_fields/elements#conjugates","113":"/v0.34.8/manual/number_fields/elements#predicates","114":"/v0.34.8/manual/number_fields/elements#invariants","115":"/v0.34.8/manual/number_fields/fields#Number-field-operations","116":"/v0.34.8/manual/number_fields/fields#Creation-of-number-fields","117":"/v0.34.8/manual/number_fields/fields#Basic-properties","118":"/v0.34.8/manual/number_fields/fields#invariants","119":"/v0.34.8/manual/number_fields/fields#predicates","120":"/v0.34.8/manual/number_fields/fields#subfields","121":"/v0.34.8/manual/number_fields/fields#conversion","122":"/v0.34.8/manual/number_fields/fields#morphisms","123":"/v0.34.8/manual/number_fields/fields#Galois-theory","124":"/v0.34.8/manual/number_fields/fields#Infinite-places","125":"/v0.34.8/manual/number_fields/fields#miscellaneous","126":"/v0.34.8/manual/number_fields/internal#internals","127":"/v0.34.8/manual/number_fields/internal#Types-of-number-fields","128":"/v0.34.8/manual/number_fields/internal#Absolute-simple-fields","129":"/v0.34.8/manual/number_fields/intro#NumberFieldsLink","130":"/v0.34.8/manual/orders/elements#elements","131":"/v0.34.8/manual/orders/elements#creation","132":"/v0.34.8/manual/orders/elements#Basic-properties","133":"/v0.34.8/manual/orders/elements#arithmetic","134":"/v0.34.8/manual/orders/elements#miscellaneous","135":"/v0.34.8/manual/orders/frac_ideals#Fractional-ideals","136":"/v0.34.8/manual/orders/frac_ideals#creation","137":"/v0.34.8/manual/orders/frac_ideals#arithmetic","138":"/v0.34.8/manual/orders/frac_ideals#miscaellenous","139":"/v0.34.8/manual/orders/introduction#introduction","140":"/v0.34.8/manual/orders/introduction#Orders-of-absolute-number-fields","141":"/v0.34.8/manual/orders/introduction#Orders-of-relative-number-fields","142":"/v0.34.8/manual/orders/introduction#examples","143":"/v0.34.8/manual/orders/ideals#NfOrdIdlLink2","144":"/v0.34.8/manual/orders/ideals#creation","145":"/v0.34.8/manual/orders/ideals#arithmetic","146":"/v0.34.8/manual/orders/ideals#Class-Group","147":"/v0.34.8/manual/orders/ideals#miscaellenous","148":"/v0.34.8/manual/orders/ideals#Quotient-Rings","149":"/v0.34.8/manual/orders/orders#orders","150":"/v0.34.8/manual/orders/orders#Creation-and-basic-properties","151":"/v0.34.8/manual/orders/orders#example","152":"/v0.34.8/manual/orders/orders#invariants","153":"/v0.34.8/manual/orders/orders#arithmetic","154":"/v0.34.8/manual/orders/orders#predicates","155":"/v0.34.8/manual/quad_forms/basics#Spaces2","156":"/v0.34.8/manual/quad_forms/basics#Creation-of-spaces","157":"/v0.34.8/manual/quad_forms/basics#examples","158":"/v0.34.8/manual/quad_forms/basics#attributes","159":"/v0.34.8/manual/quad_forms/basics#Examples-2","160":"/v0.34.8/manual/quad_forms/basics#predicates","161":"/v0.34.8/manual/quad_forms/basics#Examples-3","162":"/v0.34.8/manual/quad_forms/basics#Inner-products-and-diagonalization","163":"/v0.34.8/manual/quad_forms/basics#Examples-4","164":"/v0.34.8/manual/quad_forms/basics#equivalence","165":"/v0.34.8/manual/quad_forms/basics#Examples-5","166":"/v0.34.8/manual/quad_forms/basics#embeddings","167":"/v0.34.8/manual/quad_forms/basics#Examples-6","168":"/v0.34.8/manual/quad_forms/basics#Categorical-constructions","169":"/v0.34.8/manual/quad_forms/basics#example","170":"/v0.34.8/manual/quad_forms/basics#Orthogonality-operations","171":"/v0.34.8/manual/quad_forms/basics#Example-2","172":"/v0.34.8/manual/quad_forms/basics#Isotropic-spaces","173":"/v0.34.8/manual/quad_forms/basics#Example-3","174":"/v0.34.8/manual/quad_forms/basics#Hyperbolic-spaces","175":"/v0.34.8/manual/quad_forms/basics#Example-4","176":"/v0.34.8/manual/quad_forms/Zgenera#Genera-of-Integer-Lattices","177":"/v0.34.8/manual/quad_forms/Zgenera#Creation-of-Genera","178":"/v0.34.8/manual/quad_forms/Zgenera#From-an-integral-Lattice","179":"/v0.34.8/manual/quad_forms/Zgenera#From-a-gram-matrix","180":"/v0.34.8/manual/quad_forms/Zgenera#Enumeration-of-genus-symbols","181":"/v0.34.8/manual/quad_forms/Zgenera#From-other-genus-symbols","182":"/v0.34.8/manual/quad_forms/Zgenera#Attributes-of-the-genus","183":"/v0.34.8/manual/quad_forms/Zgenera#Discriminant-group","184":"/v0.34.8/manual/quad_forms/Zgenera#Primary-genera","185":"/v0.34.8/manual/quad_forms/Zgenera#local-Symbol","186":"/v0.34.8/manual/quad_forms/Zgenera#representative-s","187":"/v0.34.8/manual/quad_forms/Zgenera#Embeddings-and-Representations","188":"/v0.34.8/manual/quad_forms/Zgenera#Local-genus-Symbols","189":"/v0.34.8/manual/quad_forms/Zgenera#creation","190":"/v0.34.8/manual/quad_forms/Zgenera#attributes","191":"/v0.34.8/manual/quad_forms/Zgenera#representative","192":"/v0.34.8/manual/quad_forms/Zgenera#Direct-sums","193":"/v0.34.8/manual/quad_forms/Zgenera#embeddings-representations","194":"/v0.34.8/manual/quad_forms/discriminant_group#Discriminant-Groups","195":"/v0.34.8/manual/quad_forms/discriminant_group#Torsion-Quadratic-Modules","196":"/v0.34.8/manual/quad_forms/discriminant_group#The-underlying-Type","197":"/v0.34.8/manual/quad_forms/discriminant_group#attributes","198":"/v0.34.8/manual/quad_forms/discriminant_group#elements","199":"/v0.34.8/manual/quad_forms/discriminant_group#Lift-to-the-cover","200":"/v0.34.8/manual/quad_forms/discriminant_group#Orthogonal-submodules","201":"/v0.34.8/manual/quad_forms/discriminant_group#isometry","202":"/v0.34.8/manual/quad_forms/discriminant_group#Primary-and-elementary-modules","203":"/v0.34.8/manual/quad_forms/discriminant_group#Smith-normal-form","204":"/v0.34.8/manual/quad_forms/discriminant_group#Discriminant-Groups-2","205":"/v0.34.8/manual/quad_forms/discriminant_group#From-a-lattice","206":"/v0.34.8/manual/quad_forms/discriminant_group#From-a-matrix","207":"/v0.34.8/manual/quad_forms/discriminant_group#Rescaling-the-form","208":"/v0.34.8/manual/quad_forms/discriminant_group#invariants","209":"/v0.34.8/manual/quad_forms/discriminant_group#genus","210":"/v0.34.8/manual/quad_forms/discriminant_group#Categorical-constructions","211":"/v0.34.8/manual/quad_forms/discriminant_group#submodules","212":"/v0.34.8/manual/quad_forms/genusherm#Genera-for-hermitian-lattices","213":"/v0.34.8/manual/quad_forms/genusherm#Local-genus-symbols","214":"/v0.34.8/manual/quad_forms/genusherm#Creation-of-local-genus-symbols","215":"/v0.34.8/manual/quad_forms/genusherm#examples","216":"/v0.34.8/manual/quad_forms/genusherm#attributes","217":"/v0.34.8/manual/quad_forms/genusherm#Examples-2","218":"/v0.34.8/manual/quad_forms/genusherm#invariants","219":"/v0.34.8/manual/quad_forms/genusherm#Examples-3","220":"/v0.34.8/manual/quad_forms/genusherm#predicates","221":"/v0.34.8/manual/quad_forms/genusherm#Examples-4","222":"/v0.34.8/manual/quad_forms/genusherm#Local-uniformizer","223":"/v0.34.8/manual/quad_forms/genusherm#example","224":"/v0.34.8/manual/quad_forms/genusherm#Determinant-representatives","225":"/v0.34.8/manual/quad_forms/genusherm#Examples-5","226":"/v0.34.8/manual/quad_forms/genusherm#Gram-matrices","227":"/v0.34.8/manual/quad_forms/genusherm#Examples-6","228":"/v0.34.8/manual/quad_forms/genusherm#Global-genus-symbols","229":"/v0.34.8/manual/quad_forms/genusherm#Creation-of-global-genus-symbols","230":"/v0.34.8/manual/quad_forms/genusherm#Examples-7","231":"/v0.34.8/manual/quad_forms/genusherm#Attributes-2","232":"/v0.34.8/manual/quad_forms/genusherm#Examples-8","233":"/v0.34.8/manual/quad_forms/genusherm#mass","234":"/v0.34.8/manual/quad_forms/genusherm#Example-2","235":"/v0.34.8/manual/quad_forms/genusherm#Representatives-of-a-genus","236":"/v0.34.8/manual/quad_forms/genusherm#Examples-9","237":"/v0.34.8/manual/quad_forms/genusherm#Sum-of-genera","238":"/v0.34.8/manual/quad_forms/genusherm#Examples-10","239":"/v0.34.8/manual/quad_forms/genusherm#Enumeration-of-genera","240":"/v0.34.8/manual/quad_forms/genusherm#Examples-11","241":"/v0.34.8/manual/quad_forms/genusherm#rescaling","242":"/v0.34.8/manual/quad_forms/integer_lattices#Integer-Lattices","243":"/v0.34.8/manual/quad_forms/integer_lattices#Creation-of-integer-lattices","244":"/v0.34.8/manual/quad_forms/integer_lattices#From-a-gram-matrix","245":"/v0.34.8/manual/quad_forms/integer_lattices#In-a-quadratic-space","246":"/v0.34.8/manual/quad_forms/integer_lattices#Special-lattices","247":"/v0.34.8/manual/quad_forms/integer_lattices#From-a-genus","248":"/v0.34.8/manual/quad_forms/integer_lattices#Rescaling-the-Quadratic-Form","249":"/v0.34.8/manual/quad_forms/integer_lattices#attributes","250":"/v0.34.8/manual/quad_forms/integer_lattices#invariants","251":"/v0.34.8/manual/quad_forms/integer_lattices#The-Genus","252":"/v0.34.8/manual/quad_forms/integer_lattices#Real-invariants","253":"/v0.34.8/manual/quad_forms/integer_lattices#isometries","254":"/v0.34.8/manual/quad_forms/integer_lattices#Root-lattices","255":"/v0.34.8/manual/quad_forms/integer_lattices#Module-operations","256":"/v0.34.8/manual/quad_forms/integer_lattices#embeddings","257":"/v0.34.8/manual/quad_forms/integer_lattices#Categorical-constructions","258":"/v0.34.8/manual/quad_forms/integer_lattices#Orthogonal-sublattices","259":"/v0.34.8/manual/quad_forms/integer_lattices#Dual-lattice","260":"/v0.34.8/manual/quad_forms/integer_lattices#Discriminant-group","261":"/v0.34.8/manual/quad_forms/integer_lattices#overlattices","262":"/v0.34.8/manual/quad_forms/integer_lattices#Sublattices-defined-by-endomorphisms","263":"/v0.34.8/manual/quad_forms/integer_lattices#Computing-embeddings","264":"/v0.34.8/manual/quad_forms/integer_lattices#LLL,-Short-and-Close-Vectors","265":"/v0.34.8/manual/quad_forms/integer_lattices#LLL-and-indefinite-LLL","266":"/v0.34.8/manual/quad_forms/integer_lattices#Short-Vectors","267":"/v0.34.8/manual/quad_forms/integer_lattices#Close-Vectors","268":"/v0.34.8/manual/quad_forms/introduction#introduction","269":"/v0.34.8/manual/quad_forms/introduction#Definitions-and-vocabulary","270":"/v0.34.8/manual/quad_forms/introduction#Quadratic-and-hermitian-spaces","271":"/v0.34.8/manual/quad_forms/introduction#Quadratic-and-hermitian-lattices","272":"/v0.34.8/manual/quad_forms/introduction#references","273":"/v0.34.8/manual/quad_forms/lattices#lattices","274":"/v0.34.8/manual/quad_forms/lattices#Creation-of-lattices","275":"/v0.34.8/manual/quad_forms/lattices#Inside-a-given-ambient-space","276":"/v0.34.8/manual/quad_forms/lattices#Quadratic-lattice-over-a-number-field","277":"/v0.34.8/manual/quad_forms/lattices#Hermitian-lattice-over-a-degree-2-extension","278":"/v0.34.8/manual/quad_forms/lattices#examples","279":"/v0.34.8/manual/quad_forms/lattices#Ambient-space-and-rational-span","280":"/v0.34.8/manual/quad_forms/lattices#Examples-2","281":"/v0.34.8/manual/quad_forms/lattices#Rational-equivalence","282":"/v0.34.8/manual/quad_forms/lattices#Examples-3","283":"/v0.34.8/manual/quad_forms/lattices#attributes","284":"/v0.34.8/manual/quad_forms/lattices#Examples-4","285":"/v0.34.8/manual/quad_forms/lattices#Module-operations","286":"/v0.34.8/manual/quad_forms/lattices#Examples-5","287":"/v0.34.8/manual/quad_forms/lattices#Categorical-constructions","288":"/v0.34.8/manual/quad_forms/lattices#invariants","289":"/v0.34.8/manual/quad_forms/lattices#Examples-6","290":"/v0.34.8/manual/quad_forms/lattices#predicates","291":"/v0.34.8/manual/quad_forms/lattices#Examples-7","292":"/v0.34.8/manual/quad_forms/lattices#Local-properties","293":"/v0.34.8/manual/quad_forms/lattices#Examples-8","294":"/v0.34.8/manual/quad_forms/lattices#Automorphisms-for-definite-lattices","295":"/v0.34.8/manual/quad_forms/lattices#Examples-9","296":"/v0.34.8/manual/quad_forms/lattices#isometry","297":"/v0.34.8/manual/quad_forms/lattices#Examples-10","298":"/v0.34.8/manual/quad_forms/lattices#Maximal-integral-lattices","299":"/v0.34.8/manual/quad_forms/lattices#Examples-11","300":"/v0.34.8/references#bibliography","301":"/v0.34.8/start/#Getting-started","302":"/v0.34.8/tutorials/#tutorials"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[4,1,1],"1":[3,1,1],"2":[10,1,139],"3":[1,1,40],"4":[2,1,78],"5":[1,1,21],"6":[1,1,29],"7":[1,1,93],"8":[1,1,39],"9":[1,1,18],"10":[1,1,16],"11":[1,1,36],"12":[1,1,38],"13":[2,1,100],"14":[1,1,79],"15":[1,1,97],"16":[2,1,75],"17":[3,2,225],"18":[2,2,85],"19":[2,2,52],"20":[2,2,46],"21":[1,1,1],"22":[3,1,46],"23":[2,1,29],"24":[1,1,27],"25":[1,1,88],"26":[1,1,43],"27":[2,1,20],"28":[1,2,41],"29":[1,2,58],"30":[1,1,67],"31":[3,1,1],"32":[1,3,86],"33":[3,3,36],"34":[1,1,13],"35":[5,1,15],"36":[3,1,51],"37":[1,1,1],"38":[1,1,47],"39":[2,2,45],"40":[3,2,41],"41":[3,1,1],"42":[3,4,54],"43":[5,4,44],"44":[1,1,1],"45":[1,1,72],"46":[2,1,110],"47":[1,1,42],"48":[1,2,84],"49":[5,1,1],"50":[2,5,35],"51":[3,5,52],"52":[1,5,47],"53":[5,5,70],"54":[2,5,60],"55":[7,1,1],"56":[1,1,5],"57":[1,1,55],"58":[2,1,140],"59":[1,2,62],"60":[1,2,68],"61":[2,2,202],"62":[3,2,24],"63":[1,2,22],"64":[4,1,49],"65":[6,1,1],"66":[2,6,1],"67":[3,6,120],"68":[1,6,151],"69":[3,6,1],"70":[3,7,33],"71":[2,7,33],"72":[6,7,20],"73":[2,1,140],"74":[1,2,50],"75":[1,2,83],"76":[1,2,1],"77":[3,1,1],"78":[1,3,44],"79":[2,3,60],"80":[1,4,37],"81":[2,4,54],"82":[4,4,22],"83":[5,4,33],"84":[5,4,41],"85":[7,4,38],"86":[2,3,67],"87":[1,4,121],"88":[2,4,251],"89":[2,4,148],"90":[1,4,75],"91":[3,1,1],"92":[1,3,74],"93":[3,3,159],"94":[3,3,128],"95":[1,5,46],"96":[1,3,154],"97":[1,3,94],"98":[1,3,131],"99":[2,1,32],"100":[4,2,49],"101":[1,2,41],"102":[2,2,28],"103":[5,2,88],"104":[2,2,51],"105":[1,2,80],"106":[1,2,65],"107":[3,2,84],"108":[1,2,59],"109":[1,1,146],"110":[2,1,1],"111":[1,2,186],"112":[1,3,95],"113":[1,3,106],"114":[1,3,45],"115":[3,1,1],"116":[4,3,222],"117":[2,3,111],"118":[1,3,77],"119":[1,3,105],"120":[1,4,104],"121":[1,3,98],"122":[1,3,91],"123":[2,3,52],"124":[2,3,57],"125":[1,3,90],"126":[1,1,1],"127":[4,1,94],"128":[3,1,29],"129":[1,1,70],"130":[1,1,46],"131":[1,1,73],"132":[2,1,69],"133":[1,1,18],"134":[1,1,190],"135":[2,1,44],"136":[1,2,62],"137":[1,2,56],"138":[1,2,60],"139":[1,1,61],"140":[5,1,52],"141":[5,1,98],"142":[1,1,97],"143":[1,1,90],"144":[1,1,92],"145":[1,1,93],"146":[2,1,331],"147":[1,1,161],"148":[2,1,123],"149":[1,1,96],"150":[4,1,145],"151":[1,5,232],"152":[1,1,102],"153":[1,1,93],"154":[1,1,22],"155":[1,1,1],"156":[3,1,52],"157":[1,4,67],"158":[1,1,87],"159":[1,2,65],"160":[1,1,71],"161":[1,2,32],"162":[4,1,110],"163":[1,5,35],"164":[1,1,134],"165":[1,2,60],"166":[1,1,94],"167":[1,2,56],"168":[2,1,116],"169":[1,3,43],"170":[2,1,35],"171":[1,3,21],"172":[2,1,54],"173":[1,3,32],"174":[2,1,61],"175":[1,3,33],"176":[4,1,69],"177":[3,4,1],"178":[4,5,12],"179":[4,5,17],"180":[4,5,63],"181":[4,5,19],"182":[4,4,88],"183":[2,7,4],"184":[2,7,61],"185":[2,7,13],"186":[3,4,63],"187":[3,4,19],"188":[3,4,73],"189":[1,7,25],"190":[1,7,117],"191":[1,7,37],"192":[2,7,16],"193":[2,7,46],"194":[2,1,1],"195":[3,2,91],"196":[3,5,146],"197":[1,5,51],"198":[1,5,29],"199":[4,5,27],"200":[2,5,13],"201":[1,5,114],"202":[4,5,58],"203":[3,5,41],"204":[2,2,23],"205":[3,2,42],"206":[3,2,54],"207":[3,2,33],"208":[1,2,63],"209":[1,2,117],"210":[2,2,59],"211":[1,2,39],"212":[4,1,1],"213":[3,4,152],"214":[5,7,60],"215":[1,10,86],"216":[1,7,38],"217":[1,8,48],"218":[1,7,86],"219":[1,8,54],"220":[1,7,33],"221":[1,8,38],"222":[2,7,38],"223":[1,8,32],"224":[2,7,58],"225":[1,9,34],"226":[2,7,48],"227":[1,9,45],"228":[3,4,78],"229":[5,7,66],"230":[1,10,119],"231":[1,7,90],"232":[1,8,80],"233":[1,7,75],"234":[1,8,63],"235":[4,4,93],"236":[1,8,64],"237":[3,4,43],"238":[1,7,96],"239":[3,4,82],"240":[1,7,78],"241":[1,4,41],"242":[2,1,63],"243":[4,2,1],"244":[4,6,39],"245":[4,6,48],"246":[2,6,227],"247":[3,6,15],"248":[4,6,51],"249":[1,2,59],"250":[1,2,100],"251":[2,3,29],"252":[2,3,27],"253":[1,2,78],"254":[2,1,116],"255":[2,2,147],"256":[1,2,1],"257":[2,3,63],"258":[2,3,29],"259":[2,3,11],"260":[2,3,6],"261":[1,3,117],"262":[4,3,60],"263":[2,3,80],"264":[5,2,1],"265":[3,7,55],"266":[2,7,88],"267":[2,7,80],"268":[1,1,45],"269":[3,1,15],"270":[4,4,120],"271":[4,4,70],"272":[1,1,57],"273":[1,1,1],"274":[3,1,1],"275":[5,4,62],"276":[6,4,83],"277":[7,4,77],"278":[1,11,137],"279":[5,1,34],"280":[1,6,60],"281":[2,1,44],"282":[1,3,88],"283":[1,1,127],"284":[1,2,81],"285":[2,1,113],"286":[1,3,67],"287":[2,1,114],"288":[1,1,53],"289":[1,2,57],"290":[1,1,84],"291":[1,2,51],"292":[2,1,100],"293":[1,3,40],"294":[4,1,106],"295":[1,5,45],"296":[1,1,83],"297":[1,2,44],"298":[3,1,69],"299":[1,4,66],"300":[1,1,89],"301":[2,1,73],"302":[1,1,1]},"averageFieldLength":[2.072607260726073,3.0066006600660065,64.39603960396035],"storedFields":{"0":{"title":"Examples and sample code","titles":[]},"1":{"title":"How-to guides","titles":[]},"2":{"title":"Reduction of polynomials over number fields modulo a prime ideal","titles":[]},"3":{"title":"Features","titles":[]},"4":{"title":"Citing Hecke","titles":[]},"5":{"title":"Acknowledgement","titles":[]},"6":{"title":"Elements","titles":[]},"7":{"title":"Creation","titles":["Elements"]},"8":{"title":"Access","titles":["Elements"]},"9":{"title":"Predicates","titles":["Elements"]},"10":{"title":"Invariants","titles":["Elements"]},"11":{"title":"Iterator","titles":["Elements"]},"12":{"title":"Introduction","titles":[]},"13":{"title":"Basic Creation","titles":["Introduction"]},"14":{"title":"Invariants","titles":["Introduction"]},"15":{"title":"Maps","titles":[]},"16":{"title":"Structural Computations","titles":[]},"17":{"title":"Subgroups and Quotients","titles":["Structural Computations"]},"18":{"title":"Direct Products","titles":["Structural Computations"]},"19":{"title":"Tensor Producs","titles":["Structural Computations"]},"20":{"title":"Hom-Group","titles":["Structural Computations"]},"21":{"title":"Basics","titles":[]},"22":{"title":"Creation of algebras","titles":["Basics"]},"23":{"title":"Basic properties","titles":["Basics"]},"24":{"title":"Predicates","titles":["Basics"]},"25":{"title":"Generators","titles":["Basics"]},"26":{"title":"Center","titles":["Basics"]},"27":{"title":"Group algebras","titles":[]},"28":{"title":"Creation","titles":["Group algebras"]},"29":{"title":"Elements","titles":["Group algebras"]},"30":{"title":"Introduction","titles":[]},"31":{"title":"Structure constant algebras","titles":[]},"32":{"title":"Creation","titles":["Structure constant algebras"]},"33":{"title":"Structure constant table","titles":["Structure constant algebras"]},"34":{"title":"Documentation","titles":[]},"35":{"title":"Adding files to the documentation","titles":["Documentation"]},"36":{"title":"Building the documentation","titles":["Documentation"]},"37":{"title":"Testing","titles":[]},"38":{"title":"Structure","titles":["Testing"]},"39":{"title":"Adding tests","titles":["Testing","Structure"]},"40":{"title":"Adding long tests","titles":["Testing","Structure"]},"41":{"title":"Running the tests","titles":["Testing"]},"42":{"title":"Running all tests","titles":["Testing","Running the tests"]},"43":{"title":"Running a subset of tests","titles":["Testing","Running the tests"]},"44":{"title":"Basics","titles":[]},"45":{"title":"Creation","titles":["Basics"]},"46":{"title":"Basic properties","titles":["Basics"]},"47":{"title":"Points","titles":["Basics"]},"48":{"title":"Examples","titles":["Basics","Points"]},"49":{"title":"Elliptic curves over finite fields","titles":[]},"50":{"title":"Random points","titles":["Elliptic curves over finite fields"]},"51":{"title":"Cardinality and orders","titles":["Elliptic curves over finite fields"]},"52":{"title":"Frobenius","titles":["Elliptic curves over finite fields"]},"53":{"title":"Group structure of rational points","titles":["Elliptic curves over finite fields"]},"54":{"title":"Discrete logarithm","titles":["Elliptic curves over finite fields"]},"55":{"title":"Elliptic curves over rationals and number fields","titles":[]},"56":{"title":"Manual","titles":[]},"57":{"title":"Introduction","titles":[]},"58":{"title":"Factored Elements","titles":[]},"59":{"title":"Construction","titles":["Factored Elements"]},"60":{"title":"Conversion","titles":["Factored Elements"]},"61":{"title":"Special functions","titles":["Factored Elements"]},"62":{"title":"Positivity & Signs","titles":["Factored Elements"]},"63":{"title":"Miscellaneous","titles":["Factored Elements"]},"64":{"title":"Conjugacy of integral matrices","titles":[]},"65":{"title":"Multi-sets and sub-set iterators","titles":[]},"66":{"title":"Multi-sets","titles":["Multi-sets and sub-set iterators"]},"67":{"title":"Type and constructors","titles":["Multi-sets and sub-set iterators","Multi-sets"]},"68":{"title":"Functions","titles":["Multi-sets and sub-set iterators","Multi-sets"]},"69":{"title":"Sub-set iterators","titles":["Multi-sets and sub-set iterators"]},"70":{"title":"Sub-multi-sets","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"71":{"title":"Sub-sets","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"72":{"title":"Sub-sets of a given size","titles":["Multi-sets and sub-set iterators","Sub-set iterators"]},"73":{"title":"Pseudo-matrices","titles":[]},"74":{"title":"Creation","titles":["Pseudo-matrices"]},"75":{"title":"Operations","titles":["Pseudo-matrices"]},"76":{"title":"Examples","titles":["Pseudo-matrices"]},"77":{"title":"Sparse linear algebra","titles":[]},"78":{"title":"Introduction","titles":["Sparse linear algebra"]},"79":{"title":"Sparse rows","titles":["Sparse linear algebra"]},"80":{"title":"Creation","titles":["Sparse linear algebra","Sparse rows"]},"81":{"title":"Basic operations","titles":["Sparse linear algebra","Sparse rows"]},"82":{"title":"Change of base ring","titles":["Sparse linear algebra","Sparse rows"]},"83":{"title":"Maximum, minimum and 2-norm","titles":["Sparse linear algebra","Sparse rows"]},"84":{"title":"Functionality for integral sparse rows","titles":["Sparse linear algebra","Sparse rows"]},"85":{"title":"Conversion to/from julia and AbstractAlgebra types","titles":["Sparse linear algebra","Sparse rows"]},"86":{"title":"Sparse matrices","titles":["Sparse linear algebra"]},"87":{"title":"Construction","titles":["Sparse linear algebra","Sparse matrices"]},"88":{"title":"Elementary Properties","titles":["Sparse linear algebra","Sparse matrices"]},"89":{"title":"Manipulation/ Access","titles":["Sparse linear algebra","Sparse matrices"]},"90":{"title":"Arithmetic","titles":["Sparse linear algebra","Sparse matrices"]},"91":{"title":"Class Field Theory","titles":[]},"92":{"title":"Introduction","titles":["Class Field Theory"]},"93":{"title":"Ray Class Groups","titles":["Class Field Theory"]},"94":{"title":"Ray Class Fields","titles":["Class Field Theory"]},"95":{"title":"Example","titles":["Class Field Theory","Ray Class Fields"]},"96":{"title":"Conversions","titles":["Class Field Theory"]},"97":{"title":"Invariants","titles":["Class Field Theory"]},"98":{"title":"Operations","titles":["Class Field Theory"]},"99":{"title":"Complex embedding","titles":[]},"100":{"title":"Construction of complex embeddings","titles":["Complex embedding"]},"101":{"title":"Properties","titles":["Complex embedding"]},"102":{"title":"Conjugated embedding","titles":["Complex embedding"]},"103":{"title":"Evaluating elements at complex embeddings","titles":["Complex embedding"]},"104":{"title":"Logarithmic embedding","titles":["Complex embedding"]},"105":{"title":"Restriction","titles":["Complex embedding"]},"106":{"title":"Extension","titles":["Complex embedding"]},"107":{"title":"Positivity & Signs","titles":["Complex embedding"]},"108":{"title":"Example","titles":["Complex embedding"]},"109":{"title":"Conventions","titles":[]},"110":{"title":"Element operations","titles":[]},"111":{"title":"Creation","titles":["Element operations"]},"112":{"title":"Conjugates","titles":["Element operations","Creation"]},"113":{"title":"Predicates","titles":["Element operations","Creation"]},"114":{"title":"Invariants","titles":["Element operations","Creation"]},"115":{"title":"Number field operations","titles":[]},"116":{"title":"Creation of number fields","titles":["Number field operations"]},"117":{"title":"Basic properties","titles":["Number field operations"]},"118":{"title":"Invariants","titles":["Number field operations"]},"119":{"title":"Predicates","titles":["Number field operations"]},"120":{"title":"Subfields","titles":["Number field operations","Predicates"]},"121":{"title":"Conversion","titles":["Number field operations"]},"122":{"title":"Morphisms","titles":["Number field operations"]},"123":{"title":"Galois theory","titles":["Number field operations"]},"124":{"title":"Infinite places","titles":["Number field operations"]},"125":{"title":"Miscellaneous","titles":["Number field operations"]},"126":{"title":"Internals","titles":[]},"127":{"title":"Types of number fields","titles":["Internals"]},"128":{"title":"Absolute simple fields","titles":["Internals"]},"129":{"title":"Introduction","titles":[]},"130":{"title":"Elements","titles":[]},"131":{"title":"Creation","titles":["Elements"]},"132":{"title":"Basic properties","titles":["Elements"]},"133":{"title":"Arithmetic","titles":["Elements"]},"134":{"title":"Miscellaneous","titles":["Elements"]},"135":{"title":"Fractional ideals","titles":[]},"136":{"title":"Creation","titles":["Fractional ideals"]},"137":{"title":"Arithmetic","titles":["Fractional ideals"]},"138":{"title":"Miscaellenous","titles":["Fractional ideals"]},"139":{"title":"Introduction","titles":[]},"140":{"title":"Orders of absolute number fields","titles":["Introduction"]},"141":{"title":"Orders of relative number fields","titles":["Introduction"]},"142":{"title":"Examples","titles":["Introduction"]},"143":{"title":"Ideals","titles":[]},"144":{"title":"Creation","titles":["Ideals"]},"145":{"title":"Arithmetic","titles":["Ideals"]},"146":{"title":"Class Group","titles":["Ideals"]},"147":{"title":"Miscaellenous","titles":["Ideals"]},"148":{"title":"Quotient Rings","titles":["Ideals"]},"149":{"title":"Orders","titles":[]},"150":{"title":"Creation and basic properties","titles":["Orders"]},"151":{"title":"Example","titles":["Orders","Creation and basic properties"]},"152":{"title":"Invariants","titles":["Orders"]},"153":{"title":"Arithmetic","titles":["Orders"]},"154":{"title":"Predicates","titles":["Orders"]},"155":{"title":"Spaces","titles":[]},"156":{"title":"Creation of spaces","titles":["Spaces"]},"157":{"title":"Examples","titles":["Spaces","Creation of spaces"]},"158":{"title":"Attributes","titles":["Spaces"]},"159":{"title":"Examples","titles":["Spaces","Attributes"]},"160":{"title":"Predicates","titles":["Spaces"]},"161":{"title":"Examples","titles":["Spaces","Predicates"]},"162":{"title":"Inner products and diagonalization","titles":["Spaces"]},"163":{"title":"Examples","titles":["Spaces","Inner products and diagonalization"]},"164":{"title":"Equivalence","titles":["Spaces"]},"165":{"title":"Examples","titles":["Spaces","Equivalence"]},"166":{"title":"Embeddings","titles":["Spaces"]},"167":{"title":"Examples","titles":["Spaces","Embeddings"]},"168":{"title":"Categorical constructions","titles":["Spaces"]},"169":{"title":"Example","titles":["Spaces","Categorical constructions"]},"170":{"title":"Orthogonality operations","titles":["Spaces"]},"171":{"title":"Example","titles":["Spaces","Orthogonality operations"]},"172":{"title":"Isotropic spaces","titles":["Spaces"]},"173":{"title":"Example","titles":["Spaces","Isotropic spaces"]},"174":{"title":"Hyperbolic spaces","titles":["Spaces"]},"175":{"title":"Example","titles":["Spaces","Hyperbolic spaces"]},"176":{"title":"Genera of Integer Lattices","titles":[]},"177":{"title":"Creation of Genera","titles":["Genera of Integer Lattices"]},"178":{"title":"From an integral Lattice","titles":["Genera of Integer Lattices","Creation of Genera"]},"179":{"title":"From a gram matrix","titles":["Genera of Integer Lattices","Creation of Genera"]},"180":{"title":"Enumeration of genus symbols","titles":["Genera of Integer Lattices","Creation of Genera"]},"181":{"title":"From other genus symbols","titles":["Genera of Integer Lattices","Creation of Genera"]},"182":{"title":"Attributes of the genus","titles":["Genera of Integer Lattices"]},"183":{"title":"Discriminant group","titles":["Genera of Integer Lattices","Attributes of the genus"]},"184":{"title":"Primary genera","titles":["Genera of Integer Lattices","Attributes of the genus"]},"185":{"title":"local Symbol","titles":["Genera of Integer Lattices","Attributes of the genus"]},"186":{"title":"Representative(s)","titles":["Genera of Integer Lattices"]},"187":{"title":"Embeddings and Representations","titles":["Genera of Integer Lattices"]},"188":{"title":"Local genus Symbols","titles":["Genera of Integer Lattices"]},"189":{"title":"Creation","titles":["Genera of Integer Lattices","Local genus Symbols"]},"190":{"title":"Attributes","titles":["Genera of Integer Lattices","Local genus Symbols"]},"191":{"title":"Representative","titles":["Genera of Integer Lattices","Local genus Symbols"]},"192":{"title":"Direct sums","titles":["Genera of Integer Lattices","Local genus Symbols"]},"193":{"title":"Embeddings/Representations","titles":["Genera of Integer Lattices","Local genus Symbols"]},"194":{"title":"Discriminant Groups","titles":[]},"195":{"title":"Torsion Quadratic Modules","titles":["Discriminant Groups"]},"196":{"title":"The underlying Type","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"197":{"title":"Attributes","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"198":{"title":"Elements","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"199":{"title":"Lift to the cover","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"200":{"title":"Orthogonal submodules","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"201":{"title":"Isometry","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"202":{"title":"Primary and elementary modules","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"203":{"title":"Smith normal form","titles":["Discriminant Groups","Torsion Quadratic Modules"]},"204":{"title":"Discriminant Groups","titles":["Discriminant Groups"]},"205":{"title":"From a lattice","titles":["Discriminant Groups","Discriminant Groups"]},"206":{"title":"From a matrix","titles":["Discriminant Groups","Discriminant Groups"]},"207":{"title":"Rescaling the form","titles":["Discriminant Groups","Discriminant Groups"]},"208":{"title":"Invariants","titles":["Discriminant Groups","Discriminant Groups"]},"209":{"title":"Genus","titles":["Discriminant Groups","Discriminant Groups"]},"210":{"title":"Categorical constructions","titles":["Discriminant Groups","Discriminant Groups"]},"211":{"title":"Submodules","titles":["Discriminant Groups","Discriminant Groups"]},"212":{"title":"Genera for hermitian lattices","titles":[]},"213":{"title":"Local genus symbols","titles":["Genera for hermitian lattices"]},"214":{"title":"Creation of local genus symbols","titles":["Genera for hermitian lattices","Local genus symbols"]},"215":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Creation of local genus symbols"]},"216":{"title":"Attributes","titles":["Genera for hermitian lattices","Local genus symbols"]},"217":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Attributes"]},"218":{"title":"Invariants","titles":["Genera for hermitian lattices","Local genus symbols"]},"219":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Invariants"]},"220":{"title":"Predicates","titles":["Genera for hermitian lattices","Local genus symbols"]},"221":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Predicates"]},"222":{"title":"Local uniformizer","titles":["Genera for hermitian lattices","Local genus symbols"]},"223":{"title":"Example","titles":["Genera for hermitian lattices","Local genus symbols","Local uniformizer"]},"224":{"title":"Determinant representatives","titles":["Genera for hermitian lattices","Local genus symbols"]},"225":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Determinant representatives"]},"226":{"title":"Gram matrices","titles":["Genera for hermitian lattices","Local genus symbols"]},"227":{"title":"Examples","titles":["Genera for hermitian lattices","Local genus symbols","Gram matrices"]},"228":{"title":"Global genus symbols","titles":["Genera for hermitian lattices"]},"229":{"title":"Creation of global genus symbols","titles":["Genera for hermitian lattices","Global genus symbols"]},"230":{"title":"Examples","titles":["Genera for hermitian lattices","Global genus symbols","Creation of global genus symbols"]},"231":{"title":"Attributes","titles":["Genera for hermitian lattices","Global genus symbols"]},"232":{"title":"Examples","titles":["Genera for hermitian lattices","Global genus symbols","Attributes"]},"233":{"title":"Mass","titles":["Genera for hermitian lattices","Global genus symbols"]},"234":{"title":"Example","titles":["Genera for hermitian lattices","Global genus symbols","Mass"]},"235":{"title":"Representatives of a genus","titles":["Genera for hermitian lattices"]},"236":{"title":"Examples","titles":["Genera for hermitian lattices","Representatives of a genus"]},"237":{"title":"Sum of genera","titles":["Genera for hermitian lattices"]},"238":{"title":"Examples","titles":["Genera for hermitian lattices","Sum of genera"]},"239":{"title":"Enumeration of genera","titles":["Genera for hermitian lattices"]},"240":{"title":"Examples","titles":["Genera for hermitian lattices","Enumeration of genera"]},"241":{"title":"Rescaling","titles":["Genera for hermitian lattices"]},"242":{"title":"Integer Lattices","titles":[]},"243":{"title":"Creation of integer lattices","titles":["Integer Lattices"]},"244":{"title":"From a gram matrix","titles":["Integer Lattices","Creation of integer lattices"]},"245":{"title":"In a quadratic space","titles":["Integer Lattices","Creation of integer lattices"]},"246":{"title":"Special lattices","titles":["Integer Lattices","Creation of integer lattices"]},"247":{"title":"From a genus","titles":["Integer Lattices","Creation of integer lattices"]},"248":{"title":"Rescaling the Quadratic Form","titles":["Integer Lattices","Creation of integer lattices"]},"249":{"title":"Attributes","titles":["Integer Lattices"]},"250":{"title":"Invariants","titles":["Integer Lattices"]},"251":{"title":"The Genus","titles":["Integer Lattices","Invariants"]},"252":{"title":"Real invariants","titles":["Integer Lattices","Invariants"]},"253":{"title":"Isometries","titles":["Integer Lattices"]},"254":{"title":"Root lattices","titles":[]},"255":{"title":"Module operations","titles":["Root lattices"]},"256":{"title":"Embeddings","titles":["Root lattices"]},"257":{"title":"Categorical constructions","titles":["Root lattices","Embeddings"]},"258":{"title":"Orthogonal sublattices","titles":["Root lattices","Embeddings"]},"259":{"title":"Dual lattice","titles":["Root lattices","Embeddings"]},"260":{"title":"Discriminant group","titles":["Root lattices","Embeddings"]},"261":{"title":"Overlattices","titles":["Root lattices","Embeddings"]},"262":{"title":"Sublattices defined by endomorphisms","titles":["Root lattices","Embeddings"]},"263":{"title":"Computing embeddings","titles":["Root lattices","Embeddings"]},"264":{"title":"LLL, Short and Close Vectors","titles":["Root lattices"]},"265":{"title":"LLL and indefinite LLL","titles":["Root lattices","LLL, Short and Close Vectors"]},"266":{"title":"Short Vectors","titles":["Root lattices","LLL, Short and Close Vectors"]},"267":{"title":"Close Vectors","titles":["Root lattices","LLL, Short and Close Vectors"]},"268":{"title":"Introduction","titles":[]},"269":{"title":"Definitions and vocabulary","titles":["Introduction"]},"270":{"title":"Quadratic and hermitian spaces","titles":["Introduction","Definitions and vocabulary"]},"271":{"title":"Quadratic and hermitian lattices","titles":["Introduction","Definitions and vocabulary"]},"272":{"title":"References","titles":["Introduction"]},"273":{"title":"Lattices","titles":[]},"274":{"title":"Creation of lattices","titles":["Lattices"]},"275":{"title":"Inside a given ambient space","titles":["Lattices","Creation of lattices"]},"276":{"title":"Quadratic lattice over a number field","titles":["Lattices","Creation of lattices"]},"277":{"title":"Hermitian lattice over a degree 2 extension","titles":["Lattices","Creation of lattices"]},"278":{"title":"Examples","titles":["Lattices","Creation of lattices","Hermitian lattice over a degree 2 extension"]},"279":{"title":"Ambient space and rational span","titles":["Lattices"]},"280":{"title":"Examples","titles":["Lattices","Ambient space and rational span"]},"281":{"title":"Rational equivalence","titles":["Lattices"]},"282":{"title":"Examples","titles":["Lattices","Rational equivalence"]},"283":{"title":"Attributes","titles":["Lattices"]},"284":{"title":"Examples","titles":["Lattices","Attributes"]},"285":{"title":"Module operations","titles":["Lattices"]},"286":{"title":"Examples","titles":["Lattices","Module operations"]},"287":{"title":"Categorical constructions","titles":["Lattices"]},"288":{"title":"Invariants","titles":["Lattices"]},"289":{"title":"Examples","titles":["Lattices","Invariants"]},"290":{"title":"Predicates","titles":["Lattices"]},"291":{"title":"Examples","titles":["Lattices","Predicates"]},"292":{"title":"Local properties","titles":["Lattices"]},"293":{"title":"Examples","titles":["Lattices","Local properties"]},"294":{"title":"Automorphisms for definite lattices","titles":["Lattices"]},"295":{"title":"Examples","titles":["Lattices","Automorphisms for definite lattices"]},"296":{"title":"Isometry","titles":["Lattices"]},"297":{"title":"Examples","titles":["Lattices","Isometry"]},"298":{"title":"Maximal integral lattices","titles":["Lattices"]},"299":{"title":"Examples","titles":["Lattices","Maximal integral lattices"]},"300":{"title":"Bibliography","titles":[]},"301":{"title":"Getting started","titles":[]},"302":{"title":"Tutorials","titles":[]}},"dirtCount":0,"index":[["∣x",{"2":{"288":1}}],["∣x∈l",{"2":{"288":1}}],["~markus",{"2":{"278":2}}],["\\t\\t\\t",{"2":{"277":2}}],["ℤ",{"2":{"246":2}}],["≅",{"2":{"246":1}}],["∩",{"2":{"246":1}}],["∩z",{"2":{"150":1}}],["±1",{"2":{"224":1}}],["×ln",{"2":{"257":1,"287":1}}],["×tn",{"2":{"210":1}}],["×vn",{"2":{"168":1}}],["↦φ",{"2":{"205":1}}],["ψ",{"2":{"174":3}}],["`h`",{"2":{"246":1}}],["`v`",{"2":{"246":1}}],["`sek`",{"2":{"230":2}}],["`cyclotomix",{"2":{"169":1}}],["`facelemzzringelem",{"2":{"58":1}}],["⊕ln",{"2":{"257":2,"287":2}}],["⊕tn",{"2":{"210":2}}],["⊕vn",{"2":{"168":2}}],["⊕c",{"2":{"18":1}}],["φp",{"2":{"172":2}}],["φ",{"2":{"158":7,"160":3,"162":1,"164":3,"166":3,"172":2,"174":1,"195":1,"198":1,"250":4,"255":2,"270":8,"285":3,"288":4,"294":3}}],["≤c1⋅∑idxi2",{"2":{"151":1}}],["∈2z",{"2":{"250":1}}],["∈r",{"2":{"151":1}}],["∈matd×d",{"2":{"109":1}}],["∏i",{"2":{"190":1}}],["∏aiei",{"2":{"146":1}}],["∏bd",{"2":{"59":2}}],["∏biei",{"2":{"59":2}}],["−n",{"2":{"134":1}}],["−1",{"2":{"109":1,"116":1,"134":1,"158":1,"213":1,"218":5}}],["∗b",{"2":{"132":1,"134":1}}],["∗a",{"2":{"88":1}}],["γ",{"2":{"117":1,"261":2}}],["γ∈k",{"2":{"117":1}}],["γ↦βγ",{"2":{"109":1}}],["⋮⋱⋮⋮⋮⋱⋮σ1",{"2":{"109":1}}],["⊆oe",{"2":{"285":1}}],["⊆o",{"2":{"109":1}}],["⊆r",{"2":{"99":1}}],["σ∣σ∈homoe",{"2":{"288":1}}],["σ",{"2":{"122":2,"166":5}}],["σr+2s",{"2":{"112":3,"134":1}}],["σr+2",{"2":{"109":1}}],["σr+s",{"2":{"109":5}}],["σr+1",{"2":{"109":7,"112":3,"134":1}}],["σr",{"2":{"109":4}}],["σ1",{"2":{"109":3}}],["σi=σi+s",{"2":{"109":1}}],["σi",{"2":{"109":2,"112":3,"134":1}}],["β⋅",{"2":{"109":1}}],["β",{"2":{"109":2}}],["|r|",{"2":{"254":1}}],["|x∈l",{"2":{"182":1,"190":1}}],["|−1",{"2":{"112":1}}],["|σr+s",{"2":{"112":1,"134":1}}],["|σr+1",{"2":{"112":1,"134":1}}],["|σr",{"2":{"112":1,"134":1}}],["|σ1",{"2":{"112":1,"134":1}}],["|",{"2":{"104":1,"112":5,"134":4,"186":1,"208":2}}],["|ι",{"2":{"104":1}}],["≥vp",{"2":{"93":1}}],["→li+1",{"2":{"193":1}}],["→",{"2":{"89":1}}],["∑i=1n1|o",{"2":{"186":1}}],["∑i=1nmi",{"2":{"13":1}}],["∑idxi2≤c2⋅t2",{"2":{"151":1}}],["∑aiωi",{"2":{"141":1}}],["∑zkmi",{"2":{"74":1}}],["∑cimi",{"2":{"74":2}}],["ω2",{"2":{"109":5}}],["ωd",{"2":{"109":6,"140":1}}],["ω1⋮ωd",{"2":{"140":1}}],["ω1",{"2":{"109":6,"140":1}}],["ωi∈o",{"2":{"141":1}}],["ωi∈l",{"2":{"141":1}}],["ωi∈v",{"2":{"73":1}}],["ωi",{"2":{"73":2,"151":1}}],["ω∈v",{"2":{"73":1}}],["αφ",{"2":{"162":1}}],["αi",{"2":{"146":1}}],["αd",{"2":{"140":1}}],["αd−1",{"2":{"109":3}}],["α1⋮αd",{"2":{"140":1}}],["α1",{"2":{"140":1}}],["α2",{"2":{"109":1}}],["αb=ae",{"2":{"146":1}}],["αb=a",{"2":{"61":1}}],["α",{"2":{"61":1,"109":14,"140":2,"146":6,"150":2,"152":1,"162":1}}],["$^3",{"2":{"157":1,"159":2}}],["$^2",{"2":{"146":20,"157":1,"159":2}}],["$n",{"2":{"116":1}}],["$1",{"2":{"96":1}}],["$",{"2":{"58":2,"116":3,"146":20,"157":1,"159":2,"240":6}}],["$e",{"2":{"46":1}}],["915",{"2":{"234":1}}],["998259",{"2":{"234":1}}],["99e",{"2":{"103":1,"104":1}}],["9",{"2":{"67":4,"68":1,"125":1,"146":3,"209":1,"254":18}}],["94",{"2":{"53":1}}],["97",{"2":{"53":1}}],["└──",{"2":{"38":3}}],["│",{"2":{"38":72}}],["├──",{"2":{"38":28}}],["570",{"2":{"278":1}}],["5313",{"2":{"234":1}}],["5>",{"2":{"146":2,"286":1}}],["5^",{"2":{"146":1}}],["5^2",{"2":{"51":1}}],["512",{"2":{"146":6}}],["5917",{"2":{"234":1}}],["59",{"2":{"106":2}}],["50",{"2":{"67":2}}],["5200",{"2":{"53":1}}],["58",{"2":{"53":1}}],["5",{"2":{"25":1,"28":1,"45":3,"46":4,"67":3,"68":10,"103":1,"105":1,"106":3,"107":6,"116":6,"124":3,"146":6,"176":1,"188":2,"190":1,"201":7,"215":1,"219":1,"227":1,"230":1,"232":1,"234":1,"238":1,"246":4,"249":2,"254":24,"261":2,"263":1,"280":3,"282":2,"284":9,"286":4,"297":2,"299":3,"301":1}}],["55",{"2":{"2":1,"104":1}}],["55ζ^5",{"2":{"2":1}}],["ϕi",{"2":{"19":1}}],["ϕ",{"2":{"19":1,"20":1}}],["⊗",{"2":{"18":1}}],["⊂",{"2":{"17":1}}],["ιk→k",{"2":{"120":1}}],["ι",{"2":{"17":5,"99":2,"104":1,"105":2,"106":1,"120":1}}],["^5",{"2":{"201":2}}],["^1",{"2":{"146":4}}],["^int",{"2":{"146":1}}],["^",{"2":{"133":1,"146":3}}],["^j",{"2":{"25":1}}],["^k",{"2":{"25":1}}],["^3",{"2":{"13":1,"17":1}}],["^2",{"2":{"13":1,"146":1,"196":5,"201":2,"301":1}}],["63",{"2":{"108":4}}],["62",{"2":{"105":1}}],["62e",{"2":{"104":1}}],["64",{"2":{"103":1,"151":1}}],["65",{"2":{"51":1}}],["6",{"2":{"13":2,"17":8,"54":2,"67":3,"68":2,"108":1,"146":2,"169":1,"201":6,"204":1,"206":3,"209":1,"225":2,"240":1,"246":3,"254":32,"255":3,"261":5,"284":4,"286":3,"295":1,"299":6}}],["vm",{"2":{"296":1}}],["vl",{"2":{"296":1}}],["vj",{"2":{"270":1}}],["v×v→e",{"2":{"270":1}}],["vol",{"2":{"300":4}}],["volume",{"2":{"228":1,"288":3,"289":1}}],["vocabulary",{"0":{"269":1},"1":{"270":1,"271":1},"2":{"269":1,"271":1}}],["vg",{"2":{"246":2}}],["vn",{"2":{"168":3,"270":1}}],["v1",{"2":{"168":3,"270":1}}],["v→vi",{"2":{"168":6}}],["v→v",{"2":{"164":1,"166":1}}],["v∈m∞",{"2":{"93":1}}],["vp×vp",{"2":{"172":1}}],["vp",{"2":{"93":1,"151":2,"166":1,"174":1}}],["vcat",{"2":{"87":2,"246":1}}],["v=dw",{"2":{"255":1}}],["v=qn",{"2":{"242":1}}],["v=",{"2":{"80":1}}],["vararg",{"2":{"168":3,"210":3,"257":3,"287":3}}],["varname=",{"2":{"116":1}}],["varname",{"2":{"116":2}}],["various",{"2":{"78":1,"88":3,"90":1}}],["variable=n",{"2":{"42":1}}],["variable",{"2":{"42":1,"116":1}}],["variety",{"2":{"15":1}}],["valence",{"2":{"88":6}}],["val",{"2":{"88":2,"239":2}}],["valuations",{"2":{"218":1,"239":2}}],["valuation",{"2":{"61":5,"111":3,"144":1,"147":16,"188":2,"218":5,"292":1}}],["valued",{"2":{"88":2}}],["valueiterator",{"2":{"68":2}}],["value",{"2":{"60":4,"63":1,"75":1,"84":1,"88":2,"103":1,"134":1,"184":2,"196":2,"197":6,"201":8,"202":2,"206":10,"218":4,"231":1,"246":1,"250":2,"253":6,"255":1,"266":1,"290":3,"292":1,"294":4,"296":5}}],["values",{"2":{"30":1,"67":2,"68":2,"195":1,"196":1,"209":1,"218":1,"229":1}}],["verlag",{"2":{"300":3}}],["verbose",{"2":{"96":1,"153":1}}],["vertically",{"2":{"87":2}}],["very",{"2":{"60":1,"68":2,"86":1,"116":1,"153":1}}],["version",{"2":{"60":1,"61":3,"148":1,"266":1,"278":2,"301":3}}],["versions",{"2":{"30":1,"121":1,"146":1}}],["versa",{"2":{"29":1}}],["vectors",{"0":{"264":1,"266":1,"267":1},"1":{"265":1,"266":1,"267":1},"2":{"60":2,"70":1,"71":1,"246":1,"248":1,"254":1,"266":13,"267":4,"276":1,"277":1}}],["vectorspace",{"2":{"14":1,"73":1}}],["vector",{"2":{"7":2,"8":2,"13":2,"14":1,"17":7,"18":1,"19":1,"23":1,"25":7,"32":2,"45":1,"47":1,"48":2,"53":3,"59":4,"61":1,"67":2,"68":1,"70":2,"71":2,"73":1,"74":3,"75":1,"80":4,"85":3,"87":1,"88":3,"90":2,"93":1,"94":1,"97":3,"98":2,"100":5,"106":1,"107":3,"108":1,"111":8,"112":8,"113":1,"116":2,"117":8,"120":2,"122":1,"124":6,"131":4,"132":3,"134":5,"138":1,"142":2,"144":4,"146":8,"147":3,"148":2,"150":5,"151":8,"152":1,"153":4,"158":1,"162":8,"164":1,"168":16,"180":2,"182":1,"186":1,"190":1,"195":2,"196":3,"199":2,"210":11,"211":4,"214":1,"215":1,"218":4,"219":5,"227":1,"229":1,"230":2,"231":2,"232":2,"234":1,"235":2,"238":1,"239":2,"240":2,"242":1,"248":2,"251":1,"253":2,"254":1,"255":7,"257":11,"258":1,"262":2,"266":4,"267":7,"270":1,"275":1,"276":1,"277":1,"278":4,"279":1,"280":3,"282":2,"283":6,"284":8,"286":2,"287":16,"289":1,"291":1,"292":3,"293":1,"294":1,"295":2,"297":2,"299":7}}],["vi",{"2":{"270":1}}],["view",{"2":{"270":1}}],["viewed",{"2":{"130":1}}],["vi→v",{"2":{"168":6}}],["vitepress",{"2":{"35":1}}],["vice",{"2":{"29":1}}],["via",{"2":{"13":1,"15":2,"68":1,"88":1,"131":1,"143":1,"146":2,"153":1,"181":1,"196":1}}],["v",{"2":{"8":1,"17":1,"68":4,"70":2,"71":2,"73":2,"80":1,"93":1,"111":3,"158":23,"160":18,"162":22,"164":12,"166":15,"168":9,"170":7,"172":6,"174":5,"193":2,"195":1,"196":2,"201":3,"242":2,"245":4,"246":10,"250":1,"255":13,"266":10,"267":3,"270":11,"271":4,"275":16,"285":4,"288":2,"290":2,"294":2,"298":4,"300":2}}],["02",{"2":{"151":1}}],["02e",{"2":{"107":2}}],["0≤bi",{"2":{"148":1}}],["0≤ij≤dj−1",{"2":{"117":1}}],["0≤n≤3",{"2":{"96":1}}],["09",{"2":{"108":4}}],["00",{"2":{"100":3,"108":8,"124":1,"230":1}}],["0",{"2":{"7":4,"11":3,"15":3,"17":10,"22":1,"25":40,"29":4,"32":4,"33":8,"48":6,"50":1,"64":22,"67":1,"68":3,"88":2,"93":1,"94":2,"100":3,"104":2,"105":2,"106":4,"107":1,"108":4,"118":1,"120":2,"122":1,"124":1,"134":1,"135":1,"142":3,"146":23,"157":10,"159":6,"161":2,"163":23,"165":6,"167":10,"169":6,"171":4,"188":3,"195":2,"196":9,"201":130,"208":2,"209":6,"215":32,"217":4,"219":28,"221":2,"223":2,"225":2,"227":32,"230":32,"232":31,"234":7,"236":2,"238":35,"240":1,"244":4,"246":554,"248":6,"249":2,"253":6,"254":84,"255":14,"261":92,"263":278,"266":2,"267":5,"278":80,"280":60,"282":17,"284":114,"286":39,"289":26,"291":23,"293":27,"294":4,"295":46,"296":4,"297":17,"299":64,"301":1}}],[">=",{"2":{"278":2}}],[">zmodh",{"2":{"246":1}}],[">",{"2":{"7":7,"8":2,"10":1,"13":5,"14":12,"15":2,"16":2,"17":22,"18":4,"19":2,"20":1,"22":1,"23":2,"24":2,"25":2,"26":3,"28":1,"32":2,"33":1,"45":2,"46":13,"48":5,"51":2,"52":2,"53":2,"54":1,"59":6,"60":5,"61":17,"64":1,"67":4,"68":4,"70":3,"71":3,"72":1,"74":3,"80":3,"81":3,"82":1,"83":7,"84":5,"85":1,"87":10,"88":21,"89":8,"90":10,"93":6,"94":7,"96":6,"97":5,"98":9,"100":2,"101":3,"102":1,"103":2,"107":7,"111":15,"112":6,"113":4,"114":7,"116":6,"117":8,"118":7,"119":12,"120":8,"121":4,"122":6,"123":4,"124":4,"125":3,"131":3,"132":6,"134":16,"136":9,"137":4,"138":9,"142":1,"144":17,"145":9,"146":24,"147":42,"148":10,"150":12,"151":29,"152":11,"154":2,"156":4,"158":8,"160":6,"162":7,"164":5,"166":2,"168":9,"169":4,"170":2,"172":1,"174":1,"178":1,"179":1,"180":1,"181":1,"182":11,"184":4,"185":1,"186":6,"187":1,"189":2,"190":13,"191":3,"192":1,"193":1,"195":1,"196":1,"197":9,"198":2,"199":2,"200":1,"201":10,"202":4,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":6,"214":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"229":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":5,"248":1,"249":4,"250":10,"251":2,"252":4,"253":5,"254":3,"255":11,"257":6,"258":2,"259":1,"261":6,"262":5,"263":2,"265":1,"266":5,"267":1,"275":4,"276":4,"277":4,"279":5,"281":4,"283":15,"285":9,"287":9,"288":3,"290":7,"292":3,"294":2,"296":3,"298":6}}],["8z",{"2":{"188":1,"209":1}}],["80",{"2":{"165":1}}],["81",{"2":{"106":2}}],["85",{"2":{"53":1,"54":2}}],["88",{"2":{"53":2}}],["8",{"2":{"4":1,"13":2,"17":3,"28":2,"67":1,"120":1,"213":1,"215":1,"219":1,"225":2,"227":2,"230":1,"232":1,"238":1,"240":1,"246":3,"254":38,"261":10,"263":1,"284":1}}],["yield",{"2":{"292":1}}],["yields",{"2":{"258":1}}],["y∈l",{"2":{"250":1,"288":1,"294":1}}],["y∈v",{"2":{"164":1}}],["y2=x3+a4x+a6which",{"2":{"57":1}}],["y2+h∗y=f",{"2":{"46":1}}],["y2+a1xy+a3y=x3+a2x2+a4x+a6specified",{"2":{"57":1}}],["y2+a1xy+a3y=x3+a2x2+a4x+a6",{"2":{"46":1}}],["yes",{"2":{"201":2}}],["yet",{"2":{"53":1}}],["year",{"2":{"4":1}}],["y",{"2":{"45":3,"46":2,"68":4,"90":6,"112":11,"132":2,"134":3,"144":6,"145":5,"147":4,"148":2,"164":2,"205":2,"250":1,"288":1,"294":2}}],["y^2",{"2":{"45":3,"46":2,"48":5,"50":1,"53":3,"54":2}}],["york",{"2":{"4":2,"300":2}}],["your",{"2":{"4":1,"36":1,"301":1}}],["j≤n∈en×n",{"2":{"270":1}}],["j≤d",{"2":{"151":1}}],["j2",{"2":{"246":1}}],["j=",{"2":{"80":3}}],["j$",{"2":{"42":1}}],["jordan",{"2":{"188":2,"190":2,"213":4,"214":1,"215":2,"216":1,"218":11,"224":2,"226":2,"238":1,"292":3,"293":1}}],["joins",{"2":{"87":2}}],["job",{"2":{"40":1}}],["johansson",{"2":{"4":2}}],["jl",{"2":{"38":23,"39":6,"43":1}}],["just",{"2":{"30":1,"43":1,"127":1,"129":1,"150":1,"151":2,"196":1,"262":2}}],["juliakissing",{"2":{"266":1}}],["juliakernel",{"2":{"262":1}}],["juliak3",{"2":{"246":1}}],["juliakummer",{"2":{"125":1}}],["juliauniformizer",{"2":{"222":1}}],["juliaunit",{"2":{"118":1,"146":2}}],["juliaoverlattice",{"2":{"261":1}}],["juliaoddity",{"2":{"190":1}}],["juliaorthogonal",{"2":{"162":1,"170":2,"200":1,"258":1,"285":1}}],["juliaorder",{"2":{"10":1,"14":1,"51":2,"138":1,"147":4,"150":5}}],["juliawitt",{"2":{"164":1,"281":1}}],["juliawildanger",{"2":{"116":1}}],["juliaquadratic",{"2":{"111":1,"116":1,"156":2,"186":1,"198":1,"276":4}}],["juliaquo",{"2":{"17":5,"148":1}}],["julia==",{"2":{"98":1,"132":1}}],["juliazzlocalgenus",{"2":{"188":1}}],["juliazzgenus",{"2":{"176":1}}],["juliazzmatrix",{"2":{"90":2}}],["juliazeta",{"2":{"152":1}}],["juliazero",{"2":{"22":1,"87":2}}],["juliadual",{"2":{"259":1,"285":1}}],["juliadot",{"2":{"90":3}}],["juliadenominator",{"2":{"134":1,"137":1}}],["juliadensity",{"2":{"88":1}}],["juliadense",{"2":{"85":1}}],["juliadecomposition",{"2":{"123":1}}],["juliadefining",{"2":{"97":1,"117":2}}],["juliadegree",{"2":{"97":1,"118":1,"147":1,"152":1,"283":1}}],["juliadets",{"2":{"218":1}}],["juliadet",{"2":{"88":2,"158":1,"182":1,"190":1,"218":2,"224":2,"250":1}}],["juliadivisibility",{"2":{"255":1}}],["juliadivision",{"2":{"48":1}}],["juliadim",{"2":{"158":1,"182":1,"190":1}}],["juliadimension",{"2":{"26":2}}],["juliadifferent",{"2":{"152":1}}],["juliadiagonal",{"2":{"88":1,"89":1,"162":2,"279":1}}],["juliadisc",{"2":{"54":1}}],["juliadiscriminant",{"2":{"46":3,"97":1,"118":1,"132":4,"134":4,"152":1,"158":1,"205":1,"218":2,"283":1}}],["juliadirect",{"2":{"18":1,"168":4,"181":1,"192":1,"210":2,"237":2,"257":2,"287":4}}],["juliavolume",{"2":{"288":1}}],["juliavalue",{"2":{"197":2}}],["juliavaluation",{"2":{"61":2,"111":1,"147":6}}],["juliavalence",{"2":{"88":1}}],["juliavcat",{"2":{"87":2}}],["juliavector",{"2":{"85":1}}],["julialang",{"2":{"301":1}}],["julialattice",{"2":{"245":1,"275":4}}],["julialocal",{"2":{"185":1,"231":1,"261":1,"292":1}}],["julialorenz",{"2":{"125":1}}],["julialeech",{"2":{"246":2}}],["julialevel",{"2":{"182":1,"190":1}}],["julialength",{"2":{"81":1,"216":1}}],["julialll",{"2":{"147":1,"150":1,"151":1,"265":1}}],["julialift",{"2":{"84":1,"199":1}}],["julianf",{"2":{"147":1,"151":1}}],["julianarrow",{"2":{"146":1}}],["julianumerator",{"2":{"137":1}}],["julianumber",{"2":{"14":2,"88":2,"96":1,"101":1,"116":2}}],["julianorms",{"2":{"218":1}}],["julianormal",{"2":{"98":1,"120":1,"123":1,"208":1}}],["julianorm",{"2":{"93":2,"114":2,"125":1,"134":1,"138":5,"147":5,"151":1,"182":1,"190":1,"218":2,"231":1,"250":1,"288":1}}],["julianorm2",{"2":{"83":1}}],["juliannz",{"2":{"88":1}}],["juliamukai",{"2":{"246":1}}],["juliamultiplicative",{"2":{"148":2}}],["juliamultiplicity",{"2":{"68":1}}],["juliamultiplicities",{"2":{"68":1}}],["juliamultiset",{"2":{"67":2}}],["juliamodulus",{"2":{"197":2}}],["juliamodular",{"2":{"61":1}}],["juliamod",{"2":{"84":3,"89":1,"148":1}}],["juliamass",{"2":{"186":1,"233":1,"251":1}}],["juliamap",{"2":{"89":1}}],["juliamatrix",{"2":{"75":1,"90":1}}],["juliamaximalorder",{"2":{"150":4}}],["juliamaximal",{"2":{"96":2,"261":1,"298":3}}],["juliamaximum",{"2":{"83":2,"84":1,"88":2}}],["juliamaxabs",{"2":{"63":1}}],["juliamax",{"2":{"63":1}}],["juliamset",{"2":{"67":1}}],["juliaminpoly",{"2":{"114":1,"134":1}}],["juliaminkowski",{"2":{"112":1,"134":1,"151":1}}],["juliaminimum",{"2":{"83":2,"88":1,"147":2,"266":1}}],["juliamin",{"2":{"63":1}}],["julia+",{"2":{"48":1,"151":1,"255":1,"285":1}}],["juliajordan",{"2":{"292":1}}],["juliaj",{"2":{"46":1}}],["juliajulia>",{"2":{"2":4,"17":4,"22":1,"24":1,"25":2,"26":3,"28":1,"29":3,"32":2,"33":1,"36":1,"43":2,"45":2,"46":2,"48":5,"50":1,"51":2,"52":2,"53":2,"54":1,"64":1,"67":3,"68":4,"100":2,"101":3,"102":1,"103":1,"104":1,"105":2,"106":1,"107":6,"108":1,"111":1,"116":6,"117":2,"118":2,"120":1,"124":3,"142":2,"146":2,"150":1,"196":2,"201":2,"206":1,"209":1,"244":1,"246":6,"248":1,"249":2,"254":5,"255":2,"261":2,"263":2,"267":1,"301":2}}],["juliabrown",{"2":{"209":1}}],["juliabiproduct",{"2":{"168":1,"210":1,"257":1,"287":1}}],["juliablock",{"2":{"87":1}}],["juliab",{"2":{"46":1}}],["juliabasis",{"2":{"23":1,"111":1,"117":2,"138":3,"147":4,"151":5,"249":1,"279":1}}],["juliabase",{"2":{"23":1,"46":4,"75":1,"97":2,"117":1,"158":1,"216":1,"231":1,"255":2,"283":2}}],["juliaade",{"2":{"254":1}}],["juliaadd",{"2":{"81":2,"89":2}}],["juliaambient",{"2":{"249":1,"279":1}}],["juliaany",{"2":{"150":1}}],["juliaautomorphism",{"2":{"122":2,"253":3,"294":2}}],["juliaalgebraic",{"2":{"111":1}}],["juliaabsolute",{"2":{"111":2,"114":3,"117":2,"118":2,"121":1,"134":2,"283":2}}],["juliaabelian",{"2":{"13":5,"53":1,"197":1}}],["juliaarray",{"2":{"90":1}}],["juliaa",{"2":{"46":1}}],["juliaglue",{"2":{"261":1}}],["juliagram",{"2":{"158":1,"162":2,"191":1,"197":2,"226":2,"249":1,"279":1,"283":1}}],["juliagroup",{"2":{"28":1}}],["juliagenerators",{"2":{"283":1}}],["juliagen",{"2":{"111":1,"151":1}}],["juliagenus",{"2":{"96":1,"178":1,"179":1,"189":2,"209":1,"235":1,"251":1}}],["juliagens",{"2":{"7":1,"25":2,"53":1,"111":1}}],["juliagetindex",{"2":{"7":1,"8":2,"81":1,"89":2}}],["juliacan",{"2":{"290":1}}],["juliacanonical",{"2":{"18":2}}],["juliaclose",{"2":{"267":1}}],["juliaclass",{"2":{"93":1,"118":1,"146":2}}],["juliacrt",{"2":{"148":1}}],["juliacyclotomic",{"2":{"116":1}}],["juliacharpoly",{"2":{"114":1,"134":1}}],["juliachange",{"2":{"82":1,"89":1}}],["juliacoinvariant",{"2":{"262":1}}],["juliacoxeter",{"2":{"254":1}}],["juliacover",{"2":{"197":1}}],["juliacodifferent",{"2":{"152":1}}],["juliacolon",{"2":{"145":1}}],["juliacoprime",{"2":{"144":1}}],["juliacoeff",{"2":{"111":1}}],["juliacoefficient",{"2":{"75":1,"283":1}}],["juliacoefficients",{"2":{"46":1,"111":1}}],["juliacoordinates",{"2":{"111":1,"132":1}}],["juliaconjugates",{"2":{"112":6,"134":2}}],["juliaconj",{"2":{"102":1}}],["juliaconductor",{"2":{"97":1}}],["juliacomponent",{"2":{"117":1}}],["juliacompositum",{"2":{"98":1,"120":1}}],["juliacomplex",{"2":{"100":1,"122":1,"124":1}}],["juliacompact",{"2":{"61":1}}],["juliac",{"2":{"46":1}}],["juliacenter",{"2":{"26":1}}],["juliatorquadmodule",{"2":{"196":1}}],["juliatorsion",{"2":{"14":1,"17":1,"111":1,"146":4,"195":1,"206":1}}],["juliat2",{"2":{"134":1}}],["juliatr",{"2":{"111":1,"134":1}}],["juliatranspose",{"2":{"87":1}}],["juliatransform",{"2":{"81":1,"89":1}}],["juliatrace",{"2":{"52":2,"151":1}}],["juliatensor",{"2":{"19":1}}],["juliairreducible",{"2":{"258":1}}],["juliaidempotents",{"2":{"147":2}}],["juliaideal",{"2":{"144":7}}],["juliaidentity",{"2":{"87":1}}],["juliainner",{"2":{"162":1,"198":1}}],["juliaindex",{"2":{"152":1}}],["juliain",{"2":{"145":1,"151":1,"235":2}}],["juliainteger",{"2":{"180":1,"244":1,"246":1}}],["juliaintegral",{"2":{"137":1}}],["juliaintersect",{"2":{"17":1,"98":1,"145":1,"255":1,"285":1}}],["juliainvariant",{"2":{"262":1}}],["juliainvariants",{"2":{"164":1}}],["juliainvolution",{"2":{"158":1,"283":1}}],["juliainv",{"2":{"136":1,"137":1}}],["juliainfinite",{"2":{"124":1}}],["juliainfinity",{"2":{"48":1}}],["juliainertia",{"2":{"123":1}}],["juliaiseven",{"2":{"182":1,"190":1,"250":1}}],["juliaisreal",{"2":{"124":1}}],["juliaiszero",{"2":{"88":1}}],["juliaisone",{"2":{"61":1,"88":1,"145":1}}],["juliaisfinite",{"2":{"14":1}}],["juliais",{"2":{"14":4,"15":1,"17":2,"24":3,"48":1,"64":1,"88":2,"97":4,"98":3,"101":2,"107":5,"113":5,"119":12,"120":1,"122":3,"124":1,"125":1,"145":3,"146":3,"147":3,"151":1,"152":3,"153":1,"154":2,"160":6,"164":2,"166":2,"172":1,"174":1,"182":2,"184":4,"201":2,"202":4,"203":1,"208":2,"209":1,"220":4,"231":1,"250":5,"252":3,"253":2,"255":4,"281":2,"290":6,"292":1,"296":3,"298":3}}],["juliapradical",{"2":{"151":1}}],["juliaprimitive",{"2":{"255":1,"285":1}}],["juliaprimes",{"2":{"182":1,"231":1}}],["juliaprime",{"2":{"98":1,"146":2,"190":1,"216":1}}],["juliaprincipal",{"2":{"120":1,"147":2}}],["juliapmaximal",{"2":{"151":1}}],["juliapoverorders",{"2":{"151":1}}],["juliapoverorder",{"2":{"151":1}}],["juliapower",{"2":{"146":3}}],["juliapicard",{"2":{"146":1}}],["juliapush",{"2":{"87":1}}],["juliapseudo",{"2":{"74":3,"75":2,"283":2}}],["juliapsubgroups",{"2":{"17":1}}],["juliaparent",{"2":{"7":1,"48":1,"132":1,"151":1}}],["juliahighest",{"2":{"254":1}}],["juliahilbert",{"2":{"94":1,"111":1}}],["juliahyperkaehler",{"2":{"246":1}}],["juliahyperbolic",{"2":{"246":1}}],["juliahyperelliptic",{"2":{"46":1}}],["juliahermitian",{"2":{"156":2,"239":2,"277":4}}],["juliahnf",{"2":{"88":4}}],["juliahadamard",{"2":{"88":1}}],["juliahasse",{"2":{"164":1,"190":1,"281":1}}],["juliahas",{"2":{"17":2,"147":3}}],["juliahcat",{"2":{"87":2}}],["juliahom",{"2":{"15":1,"19":1,"20":1}}],["juliashortest",{"2":{"266":1}}],["juliashort",{"2":{"266":2}}],["juliastable",{"2":{"211":1}}],["juliastructure",{"2":{"32":2,"33":1}}],["juliasymbol",{"2":{"190":1}}],["juliasylow",{"2":{"17":1}}],["juliasunit",{"2":{"146":3}}],["juliasubmodules",{"2":{"211":1}}],["juliasubfields",{"2":{"98":1,"120":1}}],["juliasubsets",{"2":{"70":4,"71":4,"72":1}}],["juliasubgroups",{"2":{"17":1}}],["juliasub",{"2":{"17":6,"87":1}}],["juliasimplified",{"2":{"121":1}}],["juliasimplify",{"2":{"61":2,"121":1}}],["juliasimple",{"2":{"121":1}}],["juliasignatures",{"2":{"231":1}}],["juliasignature",{"2":{"118":1,"151":1,"182":1,"190":1,"252":1}}],["juliasigns",{"2":{"107":1}}],["juliasign",{"2":{"107":1}}],["juliascales",{"2":{"218":1}}],["juliascale",{"2":{"89":1,"182":1,"190":1,"218":2,"231":1,"250":1,"288":1}}],["juliaswap",{"2":{"89":2}}],["juliasetindex",{"2":{"89":1}}],["juliasolve",{"2":{"88":1}}],["juliasparsity",{"2":{"88":1}}],["juliasparse",{"2":{"80":3,"85":1,"87":5,"90":1}}],["juliasaturate",{"2":{"17":1,"88":1}}],["juliasnf",{"2":{"16":1,"88":1,"203":1}}],["juliafractional",{"2":{"136":8}}],["juliafree",{"2":{"13":1}}],["juliafixed",{"2":{"122":1,"158":1,"283":2}}],["juliafind",{"2":{"16":1,"89":1}}],["juliafactor",{"2":{"61":5,"134":1,"144":2,"146":2}}],["juliafacelem",{"2":{"59":5}}],["juliaflat",{"2":{"18":1}}],["juliaembed",{"2":{"263":2}}],["juliaembedding",{"2":{"120":1}}],["juliaeuler",{"2":{"148":1}}],["juliaexcess",{"2":{"190":1}}],["juliaextend",{"2":{"106":1}}],["juliaexponent",{"2":{"14":1}}],["juliaevaluation",{"2":{"103":1}}],["juliaevaluate",{"2":{"60":4,"61":1}}],["juliaechelon",{"2":{"88":1}}],["juliaequationorder",{"2":{"150":1}}],["juliaequation",{"2":{"46":1}}],["juliaelem",{"2":{"132":1}}],["juliaelementary",{"2":{"14":1,"88":1}}],["juliaelliptic",{"2":{"45":2}}],["juliaroot",{"2":{"246":1,"254":2}}],["juliaring",{"2":{"94":1,"146":1,"151":1}}],["juliarational",{"2":{"186":1,"249":1,"279":1}}],["juliarationals",{"2":{"116":1}}],["juliaranks",{"2":{"218":1}}],["juliarank",{"2":{"158":1,"182":1,"190":1,"218":2,"231":1,"250":1,"283":1}}],["juliarand",{"2":{"7":2,"89":1,"134":1}}],["juliaramified",{"2":{"152":1}}],["juliaramification",{"2":{"123":1,"147":1}}],["juliaradical",{"2":{"116":1,"208":2}}],["juliaray",{"2":{"93":1,"94":4,"96":1}}],["juliarepresents",{"2":{"187":1,"193":1}}],["juliarepresentatives",{"2":{"186":1,"235":1}}],["juliarepresentative",{"2":{"186":1,"191":1,"199":1,"235":2}}],["juliarepresentation",{"2":{"111":1,"134":2}}],["juliarescale",{"2":{"186":1,"191":1,"207":1,"241":2,"248":1,"285":1}}],["juliaresidue",{"2":{"148":2}}],["juliarestrict",{"2":{"105":2,"162":1}}],["juliaregulator",{"2":{"118":1}}],["juliarelations",{"2":{"197":1}}],["juliarelative",{"2":{"118":1,"120":1}}],["juliarels",{"2":{"14":1}}],["juliareal",{"2":{"100":1,"124":1}}],["juliareverse",{"2":{"89":1}}],["juliareduced",{"2":{"152":1}}],["juliareduce",{"2":{"61":1,"88":1,"89":3}}],["julia>",{"2":{"2":10,"11":2,"13":2,"15":7,"17":16,"24":1,"25":3,"26":4,"29":3,"32":1,"33":1,"36":1,"45":2,"46":2,"48":9,"50":1,"51":5,"52":2,"53":5,"54":3,"64":3,"67":6,"68":9,"95":4,"96":7,"100":3,"101":3,"102":1,"103":3,"104":3,"105":6,"106":3,"107":13,"108":6,"111":4,"116":3,"117":4,"118":4,"120":2,"124":3,"142":11,"146":22,"150":2,"151":3,"157":5,"159":10,"161":8,"163":10,"165":9,"167":13,"169":6,"171":4,"173":7,"175":7,"196":7,"201":20,"206":3,"209":2,"215":11,"217":10,"219":15,"221":8,"223":8,"225":9,"227":12,"230":15,"232":14,"234":10,"236":15,"238":16,"240":7,"244":3,"246":30,"248":1,"249":2,"254":5,"255":14,"261":10,"263":5,"267":2,"278":22,"280":15,"282":12,"284":21,"286":14,"289":10,"291":14,"293":9,"295":10,"297":11,"299":15,"301":7}}],["julia",{"0":{"85":1},"2":{"2":1,"4":2,"7":2,"11":1,"13":2,"15":2,"17":1,"36":3,"42":2,"47":1,"59":1,"61":1,"68":2,"83":1,"85":1,"87":2,"90":7,"95":1,"96":1,"98":1,"103":1,"111":1,"120":1,"131":5,"142":1,"144":1,"146":1,"147":2,"151":6,"157":1,"159":1,"161":1,"163":1,"165":1,"167":1,"169":1,"171":1,"173":1,"175":1,"214":2,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"229":2,"230":1,"232":1,"234":1,"236":1,"238":1,"240":1,"255":1,"278":3,"280":1,"282":1,"284":1,"285":3,"286":1,"289":1,"291":1,"293":1,"295":1,"297":1,"299":1,"301":5}}],["jej=0",{"2":{"13":1}}],["j",{"2":{"13":1,"15":1,"17":1,"25":3,"32":2,"45":5,"46":2,"80":7,"81":3,"89":12,"132":2,"134":2,"164":1,"190":1,"300":2}}],["ub",{"2":{"266":4,"267":2}}],["u2",{"2":{"201":2}}],["u→o×",{"2":{"146":2}}],["u∈kr×n",{"2":{"73":1}}],["upperright",{"2":{"75":2}}],["upper",{"2":{"73":1,"75":2,"88":7,"89":4}}],["up",{"2":{"36":2,"112":1,"146":6,"166":1,"246":1,"266":3,"268":1,"278":1}}],["unvariate",{"2":{"128":1}}],["unsuccessful",{"2":{"125":1}}],["unspecified",{"2":{"64":1}}],["undefvarerror",{"2":{"169":1,"230":2}}],["undefined",{"2":{"116":1}}],["under",{"2":{"103":1,"112":1,"123":1,"134":1,"146":2,"211":1,"213":1,"222":1}}],["underlying",{"0":{"196":1},"2":{"68":1,"190":2,"195":1,"196":1,"197":1,"202":4,"203":2,"208":1,"250":1,"255":1,"283":1,"285":1}}],["until",{"2":{"88":1}}],["unlike",{"2":{"86":1}}],["unless",{"2":{"32":1,"40":1}}],["un",{"2":{"59":4}}],["universitext",{"2":{"300":1}}],["university",{"2":{"272":1,"300":1}}],["univariate",{"2":{"46":1,"116":1,"119":1,"127":1,"129":1}}],["uniformizer",{"0":{"222":1},"1":{"223":1},"2":{"222":1,"223":1,"224":1}}],["uniformly",{"2":{"7":2,"134":1}}],["unimodular",{"2":{"88":2,"184":2,"228":1,"246":3,"250":2,"254":1,"263":4}}],["union",{"2":{"68":4,"94":1,"111":2,"119":1,"164":3,"172":1,"184":2,"195":1,"202":2,"239":3,"241":2,"250":2,"255":2,"276":3,"281":3,"292":1}}],["unique",{"2":{"6":1,"14":1,"58":1,"61":2,"67":1,"68":2,"137":1,"143":1,"148":2,"149":1,"230":1,"236":1,"238":1,"240":1,"246":1,"283":1}}],["unitgroup",{"2":{"146":2,"153":1}}],["unitary",{"2":{"141":1,"149":1}}],["unity",{"2":{"96":1,"119":1}}],["units",{"2":{"58":1,"125":1,"146":16,"153":3}}],["unit",{"2":{"3":1,"58":1,"111":4,"113":4,"118":3,"134":1,"145":1,"146":11,"148":3,"153":3}}],["u⊂v",{"2":{"17":1}}],["u∩v",{"2":{"17":1}}],["u+v",{"2":{"17":1}}],["u",{"2":{"17":52,"73":2,"138":3,"146":10,"147":3,"162":1,"166":7,"188":2,"201":10,"246":1,"255":4,"263":1}}],["url",{"2":{"4":1}}],["usually",{"2":{"73":1,"97":1,"142":1}}],["usual",{"2":{"42":1,"81":1,"90":1,"133":1,"145":1}}],["users",{"2":{"268":1}}],["user",{"2":{"168":1,"287":1}}],["useful",{"2":{"61":1,"129":1,"204":1,"248":1}}],["uses",{"2":{"60":1,"61":1,"88":3,"125":1}}],["use",{"2":{"30":1,"40":1,"61":1,"97":1,"146":1,"150":1,"196":1,"230":1,"235":6,"254":1,"285":1,"301":2}}],["used",{"2":{"7":1,"14":1,"20":1,"61":1,"62":1,"75":2,"97":1,"116":7,"138":1,"139":1,"146":2,"147":1,"195":2,"253":3,"278":3,"283":1,"294":2,"296":2}}],["using",{"2":{"8":1,"18":1,"29":2,"36":1,"42":1,"46":1,"61":2,"78":1,"88":3,"94":1,"96":1,"97":1,"116":2,"121":2,"147":1,"148":1,"149":1,"151":1,"167":1,"301":3}}],["usage",{"2":{"168":1,"287":1}}],["usa",{"2":{"4":2}}],["us",{"2":{"4":1}}],["lxxiv+703",{"2":{"300":1}}],["lherm",{"2":{"278":3,"280":4,"284":16,"289":4,"291":6,"299":7}}],["lquad2",{"2":{"282":4,"286":3,"297":3}}],["lquad",{"2":{"278":1,"280":3,"282":5,"286":6,"293":4,"295":4,"297":3}}],["l⊗oee",{"2":{"271":1}}],["l⊗zp≅m⊗zp",{"2":{"253":1}}],["lb",{"2":{"266":4,"267":3}}],["lk3",{"2":{"263":3}}],["lg",{"2":{"262":3}}],["l=⨁i=1naixi",{"2":{"283":1}}],["l=⨁ili",{"2":{"258":1}}],["l=zrb",{"2":{"242":1}}],["l=k",{"2":{"111":2,"116":1,"117":3,"129":2}}],["l2",{"2":{"236":3}}],["ln",{"2":{"233":1,"246":3,"257":3,"287":3}}],["l1",{"2":{"233":1,"236":3,"257":3,"287":3}}],["lcm",{"2":{"145":1}}],["lmfdb",{"2":{"121":1}}],["lll",{"0":{"264":1,"265":2},"1":{"265":1,"266":1,"267":1},"2":{"121":2,"147":2,"150":2,"151":2,"265":2}}],["l→l",{"2":{"294":1}}],["l→li",{"2":{"257":6,"287":6}}],["l→k",{"2":{"120":1}}],["l→r",{"2":{"104":1}}],["l→c",{"2":{"99":1,"104":1,"120":1}}],["lp=⊥i=1tliwhere",{"2":{"213":1}}],["lp",{"2":{"93":2,"142":2,"144":4,"146":4,"213":1,"290":2,"292":1,"298":4}}],["lt",{"2":{"68":1,"103":1,"112":7,"134":2,"148":1,"151":1,"164":1,"190":1,"196":2,"213":2,"266":4,"267":2}}],["leech",{"2":{"246":6}}],["left",{"2":{"136":2,"144":1,"196":1,"283":1,"285":1}}],["less",{"2":{"112":2,"134":3,"151":1,"152":1}}],["let",{"2":{"73":1,"86":1,"109":1,"112":1,"141":1,"158":1,"160":1,"164":1,"166":2,"172":2,"174":2,"182":2,"186":1,"190":2,"208":1,"209":1,"213":3,"224":1,"228":3,"233":2,"270":2,"271":1,"283":1,"285":1,"288":1,"290":1,"294":1}}],["level",{"2":{"43":1,"96":1,"153":1,"182":2,"190":1}}],["least",{"2":{"40":1}}],["length",{"2":{"7":1,"45":1,"47":2,"48":1,"67":1,"68":1,"81":1,"111":1,"120":1,"216":1,"217":1,"230":1,"236":2,"254":1,"266":1,"276":1,"277":1,"292":1}}],["lower",{"2":{"136":2,"144":1}}],["lowerleft",{"2":{"75":2}}],["lorenz",{"2":{"125":2}}],["log⁡",{"2":{"112":2,"134":2}}],["log",{"2":{"54":3,"104":3,"112":5,"134":2,"152":2}}],["logarithmic",{"0":{"104":1},"2":{"104":1}}],["logarithms",{"2":{"78":1,"112":1}}],["logarithm",{"0":{"54":1},"2":{"54":1,"153":1}}],["long",{"0":{"40":1},"2":{"40":4,"42":2}}],["local",{"0":{"185":1,"188":1,"213":1,"214":1,"222":1,"292":1},"1":{"189":1,"190":1,"191":1,"192":1,"193":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":2,"224":1,"225":1,"226":1,"227":1,"293":1},"2":{"98":6,"111":1,"113":3,"164":1,"176":2,"182":1,"185":2,"188":1,"189":2,"190":2,"191":4,"192":1,"193":1,"213":3,"214":2,"215":2,"216":3,"218":22,"220":4,"222":1,"224":4,"226":4,"228":1,"229":1,"230":1,"231":3,"235":3,"237":2,"238":2,"239":3,"240":16,"241":2,"246":13,"251":1,"261":2,"263":2,"272":1,"292":1,"293":1}}],["locally",{"2":{"3":1,"151":1,"166":4,"167":3,"172":1,"174":3,"175":1,"253":2,"261":2,"290":1,"296":2,"297":1,"298":2}}],["located",{"2":{"34":1}}],["l",{"2":{"32":4,"67":3,"99":1,"105":5,"111":12,"113":3,"114":3,"116":3,"117":13,"118":13,"119":16,"120":14,"121":5,"122":12,"123":5,"129":3,"141":4,"164":4,"178":2,"182":6,"186":2,"189":2,"190":6,"193":1,"196":2,"205":6,"209":2,"213":12,"214":2,"215":2,"219":2,"227":2,"228":15,"229":2,"230":2,"232":2,"233":14,"234":2,"235":11,"238":3,"242":6,"244":4,"246":33,"247":1,"248":4,"249":14,"250":29,"251":4,"252":8,"253":15,"254":14,"255":22,"257":9,"258":5,"259":2,"260":1,"261":12,"262":19,"263":2,"265":5,"266":12,"267":7,"271":10,"278":1,"279":10,"281":8,"283":39,"285":25,"287":9,"288":20,"290":19,"292":10,"294":16,"296":12,"298":33}}],["li→l",{"2":{"257":6,"287":6}}],["li",{"2":{"186":1,"213":8,"233":2,"258":1,"292":1}}],["limit",{"2":{"146":4}}],["library",{"2":{"128":1}}],["link",{"2":{"94":1}}],["line",{"2":{"88":1}}],["linearly",{"2":{"119":2}}],["linear",{"0":{"77":1},"1":{"78":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1},"2":{"3":1,"6":1,"32":1,"73":1,"78":3,"88":1,"109":1,"119":1,"121":2,"131":1,"141":1,"164":1,"166":1,"270":1}}],["like",{"2":{"88":1,"116":1}}],["lifting",{"2":{"84":1,"88":1}}],["lift",{"0":{"199":1},"2":{"84":1,"196":3,"199":3,"246":1}}],["live",{"2":{"58":1,"255":1}}],["lies",{"2":{"47":1,"48":1,"151":1,"255":2}}],["lists",{"2":{"67":1,"188":1,"190":1,"254":1,"292":1}}],["list",{"2":{"13":1,"29":1,"48":1,"53":1,"57":2,"67":2,"68":1,"93":1,"98":1,"111":1,"116":1,"122":3,"152":1,"180":1,"182":1,"186":2,"188":3,"231":1,"262":2,"266":1,"275":1,"276":1,"277":1,"283":1}}],["la",{"2":{"285":2,"290":1}}],["lazy",{"2":{"94":1}}],["last",{"2":{"88":1}}],["lasvegas",{"2":{"88":1}}],["larger",{"2":{"87":1,"89":1,"151":1}}],["largest",{"2":{"63":2,"83":2,"84":1,"88":2,"94":2,"111":1,"147":5,"152":1,"213":1,"222":1,"258":1,"285":1}}],["large",{"2":{"58":3,"93":1,"116":1,"127":1}}],["latest",{"2":{"301":1}}],["later",{"2":{"18":1}}],["latter",{"2":{"160":1}}],["lattices",{"0":{"176":1,"212":1,"242":1,"243":1,"246":1,"254":1,"271":1,"273":1,"274":1,"294":1,"298":1},"1":{"177":1,"178":1,"179":1,"180":1,"181":1,"182":1,"183":1,"184":1,"185":1,"186":1,"187":1,"188":1,"189":1,"190":1,"191":1,"192":1,"193":1,"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"243":1,"244":2,"245":2,"246":2,"247":2,"248":2,"249":1,"250":1,"251":1,"252":1,"253":1,"255":1,"256":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1,"274":1,"275":2,"276":2,"277":2,"278":2,"279":1,"280":1,"281":1,"282":1,"283":1,"284":1,"285":1,"286":1,"287":1,"288":1,"289":1,"290":1,"291":1,"292":1,"293":1,"294":1,"295":2,"296":1,"297":1,"298":1,"299":2},"2":{"3":1,"158":1,"176":3,"180":1,"182":1,"184":4,"186":1,"191":1,"195":1,"196":2,"204":1,"209":4,"213":1,"214":1,"215":2,"216":3,"218":14,"220":4,"222":1,"224":3,"226":2,"229":1,"230":2,"231":5,"235":4,"237":2,"238":2,"239":2,"240":21,"241":2,"242":2,"246":6,"247":1,"248":1,"250":2,"253":1,"255":9,"257":3,"261":2,"263":2,"265":1,"268":4,"271":4,"272":2,"278":5,"281":2,"285":5,"287":4,"294":3,"296":3,"300":1}}],["lattice",{"0":{"178":1,"205":1,"259":1,"276":1,"277":1},"1":{"278":1},"2":{"3":1,"118":1,"176":2,"178":1,"179":1,"182":2,"189":1,"190":4,"191":1,"195":1,"196":3,"201":2,"205":1,"209":3,"213":3,"214":1,"215":1,"218":3,"219":1,"226":2,"227":1,"228":2,"229":1,"230":1,"231":4,"232":1,"233":4,"234":1,"235":5,"236":2,"238":1,"242":2,"244":5,"245":3,"246":51,"248":3,"249":5,"250":9,"251":2,"252":3,"253":2,"254":29,"255":14,"258":1,"259":2,"261":17,"262":14,"263":8,"265":2,"267":1,"271":5,"275":13,"276":19,"277":13,"278":13,"279":5,"280":2,"281":4,"282":4,"283":16,"284":1,"285":17,"286":2,"288":4,"289":1,"290":9,"291":1,"292":6,"293":1,"294":3,"295":1,"297":2,"298":15,"299":7}}],["language",{"2":{"4":2,"92":2,"270":1,"271":1}}],["lying",{"2":{"2":1,"113":1,"146":1,"218":3,"239":1,"241":2}}],["48",{"2":{"295":1}}],["488",{"2":{"234":1}}],["40",{"2":{"282":1,"286":1,"297":1}}],["4^1",{"2":{"246":1}}],["4653462",{"2":{"234":1}}],["4>",{"2":{"230":1,"232":1,"238":1}}],["4197",{"2":{"234":1}}],["41",{"2":{"104":2}}],["41e",{"2":{"103":1}}],["4331",{"2":{"234":1}}],["4348",{"2":{"234":1}}],["43",{"2":{"54":2,"300":1}}],["426",{"2":{"278":1}}],["42",{"2":{"53":1}}],["45",{"2":{"17":1,"165":1}}],["4",{"2":{"2":1,"11":2,"13":1,"15":1,"17":8,"45":2,"46":4,"48":1,"64":10,"67":11,"68":9,"96":1,"104":1,"116":1,"117":1,"139":1,"142":1,"146":4,"190":2,"196":4,"201":14,"209":2,"215":2,"219":2,"227":5,"230":2,"232":4,"233":1,"234":1,"238":5,"240":2,"244":2,"246":4,"249":2,"254":29,"255":1,"261":16,"272":1,"278":10,"280":5,"284":7,"289":2,"291":2,"299":15}}],["347",{"2":{"272":1}}],["346573590",{"2":{"104":1}}],["346573590279972654708616060729088284037750067180127627",{"2":{"104":1}}],["337",{"2":{"272":1}}],["3345554",{"2":{"234":1}}],["3780",{"2":{"234":1}}],["371",{"2":{"190":1}}],["370",{"2":{"190":1}}],["3^2",{"2":{"146":1}}],["3^1",{"2":{"146":1,"246":1}}],["32",{"2":{"103":1,"134":1}}],["35",{"2":{"68":1,"282":1,"286":1,"297":1}}],["30250",{"2":{"278":1}}],["3088",{"2":{"234":1}}],["3087611",{"2":{"4":2}}],["3087604",{"2":{"4":2}}],["3004",{"2":{"234":1}}],["30",{"2":{"17":2,"240":1,"261":1,"282":1,"286":1,"297":1,"300":1}}],["39",{"2":{"4":1,"111":2,"117":1,"121":1,"146":2,"162":1,"193":2,"197":2,"214":1,"228":1,"233":1,"246":2,"283":3}}],["3",{"2":{"2":1,"11":2,"13":1,"15":3,"17":12,"25":2,"32":1,"33":2,"42":2,"45":5,"46":4,"47":1,"50":1,"67":5,"68":10,"100":2,"101":4,"102":1,"103":2,"105":2,"107":2,"108":1,"111":2,"116":4,"117":1,"125":1,"139":1,"146":23,"157":2,"159":3,"161":1,"163":1,"164":1,"167":1,"169":1,"173":1,"175":1,"188":1,"193":1,"196":1,"201":60,"206":5,"209":1,"213":1,"215":2,"219":3,"227":4,"230":3,"232":3,"234":6,"236":4,"238":3,"240":7,"246":6,"254":27,"255":7,"261":18,"263":2,"267":1,"278":11,"280":8,"282":6,"284":12,"286":7,"289":1,"291":1,"293":2,"295":2,"297":4,"299":3,"301":1}}],["sssr",{"2":{"300":1}}],["s+r⊆l",{"2":{"261":2}}],["s→t",{"2":{"203":1}}],["s2",{"2":{"192":1}}],["s1",{"2":{"192":1,"213":3}}],["sqrt",{"2":{"116":1}}],["squared",{"2":{"254":1,"266":1}}],["squares",{"2":{"164":1,"288":1}}],["square",{"2":{"60":2,"88":2,"156":2}}],["swap",{"2":{"89":4}}],["sloane",{"2":{"176":1,"300":1}}],["slp",{"2":{"88":1}}],["slices",{"2":{"87":1}}],["sf",{"2":{"88":3}}],["scales",{"2":{"218":2,"219":1}}],["scale",{"2":{"89":1,"180":8,"182":3,"190":6,"213":2,"215":2,"218":4,"228":1,"231":2,"238":1,"239":10,"246":1,"250":3,"288":3,"289":1,"290":3,"291":1,"292":1}}],["scaled",{"2":{"81":4,"89":4,"207":1}}],["scalars",{"2":{"81":1,"90":2,"162":5}}],["sctable",{"2":{"32":2}}],["srow",{"2":{"79":3,"80":3,"81":10,"82":2,"83":5,"84":9,"85":1,"86":1,"87":1,"88":4,"89":9,"90":4,"146":1}}],["src",{"2":{"34":1,"35":1,"38":3,"39":4}}],["sheaves",{"2":{"246":2}}],["sharing",{"2":{"98":1}}],["share",{"2":{"30":1}}],["shape",{"2":{"75":2}}],["shapes",{"2":{"17":3}}],["shortest",{"2":{"248":1,"266":2}}],["shortcut",{"2":{"93":1}}],["shortcuts",{"2":{"13":1}}],["short",{"0":{"264":1,"266":1},"1":{"265":1,"266":1,"267":1},"2":{"30":1,"57":1,"61":1,"141":1,"266":4}}],["shorthand",{"2":{"28":1}}],["should",{"2":{"18":2,"39":1,"58":1,"94":1,"116":2,"168":6,"201":2,"210":6,"257":6,"287":6}}],["show",{"2":{"17":2,"121":1}}],["springer",{"2":{"300":4}}],["spheres",{"2":{"266":1}}],["sphere",{"2":{"266":2,"300":1}}],["splitting",{"2":{"93":1,"98":1,"258":1}}],["split",{"2":{"61":2,"111":2,"137":2,"201":2,"220":3,"221":1,"228":1}}],["spans",{"2":{"281":2,"292":1}}],["spanned",{"2":{"245":1,"254":1,"275":3,"276":3,"277":3}}],["span",{"0":{"279":1},"1":{"280":1},"2":{"88":1,"162":1,"228":1,"231":1,"242":1,"249":5,"252":3,"255":1,"271":1,"279":12,"280":4,"281":2,"283":3,"290":3}}],["sparsity",{"2":{"88":2}}],["sparsematrixcsc",{"2":{"90":2}}],["sparse",{"0":{"77":1,"79":1,"84":1,"86":1},"1":{"78":1,"79":1,"80":2,"81":2,"82":2,"83":2,"84":2,"85":2,"86":1,"87":2,"88":2,"89":2,"90":2},"2":{"3":1,"78":3,"79":5,"80":6,"81":1,"82":1,"84":1,"85":2,"86":7,"87":16,"88":3,"89":11,"90":3,"127":1}}],["space",{"0":{"245":1,"275":1,"279":1},"1":{"280":1},"2":{"86":1,"117":1,"156":12,"157":4,"158":11,"159":2,"160":9,"161":2,"162":10,"163":2,"164":2,"165":2,"167":4,"169":11,"170":2,"171":1,"172":2,"173":1,"174":3,"175":1,"186":4,"195":1,"196":1,"199":1,"201":1,"213":1,"242":3,"244":1,"245":1,"246":3,"248":1,"249":7,"250":1,"253":1,"255":9,"261":1,"262":3,"265":1,"270":6,"271":2,"275":4,"276":8,"277":8,"279":4,"280":3,"283":2,"285":9,"286":2,"288":1,"294":1,"298":4,"299":1}}],["spaces",{"0":{"155":1,"156":1,"172":1,"174":1,"270":1},"1":{"156":1,"157":2,"158":1,"159":1,"160":1,"161":1,"162":1,"163":1,"164":1,"165":1,"166":1,"167":1,"168":1,"169":1,"170":1,"171":1,"172":1,"173":2,"174":1,"175":2},"2":{"38":2,"157":1,"158":1,"164":5,"166":3,"167":2,"168":6,"257":3,"268":4,"270":6,"287":3,"294":2,"296":2}}],["special",{"0":{"61":1,"246":1},"2":{"58":1,"87":1,"147":2,"268":1}}],["specify",{"2":{"74":1}}],["specifying",{"2":{"29":1,"109":1,"111":1,"140":1}}],["specifies",{"2":{"116":2}}],["specified",{"2":{"45":1,"46":1,"47":1,"57":1,"75":2,"94":1,"146":1,"244":2}}],["specifically",{"2":{"40":1,"92":1}}],["specific",{"2":{"17":2,"30":1,"57":1,"196":1}}],["speed",{"2":{"36":2}}],["solution",{"2":{"113":1}}],["solve",{"2":{"88":2,"196":1}}],["sometimes",{"2":{"270":1,"271":1,"287":1}}],["some",{"2":{"27":1,"73":5,"75":3,"92":1,"113":1,"116":2,"119":2,"131":1,"150":1,"166":1,"167":1,"184":2,"187":2,"191":1,"202":2,"246":2,"250":2,"255":1,"263":2,"278":1,"300":1}}],["so",{"2":{"17":1,"68":1,"92":1,"112":1,"141":1,"159":1,"266":3,"290":1}}],["sophisticated",{"2":{"17":1}}],["source",{"2":{"7":7,"8":2,"10":1,"13":6,"14":12,"15":2,"16":2,"17":21,"18":4,"19":2,"20":1,"22":1,"23":2,"24":3,"25":2,"26":3,"28":1,"32":2,"33":1,"38":1,"43":1,"45":2,"46":14,"48":5,"51":2,"52":2,"53":2,"54":1,"59":6,"60":4,"61":15,"63":3,"64":1,"67":3,"68":4,"70":4,"71":4,"72":1,"74":3,"75":5,"80":3,"81":5,"82":1,"83":6,"84":5,"85":3,"87":16,"88":27,"89":19,"90":12,"93":4,"94":6,"96":5,"97":10,"98":10,"100":2,"101":3,"102":1,"103":1,"105":2,"106":1,"107":7,"111":15,"112":7,"113":5,"114":7,"116":7,"117":8,"118":9,"119":12,"120":8,"121":4,"122":7,"123":4,"124":5,"125":4,"131":5,"132":8,"134":19,"136":9,"137":4,"138":9,"144":11,"145":7,"146":24,"147":37,"148":8,"150":12,"151":26,"152":11,"153":1,"154":2,"156":4,"158":8,"160":6,"162":7,"164":5,"166":2,"168":5,"170":2,"172":1,"174":1,"176":1,"178":1,"179":1,"180":1,"181":1,"182":11,"184":4,"185":1,"186":6,"187":1,"188":1,"189":2,"190":13,"191":3,"192":1,"193":1,"195":1,"196":1,"197":9,"198":2,"199":2,"200":1,"201":2,"202":4,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":3,"211":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":8,"248":1,"249":4,"250":10,"251":2,"252":4,"253":5,"254":5,"255":12,"257":3,"258":2,"259":1,"261":4,"262":3,"263":2,"265":1,"266":5,"267":1,"275":4,"276":4,"277":4,"278":2,"279":5,"281":4,"283":15,"285":9,"287":5,"288":3,"290":7,"292":3,"294":2,"296":3,"298":6}}],["system",{"2":{"73":3,"84":3,"89":2,"254":2,"301":1}}],["syntax",{"2":{"28":1,"29":2}}],["sylow",{"2":{"17":3}}],["symmetric",{"2":{"84":2,"89":2,"156":1,"190":1,"270":1,"300":1}}],["sym",{"2":{"84":4,"89":2,"133":1}}],["symbols",{"0":{"180":1,"181":1,"188":1,"213":1,"214":1,"228":1,"229":1},"1":{"189":1,"190":1,"191":1,"192":1,"193":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"229":1,"230":2,"231":1,"232":1,"233":1,"234":1},"2":{"75":1,"164":1,"176":2,"182":1,"188":1,"228":1,"229":2,"230":2,"231":3,"237":2,"238":1,"239":2,"246":1}}],["symbol",{"0":{"185":1},"2":{"19":1,"20":1,"75":1,"111":3,"116":2,"168":2,"176":2,"182":1,"185":3,"186":2,"188":5,"189":2,"190":1,"191":2,"213":1,"214":3,"215":2,"216":3,"218":17,"220":4,"222":1,"224":3,"226":4,"228":1,"229":2,"230":1,"231":9,"235":7,"237":2,"238":2,"240":21,"241":4,"246":22,"254":3,"263":3,"287":2}}],["symbolic",{"2":{"4":1}}],["symposium",{"2":{"4":1}}],["small",{"2":{"28":1,"58":1,"61":3,"111":1,"121":1,"122":1,"146":3,"272":1}}],["smaller",{"2":{"25":2,"58":1,"121":1}}],["smallest",{"2":{"17":1,"63":1,"83":2,"88":1,"89":1,"111":1,"134":1,"137":1,"147":2,"151":1}}],["smatslp",{"2":{"88":1}}],["smat",{"2":{"17":2,"85":1,"86":2,"87":25,"88":38,"89":20,"90":12}}],["smith",{"0":{"203":1},"2":{"14":1,"16":1,"88":2,"195":1,"203":2}}],["s",{"0":{"186":1},"2":{"17":7,"59":2,"67":1,"68":15,"70":6,"71":6,"72":2,"88":2,"93":2,"96":1,"109":1,"113":1,"116":6,"117":1,"121":1,"125":2,"137":1,"138":5,"145":1,"146":6,"147":5,"151":8,"154":2,"162":3,"188":3,"190":14,"191":2,"200":2,"203":2,"213":1,"214":1,"228":2,"229":3,"233":1,"246":14,"258":2,"261":9,"263":6,"283":3,"288":1}}],["superlattice",{"2":{"292":1}}],["supermodule",{"2":{"292":1}}],["suppose",{"2":{"213":1,"233":1}}],["supports",{"2":{"176":1}}],["support",{"2":{"7":1,"16":1,"81":1,"90":1}}],["supported",{"2":{"5":1,"87":1,"105":1,"109":1,"145":1,"153":1,"176":1,"180":1}}],["supplemented",{"2":{"113":1}}],["supply",{"2":{"51":1}}],["supplied",{"2":{"32":1,"54":1,"116":2,"150":2,"276":4,"277":4}}],["surface",{"2":{"246":3}}],["surrounding",{"2":{"131":1}}],["sunits",{"2":{"146":1}}],["sunit",{"2":{"146":4,"153":3}}],["successful",{"2":{"113":1}}],["such",{"2":{"14":1,"15":1,"16":1,"25":1,"38":1,"46":3,"48":2,"61":1,"64":1,"73":1,"88":1,"89":2,"92":1,"99":1,"109":2,"111":2,"112":3,"113":1,"117":1,"123":1,"134":2,"135":1,"136":1,"137":2,"140":1,"145":1,"146":5,"147":7,"148":1,"151":3,"162":3,"164":1,"166":1,"172":1,"174":2,"180":1,"188":1,"196":1,"201":1,"203":1,"209":1,"213":1,"226":2,"255":2,"261":2,"265":1,"266":2,"267":1,"283":2,"290":4,"292":1,"294":1,"298":2}}],["suitable",{"2":{"96":1,"301":1}}],["suite",{"2":{"40":2,"42":1}}],["submodule",{"2":{"200":4,"242":1,"258":3,"271":1,"285":3,"292":1}}],["submodules",{"0":{"200":1,"211":1},"2":{"211":12}}],["submatrix",{"2":{"17":1,"87":1}}],["sublattices",{"0":{"258":1,"262":1},"2":{"254":3,"261":1,"292":1}}],["sublattice",{"2":{"195":1,"196":1,"254":4,"255":7,"262":1,"292":1}}],["subspace",{"2":{"170":2}}],["subsetitr",{"2":{"70":1,"71":1}}],["subsetsizeitr",{"2":{"70":1,"71":1,"72":1}}],["subsets",{"2":{"70":1,"71":1,"72":1}}],["subset",{"0":{"43":1},"2":{"25":2,"38":1,"43":1}}],["subrings",{"2":{"149":1}}],["subring",{"2":{"109":1,"139":1}}],["subfields",{"0":{"120":1},"2":{"96":1,"98":3,"120":6}}],["subfield",{"2":{"94":2,"96":6,"98":3,"105":2,"106":1,"114":1,"120":8,"157":2,"159":3,"161":1,"162":1,"163":1,"165":4,"167":1,"171":1,"173":1,"175":1,"240":1}}],["subtype",{"2":{"17":4,"211":2}}],["subtraction",{"2":{"15":1}}],["sub",{"0":{"65":1,"69":1,"70":1,"71":1,"72":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2},"2":{"17":8,"70":4,"71":4,"72":1,"87":1,"201":2}}],["subgroup",{"2":{"17":23,"93":2,"94":1,"123":6,"146":3}}],["subgroups",{"0":{"17":1},"2":{"16":1,"17":11}}],["sums",{"0":{"192":1},"2":{"18":1,"168":4,"209":1,"210":3,"257":3,"287":4}}],["sum",{"0":{"237":1},"1":{"238":1},"2":{"15":2,"18":2,"32":1,"68":2,"73":1,"112":1,"168":16,"174":1,"181":4,"192":3,"201":2,"210":8,"237":8,"238":2,"255":1,"257":8,"261":1,"263":1,"285":1,"287":14}}],["snf",{"2":{"14":2,"16":1,"88":3,"195":2,"203":3}}],["say",{"2":{"39":2,"160":2,"213":1,"228":1}}],["satisfied",{"2":{"134":1}}],["satisfies",{"2":{"32":1,"112":4,"134":2,"226":2,"266":2}}],["satisfying",{"2":{"298":3}}],["satisfy",{"2":{"103":2,"229":1}}],["saturation",{"2":{"88":1}}],["saturate",{"2":{"17":1,"88":1,"285":1}}],["said",{"2":{"12":1,"73":1,"158":1,"160":1,"166":1,"172":1,"174":1,"176":1,"290":2}}],["same",{"2":{"7":1,"17":2,"30":1,"36":1,"39":1,"67":1,"79":1,"87":1,"90":5,"98":1,"105":1,"116":2,"119":1,"139":1,"143":1,"144":1,"146":2,"149":1,"150":1,"164":1,"166":3,"168":1,"176":1,"213":1,"228":1,"233":1,"235":1,"237":1,"255":8,"265":3,"285":5,"292":1,"294":1,"298":1}}],["sample",{"0":{"0":1}}],["st",{"2":{"213":3}}],["store",{"2":{"196":1}}],["stored",{"2":{"8":1,"278":1}}],["stops",{"2":{"93":1}}],["style",{"2":{"88":1}}],["strictly",{"2":{"213":1}}],["strict",{"2":{"93":1,"146":1}}],["string",{"2":{"67":3,"116":4}}],["straight",{"2":{"88":1}}],["stronger",{"2":{"68":1}}],["str",{"2":{"67":2}}],["structureconstantalgebra",{"2":{"22":1,"26":1,"32":1,"33":1,"168":4,"287":4}}],["structure",{"0":{"31":1,"33":1,"38":1,"53":1},"1":{"32":1,"33":1,"39":1,"40":1},"2":{"22":2,"26":1,"30":1,"32":7,"33":4,"43":1,"58":1,"73":2,"95":1,"96":1,"98":1,"141":2,"143":1,"149":4,"196":1}}],["structural",{"0":{"16":1},"1":{"17":1,"18":1,"19":1,"20":1},"2":{"16":1}}],["still",{"2":{"61":1,"73":1,"167":1}}],["steps",{"2":{"301":1}}],["step",{"2":{"36":2}}],["stable",{"2":{"211":2,"246":2,"301":1}}],["stabilises",{"2":{"88":1}}],["statement",{"2":{"193":1}}],["started",{"0":{"301":1}}],["starts",{"2":{"94":1,"142":1}}],["starting",{"2":{"89":2}}],["stay",{"2":{"30":1}}],["standard",{"2":{"7":1,"9":1,"275":1}}],["si",{"2":{"213":1,"292":2}}],["side",{"2":{"196":1,"246":1}}],["sig",{"2":{"180":2}}],["sigma",{"2":{"122":1}}],["sign",{"2":{"62":1,"107":2,"116":1,"180":1,"266":3}}],["signs",{"0":{"62":1,"107":1},"2":{"62":2,"107":3}}],["signatures",{"2":{"209":1,"228":1,"229":5,"231":3,"232":1,"239":3,"246":6,"263":1}}],["signature",{"2":{"30":1,"109":1,"118":3,"151":2,"176":1,"180":1,"182":3,"190":3,"209":4,"230":1,"238":1,"246":1,"252":1,"263":1}}],["size",{"0":{"72":1},"2":{"70":1,"71":1,"72":1,"97":1,"146":1,"148":1,"276":3,"277":3}}],["simply",{"2":{"270":3,"271":1}}],["simplfies",{"2":{"61":1}}],["simplification",{"2":{"61":1}}],["simplified",{"2":{"60":1,"61":3,"121":1}}],["simplifies",{"2":{"57":1}}],["simplify",{"2":{"61":4,"121":1,"122":2}}],["simpler",{"2":{"121":1}}],["simplenumfieldelem",{"2":{"111":2}}],["simplenumfield",{"2":{"32":1,"111":1,"117":3,"118":2,"119":4,"120":4,"121":2,"122":5}}],["simple",{"0":{"128":1},"2":{"3":2,"26":1,"96":4,"108":7,"111":4,"113":1,"116":5,"117":6,"119":3,"120":5,"121":11,"127":10,"129":2,"131":1,"140":1,"143":1}}],["similar",{"2":{"39":1,"68":1,"73":1,"143":1,"153":1,"158":1}}],["similarly",{"2":{"17":1,"213":1,"229":1,"294":1}}],["situations",{"2":{"15":1}}],["single",{"2":{"14":1}}],["since",{"2":{"8":1,"30":1,"58":1,"73":1,"94":1,"130":1,"168":1,"182":1,"196":1,"213":1,"233":1}}],["separable",{"2":{"270":1}}],["sense",{"2":{"233":1}}],["sentence",{"2":{"67":2,"68":4}}],["sek",{"2":{"230":3,"236":2,"238":2,"240":3}}],["sesquilinear",{"2":{"213":2,"270":1}}],["session",{"2":{"36":1}}],["self",{"2":{"209":1}}],["selected",{"2":{"17":1}}],["several",{"2":{"127":3,"278":1}}],["second",{"2":{"64":2,"75":3,"88":1,"119":1,"129":1,"143":1,"162":1,"184":4,"202":4,"250":4,"254":1,"255":1,"290":3,"296":1,"298":7}}],["section",{"2":{"30":2,"148":1,"157":1,"188":1,"215":1,"230":1,"278":1,"282":1}}],["sections",{"2":{"22":1}}],["search",{"2":{"25":6}}],["ser",{"2":{"300":1}}],["server",{"2":{"153":1}}],["servers",{"2":{"40":1}}],["serving",{"2":{"17":1}}],["series",{"2":{"4":1}}],["seen",{"2":{"166":1,"249":1,"257":3,"276":3,"287":3}}],["see",{"2":{"14":1,"17":4,"22":1,"23":1,"33":1,"40":1,"62":1,"109":1,"141":1,"153":1,"157":1,"164":1,"176":1,"184":4,"201":4,"202":4,"204":1,"208":1,"242":1,"247":1,"250":4,"254":1,"260":1,"262":1,"266":3,"301":1}}],["sequence",{"2":{"7":1,"162":1,"213":1,"283":1}}],["semi",{"2":{"201":2,"208":3}}],["semisimple",{"2":{"3":1}}],["semsimple",{"2":{"3":1}}],["setindex",{"2":{"89":1}}],["setdiff",{"2":{"68":3}}],["sets",{"0":{"65":1,"66":1,"70":1,"71":1,"72":1},"1":{"66":1,"67":2,"68":2,"69":1,"70":1,"71":1,"72":1},"2":{"67":1,"68":3,"70":3,"71":3,"72":1}}],["setting",{"2":{"42":1,"45":1,"47":1,"96":1,"122":1,"195":1,"245":1,"253":3,"265":1,"267":1,"275":2,"276":2,"277":2,"294":2,"296":2}}],["set",{"0":{"65":1,"69":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2},"2":{"2":1,"19":1,"20":1,"42":1,"48":1,"67":5,"68":5,"70":2,"71":2,"72":1,"88":1,"89":1,"93":4,"94":1,"95":1,"96":2,"97":1,"98":2,"121":1,"125":1,"136":2,"143":1,"144":2,"146":6,"148":1,"150":7,"151":2,"162":1,"180":1,"195":1,"209":2,"228":2,"229":1,"233":1,"239":1,"253":6,"254":1,"283":3,"288":1,"294":5,"296":4}}],["e=k",{"2":{"270":3,"271":1}}],["e=1moda",{"2":{"125":1}}],["etale",{"2":{"270":1}}],["effect",{"2":{"235":1,"246":1}}],["efficiency",{"2":{"143":1}}],["efficient",{"2":{"60":1,"61":1,"130":1,"146":1}}],["ep",{"2":{"213":1}}],["e2",{"2":{"174":4,"255":2}}],["e→e",{"2":{"270":1,"271":1}}],["e→k",{"2":{"162":1}}],["e→a",{"2":{"53":1}}],["e×",{"2":{"158":1}}],["euler",{"2":{"148":1}}],["emb",{"2":{"108":3}}],["embs",{"2":{"107":8}}],["embed",{"2":{"167":1,"263":4}}],["embeds",{"2":{"166":2}}],["embedings",{"2":{"106":1}}],["embeddding",{"2":{"99":1}}],["embeddings",{"0":{"100":1,"103":1,"166":1,"187":1,"193":1,"256":1,"263":1},"1":{"167":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1},"2":{"99":1,"100":9,"101":3,"102":1,"103":1,"105":2,"106":1,"107":8,"108":1,"109":3,"204":1}}],["embedding",{"0":{"99":1,"102":1,"104":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1},"2":{"99":1,"100":6,"101":3,"102":1,"103":2,"104":4,"105":7,"106":6,"107":10,"108":8,"109":1,"112":1,"117":1,"120":6,"122":2,"124":7,"134":1,"164":1,"165":3,"166":1,"230":4,"232":1,"238":1,"263":3,"294":1}}],["employed",{"2":{"96":1}}],["empty",{"2":{"17":1,"48":1,"67":1,"87":1,"275":1,"276":1,"277":1}}],["echelon",{"2":{"75":2,"88":1,"143":1}}],["essentially",{"2":{"73":1,"75":2,"127":1,"128":1}}],["everything",{"2":{"120":2,"122":1}}],["every",{"2":{"112":5,"130":1,"134":2,"190":1}}],["even=true",{"2":{"263":2}}],["even=false",{"2":{"180":1}}],["even",{"2":{"13":1,"92":1,"93":1,"127":1,"180":2,"182":1,"188":1,"190":4,"205":1,"206":2,"209":2,"246":2,"250":2,"263":2,"268":1}}],["evaluating",{"0":{"103":1},"2":{"267":1}}],["evaluation",{"2":{"61":1,"103":2}}],["evaluated",{"2":{"61":1}}],["evaluates",{"2":{"60":4,"61":1}}],["evaluate",{"2":{"60":6,"61":1,"146":1}}],["equipped",{"2":{"205":2}}],["equivalence",{"0":{"164":1,"281":1},"1":{"165":1,"282":1}}],["equivalently",{"2":{"88":1}}],["equivalent",{"2":{"17":1,"246":2}}],["equals",{"2":{"156":3}}],["equal",{"2":{"52":1,"89":1,"98":1,"109":1,"129":1,"132":1,"149":1,"164":1,"208":1,"226":1,"239":4,"249":1,"261":2}}],["equationorder",{"2":{"150":1,"151":1}}],["equations",{"2":{"97":1}}],["equation",{"2":{"45":4,"46":3,"48":5,"50":1,"53":3,"54":2,"57":2,"96":1,"109":1,"121":1,"125":2,"140":1,"142":1,"150":3,"151":3,"152":4,"209":1}}],["ellcrviso",{"2":{"253":1}}],["ellipticcurvepoint",{"2":{"48":8,"51":1,"53":3,"54":2}}],["ellipticcurve",{"2":{"45":2,"46":13,"47":1,"48":3,"50":1,"51":1,"52":2,"53":2,"132":1,"134":1,"253":1}}],["elliptic",{"0":{"49":1,"55":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"45":10,"46":5,"48":12,"50":3,"51":4,"52":4,"53":6,"54":3,"57":2}}],["elsewhere",{"2":{"246":1}}],["elts",{"2":{"142":1}}],["eltype",{"2":{"67":1,"68":1}}],["elemenentary",{"2":{"250":1}}],["elementary",{"0":{"88":1,"202":1},"2":{"14":2,"17":2,"88":3,"152":1,"184":9,"202":7,"250":8}}],["element",{"0":{"110":1},"1":{"111":1,"112":1,"113":1,"114":1},"2":{"2":1,"7":6,"8":2,"9":1,"11":2,"13":1,"15":3,"17":4,"23":1,"25":1,"29":5,"32":2,"48":1,"53":2,"57":1,"58":1,"59":4,"60":6,"61":2,"63":3,"67":1,"68":3,"70":1,"71":1,"73":2,"79":1,"86":1,"100":3,"103":1,"106":1,"107":6,"108":1,"109":1,"111":11,"113":3,"114":9,"116":2,"117":6,"123":1,"124":3,"127":1,"130":1,"131":9,"132":3,"134":6,"142":2,"143":1,"146":3,"147":2,"148":1,"152":1,"158":2,"164":1,"172":1,"187":2,"196":3,"219":4,"230":1,"232":1,"240":2,"241":2,"248":1,"267":3,"280":1,"284":4,"285":1,"290":1,"295":1,"299":3}}],["elements",{"0":{"6":1,"29":1,"58":1,"103":1,"130":1,"198":1},"1":{"7":1,"8":1,"9":1,"10":1,"11":1,"59":1,"60":1,"61":1,"62":1,"63":1,"131":1,"132":1,"133":1,"134":1},"2":{"2":3,"6":1,"7":1,"8":1,"11":1,"13":1,"15":1,"17":7,"27":1,"29":1,"58":9,"59":4,"60":1,"61":1,"62":2,"67":8,"68":10,"73":1,"75":2,"79":1,"80":1,"82":1,"86":1,"88":6,"89":3,"93":1,"109":1,"111":2,"112":6,"117":2,"127":1,"130":4,"131":4,"134":4,"136":1,"141":1,"142":1,"143":4,"146":8,"147":2,"150":2,"151":4,"152":1,"153":1,"160":1,"162":4,"196":7,"262":1,"276":2,"277":2}}],["elem",{"2":{"132":1,"146":11,"147":2,"153":3,"266":6}}],["easily",{"2":{"58":1}}],["easy",{"2":{"43":1,"127":1,"157":1}}],["each",{"2":{"13":3,"29":1,"61":1,"94":1,"96":1,"117":1,"164":1,"188":1,"228":2,"231":1,"239":1}}],["edition",{"2":{"300":1}}],["edit",{"2":{"35":1}}],["e",{"2":{"32":4,"46":27,"47":3,"48":16,"50":4,"51":10,"52":10,"53":10,"54":3,"57":1,"58":2,"60":4,"61":1,"67":3,"68":7,"88":3,"94":1,"97":2,"98":1,"101":6,"102":3,"103":4,"104":5,"105":4,"106":5,"107":21,"112":1,"118":1,"122":1,"125":1,"131":1,"132":3,"134":4,"139":1,"142":3,"144":1,"145":1,"146":3,"147":6,"152":1,"156":9,"157":2,"158":2,"159":2,"160":2,"161":2,"162":1,"163":3,"164":2,"166":6,"167":4,"169":4,"172":1,"173":2,"174":3,"175":2,"213":4,"214":3,"215":16,"216":3,"217":2,"218":13,"219":15,"220":4,"221":2,"222":2,"223":2,"224":2,"225":2,"226":6,"227":15,"228":6,"229":2,"230":17,"231":4,"232":15,"233":3,"234":6,"235":5,"236":3,"237":2,"238":17,"239":3,"240":5,"241":2,"242":1,"246":1,"253":3,"254":1,"261":2,"270":10,"271":3,"277":16,"278":21,"280":7,"283":1,"284":7,"285":6,"288":1,"289":7,"290":2,"291":7,"294":1,"295":1,"299":7}}],["eigenvalues",{"2":{"182":2}}],["ei",{"2":{"58":1}}],["ei∈z",{"2":{"58":1}}],["ei≠1",{"2":{"14":1}}],["ei∣ei+1",{"2":{"14":1}}],["either",{"2":{"7":1,"17":1,"29":1,"45":1,"47":1,"67":1,"94":1,"111":1,"131":1,"160":1,"206":1,"209":2,"214":2,"229":1,"298":2}}],["ekz",{"2":{"14":1}}],["ek",{"2":{"14":1}}],["e1z×⋯×z",{"2":{"14":1}}],["e1",{"2":{"14":1,"174":4,"255":2,"270":1}}],["ej",{"2":{"13":1}}],["encyclopedia",{"2":{"300":1}}],["encompassing",{"2":{"30":1}}],["encoded",{"2":{"16":1,"176":1}}],["en",{"2":{"270":1}}],["enabled",{"2":{"235":2}}],["enough",{"2":{"93":1}}],["ensure",{"2":{"93":1}}],["entries",{"2":{"67":1,"68":1,"81":1,"84":4,"85":1,"88":1,"89":3,"107":1,"111":1,"134":1,"146":1,"148":1,"151":1,"197":2,"206":1,"246":1,"270":2,"276":1,"277":1}}],["entry",{"2":{"13":1,"83":4,"84":1,"88":4,"89":1,"112":5,"134":2,"232":1,"235":1}}],["env",{"2":{"61":1}}],["environment",{"2":{"36":1,"42":1}}],["endowed",{"2":{"270":1}}],["endomorphisms",{"0":{"262":1},"2":{"211":1,"262":2}}],["endomorphism",{"2":{"52":2,"170":1,"262":7}}],["end",{"2":{"11":1,"17":3}}],["enumeration",{"0":{"180":1,"239":1},"1":{"240":1},"2":{"3":1,"16":1,"17":1,"38":2}}],["error",{"2":{"2":2,"125":1,"147":2,"152":2,"169":1,"209":1,"230":3,"249":1,"279":1}}],["except",{"2":{"261":1}}],["excess",{"2":{"190":4}}],["extra",{"2":{"88":2,"113":2}}],["extremely",{"2":{"58":1}}],["extensions`",{"2":{"169":1}}],["extensions",{"2":{"92":4,"98":1,"106":1,"109":1,"116":1,"117":1,"127":2,"141":1,"149":1,"169":1,"268":1}}],["extension",{"0":{"106":1,"277":1},"1":{"278":1},"2":{"73":1,"92":1,"93":2,"94":3,"96":6,"97":2,"98":2,"106":1,"111":4,"113":1,"114":1,"116":5,"117":3,"119":6,"120":5,"121":7,"127":5,"129":5,"141":1,"156":2,"164":1,"166":1,"172":1,"213":2,"214":1,"229":1,"235":1,"261":2,"270":1,"271":1,"294":1}}],["extending",{"2":{"98":1,"162":1,"213":1}}],["extended",{"2":{"2":5,"246":6}}],["extend",{"2":{"2":3,"88":3,"106":2}}],["existence",{"2":{"73":1}}],["exists",{"2":{"64":1,"113":1,"135":1,"160":1,"172":1,"174":1,"201":1,"209":1,"290":1}}],["exist",{"2":{"48":1,"89":1}}],["execute",{"2":{"36":1}}],["exp⁡",{"2":{"209":1}}],["exp⁡d",{"2":{"58":1}}],["expensive",{"2":{"144":1,"283":2}}],["experimental",{"2":{"30":1}}],["explicit",{"2":{"131":1}}],["expands",{"2":{"60":4}}],["expanded",{"2":{"59":4,"111":2}}],["exp",{"2":{"59":2,"63":6}}],["expressing",{"2":{"25":1}}],["exponents",{"2":{"58":3,"61":2}}],["exponent",{"2":{"14":2,"59":1,"60":2,"63":3,"94":2}}],["example",{"0":{"95":1,"108":1,"151":1,"169":1,"171":1,"173":1,"175":1,"223":1,"234":1},"2":{"12":1,"38":1,"43":1,"51":1,"78":1,"79":1,"86":1,"106":1,"108":1,"134":1,"150":1,"206":1,"261":2,"301":1}}],["examples",{"0":{"0":1,"48":1,"76":1,"142":1,"157":1,"159":1,"161":1,"163":1,"165":1,"167":1,"215":1,"217":1,"219":1,"221":1,"225":1,"227":1,"230":1,"232":1,"236":1,"238":1,"240":1,"278":1,"280":1,"282":1,"284":1,"286":1,"289":1,"291":1,"293":1,"295":1,"297":1,"299":1},"2":{"17":3,"22":1,"24":1,"25":2,"26":3,"28":1,"32":2,"33":1,"45":2,"46":2,"48":4,"51":2,"52":1,"53":1,"67":3,"68":4,"100":2,"101":3,"102":1,"103":1,"105":2,"107":5,"116":6,"117":2,"118":2,"120":1,"124":3,"157":1,"196":2,"201":2,"209":1,"215":1,"244":1,"246":5,"248":1,"249":2,"254":5,"255":2,"267":1,"278":1,"282":1}}],["d=±1",{"2":{"255":1}}],["dt",{"2":{"213":2}}],["d1",{"2":{"213":2}}],["dyadic",{"2":{"213":1,"220":3,"221":1,"228":1}}],["d→q",{"2":{"205":1}}],["d→gi",{"2":{"18":2}}],["d×d→q",{"2":{"205":1}}],["dual",{"0":{"259":1},"2":{"152":1,"205":1,"255":1,"259":2,"285":3,"290":1}}],["due",{"2":{"130":1,"135":1,"141":1,"146":1}}],["d∗a",{"2":{"137":1}}],["da",{"2":{"135":1,"137":1}}],["datum",{"2":{"228":1,"283":1}}],["dated",{"2":{"92":1}}],["database",{"2":{"278":2}}],["databases",{"2":{"278":1}}],["data",{"2":{"25":5,"61":1,"142":1,"146":3,"214":2}}],["drop",{"2":{"68":1,"87":1}}],["dn",{"2":{"61":1}}],["d",{"2":{"18":5,"32":5,"58":2,"59":4,"61":1,"67":4,"81":1,"88":3,"89":1,"109":1,"111":3,"116":1,"117":1,"118":2,"135":1,"137":3,"151":4,"164":3,"188":4,"196":9,"205":1,"209":2,"215":2,"219":2,"227":2,"230":2,"232":2,"234":2,"238":2,"246":1,"254":2,"255":2,"267":3,"278":8,"280":4,"282":4,"284":2,"286":4,"289":2,"291":2,"293":2,"295":2,"297":4,"299":2,"300":1}}],["di=−1",{"2":{"213":1}}],["di=1",{"2":{"213":1}}],["dim",{"2":{"158":1,"159":1,"182":1,"190":1}}],["dimensions",{"2":{"32":1}}],["dimensional",{"2":{"30":1,"32":1,"73":1,"90":1,"270":1}}],["dimension",{"2":{"14":1,"22":1,"26":7,"32":2,"156":2,"157":2,"158":3,"164":2,"169":1,"182":1,"190":1,"249":1,"270":1,"280":2,"283":1,"286":1}}],["dichotomy",{"2":{"129":1}}],["dictionary",{"2":{"29":1,"59":1,"67":3,"68":1,"107":1,"144":1,"229":1,"231":1}}],["dictionaries",{"2":{"16":1}}],["dict",{"2":{"16":2,"29":1,"59":4,"61":5,"67":3,"68":2,"93":1,"107":2,"144":3,"146":1,"164":1,"165":1,"231":1,"232":1,"239":1,"240":2}}],["di",{"2":{"117":1,"213":1,"214":1}}],["dixon",{"2":{"88":4}}],["diagonalization",{"0":{"162":1},"1":{"163":1},"2":{"188":1}}],["diagonal",{"2":{"75":2,"87":4,"88":5,"89":2,"148":1,"160":1,"162":5,"163":2,"190":1,"197":2,"206":1,"246":1,"279":2,"280":1}}],["digits",{"2":{"58":1}}],["distinction",{"2":{"268":1}}],["distributed",{"2":{"134":1}}],["distributivity",{"2":{"32":1}}],["display",{"2":{"196":1}}],["disable",{"2":{"116":2}}],["disabled",{"2":{"45":1,"47":1,"122":1,"235":1,"245":1,"265":1,"267":1,"275":2,"276":2,"277":2}}],["disjoint",{"2":{"68":2,"119":3}}],["discarded",{"2":{"146":2}}],["disc",{"2":{"54":2,"152":1,"158":1,"214":1}}],["discrete",{"0":{"54":1},"2":{"54":1,"78":1,"153":1}}],["discriminant",{"0":{"183":1,"194":1,"204":1,"260":1},"1":{"195":1,"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1,"204":1,"205":2,"206":2,"207":2,"208":2,"209":2,"210":2,"211":2},"2":{"45":1,"46":4,"61":1,"96":1,"97":3,"118":10,"132":5,"134":5,"150":4,"152":5,"158":3,"159":1,"183":1,"184":8,"196":2,"204":1,"205":6,"209":3,"213":3,"214":1,"218":6,"219":1,"250":8,"260":1,"261":1,"283":2,"284":1}}],["differents",{"2":{"152":1}}],["differently",{"2":{"139":1,"141":1}}],["different",{"2":{"30":2,"68":1,"109":1,"116":1,"127":1,"143":1,"152":3,"230":1,"285":1,"298":1}}],["difference",{"2":{"17":1,"68":2}}],["divide",{"2":{"152":1}}],["divides",{"2":{"125":1,"145":1,"151":1}}],["divided",{"2":{"88":2}}],["dividing",{"2":{"94":1,"146":2,"150":1,"228":2}}],["divisor",{"2":{"151":4,"152":1}}],["divisors",{"2":{"14":3,"17":2,"88":4,"144":2,"146":2,"150":1}}],["divisible",{"2":{"113":3,"146":3,"151":1,"190":1,"246":1}}],["divisibility",{"2":{"88":1,"255":3}}],["division",{"2":{"48":2}}],["div",{"2":{"81":1,"90":1}}],["divexact",{"2":{"17":1,"81":1,"90":1,"145":1}}],["directories",{"2":{"38":1}}],["directory",{"2":{"34":1,"38":1,"39":1,"43":2}}],["directly",{"2":{"35":1}}],["direct",{"0":{"18":1,"192":1},"2":{"13":1,"15":3,"16":1,"18":9,"73":1,"168":26,"181":3,"192":2,"201":2,"209":1,"210":20,"237":6,"238":2,"257":20,"263":1,"287":24}}],["dfg",{"2":{"5":1}}],["downloads",{"2":{"301":1}}],["don",{"2":{"228":1}}],["done",{"2":{"4":1,"121":1,"282":1}}],["dollar",{"2":{"116":1}}],["dot",{"2":{"90":9}}],["do",{"2":{"61":1,"79":1,"201":2,"301":1}}],["document",{"2":{"127":1}}],["documentation",{"0":{"34":1,"35":1,"36":1},"1":{"35":1,"36":1},"2":{"34":1,"35":1}}],["doctest",{"2":{"36":1}}],["doc",{"2":{"36":2}}],["docs>",{"2":{"36":1}}],["docs",{"2":{"34":1,"35":1,"36":2}}],["does",{"2":{"12":1,"60":2,"61":1,"89":1,"97":1,"146":1}}],["doi",{"2":{"4":2}}],["domain",{"2":{"2":2,"15":1,"73":1,"94":1,"123":3,"141":2,"149":1,"261":1}}],["de",{"2":{"278":2}}],["der",{"2":{"272":1,"300":1}}],["depth",{"2":{"253":18,"294":12,"296":12}}],["depend",{"2":{"146":1}}],["depending",{"2":{"60":1,"107":1,"139":1,"168":1,"218":5,"224":1,"253":3,"287":1,"294":2,"296":2}}],["depends",{"2":{"4":1,"196":1}}],["dealing",{"2":{"158":1}}],["deal",{"2":{"149":1}}],["deals",{"2":{"57":1,"73":1,"78":1,"92":2,"139":1,"268":1}}],["degenerate",{"2":{"164":2,"170":1,"176":1,"208":3}}],["deg⁡",{"2":{"146":2}}],["degree",{"0":{"277":1},"1":{"278":1},"2":{"95":1,"96":1,"97":2,"98":4,"109":1,"111":3,"113":1,"116":5,"117":2,"118":7,"127":1,"142":3,"146":8,"147":2,"149":1,"151":2,"152":2,"156":2,"159":2,"215":2,"230":1,"236":4,"238":2,"246":3,"248":1,"254":7,"255":3,"261":4,"263":1,"268":2,"270":1,"277":4,"278":8,"280":1,"282":2,"283":1,"284":6,"286":5,"299":3}}],["decide",{"2":{"97":2,"167":1,"195":1}}],["decomposed",{"2":{"174":1}}],["decomposition",{"2":{"2":1,"98":2,"123":2,"142":1,"165":1,"167":1,"173":1,"175":1,"213":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"236":1,"238":1,"240":1,"282":1,"286":1,"291":1,"292":4,"293":2,"297":1,"299":1}}],["decom",{"2":{"61":2}}],["denominator",{"2":{"134":1,"135":1,"137":2,"182":1,"206":1}}],["denoted",{"2":{"254":1}}],["denotes",{"2":{"246":1}}],["denote",{"2":{"89":2}}],["density",{"2":{"88":2}}],["dense",{"2":{"85":2,"86":1,"87":2,"88":2,"90":3,"127":1}}],["descibing",{"2":{"98":1}}],["describe",{"2":{"99":1}}],["described",{"2":{"30":1,"121":1}}],["describes",{"2":{"13":3,"30":1}}],["desired",{"2":{"75":2,"98":1,"195":1}}],["dedekind",{"2":{"73":1,"135":1,"141":1,"143":1,"149":1}}],["delete",{"2":{"68":3}}],["dets",{"2":{"218":1,"219":1}}],["details",{"2":{"141":1}}],["determinants",{"2":{"218":2,"224":1}}],["determinant",{"0":{"224":1},"1":{"225":1},"2":{"88":4,"109":1,"158":3,"164":1,"180":6,"182":1,"190":1,"213":5,"214":1,"218":4,"224":5,"239":11,"250":1,"254":1,"272":1}}],["determined",{"2":{"164":1,"246":1}}],["determines",{"2":{"22":1,"98":1,"168":1,"287":1}}],["determine",{"2":{"2":3,"64":1,"96":1,"98":1,"106":1,"164":1}}],["det",{"2":{"64":1,"88":2,"109":2,"132":1,"134":1,"158":3,"159":1,"182":1,"188":2,"190":1,"214":2,"215":3,"217":1,"218":2,"219":1,"221":1,"223":1,"224":2,"225":3,"230":1,"236":1,"238":2,"239":2,"246":2,"250":1}}],["developed",{"2":{"36":1}}],["development",{"2":{"5":1,"36":1}}],["deformation",{"2":{"246":3}}],["defect",{"2":{"111":3}}],["definite",{"0":{"294":1},"1":{"295":1},"2":{"160":12,"161":2,"182":3,"186":1,"233":4,"235":1,"248":1,"252":9,"253":2,"254":2,"258":1,"265":1,"266":3,"267":1,"272":1,"290":9,"291":1,"294":2,"295":1}}],["definitions",{"0":{"269":1},"1":{"270":1,"271":1},"2":{"149":1,"176":1,"269":1,"272":1}}],["definition",{"2":{"121":1,"129":1,"164":1,"213":1,"233":2}}],["defining",{"2":{"2":1,"33":1,"46":1,"94":2,"96":5,"97":4,"105":1,"116":6,"117":2,"118":2,"119":4,"121":3,"122":1,"125":3,"150":1,"157":2,"159":3,"217":2,"232":2,"280":2,"284":3}}],["define",{"2":{"59":1,"107":1,"116":2,"138":1,"147":1,"158":1,"213":1,"228":1,"233":1,"283":2,"285":1,"288":1,"294":1,"301":1}}],["defines",{"2":{"48":1,"73":1,"75":1,"94":1,"144":1,"150":4,"231":1,"285":1}}],["defined",{"0":{"262":1},"2":{"46":2,"48":1,"50":1,"60":1,"68":1,"75":3,"93":1,"94":1,"95":1,"96":2,"97":4,"101":1,"104":1,"105":1,"107":1,"108":2,"116":3,"119":1,"121":1,"124":2,"129":2,"133":1,"140":1,"146":3,"158":3,"169":1,"181":1,"182":3,"186":3,"190":2,"198":1,"207":2,"209":1,"213":3,"230":2,"235":1,"250":2,"266":1,"283":2,"285":2}}],["default",{"2":{"22":1,"45":1,"47":1,"75":2,"107":1,"116":2,"121":1,"122":1,"146":1,"162":1,"180":3,"184":2,"202":2,"209":2,"235":1,"245":1,"250":2,"253":7,"262":3,"265":1,"267":1,"275":2,"276":2,"277":2,"294":5,"296":5,"298":2}}],["deutsche",{"2":{"5":1}}],["hlb",{"2":{"278":2}}],["h3",{"2":{"169":1}}],["h2",{"2":{"167":3,"169":2}}],["hypothesis",{"2":{"146":1}}],["hyperkaehler",{"2":{"246":8}}],["hyperbolic",{"0":{"174":1},"1":{"175":1},"2":{"174":6,"175":1,"246":5,"255":1}}],["hyperelliptic",{"2":{"46":2}}],["hypellcrv",{"2":{"46":2,"132":1,"134":1}}],["http",{"2":{"121":1,"278":2}}],["https",{"2":{"4":1,"301":1}}],["highest",{"2":{"254":3}}],["hilbert",{"2":{"94":2,"111":2,"164":1,"229":1}}],["hierarchy",{"2":{"38":1}}],["hcat",{"2":{"87":2}}],["hnf",{"2":{"73":3,"75":4,"88":6,"136":6,"143":1,"144":3,"148":1}}],["huge",{"2":{"61":1}}],["h=h1⊗⋅⊗hn",{"2":{"19":1}}],["h=g",{"2":{"17":2}}],["h→g",{"2":{"17":3}}],["h+h",{"2":{"15":1}}],["h",{"2":{"15":8,"17":9,"19":1,"20":2,"46":1,"157":1,"159":10,"161":4,"163":4,"164":2,"167":5,"169":2,"173":2,"174":2,"175":2,"246":10,"254":1,"300":4}}],["holy",{"2":{"246":1}}],["holds",{"2":{"88":2,"113":1,"145":1}}],["hold",{"2":{"85":1,"156":2}}],["horizontally",{"2":{"87":2}}],["homomorpisms",{"2":{"20":1}}],["homomorphisms",{"2":{"15":1,"20":1,"196":1,"294":1}}],["homomorphism",{"2":{"15":1,"164":1,"294":2}}],["homology",{"2":{"16":1}}],["hom",{"0":{"20":1},"2":{"15":3,"16":2,"19":1,"20":1,"108":1}}],["hofmann",{"2":{"4":2}}],["however",{"2":{"61":1,"73":1,"87":1,"116":1,"149":1}}],["how",{"0":{"1":1},"2":{"116":2,"157":1,"246":1,"301":1}}],["habilitationsschrift",{"2":{"272":1}}],["half",{"2":{"208":2}}],["hand",{"2":{"130":1}}],["handle",{"2":{"58":1}}],["hadamard",{"2":{"88":1}}],["having",{"2":{"12":1,"17":1}}],["have",{"2":{"6":1,"9":1,"12":1,"13":3,"30":1,"45":1,"48":1,"58":1,"61":1,"67":1,"68":1,"79":1,"86":2,"87":1,"94":1,"98":1,"116":2,"125":1,"127":1,"129":2,"130":2,"141":1,"143":2,"151":2,"153":1,"201":2,"206":1,"208":1,"255":3,"285":2}}],["hart",{"2":{"4":2}}],["hasse",{"2":{"164":4,"165":1,"190":3,"281":2,"282":1}}],["has",{"2":{"2":1,"17":8,"61":1,"67":1,"74":1,"93":1,"94":1,"109":1,"113":1,"117":1,"125":1,"141":1,"146":1,"147":3,"149":1,"150":3,"151":1,"160":1,"164":1,"209":2,"218":3,"230":1,"231":1,"235":1,"239":1,"242":1,"246":1,"285":1,"294":1,"298":5}}],["heuristically",{"2":{"253":3,"294":2,"296":2}}],["hessian",{"2":{"190":1}}],["helper",{"2":{"153":1}}],["hence",{"2":{"93":1,"143":1,"149":1}}],["hermgenus",{"2":{"229":2,"231":8,"235":3,"237":3,"239":1,"240":1,"241":2}}],["hermlocalgenus",{"2":{"214":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"229":1,"231":1,"235":2,"237":3,"239":1,"240":2,"241":2}}],["hermlat",{"2":{"214":2,"215":1,"217":1,"221":1,"223":1,"225":1,"229":1,"230":1,"233":1,"235":7,"236":1,"238":1,"277":4}}],["hermspace",{"2":{"156":2,"174":1}}],["hermitan",{"2":{"277":1}}],["hermite",{"2":{"75":2,"88":3}}],["hermitian",{"0":{"212":1,"270":1,"271":1,"277":1},"1":{"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"278":1},"2":{"3":1,"156":5,"157":2,"159":2,"160":5,"161":2,"163":1,"166":1,"167":2,"168":3,"169":11,"173":1,"174":1,"175":1,"213":2,"214":2,"215":3,"216":3,"218":17,"219":1,"220":4,"222":1,"224":3,"226":4,"227":1,"228":1,"229":2,"230":3,"231":9,"232":1,"233":2,"234":1,"235":9,"236":2,"237":2,"238":3,"239":4,"240":23,"241":2,"245":2,"268":3,"270":10,"271":6,"272":3,"275":8,"277":12,"278":8,"280":2,"284":1,"287":3,"289":1,"291":1,"299":4}}],["herm",{"2":{"38":2}}],["here",{"2":{"38":1,"68":1,"92":1,"108":1,"109":1,"141":1,"143":1,"153":3,"157":1,"164":1,"196":1,"215":1,"229":1,"246":1,"268":1,"272":1,"278":1,"301":1}}],["hecke",{"0":{"4":1},"2":{"4":3,"5":1,"12":1,"36":4,"38":3,"42":4,"43":2,"58":1,"92":1,"93":12,"94":1,"97":1,"105":1,"106":1,"109":2,"116":1,"127":1,"129":1,"146":1,"149":2,"196":1,"209":1,"215":1,"219":1,"227":1,"230":3,"232":1,"234":1,"238":1,"239":6,"240":3,"246":1,"254":1,"278":10,"280":1,"284":8,"289":1,"291":1,"299":10,"301":5}}],["m∩e⊗n",{"2":{"285":1}}],["m∩qn",{"2":{"255":1}}],["m2",{"2":{"255":2}}],["mz=2nz+∑x∈nzφ",{"2":{"195":1}}],["mz",{"2":{"195":1,"197":1}}],["m⊗r≅n⊗r",{"2":{"176":1}}],["m⊗zp",{"2":{"176":1}}],["m−1",{"2":{"158":1,"213":1}}],["mfp",{"2":{"142":2}}],["m→l",{"2":{"121":1}}],["m→k",{"2":{"121":1}}],["mr",{"2":{"93":4}}],["m0=zk",{"2":{"93":1}}],["m0",{"2":{"93":3}}],["m0≤zk",{"2":{"93":1}}],["m∞=",{"2":{"93":1}}],["m∞",{"2":{"93":3}}],["mc",{"2":{"88":4,"95":2,"96":2,"146":6,"301":1}}],["m⊂v",{"2":{"73":1}}],["ms",{"2":{"146":2}}],["msubsetit",{"2":{"70":1,"71":1}}],["msets",{"2":{"67":1}}],["mset",{"2":{"17":3,"67":14,"68":20,"70":1,"71":1}}],["meara",{"2":{"193":2}}],["meanwhile",{"2":{"270":1}}],["mean",{"2":{"109":1}}],["means",{"2":{"67":1,"233":1,"246":1}}],["metric",{"2":{"147":1,"150":1,"151":1}}],["method",{"2":{"88":1}}],["methods",{"2":{"58":1,"78":1,"168":1,"248":1,"268":1}}],["mentioned",{"2":{"108":1,"153":1}}],["me",{"2":{"61":2}}],["mp=lp",{"2":{"292":1}}],["mp=q",{"2":{"54":1}}],["mpolyringelem",{"2":{"46":1}}],["mpolyring",{"2":{"46":1}}],["mq=p",{"2":{"48":1}}],["mukai",{"2":{"246":8}}],["mu",{"2":{"146":4}}],["mutable",{"2":{"86":1}}],["mult",{"2":{"68":2}}],["multivariate",{"2":{"127":1}}],["multiset",{"2":{"67":9,"68":6}}],["multi",{"0":{"65":1,"66":1,"70":1},"1":{"66":1,"67":2,"68":2,"69":1,"70":1,"71":1,"72":1},"2":{"67":4,"68":5,"70":1,"71":1}}],["multiply",{"2":{"60":2,"89":1}}],["multipliers",{"2":{"151":2}}],["multiplied",{"2":{"58":1}}],["multiplicities",{"2":{"68":4}}],["multiplicity",{"2":{"67":3,"68":6}}],["multiplicatively",{"2":{"144":1,"153":1}}],["multiplicative",{"2":{"58":1,"135":1,"148":2}}],["multiplication",{"2":{"17":2,"28":1,"81":1,"90":1,"111":1}}],["multiple",{"2":{"17":2,"51":1,"54":1,"97":1,"111":1,"125":1,"180":2}}],["much",{"2":{"68":1,"127":1}}],["must",{"2":{"39":3,"45":1,"46":1,"48":1,"80":1,"85":1,"94":1,"96":1,"107":2,"113":1,"118":1,"146":1,"156":6,"186":1,"246":1,"255":2,"276":1,"277":1,"281":2,"285":2}}],["mts",{"2":{"35":1}}],["mh",{"2":{"17":1}}],["mg",{"2":{"17":1}}],["m",{"2":{"13":16,"17":4,"48":1,"54":1,"67":4,"68":19,"73":2,"74":6,"75":5,"87":4,"88":1,"89":3,"93":5,"94":9,"97":2,"121":2,"123":9,"125":2,"136":10,"144":6,"148":2,"150":3,"151":4,"158":2,"162":4,"164":6,"170":4,"176":1,"188":5,"195":10,"196":8,"197":1,"201":2,"213":2,"226":6,"253":4,"255":26,"261":19,"281":4,"285":12,"292":4,"296":10,"298":5,"300":1}}],["miscaellenous",{"0":{"138":1,"147":1}}],["miscellaneous",{"0":{"63":1,"125":1,"134":1}}],["minpoly",{"2":{"114":3,"134":1}}],["minkowski",{"2":{"109":3,"112":2,"134":2,"147":1,"150":1,"151":3}}],["min",{"2":{"63":1,"180":5,"239":3}}],["minimal",{"2":{"17":1,"25":2,"88":1,"113":1,"114":2,"134":1,"150":1,"283":8,"298":2}}],["minimum",{"0":{"83":1},"2":{"2":1,"83":4,"88":1,"142":2,"146":8,"147":10,"217":1,"218":2,"232":2,"246":2,"266":3,"282":1,"289":1,"292":1}}],["mirrors",{"2":{"38":1,"43":1,"196":1}}],["might",{"2":{"30":1,"154":1}}],["mi",{"2":{"13":3,"74":3,"292":2}}],["m=∑aiωi",{"2":{"73":1}}],["m=",{"2":{"13":1}}],["move",{"2":{"196":1}}],["morphisms",{"0":{"122":1}}],["morphism",{"2":{"99":1,"105":1,"106":3,"120":2,"122":1,"166":1,"270":2}}],["moreover",{"2":{"68":1,"282":1,"290":1}}],["more",{"2":{"7":1,"12":1,"58":1,"79":1,"86":1,"92":2,"109":1,"130":1,"141":1,"146":2,"149":1,"153":1,"254":1}}],["monomorphism",{"2":{"164":1,"294":1}}],["monic",{"2":{"125":1,"150":1}}],["monitored",{"2":{"96":1}}],["monte",{"2":{"88":1}}],["modification",{"2":{"261":3}}],["modern",{"2":{"92":1}}],["modelled",{"2":{"79":1,"86":1}}],["mod",{"2":{"61":2,"84":3,"89":1,"95":1,"96":1,"133":2,"146":2,"148":1,"153":1,"190":1}}],["moduli",{"2":{"246":2}}],["modulus",{"2":{"94":1,"97":4,"195":5,"196":1,"197":4,"201":2,"209":2}}],["modular",{"2":{"61":3,"88":1,"213":1,"290":9,"291":2,"292":1}}],["module$",{"2":{"294":1}}],["module",{"0":{"255":1,"285":1},"1":{"286":1},"2":{"43":2,"73":4,"74":3,"75":3,"109":1,"125":2,"135":1,"139":1,"141":2,"143":2,"149":3,"195":4,"196":4,"197":8,"201":30,"202":4,"203":3,"206":21,"207":1,"208":1,"209":1,"242":1,"250":1,"255":2,"261":6,"283":1,"285":1}}],["modules",{"0":{"195":1,"202":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"12":1,"13":1,"73":3,"149":1,"196":2,"201":2,"208":1,"209":1,"210":3}}],["modulo",{"0":{"2":1},"2":{"2":1,"84":3,"88":2,"89":5,"93":3,"94":2,"146":3,"148":2,"164":1,"207":2}}],["mostly",{"2":{"13":1}}],["most",{"2":{"12":1,"128":1,"196":1,"235":1,"255":1,"272":1}}],["marcus",{"2":{"300":1}}],["markus",{"2":{"272":1,"278":2}}],["magma",{"2":{"272":1}}],["may",{"2":{"253":3,"292":1,"294":2,"296":2}}],["makes",{"2":{"233":1}}],["mass",{"0":{"233":1},"1":{"234":1},"2":{"186":3,"233":4,"234":1,"235":3,"251":2}}],["main",{"2":{"246":1}}],["maintaining",{"2":{"73":1}}],["mainly",{"2":{"15":1,"149":1,"269":1}}],["maximum",{"0":{"83":1},"2":{"83":2,"84":1,"88":2}}],["maximalorder",{"2":{"150":3}}],["maximal",{"0":{"298":1},"1":{"299":1},"2":{"2":2,"61":1,"73":1,"75":1,"83":1,"93":2,"94":1,"95":1,"96":8,"97":1,"113":1,"118":3,"121":2,"142":4,"143":1,"145":1,"146":4,"147":2,"149":4,"150":7,"151":1,"154":4,"157":1,"159":2,"165":4,"166":1,"167":1,"173":1,"175":1,"190":1,"215":3,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":2,"232":1,"236":3,"238":3,"240":8,"246":1,"258":1,"261":3,"278":4,"282":2,"283":1,"284":12,"286":5,"289":2,"291":1,"293":1,"297":1,"298":16,"299":19,"301":1}}],["maxabs",{"2":{"63":1}}],["max",{"2":{"63":1,"180":5,"235":2,"239":5}}],["made",{"2":{"61":1,"143":1,"268":1}}],["manifold",{"2":{"246":1}}],["manifolds",{"2":{"246":2}}],["manipulation",{"0":{"89":1}}],["manual",{"0":{"56":1},"2":{"34":1,"56":1}}],["many",{"2":{"18":1,"58":2,"88":1,"116":1,"149":1,"272":1}}],["matspaceelem",{"2":{"293":2,"295":1}}],["matches",{"2":{"261":1}}],["match",{"2":{"209":1}}],["math",{"2":{"278":2}}],["mathematischen",{"2":{"300":1}}],["mathematics",{"2":{"300":3}}],["mathematically",{"2":{"58":1,"127":1,"129":1}}],["mathematik",{"2":{"272":1}}],["mathbb",{"2":{"261":1}}],["mathcal",{"2":{"152":2}}],["matd×d",{"2":{"151":1}}],["matn×m",{"2":{"86":1}}],["mat",{"2":{"74":3,"111":1,"138":2,"147":2,"151":2,"300":1}}],["matelem",{"2":{"64":3,"85":1,"87":1,"90":2,"111":1,"156":2,"158":1,"162":5,"170":2,"179":1,"191":1,"226":2,"244":1,"245":1,"253":1,"262":5,"275":1,"276":2,"277":2,"279":2,"283":2,"292":3,"294":1,"296":1}}],["matrices",{"0":{"64":1,"73":1,"86":1,"226":1},"1":{"74":1,"75":1,"76":1,"87":1,"88":1,"89":1,"90":1,"227":1},"2":{"64":1,"73":1,"78":1,"79":1,"86":6,"87":4,"90":1,"141":2,"254":1,"255":1,"262":2,"270":2,"292":2,"296":2}}],["matrixelem",{"2":{"90":2,"254":1}}],["matrixalgebra",{"2":{"22":1}}],["matrix",{"0":{"179":1,"206":1,"244":1},"2":{"7":1,"11":1,"13":4,"14":2,"15":2,"24":1,"25":2,"26":3,"30":1,"64":4,"73":5,"74":11,"75":4,"85":1,"87":30,"88":9,"89":10,"90":12,"109":6,"111":7,"134":6,"136":2,"138":4,"140":2,"142":1,"143":1,"144":1,"146":4,"147":4,"148":1,"150":4,"151":14,"152":1,"156":8,"157":2,"158":5,"159":1,"160":2,"162":12,"163":2,"164":1,"169":2,"170":3,"171":1,"179":1,"182":1,"189":1,"190":2,"191":3,"196":3,"197":6,"201":7,"206":5,"213":1,"215":1,"217":1,"219":1,"226":8,"227":3,"228":1,"230":1,"231":1,"232":3,"234":1,"238":1,"242":2,"244":12,"245":1,"246":10,"248":1,"249":12,"250":1,"254":6,"255":9,"261":6,"262":3,"263":1,"265":2,"266":2,"267":2,"270":3,"275":4,"276":15,"277":15,"278":4,"279":6,"280":6,"282":2,"283":12,"284":14,"286":11,"289":4,"291":1,"292":3,"293":2,"295":1,"297":2,"299":13}}],["matalgebraelem",{"2":{"25":1}}],["mapping",{"2":{"120":2,"122":1,"164":1}}],["mapclassgrp",{"2":{"94":2,"146":1}}],["maprayclassgrp",{"2":{"93":5,"94":2}}],["maps",{"0":{"15":1},"2":{"15":3,"17":1,"19":3,"94":1,"153":1,"168":1,"257":3,"261":1,"287":4}}],["map",{"2":{"2":15,"15":5,"17":20,"19":7,"20":6,"26":1,"32":3,"46":1,"53":3,"89":1,"93":3,"94":6,"95":1,"109":1,"112":2,"117":1,"120":8,"121":3,"122":5,"123":6,"134":2,"142":1,"146":20,"148":7,"153":2,"159":1,"162":1,"169":4,"201":6,"215":12,"219":12,"227":12,"230":12,"232":12,"234":3,"238":12,"246":1,"261":10,"278":15,"280":7,"282":6,"283":1,"284":5,"286":6,"289":4,"291":4,"293":3,"295":3,"297":6,"299":4}}],["rwth",{"2":{"272":1,"278":2}}],["rt",{"2":{"213":2}}],["r2",{"2":{"148":1}}],["r1",{"2":{"148":1,"213":2}}],["r+2≤i≤r+s",{"2":{"134":1}}],["r+1≤i≤r+s",{"2":{"109":1,"112":3}}],["ri",{"2":{"213":2}}],["rich",{"2":{"149":1}}],["riemann",{"2":{"146":1}}],["right",{"2":{"88":3,"246":1}}],["rincipal",{"2":{"61":1}}],["ringelement",{"2":{"207":1}}],["ringelem",{"2":{"81":1}}],["rings",{"0":{"148":1},"2":{"60":1,"78":1,"127":1}}],["ring",{"0":{"82":1},"2":{"2":2,"22":1,"23":2,"28":2,"32":2,"46":2,"58":2,"59":1,"75":2,"79":2,"80":3,"82":4,"86":3,"87":9,"89":5,"90":1,"94":2,"95":1,"96":1,"97":2,"98":1,"109":1,"116":2,"134":2,"139":1,"141":2,"142":1,"143":2,"146":3,"148":8,"149":1,"151":2,"158":3,"159":1,"162":1,"188":1,"196":1,"201":4,"206":4,"234":2,"246":1,"270":1,"271":3,"276":3,"278":2,"283":7,"284":2,"292":2,"298":3}}],["root",{"0":{"254":1},"1":{"255":1,"256":1,"257":1,"258":1,"259":1,"260":1,"261":1,"262":1,"263":1,"264":1,"265":1,"266":1,"267":1},"2":{"96":1,"196":1,"230":3,"246":2,"254":26,"255":2,"261":2,"263":2}}],["roots",{"2":{"93":1,"119":3,"254":1}}],["role",{"2":{"78":1}}],["rows",{"0":{"79":1,"84":1},"1":{"80":1,"81":1,"82":1,"83":1,"84":1,"85":1},"2":{"7":1,"17":3,"73":1,"74":3,"79":4,"81":1,"86":5,"87":3,"88":5,"89":7,"136":1,"162":3,"242":1,"245":1,"275":1,"276":1,"277":1,"283":1}}],["row",{"2":{"7":1,"13":3,"73":1,"74":3,"80":9,"81":9,"82":1,"84":1,"85":6,"87":2,"88":6,"89":21,"90":1,"111":1,"143":1,"249":1,"255":1,"284":4,"286":12,"292":1}}],["running",{"0":{"41":1,"42":1,"43":1},"1":{"42":1,"43":1},"2":{"40":2,"278":1}}],["run",{"2":{"36":3,"40":2,"42":3,"43":4}}],["runtime",{"2":{"25":2}}],["ramify",{"2":{"228":1}}],["ramification",{"2":{"98":1,"119":1,"123":2,"147":2}}],["ramified",{"2":{"94":1,"119":9,"147":3,"150":4,"152":1,"165":1,"213":1,"220":3,"221":1,"228":1}}],["raise",{"2":{"209":1}}],["raises",{"2":{"125":1}}],["raised",{"2":{"58":1,"147":2,"249":1,"279":1}}],["radical",{"2":{"111":1,"116":3,"119":2,"151":2,"164":1,"201":4,"208":7}}],["radius",{"2":{"103":1,"112":9,"134":5,"151":1,"152":1}}],["ray",{"0":{"93":1,"94":1},"1":{"95":1},"2":{"92":2,"93":6,"94":16,"95":1,"96":4,"98":1}}],["rationally",{"2":{"281":4,"282":2}}],["rationalunion",{"2":{"180":3,"186":1,"191":1,"195":2,"209":2,"241":2,"246":2,"248":1,"255":1}}],["rationals",{"0":{"55":1},"2":{"57":1,"111":1,"114":2,"116":2,"117":1,"278":2,"280":1,"282":1,"284":1,"286":1,"289":1,"291":1,"293":1,"295":1,"297":1,"299":1}}],["rational",{"0":{"53":1,"279":1,"281":1},"1":{"280":1,"282":1},"2":{"28":1,"53":2,"64":1,"88":2,"92":1,"96":1,"105":1,"111":1,"116":1,"125":1,"127":1,"129":3,"147":1,"157":1,"159":2,"180":3,"186":1,"190":1,"207":1,"217":1,"228":1,"231":1,"232":1,"242":1,"249":4,"250":1,"252":3,"271":1,"279":11,"280":5,"281":4,"283":3,"284":2,"290":3}}],["range",{"2":{"16":1,"30":1}}],["ranks",{"2":{"218":2,"219":1,"261":1}}],["rank",{"2":{"13":1,"14":4,"88":1,"109":1,"118":3,"139":1,"143":1,"146":2,"149":1,"158":5,"159":1,"160":1,"174":1,"182":2,"188":2,"190":2,"196":1,"213":2,"215":2,"218":4,"219":1,"231":2,"232":1,"236":2,"238":1,"239":6,"240":6,"242":1,"245":1,"246":5,"248":1,"250":2,"253":3,"254":10,"255":3,"261":5,"263":1,"275":2,"276":2,"277":2,"278":6,"282":1,"283":2,"284":1,"294":2,"296":2,"299":3}}],["random",{"0":{"50":1},"2":{"7":2,"50":1,"89":1}}],["rand",{"2":{"7":2,"50":2,"89":1,"134":1}}],["r",{"2":{"17":2,"28":2,"32":4,"46":3,"52":2,"59":3,"68":4,"73":7,"75":3,"79":1,"80":6,"82":2,"85":2,"86":3,"87":16,"89":2,"93":2,"98":6,"103":2,"109":3,"116":2,"151":9,"152":6,"154":4,"196":2,"230":4,"236":4,"238":4,"240":4,"242":1,"246":4,"248":2,"254":4,"261":9,"292":1}}],["regarding",{"2":{"213":1,"268":1}}],["regulator",{"2":{"118":2}}],["regular",{"2":{"68":1,"158":2,"160":3,"161":2,"201":2,"208":5}}],["redo",{"2":{"146":2}}],["reducible",{"2":{"116":1}}],["reduced",{"2":{"121":1,"143":1,"147":1,"150":1,"151":1,"152":2,"265":1}}],["reduces",{"2":{"88":1,"89":3}}],["reduce",{"2":{"2":2,"61":1,"88":1,"89":3,"146":2}}],["reduction",{"0":{"2":1},"2":{"2":10,"84":3,"89":1}}],["recursively",{"2":{"129":1}}],["recall",{"2":{"112":3,"134":1}}],["recognizable",{"2":{"254":1}}],["recognition",{"2":{"254":9}}],["recomputation",{"2":{"146":1}}],["reconstruction",{"2":{"88":1}}],["record",{"2":{"32":1}}],["reverse",{"2":{"89":1}}],["required",{"2":{"153":1}}],["require",{"2":{"121":1,"141":1}}],["requires",{"2":{"87":1,"90":1,"96":1,"134":1,"141":1,"201":4,"229":1,"235":1}}],["requirements",{"2":{"30":1}}],["remove",{"2":{"68":2}}],["refining",{"2":{"61":2}}],["references",{"0":{"272":1}}],["reference",{"2":{"188":1,"190":1,"209":1}}],["referred",{"2":{"109":1,"127":2,"140":1,"270":2,"271":1}}],["refer",{"2":{"57":1,"58":1,"127":1,"129":1,"242":1,"270":1,"271":3,"294":1}}],["repl",{"2":{"278":1}}],["repeated",{"2":{"36":1}}],["represented",{"2":{"73":1,"128":1,"135":1,"141":2,"149":1,"166":7,"167":4,"253":2,"262":6,"294":2,"296":2}}],["represents",{"2":{"61":1,"187":3,"191":1,"193":2}}],["represent",{"2":{"58":1,"79":1,"86":1,"116":1,"176":1,"196":1}}],["representing",{"2":{"17":1,"74":3,"104":1,"109":1,"111":1,"190":1}}],["representatives",{"0":{"224":1,"235":1},"1":{"225":1,"236":1},"2":{"168":1,"181":1,"186":3,"192":1,"218":1,"233":2,"235":6,"236":2,"237":2,"247":1,"251":3,"287":1}}],["representative",{"0":{"186":1,"191":1},"2":{"6":1,"182":2,"186":5,"190":3,"191":3,"198":1,"199":3,"224":7,"225":2,"235":2,"236":2,"241":2,"247":1}}],["representations",{"0":{"187":1,"193":1},"2":{"130":1,"193":1}}],["representation",{"2":{"6":1,"14":2,"96":1,"109":1,"111":2,"127":1,"130":2,"134":4,"143":1,"166":2,"253":2,"262":8,"294":2,"296":2}}],["real",{"0":{"252":1},"2":{"32":1,"93":2,"97":1,"99":1,"100":5,"101":5,"103":2,"104":1,"105":1,"107":10,"109":1,"112":6,"116":1,"119":5,"124":7,"134":1,"146":1,"151":1,"157":2,"159":3,"160":1,"161":1,"163":1,"164":1,"165":4,"167":1,"171":1,"173":1,"175":1,"228":1,"231":1,"240":1}}],["relnumfieldorder",{"2":{"147":1,"151":5}}],["relnumfieldorderfractionalideal",{"2":{"137":2,"138":1,"147":2,"239":3,"284":2,"299":3}}],["relnumfieldorderideal",{"2":{"83":3,"137":1,"138":1,"147":7,"151":1,"239":3}}],["relnonsimplenumfield",{"2":{"93":1,"96":1,"127":2}}],["related",{"2":{"58":1,"146":1}}],["relation",{"2":{"11":1,"13":7,"14":1,"146":2,"292":1}}],["relations",{"2":{"11":1,"13":1,"14":3,"17":3,"197":1,"255":2}}],["relatively",{"2":{"213":1}}],["relative",{"0":{"141":1},"2":{"3":1,"94":2,"96":2,"97":2,"98":1,"111":1,"118":2,"120":2,"127":1,"139":2,"141":1,"149":2,"157":1,"159":3,"215":4,"217":1,"230":5,"232":1,"236":4,"238":4,"240":12,"278":4,"280":1,"284":16,"289":2,"299":12}}],["relsimplenumfieldembedding",{"2":{"230":1}}],["relsimplenumfieldelem",{"2":{"127":1,"215":1,"219":1,"227":1,"230":1,"232":1,"234":1,"238":1,"278":3,"280":1,"284":6,"289":1,"291":1,"299":7}}],["relsimplenumfield",{"2":{"93":1,"96":2,"120":1,"127":5,"230":2,"240":3}}],["rels",{"2":{"14":1}}],["returned",{"2":{"17":1,"19":1,"25":2,"75":1,"88":1,"94":2,"98":2,"100":1,"112":5,"113":1,"134":2,"144":1,"145":1,"146":1,"150":1,"151":1,"184":2,"202":2,"218":5,"235":1,"250":2,"267":1,"290":3,"292":1,"296":1}}],["return",{"2":{"7":1,"13":1,"14":12,"15":2,"16":1,"17":8,"18":4,"22":1,"23":2,"24":3,"25":2,"26":2,"28":1,"30":1,"32":2,"33":1,"45":1,"46":11,"47":1,"48":3,"50":1,"51":1,"52":2,"53":2,"54":1,"67":1,"68":6,"70":4,"71":4,"72":1,"75":1,"81":1,"84":1,"87":7,"88":8,"89":3,"90":7,"93":1,"96":1,"97":1,"100":2,"101":2,"103":2,"105":2,"107":7,"113":1,"116":1,"117":2,"118":2,"119":3,"120":3,"122":3,"123":6,"124":5,"132":1,"134":5,"138":1,"146":2,"147":1,"148":1,"150":1,"151":2,"152":2,"153":1,"158":8,"160":6,"162":7,"164":3,"166":2,"168":4,"170":2,"172":1,"174":1,"178":1,"179":1,"180":4,"181":1,"182":11,"184":6,"185":1,"186":5,"187":1,"189":2,"190":13,"191":3,"192":1,"193":1,"195":1,"197":7,"198":2,"200":1,"201":2,"202":6,"203":2,"205":1,"206":1,"207":1,"208":5,"209":3,"210":3,"211":2,"216":3,"218":14,"220":4,"222":1,"224":2,"226":2,"231":8,"233":1,"235":6,"237":2,"239":2,"241":2,"244":1,"245":1,"246":8,"248":1,"249":4,"250":12,"251":2,"252":4,"253":5,"254":5,"255":12,"257":3,"258":2,"259":1,"261":4,"262":3,"263":2,"266":5,"267":1,"275":4,"276":4,"277":4,"279":5,"281":4,"283":14,"285":9,"287":4,"288":3,"290":7,"292":3,"294":2,"296":3,"298":6}}],["returns",{"2":{"7":5,"8":2,"10":1,"16":1,"17":4,"18":1,"26":1,"46":1,"48":1,"59":4,"74":3,"75":3,"81":4,"83":6,"84":1,"87":1,"88":1,"89":1,"93":2,"101":1,"102":1,"111":12,"112":2,"113":3,"114":7,"116":4,"117":7,"118":4,"119":6,"120":5,"121":2,"122":5,"123":1,"131":2,"132":6,"134":10,"137":3,"138":7,"144":3,"145":3,"146":8,"147":24,"148":4,"150":11,"151":20,"152":6,"153":1,"164":3,"168":1,"184":2,"197":2,"198":1,"199":2,"201":2,"202":2,"246":2,"250":2,"255":1,"275":1,"276":1,"277":1,"283":1,"287":1}}],["rescaled",{"2":{"186":1,"191":1,"201":2,"241":2,"246":1,"285":2,"290":1}}],["rescale",{"2":{"186":1,"191":1,"196":1,"201":2,"207":1,"241":2,"248":2,"263":1,"285":1,"286":1}}],["rescaling",{"0":{"207":1,"241":1,"248":1},"2":{"162":1,"285":1}}],["rest",{"2":{"127":1,"157":1,"215":1,"230":1,"282":1}}],["restricting",{"2":{"162":1}}],["restriction",{"0":{"105":1},"2":{"105":2,"122":1,"162":1}}],["restrict",{"2":{"105":4,"106":1,"108":2,"162":2,"211":2,"236":2,"238":2,"240":2}}],["restricts",{"2":{"105":1,"106":1}}],["restricted",{"2":{"12":1}}],["resulting",{"2":{"125":1}}],["result",{"2":{"88":1,"93":1,"111":1,"116":1,"134":1,"146":1,"151":1}}],["results",{"2":{"61":1,"153":1,"272":1}}],["reshape",{"2":{"32":1,"33":1}}],["respec",{"2":{"196":1}}],["respectively",{"2":{"112":2,"134":1,"167":1,"195":1,"213":1,"255":1,"296":2}}],["respective",{"2":{"67":1,"201":2,"218":1,"237":2,"261":1,"294":1}}],["respect",{"2":{"23":1,"27":1,"29":1,"54":1,"89":1,"109":1,"111":5,"114":1,"132":1,"138":1,"150":3,"151":3,"156":1,"162":3,"166":1,"209":1,"246":1,"253":2,"255":2,"262":6,"265":1,"267":1,"270":2,"294":2,"296":2}}],["responsibility",{"2":{"93":1}}],["resp",{"2":{"18":1,"160":2,"213":4,"245":2,"275":8,"290":3}}],["resolutions",{"2":{"16":1}}],["research",{"2":{"4":1,"5":1}}],["residue",{"2":{"2":3,"61":1,"84":3,"89":2,"142":2,"148":5,"152":3,"188":1,"246":1}}],["n=|vgvt|",{"2":{"266":2}}],["n=t",{"2":{"198":1}}],["ns",{"2":{"263":2}}],["n2",{"2":{"255":2}}],["n⊆e⊗m",{"2":{"285":1}}],["n⊆qm",{"2":{"255":1}}],["n⊆m",{"2":{"195":1,"255":1}}],["n∗j2",{"2":{"246":1}}],["nt",{"2":{"213":1}}],["n1",{"2":{"213":1}}],["nz",{"2":{"196":1,"197":1}}],["nz=φ",{"2":{"195":1}}],["nzas",{"2":{"195":1}}],["n→q",{"2":{"195":2}}],["n×m",{"2":{"195":1}}],["n×d",{"2":{"111":1}}],["n⊗zp",{"2":{"176":1}}],["nx",{"2":{"125":1}}],["nf",{"2":{"121":1,"132":2,"147":1,"151":3}}],["n−ibxi",{"2":{"116":1}}],["nlog⁡|n",{"2":{"112":1}}],["nnz",{"2":{"88":1}}],["nrows",{"2":{"85":1}}],["nrels",{"2":{"14":1}}],["ncring",{"2":{"80":1}}],["ncols",{"2":{"13":3}}],["nikulin",{"2":{"300":1}}],["niemeier",{"2":{"246":4}}],["nice",{"2":{"67":2,"68":4,"125":2}}],["ni",{"2":{"61":1,"213":2}}],["npm",{"2":{"36":1}}],["nauk",{"2":{"300":1}}],["named",{"2":{"116":2}}],["names",{"2":{"30":1}}],["nature",{"2":{"93":1}}],["naturally",{"2":{"105":1}}],["natural",{"2":{"27":1,"109":1,"140":1}}],["narrow",{"2":{"93":1,"146":2,"153":1}}],["naive",{"2":{"60":3}}],["navigate",{"2":{"36":1}}],["ng",{"2":{"17":2}}],["ngens",{"2":{"7":3}}],["n⋅g→g",{"2":{"17":2}}],["n⋅g",{"2":{"17":2}}],["n",{"2":{"13":5,"17":8,"42":3,"52":1,"54":2,"61":2,"67":1,"68":10,"84":6,"85":4,"87":10,"88":2,"89":2,"93":3,"94":6,"96":1,"111":3,"113":4,"116":5,"119":1,"125":6,"134":2,"137":1,"145":2,"156":4,"158":1,"164":2,"176":1,"182":2,"186":1,"188":4,"190":1,"195":6,"196":2,"197":3,"199":2,"201":2,"207":2,"208":3,"213":1,"246":25,"254":5,"255":15,"266":4,"285":3,"288":1,"300":1}}],["numerator",{"2":{"137":1,"146":1,"206":1}}],["numfieldordelem",{"2":{"133":1}}],["numfieldorderfractionalideal",{"2":{"285":1}}],["numfieldorderideal",{"2":{"145":3,"147":4,"285":1}}],["numfieldorderelem",{"2":{"131":4,"132":5,"133":8,"134":9,"145":1}}],["numfieldorder",{"2":{"131":3,"132":1,"150":2,"151":4,"152":2}}],["numfieldhom",{"2":{"105":1,"106":1,"119":1,"120":2,"121":1,"122":3,"158":1}}],["numfieldelem",{"2":{"103":1,"107":7,"111":15,"113":2,"114":9,"116":6,"117":4,"118":1,"123":1,"131":1,"132":1,"134":1,"145":1,"147":2,"150":2,"151":4,"222":1,"224":2,"285":2,"290":1}}],["numfieldemb",{"2":{"100":2,"101":3,"102":2,"103":2,"105":2,"106":1,"107":7}}],["numfield",{"2":{"100":2,"101":1,"105":1,"113":1,"114":1,"116":3,"117":4,"118":4,"119":5,"120":6,"121":2,"122":2,"123":1,"124":3,"150":1,"151":1,"156":4,"158":2,"214":1,"216":1,"231":1,"239":2,"277":4}}],["numpages",{"2":{"4":1}}],["numbers",{"2":{"58":1,"61":1,"92":1,"113":1,"116":1,"127":1,"129":2,"132":1,"134":1,"146":1,"149":1,"152":1,"176":1,"242":1}}],["number",{"0":{"2":1,"55":1,"115":1,"116":1,"127":1,"140":1,"141":1,"276":1},"1":{"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1},"2":{"3":2,"4":2,"14":3,"25":4,"32":1,"42":2,"52":1,"57":1,"58":2,"61":1,"62":1,"73":1,"78":1,"79":1,"81":1,"86":2,"88":10,"92":3,"95":2,"96":8,"97":1,"98":1,"99":2,"101":3,"105":5,"107":5,"108":9,"109":4,"111":17,"113":3,"114":11,"116":25,"117":7,"118":11,"119":6,"120":1,"121":3,"122":6,"123":4,"124":2,"125":1,"127":3,"128":1,"129":5,"130":1,"131":2,"132":1,"134":2,"135":1,"139":4,"141":2,"142":4,"145":1,"146":6,"147":2,"149":6,"150":6,"151":12,"152":2,"153":1,"156":2,"157":3,"159":6,"161":1,"163":1,"167":1,"173":1,"175":1,"180":3,"182":2,"184":4,"188":1,"202":4,"207":1,"215":6,"216":1,"217":4,"219":2,"221":2,"223":2,"225":2,"227":2,"230":8,"232":4,"234":2,"236":6,"238":7,"240":7,"246":1,"250":4,"252":1,"254":5,"261":1,"266":4,"268":1,"270":1,"272":2,"276":2,"277":6,"278":16,"280":5,"282":2,"283":1,"284":14,"285":1,"286":6,"289":2,"291":2,"293":1,"295":2,"297":1,"299":2,"300":4,"301":2}}],["ny",{"2":{"4":2}}],["neg",{"2":{"263":2}}],["negative",{"2":{"14":1,"58":1,"62":1,"107":7,"147":2,"160":5,"164":1,"180":1,"182":1,"228":1,"231":1,"252":4,"255":1,"290":3}}],["neighbor",{"2":{"246":1}}],["necessary",{"2":{"213":1,"269":1,"301":1}}],["necessarily",{"2":{"61":1}}],["needs",{"2":{"61":1}}],["neat",{"2":{"17":5}}],["neutral",{"2":{"7":1}}],["new",{"2":{"4":2,"25":1,"39":4,"82":1,"89":2,"148":1,"207":1,"282":1,"300":2}}],["nemo",{"2":{"4":3,"93":1,"128":1,"209":1}}],["next",{"2":{"2":1,"127":1}}],["no",{"2":{"48":1,"58":1,"94":1,"142":1,"196":1,"209":1,"230":1,"235":1,"246":1,"272":1,"298":2}}],["nonsimplenumfield",{"2":{"111":1,"117":3,"121":2}}],["nonzero",{"2":{"81":1,"88":1,"146":2}}],["nonethelss",{"2":{"278":1}}],["none",{"2":{"20":1,"168":1,"287":1}}],["non",{"2":{"3":1,"14":1,"17":1,"45":1,"58":2,"88":3,"96":4,"108":7,"111":1,"116":3,"117":3,"121":2,"127":4,"129":1,"134":1,"141":1,"143":1,"146":3,"147":2,"153":1,"156":1,"160":1,"164":2,"170":1,"176":2,"180":2,"188":1,"207":1,"213":2,"222":1,"233":1,"255":1,"266":5,"270":1,"271":1,"285":1}}],["nothing",{"2":{"32":1,"94":1,"195":2,"239":1,"267":1,"276":3,"277":3}}],["noted",{"2":{"58":1,"94":1}}],["note",{"2":{"8":1,"17":1,"26":1,"30":1,"36":1,"68":1,"79":1,"96":1,"98":1,"99":1,"103":1,"116":1,"145":1,"160":1,"162":1,"164":1,"166":1,"168":1,"176":1,"182":1,"184":2,"193":1,"202":2,"213":2,"215":1,"228":1,"229":1,"233":1,"235":1,"250":2,"266":3,"268":2,"278":1,"283":3,"285":1,"292":1}}],["not",{"2":{"2":4,"12":1,"20":1,"25":2,"40":1,"53":1,"58":3,"61":3,"67":1,"68":1,"73":3,"79":1,"88":1,"89":1,"92":1,"97":1,"98":1,"101":1,"111":1,"116":2,"118":2,"119":1,"120":1,"124":2,"141":3,"145":1,"146":3,"147":2,"149":1,"151":3,"169":1,"184":2,"201":4,"202":2,"224":1,"228":1,"230":2,"244":2,"249":1,"250":2,"267":1,"276":3,"277":3,"278":1,"279":1,"283":1,"292":1,"298":2}}],["now",{"2":{"2":1,"150":1,"162":1,"263":1,"268":1,"278":1,"282":1}}],["norms",{"2":{"88":1,"218":3,"219":1,"224":1}}],["norm2",{"2":{"83":1}}],["normliased",{"2":{"6":1}}],["normalized",{"2":{"188":1}}],["normalization",{"2":{"149":1}}],["normalising",{"2":{"143":1}}],["normalised",{"2":{"112":1}}],["normalise",{"2":{"112":3}}],["normalisation",{"2":{"75":2}}],["normalform",{"2":{"38":2}}],["normal",{"0":{"203":1},"2":{"2":1,"14":1,"15":1,"16":1,"87":2,"88":5,"96":1,"97":5,"98":9,"120":6,"122":1,"123":2,"137":1,"142":2,"146":8,"195":1,"203":2,"208":3,"217":1,"232":2,"282":1,"289":1}}],["norm",{"0":{"83":1},"2":{"2":1,"61":1,"93":8,"96":1,"98":6,"113":9,"114":7,"118":1,"125":1,"134":6,"138":6,"142":3,"146":14,"147":9,"151":1,"182":3,"190":3,"213":4,"215":2,"217":1,"218":11,"224":2,"231":2,"232":2,"238":1,"250":3,"261":1,"282":1,"288":3,"289":2,"298":11}}],["zassenhaus",{"2":{"300":1}}],["zmodh",{"2":{"246":1}}],["zeta",{"2":{"152":2}}],["zero",{"2":{"7":1,"22":3,"24":3,"29":4,"45":1,"58":1,"87":6,"88":5,"107":1,"112":1,"134":1,"143":1,"146":3,"153":1,"169":1,"207":1,"252":1,"266":4,"275":1,"276":1,"277":1,"285":1}}],["z^",{"2":{"146":1}}],["z^2",{"2":{"15":6}}],["zn",{"2":{"130":1}}],["zk",{"2":{"74":3,"96":2,"135":3,"143":3,"146":6}}],["zlattices",{"2":{"38":2}}],["zgenus",{"2":{"38":2}}],["zzlocalgenus",{"2":{"185":1,"188":1,"189":2,"190":13,"191":4,"192":3,"193":2}}],["zzlat",{"2":{"178":1,"186":2,"189":1,"191":1,"195":2,"197":2,"205":1,"242":3,"244":1,"246":6,"248":2,"249":3,"250":8,"251":4,"252":1,"253":2,"254":4,"255":13,"257":15,"258":5,"260":1,"261":6,"262":10,"263":2,"265":2,"266":5,"267":1,"276":6}}],["zzgenus",{"2":{"176":2,"178":1,"179":1,"180":1,"181":3,"182":12,"183":1,"184":4,"185":1,"186":7,"187":2,"209":1,"247":1}}],["zzpolyringelem",{"2":{"134":3}}],["zzmodmatrix",{"2":{"88":2}}],["zzmodringelem",{"2":{"84":1,"88":1,"190":3,"209":1}}],["zzmatrix",{"2":{"7":1,"8":1,"13":1,"14":1,"17":2,"90":4,"134":1,"136":2,"144":1,"147":1,"150":1,"151":1,"254":1}}],["zz",{"2":{"64":2,"90":1,"116":1,"134":1,"196":1,"209":1,"244":2,"246":4,"249":2}}],["zzring",{"2":{"58":2}}],["zzringelem|integer",{"2":{"151":1}}],["zzringelem",{"2":{"7":3,"8":2,"10":1,"11":1,"14":3,"17":13,"51":3,"52":1,"54":1,"58":1,"59":4,"60":2,"61":8,"79":1,"84":11,"86":1,"88":30,"89":10,"90":1,"111":1,"113":4,"116":1,"118":2,"119":1,"131":2,"132":1,"133":2,"134":3,"136":3,"137":1,"144":5,"145":1,"146":5,"147":14,"148":1,"150":5,"151":3,"152":4,"182":1,"184":4,"190":1,"202":4,"248":1,"250":4,"266":3,"267":2}}],["z",{"2":{"2":10,"12":2,"13":8,"17":9,"53":2,"58":1,"88":1,"95":2,"96":1,"109":5,"116":1,"136":1,"138":1,"139":1,"140":2,"142":5,"143":2,"146":6,"147":1,"149":3,"150":2,"151":5,"152":2,"157":2,"159":2,"176":3,"179":1,"180":1,"182":1,"184":4,"186":1,"188":1,"189":1,"191":1,"195":1,"196":9,"201":11,"205":1,"206":10,"209":1,"242":4,"244":1,"246":2,"250":6,"254":2,"255":4,"257":3,"261":3,"262":3,"265":1,"276":3,"283":2,"301":1}}],["18",{"2":{"263":1}}],["18802",{"2":{"52":1}}],["111",{"2":{"300":1}}],["113",{"2":{"272":1}}],["11",{"2":{"254":2}}],["1145",{"2":{"4":2}}],["1979",{"2":{"300":1}}],["1999",{"2":{"300":1}}],["1997",{"2":{"300":1}}],["1993",{"2":{"300":1}}],["193",{"2":{"300":1}}],["19",{"2":{"230":3,"246":1,"263":2}}],["195",{"2":{"5":1}}],["1+4ω",{"2":{"193":1}}],["1+i",{"2":{"146":2}}],["1+ζ7+ζ72",{"2":{"2":1}}],["1^10",{"2":{"246":1}}],["1^8",{"2":{"246":1}}],["1^22",{"2":{"246":1,"263":1}}],["1^26",{"2":{"246":1}}],["1^24",{"2":{"246":1}}],["1^",{"2":{"146":1,"246":2}}],["1=10",{"2":{"145":1}}],["1st",{"2":{"143":1}}],["1>",{"2":{"95":1,"96":2,"146":2,"215":4,"230":2,"236":4,"238":4,"240":12,"278":4,"284":36,"286":4,"289":7,"299":48}}],["144",{"2":{"146":1}}],["14473970623176763",{"2":{"146":2}}],["14",{"2":{"67":2,"286":1,"299":6}}],["1507194",{"2":{"234":2}}],["15670329078123133",{"2":{"146":2}}],["15",{"2":{"67":1,"68":2,"176":1,"188":1,"201":1,"240":1,"261":2,"280":2}}],["157",{"2":{"4":2}}],["16",{"2":{"53":1,"209":1,"254":4,"263":1}}],["164",{"2":{"4":2}}],["126>",{"2":{"286":1}}],["128",{"2":{"104":1}}],["12",{"2":{"17":2,"146":1,"254":20,"261":2}}],["1≤i",{"2":{"151":1,"270":1}}],["1≤i≤t",{"2":{"213":1}}],["1≤i≤d",{"2":{"148":1}}],["1≤i≤2s",{"2":{"109":1}}],["1≤i≤r",{"2":{"73":1,"109":1}}],["1≤i≤n",{"2":{"13":1,"213":1,"283":3}}],["1≤j≤n",{"2":{"117":1}}],["1≤j≤m",{"2":{"13":1}}],["177",{"2":{"300":1}}],["17",{"2":{"4":2,"51":1}}],["138",{"2":{"300":1}}],["13",{"2":{"2":1,"54":1,"146":2,"246":3}}],["10>",{"2":{"286":1}}],["1024",{"2":{"234":1}}],["1047",{"2":{"234":1}}],["1000",{"2":{"61":1}}],["100",{"2":{"51":3,"61":1}}],["101",{"2":{"51":2,"52":3,"53":3,"54":1}}],["10",{"2":{"2":1,"4":2,"95":1,"96":2,"104":1,"107":2,"112":2,"116":1,"142":1,"146":1,"201":1,"254":12,"261":1,"280":1,"282":1,"284":1,"286":2,"297":1}}],["1",{"2":{"2":8,"7":4,"11":3,"15":5,"17":27,"25":7,"26":3,"29":7,"32":4,"33":7,"36":1,"42":2,"45":5,"46":2,"48":21,"50":2,"51":3,"52":3,"53":7,"54":3,"58":1,"61":1,"64":4,"67":8,"68":14,"73":1,"85":2,"88":1,"89":1,"95":2,"96":6,"100":6,"101":3,"102":1,"103":2,"104":2,"105":6,"106":1,"107":12,"108":20,"109":3,"111":5,"116":2,"117":3,"120":1,"124":1,"125":1,"134":1,"139":1,"141":2,"142":9,"145":1,"146":49,"147":2,"150":1,"151":1,"152":1,"157":10,"159":9,"161":2,"162":1,"163":20,"164":1,"165":14,"167":9,"169":6,"171":5,"173":2,"175":2,"184":4,"186":1,"188":4,"190":2,"196":17,"201":30,"202":4,"206":6,"209":10,"213":1,"215":28,"217":7,"218":5,"219":12,"221":6,"223":6,"225":6,"227":6,"230":26,"232":9,"233":1,"234":8,"236":24,"238":34,"239":2,"240":48,"244":6,"246":128,"248":7,"249":2,"250":4,"253":6,"254":31,"255":17,"261":35,"263":36,"267":18,"268":1,"270":1,"278":49,"280":23,"282":10,"284":179,"286":62,"289":40,"291":11,"293":14,"294":4,"295":22,"296":4,"297":6,"299":189,"301":1}}],["+z",{"2":{"205":1}}],["+t",{"2":{"201":4}}],["+nz",{"2":{"198":1}}],["+4",{"2":{"17":1}}],["+2z",{"2":{"205":1}}],["+2",{"2":{"17":1}}],["+",{"2":{"2":18,"17":1,"29":2,"45":9,"46":12,"48":12,"50":2,"52":1,"53":10,"54":4,"68":3,"81":1,"90":1,"96":1,"100":2,"101":1,"103":3,"104":2,"105":2,"106":2,"107":2,"108":6,"111":3,"120":1,"124":1,"133":1,"145":1,"146":31,"147":2,"150":1,"151":1,"157":3,"159":4,"215":4,"219":1,"227":2,"230":7,"232":2,"234":11,"238":8,"240":1,"255":2,"278":5,"280":2,"284":25,"285":1,"286":1,"289":3,"291":1,"295":1,"299":13}}],["7>",{"2":{"282":1,"284":2,"286":2,"289":2}}],["765",{"2":{"234":1}}],["728381",{"2":{"234":1}}],["72",{"2":{"146":1}}],["7182642479841784",{"2":{"146":2}}],["73205080756887729353",{"2":{"103":1}}],["73",{"2":{"100":5,"105":1,"107":2}}],["74",{"2":{"54":2}}],["7^4",{"2":{"2":1}}],["7^3",{"2":{"2":1}}],["7^5",{"2":{"2":2}}],["7^2",{"2":{"2":2}}],["77",{"2":{"2":2,"103":1}}],["7",{"2":{"2":7,"67":3,"68":2,"107":1,"146":5,"157":4,"159":5,"161":1,"163":1,"165":6,"167":2,"169":1,"171":1,"173":2,"175":2,"188":2,"230":1,"232":5,"234":1,"238":1,"246":3,"278":3,"280":2,"282":6,"284":11,"286":3,"289":3,"291":2,"293":1,"295":1,"297":1,"299":2,"301":1}}],["=lp",{"2":{"290":1}}],["=l",{"2":{"290":2}}],["=l1×",{"2":{"257":1,"287":1}}],["=l1⊕",{"2":{"257":2,"287":2}}],["=∑i=1n1",{"2":{"233":1}}],["=g",{"2":{"213":2,"228":1}}],["=ordp",{"2":{"213":1}}],["=rank",{"2":{"213":1}}],["=psi",{"2":{"213":1}}],["=t1×",{"2":{"210":1}}],["=t1⊕",{"2":{"210":2}}],["=1d∑x∈dexp⁡",{"2":{"209":1}}],["=1",{"2":{"174":1}}],["=ψ",{"2":{"174":1}}],["=0",{"2":{"172":1,"174":1,"208":1}}],["=v1×",{"2":{"168":1}}],["=v1⊕",{"2":{"168":2}}],["=φ",{"2":{"164":1,"166":1,"294":1}}],["=deg⁡",{"2":{"146":1}}],["=hom⁡",{"2":{"145":1}}],["=z",{"2":{"140":1}}],["=b",{"2":{"140":1}}],["=a",{"2":{"113":1,"125":1}}],["=σi+s",{"2":{"112":3,"134":1}}],["=q",{"2":{"109":1,"140":1}}],["=infplc",{"2":{"97":1}}],["=mα",{"2":{"109":1}}],["=m",{"2":{"73":1}}],["=>9",{"2":{"67":1}}],["=>",{"2":{"29":4,"67":5,"107":2,"146":4,"230":3,"232":1,"238":3,"240":2}}],["==2",{"2":{"156":2}}],["==",{"2":{"25":1,"29":2,"47":2,"48":1,"52":1,"64":1,"68":1,"81":1,"85":1,"90":1,"98":1,"102":1,"103":1,"111":1,"116":2,"132":1,"142":1,"145":1,"193":1,"196":1,"201":2,"209":4,"239":1,"244":2,"246":9,"253":1,"255":1,"261":1,"283":2,"292":3,"294":1,"296":1}}],["===",{"2":{"2":1}}],["=",{"2":{"2":9,"4":11,"11":2,"13":7,"15":4,"17":29,"18":1,"19":1,"20":1,"22":1,"24":1,"25":8,"26":4,"28":2,"29":4,"32":5,"33":4,"36":1,"42":3,"45":6,"46":3,"47":2,"48":12,"50":2,"51":4,"52":2,"53":7,"54":5,"61":3,"64":3,"67":3,"68":7,"87":1,"88":6,"93":4,"94":2,"95":4,"96":7,"100":4,"101":6,"102":2,"103":4,"104":2,"105":6,"106":3,"107":12,"108":5,"111":3,"112":2,"113":1,"116":14,"117":4,"118":4,"120":2,"121":1,"122":2,"124":3,"131":2,"134":2,"136":2,"138":2,"142":9,"144":3,"145":1,"146":18,"147":4,"148":1,"150":12,"151":4,"156":4,"157":5,"159":4,"161":5,"162":1,"163":5,"165":5,"167":9,"168":2,"169":4,"171":3,"173":6,"175":6,"180":2,"188":12,"190":1,"195":5,"196":10,"201":18,"205":1,"208":3,"209":4,"213":3,"214":2,"215":13,"217":8,"219":11,"221":8,"223":8,"225":8,"227":11,"230":16,"232":11,"234":12,"235":5,"236":12,"238":16,"239":2,"240":5,"244":3,"245":1,"246":32,"248":1,"249":2,"253":7,"254":6,"255":11,"261":10,"262":5,"263":4,"265":2,"266":12,"267":6,"275":2,"276":5,"277":5,"278":34,"280":12,"282":11,"283":2,"284":8,"285":1,"286":11,"287":2,"288":2,"289":8,"291":10,"292":1,"293":7,"294":5,"295":8,"296":5,"297":11,"299":10,"301":5}}],["ζm",{"2":{"125":2}}],["ζn",{"2":{"116":1}}],["ζ^2",{"2":{"2":1}}],["ζ",{"2":{"2":3}}],["ζ7",{"2":{"2":1}}],["ζ7+77",{"2":{"2":1}}],["kum",{"2":{"246":2}}],["kummer",{"2":{"96":1,"119":3,"125":1}}],["k3",{"2":{"246":8}}],["kp",{"2":{"213":1}}],["kp×",{"2":{"213":1}}],["kw",{"2":{"211":2}}],["kir19",{"2":{"272":1}}],["kir16",{"2":{"164":1,"213":1,"233":1,"269":1,"272":1}}],["kirschmer",{"2":{"272":1,"278":4}}],["kissing",{"2":{"266":2}}],["kind",{"2":{"168":1}}],["k×",{"2":{"158":3,"224":2}}],["k⋅a",{"2":{"134":1}}],["k⊃k",{"2":{"120":1}}],["kt",{"2":{"116":1,"157":1,"159":1,"161":1,"163":1,"167":1,"171":1,"173":1,"175":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"240":1,"278":3,"280":1,"284":1,"289":1,"291":1,"295":1,"299":1}}],["ktok",{"2":{"105":2,"106":2}}],["k∈z≥1",{"2":{"111":1}}],["k⟶rdα⟼",{"2":{"109":1}}],["k=q",{"2":{"109":2,"117":1,"140":1,"276":3}}],["k→r",{"2":{"109":1}}],["k→l",{"2":{"105":1,"120":1}}],["k→k",{"2":{"105":1,"106":2,"109":1}}],["k→c",{"2":{"103":1,"105":1,"106":2,"109":1,"120":1}}],["kronnecker",{"2":{"92":1}}],["kannan",{"2":{"88":3}}],["ker⁡",{"2":{"262":1}}],["kernel",{"2":{"164":1,"196":1,"246":1,"255":1,"261":4,"262":1}}],["keep",{"2":{"157":1}}],["keepzrows",{"2":{"87":2}}],["key",{"2":{"78":1}}],["keys",{"2":{"67":1,"68":1,"144":3,"146":1,"229":1,"231":1}}],["keyword",{"2":{"42":1,"93":1,"98":3,"146":1,"211":2,"244":1}}],["kn",{"2":{"73":1}}],["knowledgeable",{"2":{"268":1}}],["knowledge",{"2":{"121":1}}],["known",{"2":{"54":1,"58":2,"120":1,"147":2,"149":1,"150":2,"242":1,"249":1,"279":1}}],["knows",{"2":{"40":1,"147":4}}],["know",{"2":{"17":1}}],["kx",{"2":{"2":1}}],["k",{"2":{"2":8,"22":2,"23":4,"24":2,"25":5,"26":3,"27":1,"28":1,"32":7,"45":3,"46":2,"58":3,"70":4,"71":4,"72":2,"73":5,"93":6,"94":2,"95":2,"96":15,"97":2,"98":1,"100":9,"101":6,"102":2,"103":3,"104":2,"105":14,"106":6,"107":12,"108":5,"109":9,"111":18,"113":4,"114":11,"116":9,"117":16,"118":18,"119":22,"120":25,"121":7,"122":15,"123":12,"124":10,"125":7,"129":2,"134":4,"135":1,"139":5,"140":4,"141":3,"142":8,"145":1,"146":6,"150":17,"151":4,"152":1,"156":4,"157":4,"158":1,"159":2,"160":4,"161":4,"162":3,"163":7,"164":3,"165":6,"166":3,"167":7,"171":5,"172":3,"173":3,"174":3,"175":3,"207":4,"208":2,"213":2,"214":2,"215":3,"216":2,"217":3,"218":17,"219":3,"220":4,"221":3,"222":1,"223":3,"224":2,"225":3,"226":4,"227":3,"228":5,"229":2,"230":3,"231":5,"232":3,"233":2,"234":2,"235":5,"236":5,"237":2,"238":5,"239":1,"240":5,"270":15,"271":2,"276":16,"278":11,"280":7,"282":12,"283":1,"284":2,"285":4,"286":12,"288":1,"289":2,"290":1,"291":3,"293":7,"294":1,"295":7,"297":12,"299":3,"301":2}}],["c1",{"2":{"151":1}}],["cm",{"2":{"118":1,"119":3,"160":1,"169":2}}],["cf",{"2":{"96":1,"97":1}}],["cilog⁡|x",{"2":{"112":1}}],["ci",{"2":{"74":2}}],["citation",{"2":{"4":1}}],["citing",{"0":{"4":1}}],["crt",{"2":{"61":1,"148":1}}],["creating",{"2":{"214":1}}],["creation",{"0":{"7":1,"13":1,"22":1,"28":1,"32":1,"45":1,"74":1,"80":1,"111":1,"116":1,"131":1,"136":1,"144":1,"150":1,"156":1,"177":1,"189":1,"214":1,"229":1,"243":1,"274":1},"1":{"112":1,"113":1,"114":1,"151":1,"157":1,"178":1,"179":1,"180":1,"181":1,"215":1,"230":1,"244":1,"245":1,"246":1,"247":1,"248":1,"275":1,"276":1,"277":1,"278":1},"2":{"7":1,"13":1}}],["created",{"2":{"15":2,"18":3,"67":1,"87":1,"111":1,"116":1,"142":1,"247":1}}],["creates",{"2":{"13":6,"94":1,"116":1,"136":6,"144":5,"265":1}}],["create",{"2":{"7":1,"13":1,"17":7,"29":1,"67":2,"74":1,"82":1,"89":1,"94":1,"97":1,"103":1,"116":2,"142":1,"156":4}}],["close",{"0":{"264":1,"267":1},"1":{"265":1,"266":1,"267":1},"2":{"267":3}}],["closure",{"2":{"57":1,"93":3,"96":3,"98":3,"120":3,"149":1,"255":5,"285":3}}],["clm",{"2":{"93":1}}],["claus",{"2":{"4":2}}],["classes",{"2":{"186":2,"233":1,"235":2,"251":1}}],["classgrpctx",{"2":{"146":1}}],["classgroup",{"2":{"95":1,"146":1,"153":1}}],["classfield",{"2":{"94":7,"96":9,"97":10,"98":20}}],["classifies",{"2":{"92":1}}],["classical",{"2":{"73":1}}],["class",{"0":{"91":1,"93":1,"94":1,"146":1},"1":{"92":1,"93":1,"94":1,"95":2,"96":1,"97":1,"98":1},"2":{"3":3,"61":1,"78":1,"92":5,"93":13,"94":30,"95":3,"96":9,"97":3,"98":4,"111":1,"116":2,"118":5,"134":1,"146":21,"153":2,"158":1,"164":1,"168":1,"176":1,"213":2,"214":2,"224":5,"239":1,"272":1,"278":2,"287":1,"301":2}}],["c6",{"2":{"46":1}}],["curvers",{"2":{"57":1}}],["curves",{"0":{"49":1,"55":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"57":1}}],["curve",{"2":{"45":12,"46":5,"48":16,"50":3,"51":4,"52":4,"53":6,"54":3,"57":2}}],["currently",{"2":{"14":1,"58":1,"68":1,"98":1,"141":1,"149":1}}],["current",{"2":{"14":3,"36":1}}],["ctoa",{"2":{"26":1}}],["c→a",{"2":{"26":1}}],["central",{"2":{"24":3,"97":3}}],["center",{"0":{"26":1},"2":{"5":1,"24":1,"26":11}}],["c2",{"2":{"17":1,"151":1}}],["c2×c4",{"2":{"17":1}}],["c4",{"2":{"17":1,"46":1}}],["cambridge",{"2":{"300":2}}],["cache",{"2":{"146":1,"186":1}}],["cached",{"2":{"28":1,"116":8,"150":4,"156":4,"234":2,"278":2}}],["caching",{"2":{"116":1}}],["cai+daj",{"2":{"89":1}}],["carlo",{"2":{"88":1}}],["cardinality",{"0":{"51":1},"2":{"147":1}}],["categorical",{"0":{"168":1,"210":1,"257":1,"287":1},"1":{"169":1}}],["cat",{"2":{"87":1}}],["ca+db",{"2":{"81":1}}],["ca+b",{"2":{"81":2}}],["calculus",{"2":{"78":1}}],["callers",{"2":{"93":1}}],["called",{"2":{"17":2,"18":1,"73":2,"92":1,"99":1,"109":5,"127":2,"140":1,"141":1,"146":1,"149":1,"164":2,"166":1,"168":5,"190":2,"210":3,"250":1,"255":1,"257":3,"270":3,"271":3,"287":4,"294":2}}],["callable",{"2":{"89":1}}],["call",{"2":{"17":1,"18":3,"73":1,"94":1,"109":2,"129":1,"168":6,"210":6,"213":2,"255":1,"257":6,"270":1,"271":2,"283":1,"287":7}}],["caputured",{"2":{"58":1}}],["cases",{"2":{"58":1,"61":1,"129":1,"160":1,"166":1,"270":1}}],["case",{"2":{"25":2,"39":1,"61":1,"88":1,"93":1,"105":1,"109":1,"129":1,"141":1,"145":1,"149":1,"150":2,"158":1,"160":2,"165":1,"166":1,"184":2,"201":2,"202":4,"235":1,"250":2,"255":1,"268":1,"270":2,"290":2,"296":1}}],["cannot",{"2":{"2":1,"98":1}}],["canonically",{"2":{"94":2}}],["canonical",{"2":{"2":1,"16":1,"18":4,"58":1,"94":1,"111":5,"117":2,"121":4,"148":1,"168":1,"203":1,"270":2,"283":1,"287":1}}],["can",{"2":{"2":3,"7":1,"11":1,"15":2,"20":1,"22":1,"29":2,"36":1,"38":1,"40":1,"42":3,"43":2,"45":1,"47":2,"51":1,"54":1,"58":4,"59":1,"60":1,"61":3,"62":1,"67":3,"68":2,"73":1,"75":2,"79":1,"87":2,"93":1,"96":1,"98":1,"103":1,"104":1,"106":1,"111":2,"113":1,"116":6,"122":1,"127":1,"129":1,"130":1,"142":1,"143":3,"146":2,"149":1,"150":2,"153":1,"162":1,"165":1,"166":2,"167":1,"168":3,"174":1,"195":1,"229":1,"235":2,"245":1,"247":1,"248":1,"265":1,"267":1,"272":1,"275":2,"276":2,"277":2,"278":2,"283":1,"285":2,"287":2,"290":1,"291":1}}],["c",{"2":{"17":2,"26":6,"46":6,"67":6,"68":5,"74":4,"81":3,"87":2,"89":7,"93":2,"95":1,"96":1,"97":14,"98":5,"103":2,"111":3,"112":2,"120":1,"124":2,"128":1,"132":2,"134":2,"146":9,"265":2,"301":2}}],["cyclic",{"2":{"13":2,"14":3,"96":2,"97":3}}],["cyclotomix",{"2":{"169":1}}],["cyclotomic",{"2":{"2":3,"92":1,"105":1,"106":3,"116":3,"157":2,"159":3,"161":1,"163":1,"165":4,"167":1,"171":1,"173":1,"175":1,"240":1}}],["cyclomotic",{"2":{"2":1}}],["choosing",{"2":{"214":1,"229":1}}],["choose",{"2":{"143":1}}],["chosen",{"2":{"7":2,"215":1,"253":3,"294":2,"296":2}}],["check=true",{"2":{"261":1}}],["checkisunit",{"2":{"113":2}}],["checking",{"2":{"97":1}}],["checked",{"2":{"45":1,"47":1,"111":1,"113":1,"116":1,"120":1,"131":2,"144":1,"148":1,"150":5,"151":2,"245":1,"266":3,"267":1,"275":2,"276":2,"277":2}}],["checks",{"2":{"32":1,"97":1,"113":1,"151":1,"154":1}}],["check",{"2":{"32":2,"45":2,"47":2,"97":2,"116":5,"119":1,"131":4,"144":2,"148":2,"150":9,"195":1,"214":1,"245":2,"266":3,"267":2,"275":4,"276":4,"277":4}}],["cham",{"2":{"300":1}}],["changing",{"2":{"87":1,"89":1}}],["changed",{"2":{"88":1}}],["change",{"0":{"82":1},"2":{"30":1,"46":6,"82":1,"89":1,"151":2}}],["charpoly",{"2":{"114":3,"134":2}}],["char",{"2":{"67":1,"68":7}}],["characteristic",{"2":{"2":3,"45":1,"114":2,"134":1,"142":1}}],["chapter",{"2":{"57":1,"73":1,"78":1,"92":1,"139":1,"141":1,"149":1,"176":1,"188":1,"268":1,"270":1,"271":1}}],["coinvariant",{"2":{"262":2}}],["coxeter",{"2":{"246":1,"254":4}}],["cover",{"0":{"199":1},"2":{"197":1,"199":1}}],["corollary",{"2":{"209":1}}],["core",{"2":{"149":1}}],["correctness",{"2":{"146":2}}],["correct",{"2":{"88":1,"93":1,"193":1}}],["corresponds",{"2":{"213":1,"237":2,"254":1}}],["correspond",{"2":{"17":2,"27":1,"87":2,"228":1}}],["corresponding",{"2":{"15":1,"17":2,"22":1,"29":2,"39":3,"87":3,"93":1,"97":2,"100":5,"101":1,"103":1,"104":2,"105":2,"106":2,"107":2,"108":8,"117":1,"124":10,"134":1,"136":1,"143":1,"165":6,"168":1,"170":1,"228":1,"229":1,"230":7,"231":1,"232":2,"238":1,"246":2,"254":2,"257":3,"283":3,"287":3}}],["course",{"2":{"300":1}}],["couple",{"2":{"153":1}}],["counterparts",{"2":{"86":1}}],["could",{"2":{"18":1,"159":1}}],["cohen",{"2":{"73":1,"75":2,"300":2}}],["coords",{"2":{"47":4,"48":3}}],["coordinate",{"2":{"29":2,"32":1}}],["coordinates",{"2":{"23":2,"47":3,"48":1,"111":7,"132":1,"196":1,"254":1,"283":1}}],["coerces",{"2":{"131":3}}],["coercing",{"2":{"82":1,"89":1}}],["coercion",{"2":{"46":1,"131":1,"196":1}}],["coeff",{"2":{"111":1,"151":2}}],["coefficient",{"2":{"75":2,"83":1,"88":1,"111":1,"127":1,"131":2,"132":1,"134":1,"147":2,"148":1,"151":1,"283":3,"284":1,"285":1}}],["coefficients",{"2":{"2":2,"7":1,"45":1,"46":3,"57":1,"58":1,"111":3,"113":1,"130":1,"141":1,"226":2}}],["copies",{"2":{"168":1}}],["copy",{"2":{"33":1,"68":1,"138":2,"147":2}}],["coprimes",{"2":{"61":1}}],["coprime",{"2":{"17":1,"60":1,"61":18,"93":2,"94":1,"137":1,"144":4,"146":3,"147":2,"151":1}}],["co",{"2":{"16":1,"152":1}}],["codifferent",{"2":{"152":2}}],["codomain",{"2":{"15":1,"17":1,"94":1,"261":1}}],["code",{"0":{"0":1},"2":{"61":4,"88":1,"93":1}}],["colon",{"2":{"145":1}}],["col",{"2":{"89":2}}],["cols",{"2":{"89":2}}],["collecting",{"2":{"269":1}}],["collections",{"2":{"68":3,"287":1}}],["collection",{"2":{"16":1,"168":4,"176":2,"210":3,"229":1,"257":3,"287":3}}],["collects",{"2":{"251":1}}],["collect",{"2":{"68":1,"146":1}}],["collaborative",{"2":{"5":1}}],["column",{"2":{"7":1,"88":1,"89":3}}],["columns",{"2":{"7":1,"17":1,"73":1,"79":1,"86":1,"87":1,"88":3,"89":1,"276":2,"277":2}}],["coming",{"2":{"143":1}}],["comes",{"2":{"129":1,"203":1,"205":1}}],["come",{"2":{"127":1}}],["commands",{"2":{"278":1}}],["common",{"2":{"30":1,"73":1,"139":1}}],["commutative",{"2":{"24":4,"78":1,"86":1}}],["complicated",{"2":{"141":1}}],["completions",{"2":{"166":2,"176":1,"228":1,"261":1,"282":1,"292":2,"296":1}}],["completion",{"2":{"164":1,"172":1,"174":2,"213":2,"214":1,"218":3,"226":2,"235":2,"237":1,"281":1,"290":1,"292":2,"298":3}}],["completely",{"2":{"164":1}}],["complete",{"2":{"127":1,"146":1,"186":1}}],["complex",{"0":{"99":1,"100":1,"103":1},"1":{"100":1,"101":1,"102":1,"103":1,"104":1,"105":1,"106":1,"107":1,"108":1},"2":{"99":2,"100":9,"101":3,"102":1,"103":2,"104":2,"105":5,"106":4,"107":8,"108":9,"109":2,"112":6,"119":4,"122":2,"124":11,"134":1,"165":3,"228":1,"230":4,"232":1,"238":1}}],["complexes",{"2":{"16":1}}],["complements",{"2":{"68":1}}],["complement",{"2":{"17":9,"68":1,"170":4,"171":1,"262":1}}],["compare",{"2":{"255":1}}],["compared",{"2":{"58":1}}],["compact",{"2":{"61":1}}],["compose",{"2":{"169":2}}],["compositum",{"2":{"96":1,"98":3,"120":2}}],["composition",{"2":{"15":1}}],["component",{"2":{"8":1,"18":2,"117":2,"188":4,"190":1}}],["components",{"2":{"7":3,"8":1,"196":1,"258":3}}],["computing",{"0":{"263":1},"2":{"60":1,"61":1,"96":1,"97":1,"105":1,"150":1,"272":1,"283":2}}],["computed",{"2":{"20":1,"61":4,"88":2,"93":1,"94":4,"106":1,"146":1,"168":1,"218":1,"266":3,"287":1}}],["compute",{"2":{"19":2,"20":1,"46":2,"48":1,"51":1,"88":2,"96":3,"97":1,"98":1,"111":1,"112":4,"120":1,"132":1,"134":2,"146":4,"186":1,"265":1,"301":1}}],["computes",{"2":{"17":1,"20":1,"25":1,"60":4,"61":2,"88":2,"93":2,"111":1,"118":1,"121":1,"125":1,"134":2,"136":1,"137":1,"144":1,"145":1,"146":6,"147":5,"151":1,"152":1}}],["computer",{"2":{"4":2,"58":1}}],["computational",{"2":{"300":2}}],["computation",{"2":{"4":1,"61":1,"78":1,"88":1,"96":1,"146":1,"154":1,"235":1}}],["computations",{"0":{"16":1},"1":{"17":1,"18":1,"19":1,"20":1},"2":{"3":1,"4":1}}],["combinations",{"2":{"131":1}}],["combination",{"2":{"6":1}}],["congruent",{"2":{"190":1}}],["conway",{"2":{"176":1,"300":1}}],["conj",{"2":{"102":2}}],["conjugation",{"2":{"119":1,"122":3}}],["conjugated",{"0":{"102":1},"2":{"100":1}}],["conjugates",{"0":{"112":1},"2":{"100":3,"112":14,"134":4}}],["conjugate",{"2":{"64":3,"102":1}}],["conjugacy",{"0":{"64":1}}],["conductor",{"2":{"94":1,"97":8,"98":1,"142":1}}],["condition",{"2":{"88":1}}],["conditions",{"2":{"67":1,"180":1}}],["concatenation",{"2":{"88":1}}],["concatenates",{"2":{"87":2}}],["concatenated",{"2":{"87":1}}],["concretely",{"2":{"2":1}}],["convention",{"2":{"182":1}}],["conventions",{"0":{"109":1},"2":{"30":1,"73":1,"139":1}}],["convenience",{"2":{"103":1}}],["conversely",{"2":{"283":1}}],["conversions",{"0":{"96":1}}],["conversion",{"0":{"60":1,"85":1,"121":1},"2":{"90":1}}],["converting",{"2":{"153":1}}],["convert",{"2":{"85":2}}],["continuity",{"2":{"213":1}}],["continuous",{"2":{"40":1,"172":1}}],["context",{"2":{"168":1,"270":1,"271":1,"287":1}}],["controls",{"2":{"116":3}}],["contrast",{"2":{"86":1,"270":1}}],["containment",{"2":{"292":1}}],["contain",{"2":{"141":1,"151":1}}],["contained",{"2":{"92":1,"96":2,"111":1,"131":2,"134":1,"137":1,"145":1,"147":5,"154":3,"162":2,"290":1}}],["contains",{"2":{"17":1,"93":1,"111":1,"119":1,"150":1,"151":1,"152":1,"164":2}}],["containing",{"2":{"15":1,"17":1,"39":1,"59":1,"73":1,"117":1,"120":1,"125":2,"134":1,"150":1,"151":2,"222":1,"254":1}}],["config",{"2":{"35":1}}],["consequence",{"2":{"86":1}}],["consuming",{"2":{"32":1,"116":1}}],["consists",{"2":{"67":1,"292":1}}],["consisting",{"2":{"25":1,"116":1,"120":2,"122":1,"147":2,"228":1,"254":1,"262":1,"283":1}}],["considered",{"2":{"98":1,"132":1,"134":1,"138":2,"147":2}}],["consider",{"2":{"4":1}}],["const",{"2":{"151":2}}],["constant",{"0":{"31":1,"33":1},"1":{"32":1,"33":1},"2":{"22":2,"26":1,"30":1,"32":9,"33":5}}],["constructing",{"2":{"214":1,"229":2}}],["construction",{"0":{"59":1,"87":1,"100":1},"2":{"28":1,"94":2}}],["constructions",{"0":{"168":1,"210":1,"257":1,"287":1},"1":{"169":1},"2":{"16":1,"246":1}}],["constructor",{"2":{"87":1}}],["constructors",{"0":{"67":1},"2":{"87":1,"116":1,"157":1}}],["constructs",{"2":{"80":3,"87":3,"111":1,"116":1}}],["construct",{"2":{"45":1,"58":1,"89":1,"168":1,"215":1,"230":1,"287":1}}],["constructed",{"2":{"15":1,"29":1,"96":1,"103":1,"104":1,"109":1,"116":1,"117":2,"131":1,"140":1,"150":1,"246":1}}],["b=",{"2":{"270":1}}],["bn",{"2":{"255":1}}],["bn==a",{"2":{"145":1}}],["bm",{"2":{"255":1}}],["bbm=bn",{"2":{"255":1}}],["br",{"2":{"209":1}}],["brown",{"2":{"209":5}}],["b+m∈m",{"2":{"198":1}}],["bd",{"2":{"148":1}}],["b1",{"2":{"148":1}}],["b∈k",{"2":{"119":2}}],["b∈matd×d",{"2":{"109":1,"140":1}}],["b^2",{"2":{"111":1}}],["back",{"2":{"162":1,"278":1}}],["bacher",{"2":{"253":9,"294":6,"296":6}}],["bachem",{"2":{"88":3}}],["bach",{"2":{"146":3}}],["bad",{"2":{"146":2,"213":2,"215":1,"228":1}}],["balls",{"2":{"151":1}}],["ball",{"2":{"103":2}}],["bass",{"2":{"152":3}}],["bashhecke",{"2":{"36":1}}],["basically",{"2":{"196":1}}],["basics",{"0":{"21":1,"44":1},"1":{"22":1,"23":1,"24":1,"25":1,"26":1,"45":1,"46":1,"47":1,"48":1}}],["basic",{"0":{"13":1,"23":1,"46":1,"81":1,"117":1,"132":1,"150":1},"1":{"151":1},"2":{"128":1}}],["basis",{"2":{"2":1,"23":2,"25":4,"27":1,"32":1,"58":2,"61":2,"73":2,"88":1,"95":1,"96":1,"109":6,"111":10,"117":10,"121":2,"123":3,"130":1,"131":1,"132":1,"136":3,"138":7,"140":5,"142":5,"143":1,"144":1,"146":6,"147":10,"148":1,"150":9,"151":26,"160":1,"162":4,"163":1,"170":3,"174":1,"195":1,"196":2,"213":1,"215":2,"217":1,"230":1,"232":2,"236":2,"238":2,"240":6,"242":2,"244":2,"245":4,"246":3,"249":2,"253":1,"254":2,"255":5,"262":3,"265":2,"267":1,"270":3,"275":5,"276":5,"277":5,"278":4,"279":2,"280":1,"282":1,"283":17,"284":24,"285":1,"286":4,"289":5,"292":3,"293":1,"294":1,"299":27}}],["based",{"2":{"88":1,"96":1,"193":1,"272":1}}],["bases",{"2":{"23":1,"285":1,"296":3}}],["base",{"0":{"82":1},"2":{"2":1,"23":1,"46":7,"48":1,"54":1,"58":2,"59":3,"60":1,"61":4,"75":1,"79":2,"82":2,"86":2,"87":2,"89":2,"90":1,"96":2,"97":5,"98":5,"105":3,"111":1,"114":2,"117":2,"118":1,"119":2,"129":3,"134":2,"144":4,"146":6,"149":1,"158":2,"159":1,"162":2,"216":1,"217":1,"230":3,"231":1,"232":1,"239":1,"241":2,"270":1,"271":2,"283":3,"284":2,"290":1,"292":2}}],["block",{"2":{"87":2,"190":1,"213":4,"218":7,"224":1,"226":2}}],["blocks",{"2":{"79":1,"87":1,"188":2,"214":1,"215":2,"216":1,"218":4,"224":1,"238":1}}],["bf",{"2":{"61":1}}],["bibliography",{"0":{"300":1}}],["bijection",{"2":{"270":2}}],["bijective",{"2":{"201":2,"261":1}}],["bigger",{"2":{"246":1}}],["bilinear",{"2":{"162":1,"182":2,"184":2,"190":2,"195":2,"196":2,"197":8,"201":4,"205":1,"206":4,"208":4,"209":2,"270":1,"300":1}}],["bi⋅bj",{"2":{"151":1}}],["binding",{"2":{"128":1}}],["bivariate",{"2":{"46":2}}],["biproduct",{"2":{"18":2,"168":7,"169":1,"210":7,"257":7,"287":7}}],["biproducts",{"2":{"18":1,"168":4,"210":3,"257":3,"287":4}}],["b8",{"2":{"46":1}}],["b6",{"2":{"46":1}}],["b4",{"2":{"46":1}}],["b2",{"2":{"46":1,"201":2}}],["bu",{"2":{"255":3}}],["build",{"2":{"36":3}}],["building",{"0":{"36":1},"2":{"79":1}}],["but",{"2":{"2":1,"8":1,"58":1,"61":2,"68":1,"73":1,"90":5,"98":1,"149":1,"150":1,"285":1}}],["bogomolov",{"2":{"246":2}}],["bound",{"2":{"146":7}}],["bound2",{"2":{"88":2}}],["bounded",{"2":{"7":1,"61":1,"146":2,"239":2}}],["both",{"2":{"17":1,"121":1,"129":1,"141":1,"151":1,"166":1,"168":1,"201":4,"235":1,"255":1,"265":1,"267":1,"270":1,"287":1}}],["bool=true",{"2":{"263":1}}],["boolean",{"2":{"116":1,"180":1}}],["bool",{"2":{"14":5,"15":1,"17":5,"24":2,"25":2,"28":1,"32":1,"33":1,"45":1,"47":1,"48":1,"61":2,"64":1,"87":1,"88":3,"93":4,"96":1,"97":2,"98":3,"100":1,"101":2,"107":5,"113":5,"116":3,"119":12,"120":2,"121":1,"122":4,"124":1,"131":2,"132":1,"136":2,"138":2,"144":2,"145":5,"146":7,"147":8,"148":1,"150":9,"151":3,"152":3,"154":2,"156":4,"160":6,"164":2,"166":2,"172":1,"174":1,"182":3,"184":4,"187":1,"190":1,"193":1,"195":2,"201":6,"202":4,"203":1,"208":2,"209":1,"214":1,"220":4,"231":1,"235":2,"245":1,"246":1,"250":6,"252":3,"253":3,"255":6,"262":5,"263":2,"265":1,"266":3,"267":1,"275":2,"276":2,"277":2,"281":2,"283":1,"290":7,"292":1,"294":1,"296":4,"298":3}}],["booktitle",{"2":{"4":1}}],["b",{"2":{"7":2,"25":5,"46":2,"59":20,"61":3,"64":4,"67":5,"81":4,"87":11,"88":4,"89":4,"90":4,"98":10,"105":2,"108":1,"109":2,"111":6,"116":6,"132":3,"134":3,"136":7,"137":1,"145":6,"146":10,"157":2,"159":2,"161":2,"163":2,"167":2,"169":1,"173":2,"175":2,"182":6,"190":6,"195":1,"196":2,"198":4,"201":2,"208":3,"215":10,"217":2,"219":8,"221":2,"223":2,"225":2,"227":8,"230":9,"232":8,"234":10,"236":4,"238":10,"240":1,"242":2,"244":3,"249":2,"255":1,"265":1,"267":1,"270":2,"275":4,"276":5,"277":5,"278":11,"280":3,"284":31,"289":5,"291":3,"295":2,"299":15}}],["berlin",{"2":{"300":1}}],["beauville",{"2":{"246":2}}],["before",{"2":{"230":1}}],["beta",{"2":{"121":1}}],["between",{"2":{"15":2,"17":1,"196":1,"201":1,"239":1,"257":3,"270":1,"287":3,"292":1}}],["belong",{"2":{"80":1}}],["below",{"2":{"40":1}}],["behaviour",{"2":{"68":1,"116":1}}],["because",{"2":{"43":1}}],["being",{"2":{"9":1,"116":1,"129":1,"141":1,"144":1,"148":1,"150":1,"213":1,"235":1}}],["be",{"2":{"2":2,"7":1,"12":1,"15":2,"20":1,"22":1,"29":1,"36":1,"38":1,"39":4,"40":1,"42":3,"45":1,"47":2,"54":1,"58":3,"60":1,"61":5,"62":1,"67":1,"68":1,"73":3,"75":4,"79":1,"86":1,"87":2,"88":2,"93":2,"94":3,"96":3,"98":3,"103":2,"104":1,"106":1,"107":2,"109":1,"111":3,"112":1,"113":3,"114":2,"116":9,"117":1,"118":1,"120":1,"121":1,"122":1,"125":2,"127":2,"129":1,"130":1,"131":4,"134":1,"141":2,"143":5,"146":8,"149":2,"150":2,"152":1,"153":1,"156":4,"158":6,"160":2,"164":1,"166":5,"168":2,"172":3,"174":4,"176":1,"182":2,"186":2,"190":2,"195":3,"201":2,"208":1,"209":3,"213":4,"224":1,"228":4,"229":1,"233":3,"235":3,"239":1,"245":2,"246":1,"247":1,"248":1,"265":1,"267":2,"270":2,"271":1,"272":1,"275":4,"276":8,"277":8,"278":2,"281":2,"282":1,"283":2,"285":4,"287":1,"288":4,"290":3,"292":3,"294":2}}],["begin",{"2":{"2":1,"269":1}}],["by",{"0":{"262":1},"2":{"2":3,"5":1,"7":1,"17":10,"29":2,"30":1,"42":1,"45":2,"46":4,"47":2,"57":3,"58":2,"59":1,"60":2,"61":9,"63":1,"68":3,"75":2,"79":1,"81":1,"82":1,"84":1,"86":1,"88":2,"89":3,"90":2,"92":1,"93":5,"94":4,"96":4,"97":1,"98":3,"101":1,"104":1,"105":1,"107":1,"108":2,"109":2,"111":1,"113":1,"116":4,"119":1,"121":2,"122":2,"124":2,"127":3,"128":2,"129":1,"131":1,"136":2,"140":1,"143":3,"144":3,"145":1,"146":12,"147":1,"150":2,"151":1,"152":1,"162":4,"166":7,"167":4,"182":2,"184":2,"186":3,"188":1,"190":2,"191":1,"195":1,"196":2,"197":2,"202":2,"206":1,"207":1,"209":3,"213":2,"214":2,"224":1,"229":2,"231":1,"235":3,"239":2,"241":2,"245":3,"246":5,"249":1,"250":4,"253":3,"254":4,"262":1,"265":2,"266":1,"267":1,"269":1,"270":1,"271":3,"275":7,"276":7,"277":7,"278":1,"285":2,"288":1,"294":2,"296":3,"298":2}}],["qld",{"2":{"278":2}}],["qmodnzelem",{"2":{"198":2}}],["qmodnz",{"2":{"197":2}}],["qf",{"2":{"195":2}}],["q2",{"2":{"165":4,"167":3}}],["q×",{"2":{"148":1}}],["qx",{"2":{"95":1,"96":1,"108":1,"111":1,"116":1,"117":2,"118":2,"120":1,"142":1,"150":1,"151":1,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"278":1,"301":1}}],["q⊗m∩zn",{"2":{"88":1}}],["q+1−n",{"2":{"52":1}}],["qg",{"2":{"28":1,"29":8}}],["qqfield",{"2":{"162":1,"186":2}}],["qqfieldelem",{"2":{"25":1,"33":1,"48":1,"60":2,"61":3,"67":2,"111":2,"114":1,"118":1,"138":2,"147":1,"150":2,"151":1,"182":4,"186":1,"190":4,"195":2,"196":1,"197":2,"199":2,"233":1,"250":3,"251":1,"255":1,"266":5,"267":3}}],["qqmatrix",{"2":{"25":1,"136":1,"150":2,"151":1,"186":2,"189":1,"197":2,"206":1,"246":1,"249":2,"255":4}}],["qq",{"2":{"22":2,"24":1,"25":2,"26":4,"28":1,"29":1,"32":3,"33":1,"45":1,"46":2,"48":5,"95":2,"96":1,"108":1,"111":1,"116":6,"117":2,"118":3,"120":1,"142":4,"146":4,"150":1,"151":2,"180":8,"201":7,"206":4,"215":1,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":1,"234":1,"236":1,"238":1,"244":2,"254":1,"255":1,"261":3,"267":1,"278":3,"280":1,"282":1,"284":1,"286":5,"301":1}}],["quick",{"2":{"301":1}}],["quickly",{"2":{"103":1}}],["quadlat",{"2":{"276":4}}],["quadspacecls",{"2":{"168":3,"287":3}}],["quadspace",{"2":{"156":2,"162":1,"164":3,"186":2,"249":1}}],["quadbin",{"2":{"38":2}}],["quad",{"2":{"38":2,"39":2,"43":2}}],["quadform",{"2":{"38":6,"39":6,"43":3}}],["quadratic",{"0":{"195":1,"245":1,"248":1,"270":1,"271":1,"276":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"3":1,"32":2,"43":1,"100":7,"101":4,"102":1,"103":1,"104":2,"105":2,"107":8,"108":3,"111":2,"116":5,"124":8,"156":6,"157":2,"158":1,"160":5,"161":2,"162":1,"163":1,"164":2,"165":2,"166":1,"167":2,"168":3,"171":1,"186":3,"188":1,"190":1,"193":1,"195":8,"196":6,"197":10,"198":2,"201":37,"202":4,"203":3,"204":1,"205":1,"206":20,"207":2,"208":8,"209":7,"210":3,"242":3,"244":1,"245":2,"248":1,"249":3,"250":1,"255":2,"261":6,"268":2,"270":6,"271":5,"272":2,"275":8,"276":13,"278":6,"280":2,"281":2,"282":4,"286":3,"287":3,"293":1,"295":1,"297":2}}],["quaternion",{"2":{"30":1}}],["quomap",{"2":{"94":1}}],["quo",{"2":{"17":7,"93":3,"94":5,"148":2}}],["quot",{"2":{"19":2,"20":4,"42":8,"60":4,"61":4,"111":2,"112":2,"121":6,"168":12,"287":12}}],["quotype",{"2":{"17":4,"211":4}}],["quotient",{"0":{"148":1},"2":{"17":8,"93":1,"94":5,"96":1,"111":1,"125":1,"127":1,"128":1,"146":1,"148":2,"195":1,"211":2}}],["quotients",{"0":{"17":1},"2":{"92":2,"127":1,"196":1}}],["q",{"2":{"2":1,"12":1,"14":1,"48":2,"54":4,"58":1,"61":5,"92":2,"94":3,"97":2,"98":3,"109":5,"114":2,"116":1,"117":1,"118":1,"119":1,"121":2,"127":2,"129":3,"139":1,"140":1,"148":4,"151":1,"157":1,"161":4,"162":1,"163":4,"165":6,"167":5,"171":2,"195":1,"196":4,"197":2,"201":10,"206":13,"208":2,"209":4}}],["2πi8br",{"2":{"209":1}}],["2z",{"2":{"196":2,"201":5,"205":1,"206":4,"209":1}}],["2i",{"2":{"193":1}}],["2im",{"2":{"109":8}}],["2>",{"2":{"146":8,"286":2}}],["24",{"2":{"124":5,"246":4}}],["2log⁡",{"2":{"112":2,"134":2}}],["2re",{"2":{"109":5}}],["2s",{"2":{"109":1}}],["26",{"2":{"108":2,"280":1}}],["2168244",{"2":{"234":2}}],["21",{"2":{"103":1,"246":2}}],["2^m",{"2":{"188":1}}],["2^4",{"2":{"146":1}}],["2^",{"2":{"103":1,"112":9,"134":5,"146":1,"151":1}}],["2^2",{"2":{"51":1}}],["2000",{"2":{"300":1}}],["2018",{"2":{"300":1}}],["2019",{"2":{"272":1}}],["2016",{"2":{"272":1}}],["2017",{"2":{"4":3}}],["20",{"2":{"68":2,"146":1,"246":2,"261":1,"282":1,"286":1,"297":1}}],["25>",{"2":{"286":1}}],["25",{"2":{"67":1,"146":1,"165":1,"282":1,"286":2,"297":1}}],["22",{"2":{"53":1,"263":1}}],["22>",{"2":{"2":1}}],["2×2×2",{"2":{"33":1}}],["2nd",{"2":{"17":1}}],["28>",{"2":{"284":2}}],["28",{"2":{"2":1}}],["290",{"2":{"300":1}}],["29",{"2":{"2":9}}],["238",{"2":{"300":1}}],["236067977",{"2":{"107":2}}],["23",{"2":{"2":2,"53":1,"246":2}}],["23+55ζ75",{"2":{"2":1}}],["2",{"0":{"83":1,"277":1},"1":{"278":1},"2":{"2":4,"11":4,"13":5,"15":6,"17":35,"24":1,"26":3,"29":6,"32":7,"33":6,"45":4,"46":4,"47":1,"48":21,"50":3,"51":2,"52":4,"53":10,"54":3,"59":1,"61":2,"67":8,"68":23,"88":1,"95":3,"96":4,"100":2,"102":1,"104":3,"106":1,"107":7,"108":1,"111":5,"113":1,"116":2,"117":3,"118":4,"120":1,"124":7,"132":1,"134":1,"139":1,"142":18,"143":1,"146":55,"150":1,"151":2,"157":2,"158":2,"159":4,"163":6,"164":1,"165":1,"169":1,"171":1,"174":1,"182":2,"190":2,"193":1,"196":11,"201":30,"206":6,"209":6,"213":1,"215":14,"217":11,"219":10,"221":4,"223":4,"225":5,"227":5,"230":12,"232":11,"233":1,"234":7,"236":6,"238":14,"240":18,"244":10,"246":38,"248":3,"249":9,"254":53,"255":4,"261":23,"263":17,"267":6,"268":1,"270":2,"277":4,"278":13,"280":15,"282":7,"284":52,"286":9,"289":6,"291":1,"293":7,"295":4,"297":7,"299":22,"301":2}}],["izv",{"2":{"300":1}}],["ir",{"2":{"261":2,"263":1}}],["irreducibility",{"2":{"116":2}}],["irreducible",{"2":{"109":1,"116":1,"129":1,"134":1,"254":4,"258":2}}],["illustrate",{"2":{"246":1}}],["iπq",{"2":{"209":1}}],["ignored",{"2":{"180":1}}],["i2",{"2":{"148":1}}],["i1",{"2":{"148":1}}],["i→o",{"2":{"148":1}}],["ij",{"2":{"80":3}}],["i∈rn∣xi=0",{"2":{"79":1}}],["i∈v",{"2":{"8":1}}],["ie",{"2":{"61":3,"92":1,"98":1,"146":4}}],["i^int",{"2":{"146":1}}],["i^k",{"2":{"59":1}}],["i^",{"2":{"58":1}}],["imag",{"2":{"112":3,"134":1}}],["imaginary",{"2":{"99":1,"100":4,"101":5,"108":2,"124":1}}],["images",{"2":{"15":1,"17":1,"195":2}}],["image",{"2":{"15":1,"17":2,"103":1,"112":1,"134":1}}],["im",{"2":{"99":1,"103":1}}],["improve",{"2":{"253":3,"294":2,"296":2}}],["impossible",{"2":{"141":1}}],["important",{"2":{"58":1,"78":1,"79":1}}],["implicit",{"2":{"270":2}}],["implicitly",{"2":{"98":2,"109":1,"140":1}}],["implementation",{"2":{"272":1}}],["implements",{"2":{"246":1}}],["implemented",{"2":{"30":1,"53":1,"86":1,"149":1,"268":1,"272":1}}],["i",{"2":{"7":2,"8":3,"15":1,"18":2,"25":4,"32":2,"58":1,"59":2,"60":4,"61":3,"67":3,"68":6,"73":3,"79":1,"80":3,"81":2,"88":4,"89":23,"94":6,"97":2,"100":3,"106":2,"108":15,"111":6,"112":2,"117":2,"118":1,"122":2,"124":1,"132":3,"134":3,"136":6,"138":6,"144":2,"145":1,"146":22,"147":13,"148":9,"151":6,"152":1,"164":3,"166":2,"193":1,"213":3,"218":6,"224":1,"226":1,"228":1,"230":1,"233":1,"242":1,"246":1,"253":1,"254":3,"263":2,"270":1,"271":1,"285":1,"290":1,"292":3}}],["idempotents",{"2":{"147":2,"148":1}}],["identical",{"2":{"116":3}}],["identity",{"2":{"9":1,"87":2,"88":1,"119":1,"122":1,"156":2,"244":2,"246":1,"270":1,"276":3,"277":3}}],["idel",{"2":{"92":1}}],["idealp",{"2":{"239":1}}],["ideals",{"0":{"135":1,"143":1},"1":{"136":1,"137":1,"138":1,"144":1,"145":1,"146":1,"147":1,"148":1},"2":{"3":2,"58":1,"61":3,"73":2,"74":3,"75":3,"83":1,"93":3,"94":1,"95":1,"134":1,"135":2,"137":1,"141":1,"142":1,"143":6,"144":2,"146":26,"147":4,"151":3,"153":1,"228":2,"231":1,"283":6,"284":1,"285":1}}],["ideal",{"0":{"2":1},"2":{"2":2,"59":3,"61":7,"73":2,"83":1,"93":2,"97":3,"113":1,"119":1,"123":3,"125":3,"135":3,"136":25,"137":2,"138":3,"141":1,"143":2,"144":24,"145":4,"146":7,"147":11,"148":4,"149":1,"151":1,"152":4,"166":1,"174":2,"182":2,"190":2,"213":3,"214":2,"215":2,"216":1,"218":9,"220":4,"222":2,"226":2,"231":2,"235":1,"237":1,"238":1,"239":1,"241":1,"250":2,"255":1,"282":1,"283":2,"284":13,"285":1,"288":3,"289":2,"290":5,"292":4,"296":1,"298":3,"299":12}}],["id",{"2":{"7":1}}],["iff",{"2":{"88":1}}],["if",{"2":{"4":1,"17":3,"18":2,"19":1,"20":1,"25":2,"32":1,"39":2,"40":1,"43":1,"46":2,"48":2,"54":1,"57":1,"61":1,"64":1,"68":1,"73":3,"87":1,"88":7,"89":1,"92":2,"93":4,"94":2,"96":1,"97":5,"98":7,"99":1,"100":1,"101":2,"103":1,"106":1,"109":3,"113":3,"116":8,"117":1,"119":13,"120":2,"121":1,"122":4,"125":3,"129":1,"131":5,"134":1,"136":2,"139":1,"140":2,"144":3,"145":3,"146":9,"147":4,"148":2,"150":8,"151":2,"154":2,"158":1,"160":3,"164":1,"166":1,"168":6,"172":1,"174":1,"176":1,"180":1,"182":2,"184":2,"187":2,"188":2,"190":4,"195":2,"196":1,"201":4,"202":2,"205":1,"206":1,"207":1,"208":3,"209":2,"210":6,"213":4,"228":1,"230":1,"233":1,"235":1,"236":1,"238":1,"239":1,"240":1,"244":2,"245":1,"246":4,"249":1,"250":3,"253":4,"254":1,"255":2,"257":6,"262":3,"267":2,"270":1,"271":1,"275":5,"276":7,"277":4,"279":1,"283":2,"287":6,"290":5,"292":4,"294":3,"296":4,"298":3}}],["inherits",{"2":{"195":1}}],["inj",{"2":{"169":3}}],["injective",{"2":{"17":1}}],["injections",{"2":{"18":3,"168":7,"210":4,"257":6,"287":7}}],["injection",{"2":{"17":6,"18":3,"120":2}}],["inner",{"0":{"162":1},"1":{"163":1},"2":{"162":2,"163":1,"198":2,"246":2}}],["inert",{"2":{"220":3,"221":1}}],["inertia",{"2":{"98":1,"123":2,"147":1,"164":1,"228":1,"231":1,"252":1}}],["inegtral",{"2":{"184":1}}],["inefficient",{"2":{"8":1}}],["infp",{"2":{"230":2}}],["infplc",{"2":{"93":1,"94":1,"95":1,"96":1,"97":3,"124":6,"164":4,"165":1,"172":1,"229":1,"230":2,"231":1,"232":1,"239":1,"240":1,"281":3,"292":1}}],["information",{"2":{"109":1,"146":1,"150":2,"153":1,"159":1}}],["inf",{"2":{"93":1,"94":1,"97":2,"111":1,"235":1}}],["infinity",{"2":{"48":3}}],["infinite",{"0":{"124":1},"2":{"7":1,"93":1,"94":1,"98":1,"111":1,"124":11,"165":3,"228":1,"229":1,"230":5,"231":2,"232":1,"236":1,"238":2,"240":1}}],["ingredients",{"2":{"78":1}}],["init",{"2":{"61":1}}],["inplace",{"2":{"84":3,"87":2,"88":1,"89":7}}],["input",{"2":{"60":1,"111":1,"144":1,"254":2,"261":1,"267":1,"278":1}}],["inproceedings",{"2":{"4":1}}],["ins",{"2":{"263":3}}],["install",{"2":{"301":1}}],["installed",{"2":{"301":1}}],["instances",{"2":{"68":1}}],["instance",{"2":{"68":1,"159":1,"165":1,"255":1}}],["instructions",{"2":{"301":1}}],["instead",{"2":{"40":1,"62":1,"88":1}}],["inside",{"0":{"275":1},"2":{"40":1,"170":1,"244":1,"245":1,"249":1,"255":1,"275":2,"276":4,"277":4,"285":4,"294":1}}],["increasing",{"2":{"213":1}}],["increase",{"2":{"25":2}}],["inctions",{"2":{"210":2}}],["including",{"2":{"40":1}}],["include",{"2":{"282":1}}],["included",{"2":{"39":2,"67":1}}],["includes",{"2":{"32":1}}],["inclusion",{"2":{"15":1,"17":2,"26":1,"261":1}}],["inducing",{"2":{"262":3}}],["induced",{"2":{"15":1,"196":1}}],["indicating",{"2":{"75":2}}],["indicated",{"2":{"30":1}}],["indefinite",{"0":{"265":1},"2":{"160":1,"235":1,"265":1}}],["independent",{"2":{"73":1,"141":1,"153":3}}],["indexed",{"2":{"143":1}}],["index",{"2":{"17":3,"78":1,"81":1,"89":5,"109":2,"121":1,"146":3,"147":3,"150":2,"151":11,"152":2,"164":1,"211":3,"228":1,"231":1,"246":1,"283":1,"288":1}}],["inv",{"2":{"105":1,"106":1,"136":1,"137":1,"138":2,"147":2,"151":4,"239":2}}],["invertable",{"2":{"146":2}}],["invertible",{"2":{"64":1,"88":1,"145":3,"146":1}}],["inverses",{"2":{"151":1}}],["inverse",{"2":{"136":1,"138":1,"145":1,"146":1,"147":1,"148":1,"151":1,"152":1,"153":1,"182":1}}],["inversion",{"2":{"89":1}}],["involution",{"2":{"122":3,"158":2,"159":1,"213":1,"222":1,"270":4,"271":2,"283":3,"284":1}}],["involved",{"2":{"60":1,"92":1}}],["invoke",{"2":{"43":1}}],["invoked",{"2":{"42":1}}],["invoking",{"2":{"2":1}}],["invariant",{"2":{"17":1,"45":4,"46":3,"164":7,"165":2,"190":4,"209":6,"213":1,"222":1,"262":3,"281":6,"282":2}}],["invariants",{"0":{"10":1,"14":1,"97":1,"114":1,"118":1,"152":1,"208":1,"218":1,"250":1,"252":1,"288":1},"1":{"219":1,"251":1,"252":1,"289":1},"2":{"46":8,"158":1,"164":3,"165":1,"188":1,"213":1,"229":1,"251":1}}],["introduced",{"2":{"73":1}}],["introduction",{"0":{"12":1,"30":1,"57":1,"78":1,"92":1,"129":1,"139":1,"268":1},"1":{"13":1,"14":1,"140":1,"141":1,"142":1,"269":1,"270":1,"271":1,"272":1},"2":{"141":1}}],["int64",{"2":{"67":3,"68":5,"107":1,"142":1,"146":1,"165":2,"219":4,"232":1,"240":1,"254":1}}],["into",{"2":{"18":1,"60":1,"61":1,"73":1,"75":2,"82":1,"88":1,"89":1,"93":1,"122":1,"124":2,"131":3,"134":1,"136":1,"153":1,"166":2,"167":1,"201":2,"228":1,"261":1,"263":2,"292":1}}],["int",{"2":{"7":1,"8":2,"13":2,"14":3,"17":1,"18":2,"25":2,"26":2,"48":1,"52":2,"61":4,"67":3,"68":2,"70":2,"71":2,"72":1,"80":4,"81":3,"85":2,"87":6,"88":8,"89":17,"93":2,"98":4,"103":2,"107":2,"111":4,"112":7,"116":3,"117":1,"118":3,"119":1,"125":4,"133":3,"134":4,"144":1,"145":4,"146":6,"147":3,"151":4,"152":1,"156":2,"158":2,"164":4,"180":1,"182":3,"190":5,"209":4,"211":5,"216":1,"218":17,"224":1,"226":1,"229":1,"231":2,"239":6,"246":3,"250":1,"252":3,"253":8,"254":1,"263":2,"266":1,"267":1,"281":2,"283":2,"290":1,"292":1,"294":5,"296":4}}],["intended",{"2":{"248":1}}],["intermediate",{"2":{"153":1}}],["interpreted",{"2":{"149":1}}],["interaction",{"2":{"139":1}}],["interesting",{"2":{"58":1}}],["interface",{"2":{"30":1,"139":1,"153":1}}],["intersect",{"2":{"17":1,"68":2,"98":1,"145":1,"246":2,"255":1,"285":1,"286":1}}],["intersection",{"2":{"17":2,"98":1,"246":1,"255":1,"285":1}}],["internal",{"2":{"278":1}}],["internals",{"0":{"126":1},"1":{"127":1,"128":1}}],["internally",{"2":{"6":1,"8":1,"86":1,"127":1,"128":1}}],["international",{"2":{"4":1}}],["integration",{"2":{"40":1}}],["integrality",{"2":{"150":1}}],["integral",{"0":{"64":1,"84":1,"178":1,"298":1},"1":{"299":1},"2":{"2":3,"61":2,"64":2,"88":1,"93":1,"113":4,"125":2,"135":2,"137":2,"141":2,"143":1,"147":1,"149":1,"150":1,"176":1,"180":1,"182":3,"184":3,"193":1,"204":1,"205":1,"209":1,"231":3,"239":2,"250":7,"251":1,"254":2,"255":1,"261":6,"263":2,"265":1,"290":5,"291":1,"298":24,"299":5}}],["integer",{"0":{"176":1,"242":1,"243":1},"1":{"177":1,"178":1,"179":1,"180":1,"181":1,"182":1,"183":1,"184":1,"185":1,"186":1,"187":1,"188":1,"189":1,"190":1,"191":1,"192":1,"193":1,"243":1,"244":2,"245":2,"246":2,"247":2,"248":2,"249":1,"250":1,"251":1,"252":1,"253":1},"2":{"13":1,"17":4,"58":1,"59":2,"84":1,"88":1,"89":1,"90":1,"113":1,"116":1,"119":1,"125":1,"131":2,"134":3,"135":1,"137":1,"143":1,"144":4,"146":3,"147":3,"151":2,"176":1,"180":3,"184":2,"191":1,"195":1,"196":2,"201":4,"202":2,"204":1,"206":4,"209":2,"242":2,"244":3,"246":14,"247":1,"248":2,"249":3,"250":3,"251":1,"254":10,"255":4,"261":4,"263":4,"267":1,"290":3,"300":1}}],["integerunion",{"2":{"13":4,"17":1,"54":1,"116":1,"131":1,"134":1,"189":2}}],["integers",{"2":{"2":1,"7":1,"14":1,"58":1,"61":1,"67":2,"79":1,"86":1,"89":1,"98":1,"109":1,"111":1,"139":1,"141":1,"149":1,"150":1,"180":1,"188":1,"190":1,"213":1,"240":15,"242":1,"253":1}}],["in",{"0":{"245":1},"2":{"3":3,"4":1,"6":1,"7":1,"14":3,"15":1,"16":1,"17":14,"19":1,"25":7,"30":3,"32":1,"34":1,"36":2,"38":2,"39":5,"42":1,"43":1,"45":1,"58":11,"59":2,"60":1,"61":10,"63":3,"67":1,"68":12,"73":5,"74":3,"78":3,"79":1,"84":2,"86":1,"87":1,"88":5,"89":1,"92":2,"93":2,"94":2,"96":5,"98":4,"105":1,"107":3,"109":5,"111":6,"113":5,"116":3,"119":1,"121":1,"127":5,"129":4,"130":6,"131":4,"132":2,"134":4,"135":2,"136":6,"137":1,"139":1,"141":8,"143":6,"144":5,"145":6,"146":17,"147":13,"149":8,"150":5,"151":4,"152":1,"153":1,"154":1,"158":2,"160":3,"162":2,"166":5,"168":2,"170":1,"172":2,"176":2,"182":1,"184":2,"186":2,"187":2,"188":3,"193":1,"195":2,"196":1,"198":1,"201":2,"202":4,"203":2,"208":2,"209":2,"211":1,"213":4,"218":5,"220":3,"224":3,"226":2,"228":4,"229":1,"230":1,"233":5,"235":6,"236":4,"238":1,"240":1,"241":2,"242":1,"246":2,"248":1,"250":3,"251":1,"255":16,"261":1,"262":1,"263":4,"265":1,"266":2,"270":10,"271":2,"275":2,"276":2,"277":2,"278":2,"283":2,"285":5,"287":1,"288":1,"290":3,"292":2,"298":6,"300":4}}],["its",{"2":{"96":1,"97":1,"111":1,"117":1,"146":1,"147":2,"158":8,"176":2,"184":1,"186":1,"196":1,"203":1,"208":1,"218":1,"224":2,"226":2,"231":1,"233":1,"242":1,"250":4,"251":1,"254":1,"290":1,"300":1,"301":1}}],["itself",{"2":{"26":1,"176":1,"294":1}}],["itrs",{"2":{"68":5}}],["iter",{"2":{"67":3}}],["iterated",{"2":{"18":2}}],["iterate",{"2":{"11":1,"68":1}}],["iterators",{"0":{"65":1,"69":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":2,"71":2,"72":2}}],["iterator",{"0":{"11":1},"2":{"17":2,"67":3,"68":1,"70":3,"71":3,"72":1,"211":2,"266":6}}],["ith",{"2":{"13":1,"18":2,"218":5,"224":1,"226":2}}],["it",{"2":{"2":1,"10":1,"14":2,"16":1,"17":1,"18":1,"25":2,"29":1,"43":1,"45":1,"46":1,"47":1,"58":2,"61":1,"78":1,"79":1,"86":1,"89":1,"92":1,"93":2,"94":1,"96":2,"97":1,"107":1,"111":1,"113":1,"116":1,"119":1,"120":1,"125":1,"131":2,"134":1,"136":2,"141":1,"142":1,"144":2,"146":1,"147":3,"149":2,"150":4,"151":4,"160":1,"184":4,"186":1,"195":1,"198":1,"201":6,"202":2,"203":1,"205":1,"213":2,"218":1,"224":1,"231":1,"235":1,"237":2,"239":1,"242":1,"246":2,"250":2,"265":1,"266":3,"267":1,"278":1,"287":1,"290":3,"298":1}}],["iseven",{"2":{"182":1,"190":1,"250":1}}],["isempty",{"2":{"68":1}}],["isbasis=false",{"2":{"246":1}}],["isbasis",{"2":{"150":3}}],["isreal",{"2":{"124":1,"230":2,"236":2,"238":2,"240":2}}],["issubset",{"2":{"17":1,"68":1}}],["issac",{"2":{"4":2}}],["isotropic",{"0":{"172":1},"1":{"173":1},"2":{"172":4,"173":1,"292":3,"293":1}}],["isometries",{"0":{"253":1},"2":{"294":1}}],["isometric",{"2":{"162":2,"164":7,"165":2,"176":1,"201":9,"203":1,"208":1,"233":2,"253":6,"261":1,"281":6,"282":2,"296":9,"297":2}}],["isometry",{"0":{"201":1,"296":1},"1":{"297":1},"2":{"164":2,"168":1,"186":2,"201":11,"203":1,"233":1,"235":2,"246":1,"251":1,"287":1,"294":1,"296":5}}],["isomorphic",{"2":{"15":3,"16":2,"17":2,"53":1,"94":3,"121":2,"122":6,"211":3,"261":1}}],["isomorphisms",{"2":{"16":1}}],["isomorphism",{"2":{"15":1,"16":3,"18":2,"94":1,"120":1,"121":3,"122":1,"146":2,"148":1}}],["isolated",{"2":{"17":1}}],["isone",{"2":{"9":1,"61":2,"64":1,"88":1,"96":1,"145":1}}],["iszero",{"2":{"9":1,"88":1}}],["is",{"2":{"2":1,"5":2,"6":1,"7":1,"8":1,"9":1,"10":2,"12":2,"13":5,"14":16,"15":1,"16":3,"17":25,"18":1,"19":2,"20":2,"24":9,"25":8,"26":1,"27":1,"28":1,"29":1,"30":1,"32":1,"38":1,"39":2,"42":2,"43":1,"45":2,"46":7,"47":1,"48":3,"52":2,"53":1,"54":2,"56":1,"57":3,"58":4,"59":1,"60":1,"61":6,"62":3,"64":4,"68":4,"73":8,"75":1,"78":2,"79":5,"83":1,"85":1,"86":5,"87":4,"88":28,"89":4,"92":7,"93":14,"94":12,"96":7,"97":13,"98":13,"99":2,"100":2,"101":7,"103":3,"105":3,"106":1,"107":17,"108":1,"109":19,"111":8,"112":1,"113":16,"116":8,"117":2,"118":2,"119":38,"120":9,"121":6,"122":6,"123":1,"124":3,"125":5,"127":2,"128":2,"129":4,"130":2,"131":4,"132":1,"134":8,"135":2,"136":7,"137":2,"139":5,"140":6,"141":6,"142":3,"143":3,"144":8,"145":10,"146":21,"147":27,"148":4,"149":6,"150":14,"151":23,"152":9,"153":1,"154":4,"156":2,"158":6,"160":21,"161":6,"162":7,"164":12,"165":2,"166":6,"167":4,"169":2,"172":4,"173":1,"174":4,"175":1,"176":2,"180":3,"181":1,"182":12,"184":26,"186":1,"187":1,"188":3,"190":13,"193":2,"195":3,"196":5,"198":1,"201":8,"202":16,"203":3,"205":3,"206":1,"207":2,"208":7,"209":9,"213":9,"215":1,"218":12,"220":8,"221":4,"224":1,"226":4,"231":4,"233":6,"235":3,"239":4,"242":3,"244":4,"245":3,"246":10,"249":4,"250":32,"252":6,"253":8,"254":5,"255":13,"261":5,"262":10,"263":2,"265":1,"266":11,"267":4,"268":1,"270":10,"271":4,"275":11,"276":9,"277":6,"278":1,"279":2,"281":2,"282":3,"283":9,"285":1,"287":1,"288":1,"290":25,"291":4,"292":4,"293":1,"294":6,"295":1,"296":13,"297":2,"298":23,"299":3,"301":3}}],["tgmtt=gl",{"2":{"296":1}}],["tvmtt=vl",{"2":{"296":1}}],["t→ti",{"2":{"210":6}}],["t→u",{"2":{"201":2}}],["tn",{"2":{"210":3}}],["t1",{"2":{"210":3}}],["t=m",{"2":{"197":2}}],["t+1",{"2":{"157":1,"159":1,"161":1,"163":1,"167":1,"173":1,"175":1}}],["t^2",{"2":{"157":2,"159":2,"161":1,"163":1,"167":1,"173":1,"175":1,"215":1,"217":2,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":2,"234":1,"236":1,"238":1,"240":1,"278":3,"280":2,"284":2,"289":1,"291":1,"295":1,"299":1}}],["t^3",{"2":{"116":1}}],["tutorials",{"0":{"302":1}}],["turns",{"2":{"136":1}}],["tuple",{"2":{"25":1,"46":8,"73":1,"80":2,"81":1,"98":1,"116":1,"120":2,"142":1,"147":2,"151":2,"164":2,"165":1,"209":2,"213":1,"246":1,"252":3,"254":1,"261":1,"266":2,"267":3,"283":1,"284":1,"299":3}}],["tuples",{"2":{"19":1,"120":1,"229":1,"266":2,"267":1}}],["t2",{"2":{"134":2,"151":1,"201":2}}],["t∈k",{"2":{"113":1,"125":1}}],["twice",{"2":{"67":1}}],["two",{"2":{"2":1,"17":1,"48":1,"57":1,"64":1,"79":1,"90":1,"111":1,"116":1,"119":1,"120":1,"129":1,"130":1,"142":2,"146":8,"151":1,"157":1,"158":1,"166":3,"168":1,"176":1,"192":1,"195":1,"208":1,"213":1,"214":1,"215":1,"217":1,"228":1,"229":1,"230":1,"232":2,"237":2,"254":1,"255":2,"278":1,"282":1,"285":1,"287":1,"289":1,"294":1}}],["typo",{"2":{"193":1}}],["typically",{"2":{"58":1,"73":1,"88":1}}],["types",{"0":{"85":1,"127":1},"2":{"30":1,"38":1,"60":1,"108":1,"109":1,"127":2,"254":2}}],["type",{"0":{"67":1,"196":1},"2":{"6":1,"7":1,"12":1,"13":8,"15":1,"17":1,"22":1,"30":1,"58":4,"59":3,"67":4,"79":4,"86":4,"87":3,"90":1,"96":2,"98":5,"103":2,"109":2,"112":6,"116":1,"127":2,"128":1,"129":1,"131":6,"134":3,"135":1,"143":3,"151":1,"152":1,"168":3,"210":3,"214":2,"215":1,"217":1,"221":1,"223":1,"225":1,"229":1,"230":2,"236":1,"238":1,"242":1,"246":3,"254":7,"257":3,"266":6,"276":3,"287":3,"292":4}}],["ti→t",{"2":{"210":6}}],["tied",{"2":{"146":1}}],["tip",{"2":{"116":1}}],["times",{"2":{"87":4,"89":2,"118":1,"213":1}}],["time",{"2":{"32":1,"40":1,"116":1}}],["title",{"2":{"4":1}}],["talk",{"2":{"270":1}}],["tamely",{"2":{"119":6}}],["ta",{"2":{"88":3}}],["ta=e",{"2":{"88":1}}],["ta=bt",{"2":{"64":1}}],["taken",{"2":{"166":1,"272":1,"292":1}}],["take",{"2":{"40":1}}],["takes",{"2":{"36":1}}],["table",{"0":{"33":1},"2":{"28":1,"33":4}}],["tasks",{"2":{"146":1}}],["task",{"2":{"19":2,"20":3,"168":3,"287":3}}],["targeted",{"2":{"7":1}}],["texts",{"2":{"300":2}}],["terms",{"2":{"198":1,"224":1,"242":1}}],["terminology",{"2":{"73":1,"139":1,"269":1}}],["terminal",{"2":{"36":1}}],["tend",{"2":{"116":1}}],["tensors",{"2":{"19":1}}],["tensor",{"0":{"19":1},"2":{"16":2,"18":1,"19":5}}],["technical",{"2":{"75":2}}],["tested",{"2":{"116":1,"166":1}}],["testtt",{"2":{"113":1}}],["testlong=1",{"2":{"42":1}}],["tests",{"0":{"39":1,"40":1,"41":1,"42":1,"43":1},"1":{"42":1,"43":1},"2":{"17":1,"38":1,"39":1,"40":2,"42":2,"43":3,"61":1,"88":2,"97":1,"98":3,"119":2,"125":1,"145":1,"146":3,"154":1,"160":1}}],["testing",{"0":{"37":1},"1":{"38":1,"39":1,"40":1,"41":1,"42":1,"43":1},"2":{"15":1,"121":1,"146":1}}],["test",{"2":{"9":1,"38":3,"39":7,"40":6,"42":7,"43":4,"116":1,"245":1,"275":2,"276":2,"277":2}}],["t",{"2":{"13":6,"22":1,"46":22,"60":9,"64":6,"67":10,"68":9,"70":5,"71":5,"72":1,"79":2,"80":4,"81":14,"83":10,"85":2,"86":2,"87":5,"88":12,"89":15,"90":29,"111":4,"113":2,"116":4,"125":1,"132":2,"134":2,"138":5,"147":5,"150":1,"151":3,"153":2,"157":3,"159":3,"161":2,"163":2,"166":6,"167":2,"168":18,"170":5,"171":2,"173":2,"175":2,"188":3,"196":1,"197":15,"200":2,"201":24,"202":14,"203":5,"207":1,"208":16,"209":10,"210":9,"211":4,"215":2,"217":2,"219":2,"221":2,"223":2,"225":2,"227":2,"228":1,"230":2,"232":2,"234":2,"236":2,"238":2,"240":3,"278":6,"280":2,"284":2,"287":18,"289":2,"291":2,"295":2,"296":1,"299":2}}],["tr∘φ",{"2":{"162":1}}],["trk",{"2":{"151":1}}],["treated",{"2":{"139":1}}],["try",{"2":{"113":1,"125":1}}],["tr",{"2":{"111":3,"132":1,"134":4,"162":1}}],["trans",{"2":{"88":3}}],["transpose",{"2":{"87":3,"88":1,"246":1}}],["transformations",{"2":{"88":1,"253":2,"294":2}}],["transformation",{"2":{"75":1,"89":1}}],["transform",{"2":{"75":2,"81":1,"88":5,"89":1,"162":2}}],["transforms",{"2":{"73":1,"75":2}}],["trace",{"2":{"52":6,"111":2,"134":2,"151":2,"152":2,"162":1,"188":1}}],["trigger",{"2":{"146":1,"154":1}}],["tries",{"2":{"89":1,"121":1,"122":1,"151":1}}],["triangular",{"2":{"73":1,"75":2,"88":5,"89":4}}],["triple",{"2":{"25":1,"246":1}}],["trivial",{"2":{"9":1,"14":3,"17":1,"88":1,"116":1,"119":1,"134":1,"145":1,"156":1,"164":1,"202":2,"208":1,"222":1,"270":1}}],["trr",{"2":{"5":1}}],["true",{"2":{"2":1,"17":5,"25":5,"28":1,"29":2,"32":1,"33":1,"45":1,"47":1,"48":3,"52":1,"64":2,"87":1,"88":3,"93":3,"96":2,"100":1,"101":4,"102":1,"103":1,"107":3,"113":2,"116":7,"119":3,"120":2,"121":1,"122":4,"131":4,"138":2,"142":2,"145":2,"146":6,"147":2,"148":2,"150":7,"156":4,"161":5,"165":2,"167":3,"169":2,"173":1,"180":1,"184":2,"195":3,"196":1,"201":8,"202":2,"208":1,"221":2,"235":2,"236":3,"244":2,"245":1,"246":6,"250":2,"253":2,"255":3,"261":2,"262":8,"263":1,"265":1,"266":3,"267":1,"275":2,"276":2,"277":2,"282":2,"283":2,"291":3,"293":1,"294":2,"295":1,"296":1,"297":1}}],["throughout",{"2":{"270":1}}],["throw",{"2":{"2":1}}],["three",{"2":{"168":1,"261":1,"292":1}}],["than",{"2":{"92":1,"97":1,"130":1,"134":1,"151":1,"246":1,"285":1}}],["that",{"2":{"2":2,"7":1,"10":1,"12":2,"13":3,"14":5,"15":1,"16":1,"17":6,"18":3,"19":1,"20":1,"24":1,"25":3,"26":1,"38":1,"40":1,"46":3,"48":1,"54":1,"58":2,"59":1,"61":2,"68":1,"73":2,"75":1,"78":1,"79":2,"85":1,"86":1,"87":1,"88":7,"89":4,"93":2,"94":2,"96":1,"97":3,"98":2,"99":1,"101":1,"103":1,"107":1,"109":3,"111":5,"112":6,"113":5,"116":2,"117":3,"119":8,"120":1,"123":1,"125":1,"128":1,"130":1,"131":2,"134":6,"135":1,"136":4,"137":2,"138":1,"140":1,"141":1,"143":1,"144":1,"145":1,"146":6,"147":16,"148":1,"149":4,"150":1,"151":13,"152":4,"156":2,"160":4,"162":4,"164":2,"166":1,"168":1,"172":1,"174":2,"176":1,"180":1,"182":1,"184":6,"187":1,"193":1,"196":3,"201":4,"202":2,"203":1,"208":1,"213":4,"215":1,"226":4,"228":2,"229":1,"233":3,"235":1,"246":2,"250":6,"255":3,"261":3,"265":1,"266":8,"267":1,"268":1,"278":1,"283":5,"285":1,"290":4,"292":2,"294":1,"296":3,"298":3}}],["though",{"2":{"93":1,"127":1,"268":1}}],["those",{"2":{"58":1,"74":1,"98":3,"149":1,"168":1,"228":1,"267":1}}],["thorough",{"2":{"25":6}}],["third",{"2":{"300":1}}],["think",{"2":{"58":1,"196":1}}],["things",{"2":{"36":1}}],["this",{"2":{"6":1,"7":2,"8":2,"13":1,"16":1,"17":3,"20":1,"25":2,"28":1,"30":2,"32":1,"36":1,"39":3,"43":1,"45":1,"47":1,"51":1,"52":1,"54":1,"56":1,"57":2,"58":3,"60":1,"61":2,"73":1,"75":3,"78":1,"88":2,"89":4,"92":2,"93":4,"94":3,"96":2,"97":2,"98":2,"105":2,"108":1,"111":9,"113":1,"114":6,"116":4,"117":5,"118":3,"119":3,"120":1,"121":3,"122":4,"123":1,"125":1,"127":4,"128":1,"131":3,"139":1,"141":1,"143":1,"145":1,"146":1,"149":2,"150":2,"151":6,"152":2,"154":1,"157":1,"164":1,"166":1,"168":1,"182":9,"184":2,"186":6,"190":7,"191":2,"197":2,"198":1,"199":2,"202":2,"209":1,"215":1,"224":1,"229":1,"230":1,"233":1,"245":1,"246":2,"248":1,"250":2,"255":1,"258":1,"263":1,"265":1,"266":1,"267":1,"268":1,"270":3,"271":2,"275":2,"276":2,"277":2,"278":1,"282":1,"285":1,"287":1,"288":1,"290":1,"296":1,"298":3}}],["th",{"2":{"7":1,"8":2,"52":1,"73":2,"88":4,"89":11,"93":1,"111":1,"113":1,"116":1,"117":1,"118":1,"119":1,"125":3,"137":1,"145":1}}],["thus",{"2":{"2":1,"17":1,"58":1,"73":1,"88":1,"127":2,"141":1,"146":1,"151":1,"196":1}}],["theoretically",{"2":{"268":1}}],["theorem",{"2":{"92":1,"146":1,"193":1}}],["theory",{"0":{"91":1,"123":1},"1":{"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"98":1},"2":{"3":1,"4":2,"58":1,"73":1,"78":1,"92":2,"96":1,"125":1,"204":1,"300":3}}],["their",{"2":{"58":1,"67":1,"86":1,"143":1,"166":1,"168":3,"176":1,"201":2,"210":3,"237":2,"257":3,"287":4,"294":1,"300":1}}],["them",{"2":{"58":1,"73":1,"196":1,"201":2,"239":1,"242":1}}],["these",{"2":{"30":1,"116":1,"157":1,"158":1,"233":1,"278":1}}],["then",{"2":{"20":1,"39":2,"61":2,"68":1,"87":1,"88":3,"93":2,"94":3,"96":1,"98":3,"103":1,"109":3,"112":3,"113":1,"117":1,"121":1,"134":2,"136":2,"139":1,"140":2,"141":1,"144":3,"146":2,"148":1,"150":2,"151":2,"152":1,"190":1,"196":1,"205":1,"206":1,"207":1,"208":1,"213":1,"233":2,"245":1,"246":1,"254":1,"255":1,"267":2,"275":4,"276":3,"283":1,"290":1,"296":1}}],["they",{"2":{"15":1,"17":1,"18":1,"61":1,"67":1,"79":1,"86":1,"116":1,"130":3,"135":1,"150":2,"153":2,"168":4,"176":1,"201":4,"204":1,"208":1,"210":3,"233":1,"257":3,"287":4}}],["therefore",{"2":{"18":1,"168":3,"210":3,"257":3,"270":1,"271":1,"287":3}}],["there",{"2":{"13":1,"17":1,"64":1,"73":1,"87":1,"113":1,"135":1,"139":1,"149":2,"153":1,"160":1,"172":1,"174":1,"193":1,"196":1,"201":1,"209":1,"214":1,"229":1,"268":1,"270":1,"290":2,"292":1}}],["the",{"0":{"35":1,"36":1,"41":1,"182":1,"196":1,"199":1,"207":1,"248":1,"251":1},"1":{"42":1,"43":1,"183":1,"184":1,"185":1},"2":{"2":18,"4":3,"5":4,"6":1,"7":11,"8":5,"9":1,"10":2,"11":1,"12":1,"13":11,"14":15,"15":3,"16":1,"17":57,"18":11,"19":4,"20":2,"22":6,"23":4,"24":3,"25":8,"26":5,"27":2,"28":3,"29":5,"30":9,"32":6,"33":2,"34":3,"35":2,"36":3,"38":5,"39":4,"40":4,"42":7,"43":4,"45":3,"46":18,"47":2,"48":6,"50":1,"51":4,"52":8,"53":3,"54":3,"56":1,"57":6,"58":22,"59":9,"60":16,"61":24,"62":1,"63":6,"64":2,"67":6,"68":21,"73":13,"74":11,"75":18,"78":2,"79":6,"80":5,"81":5,"82":1,"83":7,"84":5,"85":1,"86":6,"87":16,"88":48,"89":24,"90":14,"92":5,"93":36,"94":32,"96":14,"97":21,"98":23,"100":2,"101":4,"102":1,"103":8,"104":1,"105":3,"107":7,"109":23,"111":40,"112":19,"113":8,"114":11,"116":37,"117":12,"118":27,"119":17,"120":9,"121":4,"122":6,"123":8,"124":4,"125":4,"127":8,"128":4,"129":12,"130":7,"131":13,"132":11,"133":1,"134":36,"135":3,"136":12,"137":7,"138":13,"139":5,"140":6,"141":5,"143":13,"144":18,"145":4,"146":59,"147":46,"148":22,"149":16,"150":30,"151":50,"152":23,"153":7,"154":3,"156":11,"157":2,"158":24,"159":2,"160":14,"162":34,"164":19,"165":2,"166":6,"167":1,"168":24,"170":4,"172":3,"174":6,"176":6,"178":2,"179":1,"180":5,"181":3,"182":21,"184":9,"185":1,"186":7,"187":2,"188":11,"189":4,"190":28,"191":1,"192":2,"193":1,"195":13,"196":10,"197":19,"198":2,"199":3,"200":2,"201":2,"202":8,"203":1,"204":1,"205":6,"206":3,"207":3,"208":10,"209":17,"210":12,"211":5,"213":29,"214":7,"215":2,"216":1,"218":41,"222":3,"224":8,"226":4,"228":13,"229":10,"230":1,"231":12,"233":10,"235":16,"237":6,"239":3,"240":15,"241":5,"242":4,"244":7,"245":3,"246":23,"248":2,"249":11,"250":19,"251":5,"252":7,"253":20,"254":25,"255":30,"257":15,"258":3,"259":2,"261":12,"262":18,"263":3,"265":3,"266":11,"267":1,"269":2,"270":15,"271":9,"272":3,"275":13,"276":33,"277":27,"278":6,"279":13,"281":16,"282":5,"283":44,"285":35,"287":22,"288":15,"290":18,"292":17,"294":17,"296":21,"298":19,"301":3}}],["topics",{"2":{"300":1}}],["touching",{"2":{"266":1}}],["torquadmodulemap",{"2":{"201":2,"203":1,"208":3,"210":8,"211":1,"261":4}}],["torquadmoduleelem",{"2":{"198":3,"199":2}}],["torquadmodule",{"2":{"195":1,"196":1,"197":9,"200":3,"201":4,"202":4,"203":3,"205":1,"206":1,"207":2,"208":8,"209":3,"210":15,"211":2}}],["torsion",{"0":{"195":1},"1":{"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1},"2":{"14":5,"17":2,"38":2,"111":3,"113":3,"141":1,"146":10,"153":1,"195":3,"196":2,"201":6,"202":4,"203":3,"206":6,"207":1,"208":2,"209":3,"210":3}}],["totient",{"2":{"148":1}}],["totally",{"2":{"62":1,"107":3,"119":6,"160":3,"165":1,"290":4,"291":1}}],["too",{"2":{"127":1}}],["tol",{"2":{"112":12,"134":9,"151":2}}],["together",{"2":{"17":10,"18":3,"32":1,"73":2,"111":1,"117":1,"120":2,"121":2,"146":1,"148":2,"162":1,"168":3,"176":1,"196":1,"210":3,"242":1,"257":3,"270":1,"287":3}}],["tommy",{"2":{"4":2}}],["to",{"0":{"1":1,"35":1,"85":1,"199":1},"2":{"2":8,"6":1,"7":2,"9":1,"12":2,"13":1,"15":3,"16":1,"17":8,"18":2,"19":2,"20":4,"23":2,"27":2,"29":2,"35":2,"36":3,"39":3,"42":1,"43":3,"52":1,"53":1,"54":1,"57":2,"58":6,"61":2,"68":2,"73":2,"74":2,"75":1,"79":1,"80":1,"84":3,"85":2,"86":2,"87":10,"88":5,"89":8,"90":1,"92":1,"93":6,"94":7,"96":3,"97":3,"98":3,"100":5,"103":2,"104":1,"105":4,"106":4,"107":2,"108":8,"109":3,"111":4,"112":1,"113":2,"114":1,"116":5,"117":1,"120":5,"121":3,"122":4,"124":10,"125":2,"127":4,"129":2,"130":2,"132":1,"135":1,"136":1,"138":2,"140":1,"141":3,"142":2,"143":4,"146":12,"147":1,"149":2,"150":4,"151":4,"153":1,"156":4,"157":1,"158":6,"159":1,"160":1,"162":8,"164":3,"165":6,"166":2,"168":7,"170":1,"172":2,"174":1,"176":1,"180":1,"195":1,"196":3,"199":1,"200":1,"203":1,"204":1,"209":3,"210":6,"211":5,"213":6,"224":1,"226":1,"228":2,"229":1,"230":7,"232":2,"233":2,"235":1,"237":2,"238":1,"239":5,"241":1,"242":2,"245":2,"246":9,"248":1,"249":1,"253":11,"254":1,"255":2,"257":6,"258":1,"261":3,"262":6,"265":1,"266":3,"267":2,"268":1,"270":7,"271":6,"275":4,"276":4,"277":4,"278":4,"282":1,"283":2,"284":1,"285":4,"287":7,"288":3,"290":2,"294":13,"296":9,"301":4}}],["www",{"2":{"278":2}}],["writes",{"2":{"61":2,"111":1,"145":1}}],["written",{"2":{"58":1}}],["wrt",{"2":{"2":1,"58":2,"130":1,"142":2,"146":8,"150":1,"217":1,"232":2,"282":1,"289":1}}],["work",{"2":{"142":1,"157":1,"204":1,"270":1}}],["works",{"2":{"43":1,"60":1,"108":1,"158":1,"263":1,"265":1}}],["words",{"2":{"25":1}}],["would",{"2":{"39":1}}],["w",{"2":{"25":5,"162":3,"170":4,"255":1}}],["warning",{"2":{"53":1}}],["ways",{"2":{"129":1,"214":1,"229":1}}],["way",{"2":{"38":1,"87":1,"96":1,"149":1,"278":1}}],["was",{"2":{"18":2,"67":1,"75":1,"138":1,"147":1,"207":1}}],["wants",{"2":{"18":2,"43":1,"168":6,"210":6,"257":6,"287":6}}],["want",{"2":{"2":2}}],["while",{"2":{"30":1,"68":1,"73":1,"92":1,"127":3,"158":1,"160":1,"278":1}}],["which",{"2":{"2":2,"12":1,"16":1,"25":2,"30":1,"39":1,"45":1,"46":2,"47":1,"48":1,"57":2,"68":1,"79":1,"106":1,"107":1,"109":3,"111":2,"116":1,"120":1,"121":1,"122":1,"132":1,"134":2,"135":1,"139":1,"140":1,"143":2,"144":2,"146":3,"147":1,"150":3,"151":3,"158":2,"160":1,"162":1,"164":1,"168":1,"191":1,"209":1,"211":1,"228":6,"230":1,"231":1,"235":1,"246":2,"249":1,"270":1,"272":1,"278":2,"282":1,"283":2,"287":2,"292":1,"298":3}}],["whose",{"2":{"17":1,"67":2,"109":1,"162":1,"180":1,"190":1,"209":3,"211":2,"218":3,"231":1,"235":1,"242":1,"246":2,"283":1,"298":2}}],["whole",{"2":{"2":1,"42":1}}],["whether",{"2":{"14":5,"15":1,"24":4,"45":1,"47":1,"64":1,"107":7,"111":1,"113":6,"116":3,"119":9,"124":2,"132":1,"139":1,"144":1,"145":1,"147":6,"150":4,"151":2,"152":3,"153":1,"160":7,"164":2,"166":4,"167":1,"172":1,"174":1,"182":1,"184":8,"193":1,"201":2,"202":4,"203":1,"208":1,"218":5,"220":4,"224":1,"231":1,"235":2,"250":10,"252":3,"253":3,"255":6,"267":1,"281":2,"290":7,"292":1,"296":3,"298":3}}],["when",{"2":{"2":1,"40":1,"58":1,"93":1,"111":2,"146":1,"190":1,"213":1}}],["whereas",{"2":{"197":1}}],["where",{"2":{"2":1,"7":1,"8":1,"13":1,"16":1,"17":1,"42":2,"52":1,"58":1,"61":4,"67":1,"70":1,"71":1,"74":3,"79":1,"80":3,"83":1,"86":1,"87":2,"88":1,"89":3,"90":4,"92":1,"94":3,"96":1,"109":2,"111":1,"116":1,"117":2,"118":1,"121":1,"125":1,"129":2,"130":1,"137":1,"138":1,"145":1,"147":4,"151":1,"158":1,"162":1,"164":1,"166":2,"168":6,"170":2,"172":1,"182":1,"188":2,"195":1,"196":1,"207":1,"213":3,"218":3,"235":1,"239":1,"242":1,"246":2,"254":1,"255":1,"261":1,"266":2,"267":1,"283":1,"287":6,"290":1,"296":2}}],["wissenschaften",{"2":{"300":1}}],["wise",{"2":{"153":1}}],["witt",{"2":{"164":2,"165":1,"281":2,"282":1}}],["without",{"2":{"61":1,"88":1,"96":1}}],["within",{"2":{"5":1,"12":1,"36":1}}],["with",{"2":{"2":1,"4":1,"7":5,"11":1,"13":5,"14":1,"16":1,"17":16,"18":3,"23":1,"25":4,"26":1,"27":1,"28":1,"29":1,"32":3,"36":1,"40":1,"42":2,"45":5,"47":1,"48":6,"50":1,"53":3,"54":3,"57":2,"64":1,"67":8,"68":9,"73":3,"75":4,"78":2,"80":3,"86":1,"87":2,"88":5,"89":3,"92":2,"93":1,"94":2,"95":1,"96":4,"98":1,"105":1,"107":1,"109":2,"111":9,"112":2,"114":1,"116":3,"117":2,"119":1,"120":2,"121":3,"122":2,"128":2,"131":2,"132":1,"134":2,"136":2,"138":1,"139":1,"140":2,"141":1,"142":7,"144":1,"145":1,"146":11,"148":3,"149":1,"150":5,"151":6,"152":1,"156":5,"157":4,"158":2,"159":3,"162":6,"166":1,"168":9,"170":2,"179":1,"180":1,"182":2,"184":4,"189":1,"190":2,"196":4,"201":8,"202":4,"203":1,"204":1,"205":2,"206":1,"207":1,"208":1,"209":2,"210":9,"215":2,"217":2,"226":4,"229":1,"230":1,"231":4,"232":3,"236":2,"238":2,"239":2,"240":6,"242":1,"244":2,"246":9,"248":2,"249":2,"250":4,"253":2,"254":6,"255":8,"257":9,"261":6,"262":6,"263":1,"265":3,"267":2,"268":1,"270":8,"272":2,"275":1,"276":6,"277":6,"278":6,"280":4,"282":1,"284":28,"285":2,"286":17,"287":9,"289":4,"292":1,"294":2,"296":4,"298":5,"299":24}}],["wildanger",{"2":{"116":2,"146":1}}],["wil",{"2":{"98":1}}],["william",{"2":{"4":2}}],["will",{"2":{"2":2,"13":3,"25":2,"30":1,"40":3,"58":1,"61":1,"68":5,"75":2,"87":1,"89":1,"93":1,"96":1,"98":2,"103":2,"111":1,"113":2,"114":2,"116":2,"117":1,"125":1,"127":3,"131":4,"134":1,"141":1,"143":1,"146":9,"151":1,"152":1,"157":1,"195":3,"215":1,"230":2,"242":1,"267":1,"270":1,"276":3,"277":3,"278":1,"282":1,"292":2,"301":1}}],["wide",{"2":{"16":1,"30":1}}],["weakly",{"2":{"119":3}}],["weighted",{"2":{"112":1}}],["weierstrass",{"2":{"45":1,"46":2,"57":2}}],["weber",{"2":{"92":1}}],["well",{"2":{"15":1,"19":2,"87":1,"90":1,"137":1,"142":1,"146":1,"149":2,"168":1,"176":1,"195":1,"254":1,"261":1,"287":1}}],["we",{"2":{"2":8,"7":1,"9":1,"57":1,"58":1,"67":1,"73":3,"93":2,"99":1,"103":1,"109":3,"112":3,"125":1,"127":2,"129":4,"134":1,"139":1,"141":1,"142":1,"143":2,"149":1,"151":1,"157":1,"158":1,"160":2,"167":1,"196":5,"213":6,"215":1,"228":2,"230":2,"233":1,"242":1,"246":1,"255":1,"269":1,"270":5,"271":4,"283":2,"288":1,"294":2}}],["xviii+203",{"2":{"300":1}}],["xvi+578",{"2":{"300":1}}],["x↦φ",{"2":{"205":1}}],["x↦log⁡",{"2":{"104":1}}],["xk∈po",{"2":{"151":2}}],["xk=1",{"2":{"111":1}}],["x∈l",{"2":{"250":1}}],["x∈v∣φ",{"2":{"285":1}}],["x∈vp",{"2":{"172":1}}],["x∈v",{"2":{"166":1}}],["x∈k",{"2":{"151":1}}],["x∈k|xb⊆a",{"2":{"145":1}}],["x∈o∣∃k∈z≥0",{"2":{"151":2}}],["x≡r2modi2",{"2":{"148":1}}],["x≡r1modi1",{"2":{"148":1}}],["x≡ymodi",{"2":{"148":1}}],["x∩y",{"2":{"145":1}}],["x−1",{"2":{"116":1}}],["x¯n",{"2":{"111":1}}],["x¯1",{"2":{"111":1}}],["xn−b",{"2":{"119":2}}],["xn−a",{"2":{"116":1}}],["xn+∑i=0n−1",{"2":{"116":1}}],["xn=1",{"2":{"113":1}}],["xn",{"2":{"111":1,"116":2,"129":2}}],["x1",{"2":{"111":1,"116":2,"129":2}}],["xa=bd",{"2":{"88":1}}],["xs",{"2":{"87":2}}],["xj",{"2":{"80":3}}],["xiv+499",{"2":{"300":1}}],["xii+534",{"2":{"300":1}}],["xinl",{"2":{"250":1}}],["xi⊆i",{"2":{"151":1}}],["xi",{"2":{"79":1,"80":1,"283":4}}],["x=∑i=1dxiωi∈o",{"2":{"151":1}}],["x=",{"2":{"73":1}}],["x2−d",{"2":{"116":1}}],["x26",{"2":{"64":2,"230":2,"236":2,"238":2,"240":2}}],["x2+",{"2":{"2":1}}],["x3c",{"2":{"2":1,"13":3,"15":1,"19":1,"50":1,"51":1,"52":1,"53":2,"67":1,"90":1,"95":1,"96":3,"116":1,"142":3,"146":12,"150":2,"166":2,"168":6,"170":2,"195":1,"215":6,"217":1,"230":4,"232":2,"236":4,"238":7,"240":12,"278":4,"282":1,"284":40,"286":12,"287":6,"289":9,"299":48}}],["x^4",{"2":{"120":1}}],["x^8",{"2":{"120":1}}],["x^2",{"2":{"2":3,"45":1,"46":2,"95":1,"96":3,"101":1,"104":1,"105":2,"108":3,"111":1,"116":3,"117":3,"118":2,"142":1,"151":1,"215":1,"217":2,"219":1,"221":1,"223":1,"225":1,"227":1,"230":1,"232":2,"234":1,"236":1,"238":1,"301":1}}],["x^3",{"2":{"2":3,"45":3,"46":3,"48":5,"50":1,"53":3,"54":2,"67":1,"108":1,"150":1}}],["x+",{"2":{"2":1}}],["x",{"2":{"2":7,"7":7,"8":4,"13":2,"17":3,"29":4,"45":6,"46":4,"48":5,"50":1,"53":4,"54":2,"60":5,"61":14,"67":1,"68":10,"73":1,"88":1,"90":6,"95":2,"96":2,"103":6,"104":1,"105":1,"107":3,"108":2,"109":2,"111":14,"112":28,"113":4,"116":8,"117":6,"118":4,"120":2,"125":2,"129":3,"132":2,"134":13,"140":3,"142":4,"144":13,"145":5,"146":3,"147":6,"148":3,"150":2,"151":4,"153":1,"164":3,"166":4,"168":12,"172":2,"182":2,"190":2,"195":2,"196":2,"205":4,"208":5,"209":1,"210":12,"215":2,"217":2,"219":2,"221":2,"223":2,"225":2,"227":2,"230":2,"232":2,"234":2,"236":2,"238":2,"246":2,"250":6,"257":12,"267":6,"270":3,"271":1,"278":3,"280":1,"284":2,"285":1,"287":12,"288":3,"294":3,"301":2}}],["f^4+f^3+f^2+f+1",{"2":{"261":1}}],["f^2+f+1",{"2":{"261":1}}],["f+1",{"2":{"255":1}}],["fp",{"2":{"142":1}}],["f2",{"2":{"122":1}}],["f1",{"2":{"111":1,"116":2,"117":1,"129":2}}],["f∈z",{"2":{"140":1}}],["f∈q",{"2":{"109":1}}],["f∈k",{"2":{"2":1,"116":1,"129":1}}],["fn∈k",{"2":{"129":1}}],["fn",{"2":{"103":2,"111":1,"116":2,"129":1}}],["flavour",{"2":{"285":1}}],["flat",{"2":{"18":2}}],["float64",{"2":{"88":2,"151":2,"152":1}}],["fl",{"2":{"64":1,"142":1}}],["fxied",{"2":{"58":1}}],["fqpolyrepfieldelem",{"2":{"61":1}}],["fqfieldelem",{"2":{"53":2,"142":1}}],["fq",{"2":{"52":2}}],["far",{"2":{"139":1}}],["fakefracfldmat",{"2":{"138":1,"147":1,"151":1}}],["fakefmpqmat",{"2":{"134":1,"138":1}}],["family",{"2":{"132":1,"134":1}}],["famous",{"2":{"92":1}}],["failure",{"2":{"125":2}}],["faster",{"2":{"60":1,"97":1,"127":1}}],["fast",{"2":{"58":1,"130":1}}],["fact",{"2":{"61":1,"109":1,"143":1}}],["factors",{"2":{"61":2,"144":1,"146":1}}],["factorised",{"2":{"61":1}}],["factorisation",{"2":{"61":9}}],["factorization",{"2":{"51":1,"93":1,"134":2,"144":1}}],["factored",{"0":{"58":1},"1":{"59":1,"60":1,"61":1,"62":1,"63":1},"2":{"58":5,"59":3,"60":5,"61":3,"62":1,"63":3,"113":1,"146":6,"147":1}}],["factor",{"2":{"51":1,"61":7,"134":1,"144":3,"146":6,"162":1}}],["facelem",{"2":{"58":4,"59":11,"60":5,"61":25,"63":3,"112":1,"146":2,"147":1}}],["fac",{"2":{"51":4,"61":1,"134":4,"146":11,"147":2,"153":3}}],["false",{"2":{"17":4,"24":1,"25":2,"32":1,"36":1,"45":1,"47":1,"48":2,"87":1,"88":3,"93":2,"96":1,"97":1,"100":2,"107":1,"113":2,"116":4,"119":1,"120":2,"121":1,"122":4,"136":2,"142":1,"144":2,"145":1,"146":7,"150":2,"161":1,"167":1,"175":1,"180":1,"214":1,"221":2,"234":2,"235":2,"245":1,"246":1,"255":1,"265":1,"267":2,"275":2,"276":2,"277":2,"278":2,"283":2,"291":2,"296":1,"297":1,"299":3}}],["follows",{"2":{"73":1,"103":1,"106":1,"269":1}}],["follow",{"2":{"73":1,"139":1}}],["following",{"2":{"30":1,"42":1,"68":1,"73":1,"103":1,"116":2,"129":1,"148":1,"157":1,"159":1,"168":1,"209":2,"278":2,"285":1,"287":1,"301":1}}],["found",{"2":{"38":1,"121":1,"272":1}}],["forschungsgemeinschaft",{"2":{"5":1}}],["for",{"0":{"84":1,"212":1,"294":1},"1":{"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":1,"239":1,"240":1,"241":1,"295":1},"2":{"4":2,"7":1,"9":1,"11":1,"13":1,"17":13,"18":2,"25":3,"28":1,"29":1,"30":3,"32":1,"33":1,"34":1,"38":1,"40":1,"43":2,"51":1,"57":2,"58":2,"59":2,"60":1,"61":3,"62":1,"67":2,"68":8,"70":1,"71":1,"73":2,"75":3,"78":1,"79":4,"86":2,"88":6,"89":1,"92":3,"93":3,"94":2,"96":5,"97":2,"98":3,"99":1,"103":1,"108":1,"109":2,"112":3,"113":1,"116":3,"117":2,"118":1,"119":2,"121":1,"125":2,"134":3,"135":1,"139":1,"141":2,"142":1,"143":3,"144":2,"146":14,"147":4,"148":3,"149":1,"150":2,"151":3,"152":1,"153":3,"157":1,"159":1,"160":1,"162":3,"164":2,"165":2,"166":1,"168":5,"176":3,"184":4,"188":4,"190":1,"193":1,"195":1,"197":2,"198":1,"199":3,"202":2,"204":1,"209":4,"210":3,"213":5,"214":1,"215":3,"216":3,"218":13,"220":4,"222":2,"224":3,"226":2,"228":1,"229":2,"230":4,"231":4,"235":5,"236":1,"237":2,"238":3,"239":2,"240":22,"246":6,"248":1,"250":5,"251":2,"253":1,"254":1,"255":4,"257":3,"263":3,"266":2,"268":1,"270":3,"271":1,"272":1,"282":2,"285":2,"287":5,"294":2,"301":2}}],["format",{"2":{"278":1}}],["formally",{"2":{"58":1}}],["formal",{"2":{"4":1,"94":3,"96":1,"98":2}}],["former",{"2":{"160":1}}],["formula",{"2":{"97":1,"229":1}}],["form",{"0":{"203":1,"207":1,"248":1},"2":{"14":1,"16":1,"17":2,"58":2,"59":1,"61":2,"73":1,"75":4,"79":1,"86":1,"87":1,"88":7,"109":1,"113":1,"117":1,"119":2,"143":1,"146":5,"147":1,"150":1,"162":4,"182":2,"184":6,"188":2,"190":5,"195":3,"196":1,"197":14,"201":4,"203":2,"205":2,"206":5,"207":3,"208":7,"209":8,"213":2,"246":3,"248":1}}],["forms",{"2":{"3":1,"43":1,"146":1,"193":1,"195":1,"208":1,"242":1,"272":1,"278":2,"300":1}}],["fujiki",{"2":{"246":2}}],["full",{"2":{"88":3,"160":1,"196":1,"245":1,"275":2,"276":2,"277":2}}],["further",{"2":{"61":1,"73":1}}],["fundamental",{"2":{"58":1,"146":2,"254":6}}],["functors",{"2":{"16":1}}],["functions",{"0":{"61":1,"68":1},"2":{"16":1,"17":1,"30":3,"62":1,"68":2,"74":1,"111":2,"116":2,"149":1,"153":3,"287":1}}],["functionality",{"0":{"84":1},"2":{"12":1,"30":2,"39":1,"57":1,"99":1,"108":1,"196":1}}],["function",{"2":{"2":1,"7":3,"8":2,"25":1,"75":1,"89":4,"93":1,"103":7,"109":1,"111":7,"114":4,"116":2,"117":4,"118":2,"119":4,"120":3,"121":3,"122":5,"123":1,"131":3,"134":1,"146":3,"148":1,"150":1,"151":6,"152":2,"160":1,"184":2,"196":1,"202":2,"250":2,"275":1,"276":1,"277":1,"278":1}}],["future",{"2":{"30":1,"150":1}}],["features",{"0":{"3":1},"2":{"57":1}}],["fbar",{"2":{"2":2}}],["fi",{"2":{"117":1}}],["fixed",{"2":{"79":1,"86":1,"98":1,"122":2,"149":1,"158":4,"159":1,"162":2,"166":2,"172":1,"262":2,"270":3,"271":3,"283":4,"284":2,"288":1,"298":3}}],["fix",{"2":{"73":1}}],["filter",{"2":{"68":2,"267":2}}],["file",{"2":{"35":1,"38":1,"39":5}}],["files",{"0":{"35":1},"2":{"34":1,"35":1}}],["first",{"2":{"22":1,"60":1,"85":1,"113":1,"254":1}}],["finitly",{"2":{"141":1}}],["finite",{"0":{"49":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1},"2":{"10":1,"11":1,"14":4,"17":2,"18":3,"30":1,"50":1,"51":2,"57":1,"60":1,"67":3,"73":1,"93":1,"98":1,"109":1,"127":3,"129":2,"141":1,"146":1,"166":2,"168":7,"195":1,"196":2,"201":18,"202":4,"205":1,"206":4,"210":6,"233":1,"257":6,"261":6,"270":1,"287":7}}],["finitely",{"2":{"6":1,"11":1,"12":2,"13":1,"17":4,"18":1,"73":1,"242":1,"270":1,"271":1}}],["fingengrpabmap",{"2":{"93":4}}],["fingengrpab",{"2":{"93":4}}],["fingenabgrouphom",{"2":{"15":1,"16":1,"17":11,"18":4,"94":1}}],["fingenabgroup",{"2":{"7":9,"13":13,"14":12,"15":6,"16":2,"17":41,"18":5,"19":6,"20":3,"53":1,"93":2,"146":5,"148":4,"197":1}}],["fingenabgroupelem",{"2":{"6":1,"7":7,"8":2,"10":1,"13":1,"17":9,"146":1}}],["finfieldelem",{"2":{"50":1,"51":1,"52":2,"53":2}}],["finding",{"2":{"96":1}}],["finds",{"2":{"63":3,"88":3,"125":1,"146":1,"151":1}}],["find",{"2":{"16":1,"17":1,"88":2,"89":3,"98":2,"113":1,"121":1,"122":1,"125":1,"127":1,"146":4,"147":2,"148":1,"151":1}}],["finally",{"2":{"2":1,"68":1,"271":1,"278":1}}],["fieker",{"2":{"4":2}}],["fieldelem",{"2":{"45":1,"46":2,"111":2,"132":1,"134":1,"158":2,"162":5,"164":1,"241":2}}],["field",{"0":{"91":1,"115":1,"276":1},"1":{"92":1,"93":1,"94":1,"95":1,"96":1,"97":1,"98":1,"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1},"2":{"2":10,"3":1,"22":2,"23":1,"28":1,"32":3,"45":2,"46":8,"48":1,"50":1,"51":2,"58":2,"62":1,"73":1,"89":2,"92":4,"93":2,"94":21,"95":4,"96":23,"97":10,"98":8,"99":1,"100":7,"101":8,"102":1,"103":1,"104":2,"105":12,"106":3,"107":13,"108":11,"109":3,"111":18,"113":3,"114":13,"116":38,"117":10,"118":8,"119":10,"120":1,"121":6,"122":9,"123":4,"124":10,"125":1,"127":5,"128":1,"129":9,"130":4,"131":5,"132":1,"134":2,"135":1,"139":3,"140":2,"141":1,"142":7,"143":1,"145":1,"146":11,"147":2,"148":4,"149":5,"150":6,"151":11,"152":2,"153":1,"156":2,"157":5,"158":5,"159":11,"161":1,"162":2,"163":1,"165":3,"166":2,"167":1,"169":2,"172":1,"173":1,"175":1,"215":6,"216":2,"217":6,"219":2,"221":2,"223":2,"225":2,"227":2,"230":12,"231":2,"232":6,"234":2,"236":6,"238":7,"239":1,"240":7,"241":2,"249":1,"270":5,"271":3,"276":8,"277":4,"278":12,"280":6,"282":2,"283":8,"284":18,"285":1,"286":6,"288":1,"289":2,"291":2,"293":1,"295":2,"297":1,"299":2,"301":2}}],["fields",{"0":{"2":1,"49":1,"55":1,"94":1,"116":1,"127":1,"128":1,"140":1,"141":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1,"95":1},"2":{"3":2,"57":3,"58":1,"61":1,"78":1,"92":5,"98":1,"99":1,"108":1,"109":2,"116":6,"119":1,"120":2,"127":8,"139":3,"141":2,"142":1,"143":1,"149":5,"193":1,"213":1,"268":1,"272":2,"300":1}}],["fr",{"2":{"117":1}}],["fraction",{"2":{"141":1}}],["fractional",{"0":{"135":1},"1":{"136":1,"137":1,"138":1},"2":{"59":1,"73":1,"135":2,"136":16,"137":1,"138":2,"141":1,"147":2,"255":1,"283":1,"284":13,"285":1,"288":1,"289":2,"290":2,"299":12}}],["frakp",{"2":{"2":2}}],["frobenius",{"0":{"52":1},"2":{"52":8,"94":1}}],["from",{"0":{"85":1,"178":1,"179":1,"181":1,"205":1,"206":1,"244":1,"247":1},"2":{"2":2,"15":2,"18":1,"20":1,"45":3,"61":1,"67":2,"87":2,"90":1,"93":2,"94":1,"116":2,"120":2,"122":2,"123":3,"129":1,"143":1,"146":2,"159":1,"164":1,"246":1,"272":1,"284":1,"294":2,"296":1,"298":1}}],["frequently",{"2":{"58":1,"73":1,"116":1}}],["fredrik",{"2":{"4":2}}],["free",{"2":{"3":1,"13":2,"14":3,"15":2,"16":1,"73":1,"74":1,"109":1,"139":1,"141":1,"143":1,"149":1,"276":1,"277":1}}],["f",{"2":{"2":6,"16":2,"17":1,"46":3,"51":2,"88":2,"89":3,"93":3,"98":1,"101":4,"102":2,"103":4,"105":7,"106":6,"109":1,"111":1,"116":4,"117":2,"122":2,"129":1,"140":2,"146":10,"147":6,"148":1,"162":1,"164":3,"203":1,"234":2,"255":1,"261":4,"262":3,"278":2,"294":3,"301":2}}],["f=x3+",{"2":{"2":1}}],["f=ok",{"2":{"2":2}}],["f¯∈f",{"2":{"2":1}}],["gm",{"2":{"296":1}}],["gb=",{"2":{"270":1}}],["gc",{"2":{"265":1}}],["gcd",{"2":{"61":1,"145":1}}],["g2",{"2":{"168":1,"181":2,"187":3,"193":2,"215":1,"219":8,"227":3,"230":1,"232":5,"237":6,"238":4,"287":1}}],["good",{"2":{"213":1}}],["gorenstein",{"2":{"152":4}}],["going",{"2":{"93":1,"282":1}}],["g∘f",{"2":{"105":1}}],["galois",{"0":{"123":1},"2":{"98":1,"123":1}}],["glue",{"2":{"261":10}}],["globally",{"2":{"167":1}}],["global",{"0":{"228":1,"229":1},"1":{"229":1,"230":2,"231":1,"232":1,"233":1,"234":1},"2":{"92":1,"228":1,"229":2,"230":1,"231":8,"235":4,"237":2,"239":1,"241":2}}],["gl",{"2":{"88":1,"296":1}}],["glz",{"2":{"64":3}}],["gf",{"2":{"45":2,"50":1,"51":2,"52":2,"53":3,"54":1,"142":1}}],["gt",{"2":{"42":2,"89":1,"93":1,"103":1,"135":1,"146":2,"151":1,"196":4,"208":1,"213":1}}],["guarenteed",{"2":{"146":1}}],["guaranteed",{"2":{"25":2,"93":1,"103":1}}],["guides",{"0":{"1":1}}],["g=g1⊗⋯⊗gn",{"2":{"19":1}}],["g1",{"2":{"168":1,"181":2,"187":3,"193":2,"213":1,"215":1,"217":4,"221":5,"223":2,"225":3,"230":3,"236":9,"237":6,"238":5,"287":1}}],["g1×⋯×gn",{"2":{"19":1}}],["g1⊗⋯⊗gn",{"2":{"19":2}}],["g→o×",{"2":{"146":1}}],["g→h",{"2":{"17":5}}],["g→a⊕b⊕c",{"2":{"18":1}}],["g→a",{"2":{"16":2}}],["gi→hi",{"2":{"19":1}}],["gi→hj",{"2":{"15":1}}],["gi",{"2":{"18":1,"19":1,"213":2,"292":2}}],["give",{"2":{"127":1,"146":2}}],["gives",{"2":{"73":1}}],["given",{"0":{"72":1,"275":1},"2":{"2":1,"6":1,"7":2,"13":1,"14":1,"15":1,"16":1,"17":4,"18":3,"19":2,"23":2,"25":2,"26":2,"29":1,"32":3,"33":1,"45":1,"46":3,"51":2,"57":1,"61":1,"64":1,"67":1,"68":2,"81":1,"88":3,"89":7,"93":6,"94":4,"96":2,"97":1,"98":4,"103":1,"104":1,"105":3,"106":3,"107":3,"109":1,"111":10,"113":1,"114":5,"116":6,"117":5,"118":2,"119":4,"120":2,"121":4,"122":4,"123":4,"127":2,"131":3,"146":4,"150":1,"151":3,"153":1,"162":3,"166":2,"168":3,"170":2,"172":1,"180":1,"184":4,"186":1,"188":1,"190":1,"191":1,"195":1,"196":1,"197":2,"202":4,"203":2,"206":1,"208":1,"209":2,"210":3,"213":1,"216":3,"218":14,"220":4,"222":1,"224":3,"226":2,"229":2,"231":6,"233":1,"235":3,"237":2,"239":1,"241":2,"242":1,"245":1,"246":2,"249":1,"250":4,"253":2,"254":2,"255":2,"257":3,"261":3,"262":3,"265":1,"266":1,"275":4,"276":4,"277":4,"278":1,"283":2,"285":1,"287":4,"292":1,"294":2,"298":6}}],["giving",{"2":{"4":1,"59":1,"98":1,"130":1,"180":1}}],["g≅z",{"2":{"14":1}}],["grundlehren",{"2":{"300":1}}],["graduate",{"2":{"300":2}}],["gram=zz",{"2":{"248":1,"254":2}}],["gram=2",{"2":{"246":1}}],["gram=matrix",{"2":{"209":1}}],["gram",{"0":{"179":1,"226":1,"244":1},"1":{"227":1},"2":{"156":7,"157":2,"158":4,"159":1,"160":2,"162":7,"163":2,"164":1,"179":1,"182":1,"189":1,"191":2,"196":2,"197":4,"201":4,"206":5,"213":1,"215":1,"219":1,"226":6,"227":3,"228":1,"230":1,"231":1,"232":1,"234":1,"238":1,"244":8,"246":6,"248":1,"249":6,"250":1,"254":8,"255":3,"261":4,"263":1,"265":1,"266":2,"270":2,"276":22,"277":22,"278":4,"279":2,"280":5,"282":2,"283":2,"284":2,"286":3,"289":1,"291":1,"292":1,"293":1,"295":1,"296":2,"297":2,"299":1}}],["grptogrp",{"2":{"123":3}}],["grp",{"2":{"123":3}}],["grpgentonfmorset",{"2":{"122":1}}],["grpabfingemmap",{"2":{"17":1}}],["grpab",{"2":{"12":1,"16":1,"146":4}}],["grh",{"2":{"119":1,"146":8}}],["groupalgebra",{"2":{"28":1}}],["groups",{"0":{"93":1,"194":1,"204":1},"1":{"195":1,"196":1,"197":1,"198":1,"199":1,"200":1,"201":1,"202":1,"203":1,"204":1,"205":2,"206":2,"207":2,"208":2,"209":2,"210":2,"211":2},"2":{"3":2,"12":2,"13":7,"15":3,"16":1,"17":2,"18":2,"19":2,"78":1,"92":3,"94":1,"116":1,"153":1,"202":2,"204":1,"261":1,"272":1,"300":1}}],["group",{"0":{"20":1,"27":1,"53":1,"146":1,"183":1,"260":1},"1":{"28":1,"29":1},"2":{"3":1,"6":1,"7":1,"11":5,"12":1,"13":20,"14":3,"15":5,"16":3,"17":15,"18":4,"20":2,"27":1,"28":8,"29":8,"30":1,"53":6,"58":1,"92":1,"93":30,"94":13,"95":1,"96":3,"97":3,"98":1,"118":3,"119":1,"122":3,"123":10,"134":1,"135":1,"146":56,"148":8,"153":11,"183":1,"184":8,"195":2,"196":6,"197":3,"201":4,"202":12,"203":2,"205":6,"206":4,"209":2,"211":5,"233":1,"235":1,"250":12,"253":8,"260":1,"294":7,"295":2,"301":2}}],["geometric",{"2":{"300":1}}],["getting",{"0":{"301":1}}],["get",{"2":{"23":1,"88":1,"93":1,"159":1,"165":1,"224":1,"278":1}}],["getindex",{"2":{"7":1,"8":2,"81":1,"89":2}}],["genordidl",{"2":{"138":1,"147":1,"151":1}}],["gengrp",{"2":{"122":1}}],["genusrep",{"2":{"38":2}}],["genus",{"0":{"180":1,"181":1,"182":1,"188":1,"209":1,"213":1,"214":1,"228":1,"229":1,"235":1,"247":1,"251":1},"1":{"183":1,"184":1,"185":1,"189":1,"190":1,"191":1,"192":1,"193":1,"214":1,"215":2,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"229":1,"230":2,"231":1,"232":1,"233":1,"234":1,"236":1},"2":{"38":4,"39":2,"43":2,"96":1,"176":7,"178":2,"179":2,"181":1,"182":10,"184":6,"186":9,"187":2,"188":4,"189":4,"190":5,"191":4,"192":1,"209":5,"213":2,"214":4,"215":4,"216":3,"217":1,"218":17,"219":1,"220":4,"221":1,"222":1,"223":1,"224":3,"225":1,"226":4,"227":1,"228":3,"229":5,"230":5,"231":11,"232":1,"233":6,"235":9,"236":3,"237":4,"238":6,"239":2,"240":21,"241":4,"246":19,"247":1,"251":5,"263":5}}],["gen",{"2":{"15":7,"111":1,"146":2,"147":2,"151":1}}],["genera",{"0":{"176":1,"177":1,"184":1,"212":1,"237":1,"239":1},"1":{"177":1,"178":2,"179":2,"180":2,"181":2,"182":1,"183":1,"184":1,"185":1,"186":1,"187":1,"188":1,"189":1,"190":1,"191":1,"192":1,"193":1,"213":1,"214":1,"215":1,"216":1,"217":1,"218":1,"219":1,"220":1,"221":1,"222":1,"223":1,"224":1,"225":1,"226":1,"227":1,"228":1,"229":1,"230":1,"231":1,"232":1,"233":1,"234":1,"235":1,"236":1,"237":1,"238":2,"239":1,"240":2,"241":1},"2":{"176":2,"180":7,"184":2,"209":2,"239":4,"240":2,"263":1}}],["generalized",{"2":{"90":3,"109":1,"146":1,"151":1,"283":1}}],["generally",{"2":{"58":1}}],["general",{"2":{"12":1,"16":1,"25":2,"58":3,"59":1,"73":1,"74":1,"92":1,"94":1,"96":1,"116":1,"127":1,"141":2,"146":2,"149":1,"204":1,"270":1,"271":1}}],["generator",{"2":{"116":3,"143":1,"146":7,"147":6,"222":1,"250":2,"255":1,"282":1,"289":1}}],["generators",{"0":{"25":1},"2":{"6":1,"7":1,"11":1,"13":4,"14":3,"15":1,"17":3,"25":5,"53":1,"141":1,"148":3,"195":2,"253":5,"275":1,"283":7,"284":2,"294":3,"295":1}}],["generating",{"2":{"73":2,"283":2}}],["generate",{"2":{"73":1}}],["generates",{"2":{"25":2}}],["generated",{"2":{"6":1,"11":1,"12":1,"17":9,"61":4,"73":1,"93":1,"136":2,"141":1,"143":1,"144":4,"145":1,"146":3,"147":1,"150":1,"152":1,"182":1,"190":1,"242":1,"250":2,"270":1,"271":1,"288":1}}],["generically",{"2":{"61":1}}],["generic",{"2":{"12":1,"28":1,"74":3,"293":2,"295":1}}],["gensl",{"2":{"246":2}}],["gens",{"2":{"7":1,"17":8,"25":5,"53":3,"111":1,"195":3,"201":2,"215":2,"219":2,"227":2,"230":2,"232":2,"234":2,"238":2,"275":4,"276":5,"277":5,"278":8,"280":4,"282":4,"284":2,"286":4,"289":2,"291":2,"293":2,"295":2,"297":4,"299":2}}],["g",{"2":{"7":6,"11":4,"13":1,"14":14,"15":17,"16":5,"17":68,"18":10,"19":2,"20":2,"25":5,"27":2,"28":3,"29":9,"58":1,"88":2,"89":10,"98":1,"105":3,"106":2,"122":2,"131":1,"139":1,"146":1,"156":3,"182":14,"184":10,"185":1,"186":8,"191":3,"201":2,"213":6,"216":7,"218":41,"220":8,"222":2,"224":8,"226":8,"228":2,"231":17,"233":2,"234":2,"235":16,"241":9,"254":2,"262":9,"263":4,"266":2,"278":6,"280":2,"284":2,"289":2,"291":2,"295":2,"299":2}}],["pv",{"2":{"290":1}}],["pvlp",{"2":{"290":1}}],["p=7∗ok",{"2":{"282":1}}],["p=29",{"2":{"2":1}}],["pdf",{"2":{"272":2}}],["pp",{"2":{"190":1}}],["pmaximal",{"2":{"151":2}}],["pmatrix",{"2":{"151":2}}],["pmat",{"2":{"73":1,"74":4,"75":7,"150":1,"151":1,"275":1,"276":1,"277":1,"283":1}}],["phi",{"2":{"148":2,"201":10,"248":1}}],["p^",{"2":{"196":2}}],["p^m",{"2":{"188":1}}],["p^2",{"2":{"142":1}}],["p^e",{"2":{"134":1}}],["p−j=0",{"2":{"89":1}}],["p−subgroup",{"2":{"17":1}}],["p≠0",{"2":{"89":1}}],["pi",{"2":{"111":1,"147":5}}],["picard",{"2":{"94":1,"146":4,"153":1}}],["pivot",{"2":{"88":1}}],["pid",{"2":{"58":1,"73":1}}],["psi",{"2":{"213":1}}],["pseudo",{"0":{"73":1},"1":{"74":1,"75":1,"76":1},"2":{"73":12,"74":7,"75":4,"96":1,"141":2,"150":1,"151":6,"215":2,"230":1,"236":2,"238":2,"240":6,"253":1,"275":2,"276":2,"277":2,"278":2,"283":11,"284":23,"285":2,"286":8,"289":4,"294":1,"296":2,"299":27}}],["psubgroups",{"2":{"17":2}}],["performance",{"2":{"253":3,"294":2,"296":2}}],["performant",{"2":{"86":1}}],["per",{"2":{"45":1,"47":1,"100":1}}],["pkg",{"2":{"42":2,"301":2}}],["plc",{"2":{"93":1,"97":2,"124":2}}],["plane",{"2":{"174":1,"246":5,"255":1}}],["planes",{"2":{"174":1}}],["play",{"2":{"142":1}}],["plays",{"2":{"78":1}}],["places",{"0":{"124":1},"2":{"93":3,"94":1,"97":1,"98":2,"124":12,"146":1,"166":2,"228":2,"229":2,"230":1,"231":2,"236":1,"238":1,"240":1,"298":1}}],["place",{"2":{"36":1,"111":1,"124":5,"164":1,"165":3,"172":2,"228":1,"230":7,"231":1,"232":1,"238":1,"281":3,"292":1}}],["please",{"2":{"4":1,"301":1}}],["push",{"2":{"17":1,"68":1,"87":1}}],["pure",{"2":{"17":10,"19":1,"119":1}}],["publisher",{"2":{"4":1}}],["pohst",{"2":{"300":1}}],["po",{"2":{"151":2}}],["poverorders",{"2":{"151":1}}],["poverorder",{"2":{"151":2}}],["polredabs",{"2":{"121":2}}],["poly",{"2":{"116":1}}],["polyringelem",{"2":{"46":2,"93":2,"114":4,"116":1,"117":2}}],["polyring",{"2":{"46":1}}],["polynomial",{"2":{"2":3,"46":3,"88":1,"93":1,"95":1,"96":3,"105":2,"109":1,"113":1,"114":4,"116":9,"117":2,"118":2,"119":5,"121":2,"122":1,"125":3,"127":1,"129":1,"130":1,"134":2,"142":2,"150":1,"151":1,"157":2,"159":3,"217":2,"232":2,"234":2,"278":2,"280":2,"284":3}}],["polynomials",{"0":{"2":1},"2":{"46":4,"96":2,"116":3,"117":2,"127":2,"129":1,"150":1}}],["pop",{"2":{"68":3}}],["point",{"2":{"47":2,"48":7,"50":2,"51":3,"53":3,"54":2,"94":1,"153":1}}],["points",{"0":{"47":1,"50":1,"53":1},"1":{"48":1},"2":{"48":6,"52":1,"53":2}}],["pointwise",{"2":{"15":1,"148":1}}],["pos",{"2":{"263":2}}],["posinf",{"2":{"111":1}}],["positivity",{"0":{"62":1,"107":1},"2":{"62":1}}],["positive",{"2":{"13":1,"62":2,"67":2,"84":1,"98":1,"107":15,"125":1,"134":1,"137":1,"146":1,"160":5,"161":1,"182":1,"248":1,"250":2,"252":4,"253":3,"258":1,"267":1,"290":7,"291":2,"294":2,"296":2}}],["position",{"2":{"7":1}}],["possible",{"2":{"29":1,"46":1,"61":1,"75":2,"96":1,"139":1,"142":1,"145":1,"211":2,"224":1,"287":1}}],["possibly",{"2":{"25":2,"138":2,"147":2}}],["powermod",{"2":{"133":1}}],["powers",{"2":{"58":1,"61":1,"224":1}}],["power",{"2":{"17":1,"52":1,"58":1,"60":1,"61":1,"96":2,"109":2,"111":2,"118":1,"125":1,"145":6,"146":3,"150":3,"151":2}}],["potentially",{"2":{"7":1,"116":1}}],["packings",{"2":{"300":1}}],["packing",{"2":{"266":1}}],["packages",{"2":{"4":2}}],["pass",{"2":{"113":1}}],["passed",{"2":{"61":1,"93":1}}],["pairwise",{"2":{"144":1,"168":1,"233":1}}],["pair",{"2":{"16":1,"67":1,"122":1,"176":1,"180":3,"209":4}}],["pairs",{"2":{"15":1,"29":1,"59":1,"100":1,"120":1,"283":1}}],["parity",{"2":{"209":15}}],["pari",{"2":{"121":1}}],["pariwise",{"2":{"61":3}}],["parametried",{"2":{"127":1}}],["parametrized",{"2":{"58":1,"79":1,"86":1,"92":1,"131":1}}],["parameters",{"2":{"253":3,"294":2,"296":2}}],["parameter",{"2":{"116":3,"246":2}}],["parallel",{"2":{"42":1}}],["parentof",{"2":{"143":1}}],["parent",{"2":{"7":2,"48":2,"58":1,"61":1,"111":2,"116":1,"132":1,"151":2,"199":1}}],["partial=false",{"2":{"208":1}}],["partial",{"2":{"61":3}}],["particularly",{"2":{"204":1}}],["particular",{"2":{"40":1,"68":1,"79":1,"150":1,"213":1,"233":1,"268":1,"270":1}}],["part",{"2":{"5":1,"75":3,"164":1,"196":1}}],["pages",{"2":{"4":2}}],["pradical",{"2":{"151":3}}],["practical",{"2":{"92":1}}],["press",{"2":{"300":1}}],["prescribed",{"2":{"98":1}}],["preserves",{"2":{"75":2}}],["present>",{"2":{"142":1}}],["presentation",{"2":{"58":1,"61":3,"127":1,"143":1}}],["presented",{"2":{"12":1,"13":1}}],["precision",{"2":{"112":1}}],["precisely",{"2":{"79":1,"86":1,"146":1}}],["prec",{"2":{"61":2,"103":4}}],["preimages",{"2":{"20":1}}],["preimage",{"2":{"15":1,"19":1}}],["predicates",{"0":{"9":1,"24":1,"113":1,"119":1,"154":1,"160":1,"220":1,"290":1},"1":{"120":1,"161":1,"221":1,"291":1},"2":{"9":1}}],["primary",{"0":{"184":1,"202":1},"2":{"130":1,"184":7,"202":5,"250":7}}],["primitive=true",{"2":{"263":1}}],["primitive",{"2":{"111":1,"116":1,"117":3,"127":1,"204":1,"255":13,"261":3,"263":4,"285":2}}],["primes",{"2":{"17":1,"61":1,"88":3,"94":1,"98":1,"146":1,"150":4,"152":2,"176":1,"182":2,"231":1,"232":1}}],["prime",{"0":{"2":1},"2":{"2":7,"17":1,"45":1,"61":1,"88":2,"96":2,"98":2,"111":1,"113":2,"119":2,"123":3,"134":1,"142":2,"144":3,"146":13,"147":9,"148":2,"151":5,"152":1,"165":2,"166":1,"167":1,"173":1,"174":2,"175":1,"176":1,"184":8,"188":3,"189":2,"190":2,"202":8,"213":2,"214":2,"215":4,"216":2,"217":2,"218":12,"219":1,"220":4,"221":1,"222":1,"223":1,"225":1,"226":2,"227":1,"228":3,"230":1,"231":1,"232":1,"235":2,"236":1,"237":1,"238":2,"239":2,"240":1,"241":1,"250":8,"261":1,"282":2,"286":1,"290":2,"291":1,"292":2,"293":1,"296":1,"297":1,"298":3,"299":1}}],["princ",{"2":{"147":2}}],["principal",{"2":{"61":3,"120":3,"134":1,"136":2,"141":1,"142":2,"144":5,"146":18,"147":4,"282":1,"289":1}}],["prints",{"2":{"278":1}}],["printed",{"2":{"116":2}}],["printing",{"2":{"116":3}}],["println",{"2":{"11":1}}],["prompt",{"2":{"301":1}}],["proper",{"2":{"298":3}}],["property",{"2":{"33":1,"94":1,"135":1,"148":1,"166":1,"298":3}}],["properties",{"0":{"23":1,"46":1,"88":1,"101":1,"117":1,"132":1,"150":1,"292":1},"1":{"151":1,"293":1}}],["progress",{"2":{"96":1,"153":1}}],["program",{"2":{"88":1}}],["programming",{"2":{"4":2}}],["probabilistic",{"2":{"93":1,"96":1,"119":1}}],["provide",{"2":{"103":1}}],["provided",{"2":{"30":1,"105":1,"116":2,"128":2,"137":1,"267":1}}],["proven",{"2":{"88":1}}],["proj",{"2":{"61":2,"169":3}}],["projective",{"2":{"47":1,"57":1,"73":1}}],["projections",{"2":{"18":3,"168":7,"210":6,"257":6,"287":7}}],["projection",{"2":{"17":5,"18":3,"94":1,"146":1,"148":2,"170":3,"196":1,"208":1}}],["project",{"2":{"5":1,"48":1,"61":1}}],["processing",{"2":{"153":1}}],["processes",{"2":{"42":2}}],["process",{"2":{"36":1,"60":1}}],["proceedings",{"2":{"4":2}}],["prod",{"2":{"25":2,"58":1,"59":1,"134":1,"168":2,"287":2}}],["producs",{"0":{"19":1}}],["product",{"2":{"13":1,"18":6,"19":4,"60":1,"61":2,"88":1,"90":7,"146":2,"162":3,"163":1,"164":1,"168":10,"198":6,"210":8,"229":1,"246":2,"257":8,"287":10}}],["products",{"0":{"18":1,"162":1},"1":{"163":1},"2":{"13":1,"15":1,"16":1,"18":3,"58":1,"61":1,"90":1,"168":4,"210":3,"257":3,"287":4}}],["p",{"2":{"2":10,"17":13,"47":1,"48":9,"51":5,"54":5,"59":2,"61":5,"75":6,"88":3,"89":1,"98":6,"111":6,"112":5,"113":3,"119":6,"123":9,"124":4,"134":1,"142":3,"144":3,"146":8,"147":23,"148":2,"151":19,"164":7,"165":5,"166":3,"167":3,"172":5,"173":2,"174":4,"175":2,"176":1,"182":2,"184":14,"185":2,"188":2,"189":4,"190":12,"193":1,"196":3,"202":12,"213":13,"214":4,"215":3,"216":2,"217":2,"218":24,"219":2,"220":8,"221":2,"222":2,"223":2,"225":2,"226":4,"227":2,"228":3,"230":2,"232":1,"235":2,"236":2,"237":2,"238":3,"239":5,"240":2,"241":1,"250":14,"253":2,"261":6,"281":6,"282":4,"286":2,"290":4,"291":2,"292":10,"293":4,"296":2,"297":2,"298":15,"299":4,"300":5}}],["akad",{"2":{"300":1}}],["aφ",{"2":{"285":1}}],["again",{"2":{"271":1,"294":1}}],["agrees",{"2":{"298":1}}],["agree",{"2":{"18":1,"158":1,"168":3,"210":3,"235":2,"257":3,"287":3}}],["a+n∈m",{"2":{"199":2}}],["a∩z",{"2":{"147":2}}],["a∩o",{"2":{"83":1,"147":2}}],["ae",{"2":{"146":1}}],["a∗b⊊order",{"2":{"145":1}}],["a∗o",{"2":{"59":1}}],["a∈k",{"2":{"113":1,"285":1}}],["a∈k∗",{"2":{"93":1}}],["am",{"2":{"255":1}}],["among",{"2":{"149":1,"266":1}}],["amounts",{"2":{"98":1}}],["ambient",{"0":{"275":1,"279":1},"1":{"280":1},"2":{"107":1,"131":2,"132":1,"134":2,"148":1,"151":10,"152":2,"158":1,"196":1,"199":1,"213":1,"242":2,"245":1,"246":1,"249":4,"253":3,"255":9,"257":3,"261":1,"262":11,"265":3,"271":1,"275":4,"276":3,"277":3,"279":3,"280":1,"283":2,"285":6,"286":1,"287":3,"294":4,"296":4,"298":3,"299":1}}],["amp",{"0":{"62":1,"107":1},"2":{"62":1,"186":2,"190":2}}],["a>",{"2":{"96":1,"142":2,"215":2,"217":1,"230":1,"232":1,"238":2}}],["a−1",{"2":{"93":1}}],["automatically",{"2":{"278":1}}],["automorphism",{"2":{"94":3,"97":1,"122":4,"123":3,"156":1,"164":1,"233":1,"235":1,"253":5,"294":6,"295":2}}],["automorphisms",{"0":{"294":1},"1":{"295":1},"2":{"92":1,"98":2,"122":2}}],["auto",{"2":{"235":3}}],["aut",{"2":{"233":1}}],["author",{"2":{"4":1,"278":2}}],["a⋅b",{"2":{"90":4}}],["a⋅at",{"2":{"83":1}}],["aachen",{"2":{"272":1,"278":2}}],["aai+baj",{"2":{"89":1}}],["aa+bb",{"2":{"81":1}}],["a=a1×⋯×ak",{"2":{"168":1,"287":1}}],["a=re",{"2":{"145":1}}],["a=nd−1",{"2":{"137":1}}],["a=",{"2":{"89":1,"146":2}}],["a=∏aini",{"2":{"61":1}}],["avoiding",{"2":{"146":1}}],["avoided",{"2":{"88":1}}],["available",{"2":{"17":1,"57":2,"60":1,"68":3,"74":1,"149":1,"153":1,"278":1}}],["aj→aj+c⋅ai",{"2":{"89":2}}],["aj",{"2":{"81":1,"89":1,"164":1,"190":1}}],["aω",{"2":{"73":1}}],["appearance",{"2":{"116":1}}],["appearing",{"2":{"105":1}}],["appears",{"2":{"105":1,"266":3}}],["appended",{"2":{"87":1}}],["appends",{"2":{"87":1}}],["appropriate",{"2":{"67":1}}],["apply",{"2":{"39":1,"149":1,"248":1}}],["applying",{"2":{"2":1,"89":1}}],["applicable",{"2":{"92":1}}],["applications",{"2":{"30":1,"58":1,"300":2}}],["applies",{"2":{"89":1}}],["applied",{"2":{"2":2,"96":1}}],["ai⊂k",{"2":{"141":1}}],["aij",{"2":{"89":2}}],["aij=xj",{"2":{"80":3}}],["aiωi|i",{"2":{"73":1}}],["ai",{"2":{"58":2,"61":1,"73":4,"80":3,"81":1,"89":6,"117":1,"141":1,"148":1,"162":1,"164":1,"190":1,"283":4}}],["affine",{"2":{"47":1}}],["a6",{"2":{"46":3,"57":2}}],["a4x",{"2":{"46":1}}],["a4",{"2":{"46":2,"57":2}}],["a3y",{"2":{"46":1}}],["a3",{"2":{"46":2,"57":1}}],["a2x^2",{"2":{"46":1}}],["a2",{"2":{"46":2,"57":1,"116":1,"117":3}}],["a1i1⋯adid",{"2":{"117":1}}],["a1=a2=a3=0",{"2":{"57":1}}],["a1xy",{"2":{"46":1}}],["a1",{"2":{"46":2,"57":1,"116":1,"117":4,"148":1,"162":4,"164":1}}],["a→q×",{"2":{"148":1}}],["a→i",{"2":{"94":1}}],["a→l",{"2":{"32":1}}],["a→g",{"2":{"16":1}}],["advanced",{"2":{"300":1}}],["ade",{"2":{"254":10}}],["admitting",{"2":{"246":1}}],["admits",{"2":{"19":1,"235":2}}],["ad∈z≥1",{"2":{"148":1}}],["ad−1",{"2":{"117":1}}],["adic",{"2":{"88":1,"111":1,"144":1,"147":5,"182":1,"188":1,"190":3,"218":3,"237":1,"240":15,"253":1,"292":1}}],["added",{"2":{"39":3,"58":1,"79":1}}],["adds",{"2":{"39":2,"112":1}}],["add",{"2":{"35":1,"43":1,"48":1,"81":2,"86":1,"87":1,"88":1,"89":4,"301":1}}],["additive",{"2":{"209":1}}],["additionally",{"2":{"88":1}}],["additional",{"2":{"25":1,"86":1,"113":1,"135":1,"150":2}}],["addition",{"2":{"7":1,"15":1,"96":1}}],["adding",{"0":{"35":1,"39":1,"40":1},"2":{"42":1}}],["address",{"2":{"4":1}}],["a⊕b",{"2":{"18":1}}],["a⊗zq",{"2":{"14":1}}],["attributes",{"0":{"158":1,"182":1,"190":1,"197":1,"216":1,"231":1,"249":1,"283":1},"1":{"159":1,"183":1,"184":1,"185":1,"217":1,"232":1,"284":1}}],["at",{"0":{"103":1},"2":{"7":3,"40":1,"48":1,"61":2,"94":2,"98":2,"107":6,"111":1,"113":1,"122":1,"146":1,"147":1,"149":1,"151":1,"152":1,"164":3,"166":3,"172":2,"174":2,"176":1,"185":1,"189":2,"213":2,"214":1,"216":1,"218":9,"220":4,"222":1,"226":4,"228":2,"229":1,"231":2,"235":4,"237":1,"239":1,"241":1,"246":7,"261":3,"263":1,"281":3,"282":1,"290":2,"292":3,"296":1,"298":9,"301":1}}],["archiv",{"2":{"272":1}}],["arr",{"2":{"131":4}}],["arranges",{"2":{"61":1}}],["arrays",{"2":{"59":1,"87":1}}],["array",{"2":{"7":1,"17":1,"32":2,"33":2,"48":1,"86":1,"88":2,"89":1,"90":3,"93":1,"112":4,"117":1,"134":2,"144":1,"146":3,"153":1}}],["artin",{"2":{"94":1}}],["arithmetic",{"0":{"90":1,"133":1,"137":1,"145":1,"153":1},"2":{"127":1,"128":1,"130":1,"133":1,"149":1}}],["arbmatrix",{"2":{"151":1}}],["arbfieldelem",{"2":{"112":6,"134":5,"151":1,"152":2}}],["arb",{"2":{"61":1,"112":5,"134":4}}],["arbitrary",{"2":{"27":1,"57":1,"99":1,"270":1,"271":1}}],["args",{"2":{"42":2}}],["arguments",{"2":{"116":1,"146":1,"180":1,"188":1,"211":2}}],["argument",{"2":{"22":1,"42":1,"54":1,"64":2,"75":2,"93":1,"98":1,"209":2}}],["are",{"2":{"2":1,"6":2,"8":1,"12":2,"13":2,"15":3,"16":1,"17":2,"18":1,"30":2,"34":1,"38":1,"58":5,"61":2,"67":4,"68":3,"73":2,"74":4,"75":2,"79":2,"86":2,"87":2,"88":1,"89":1,"92":1,"93":1,"98":3,"107":1,"109":3,"113":1,"116":2,"119":3,"122":2,"127":5,"129":1,"130":2,"131":1,"132":1,"133":1,"134":1,"135":2,"137":1,"139":1,"140":1,"141":1,"142":1,"143":2,"144":2,"145":2,"146":5,"147":2,"148":1,"149":5,"150":3,"151":1,"153":3,"157":1,"160":1,"162":2,"164":2,"166":1,"168":7,"176":3,"180":1,"196":3,"197":2,"201":3,"204":1,"208":1,"210":3,"211":3,"213":2,"214":1,"218":3,"224":2,"228":5,"229":1,"233":2,"235":1,"242":1,"246":2,"253":4,"255":1,"257":3,"261":1,"266":3,"267":2,"268":2,"270":3,"271":1,"272":2,"278":2,"281":2,"282":1,"283":2,"287":6,"292":1,"294":2,"296":5}}],["asymptotically",{"2":{"130":1}}],["asked",{"2":{"40":1}}],["associated",{"2":{"68":2,"160":1,"184":4,"195":1,"213":1,"231":1,"241":1,"246":3,"270":1}}],["associativity",{"2":{"32":1}}],["associative",{"2":{"3":2,"30":1,"32":1,"33":1}}],["asscciated",{"2":{"67":1}}],["assumes",{"2":{"61":1,"88":1,"93":1,"97":1,"119":1,"120":1}}],["assume",{"2":{"39":1,"140":1,"255":1}}],["assumed",{"2":{"10":1,"14":2,"16":1,"88":1,"89":1,"119":1,"134":1,"136":2,"144":1,"147":1,"150":1,"151":2,"266":3}}],["assuming",{"2":{"17":1,"113":1,"120":2,"146":1,"152":1}}],["as",{"2":{"6":1,"7":1,"12":1,"13":1,"14":1,"15":4,"16":2,"17":3,"18":4,"19":3,"20":1,"22":1,"25":3,"27":1,"32":2,"42":1,"46":5,"54":1,"57":1,"58":4,"60":1,"61":4,"67":1,"68":1,"73":2,"74":1,"75":5,"85":1,"86":2,"87":2,"90":10,"93":3,"94":2,"96":1,"98":4,"103":1,"104":1,"105":3,"106":1,"107":1,"108":1,"109":2,"111":1,"112":5,"116":4,"117":3,"120":3,"122":1,"123":3,"127":3,"128":1,"129":2,"130":4,"131":1,"132":1,"134":7,"135":1,"137":1,"138":2,"139":4,"140":2,"141":3,"142":1,"143":1,"144":2,"146":5,"147":2,"148":3,"149":3,"150":2,"151":2,"153":1,"158":3,"166":1,"168":7,"169":2,"174":1,"176":2,"182":2,"184":2,"186":1,"188":1,"190":2,"195":3,"196":3,"202":2,"209":2,"210":6,"211":5,"213":1,"218":1,"230":1,"231":1,"235":2,"242":2,"246":1,"247":1,"250":4,"254":2,"257":9,"258":1,"261":2,"265":1,"268":1,"270":4,"271":5,"276":3,"278":2,"280":1,"282":1,"284":1,"285":1,"286":1,"287":10,"289":1,"291":1,"293":1,"294":1,"295":1,"297":1,"299":1}}],["al",{"2":{"285":4,"290":2}}],["alpha",{"2":{"142":2,"162":1}}],["already",{"2":{"136":2,"144":1,"150":2}}],["along",{"2":{"106":1,"208":1,"278":1}}],["almost",{"2":{"79":1}}],["alias",{"2":{"68":1,"199":1,"285":1}}],["algassrelord",{"2":{"138":1,"147":1,"150":1}}],["algassrelordidl",{"2":{"138":1,"147":1}}],["algassabsord",{"2":{"138":1,"147":1,"148":2,"150":2}}],["algassabsordidl",{"2":{"138":1,"147":1,"148":2}}],["algerbaic",{"2":{"58":1}}],["algebrae",{"2":{"239":1}}],["algebraic",{"2":{"4":1,"61":2,"78":1,"111":2,"132":1,"134":1,"300":2}}],["algebras",{"0":{"22":1,"27":1,"31":1},"1":{"28":1,"29":1,"32":1,"33":1},"2":{"3":3,"22":1,"30":7,"168":2,"287":2}}],["algebra",{"0":{"77":1},"1":{"78":1,"79":1,"80":1,"81":1,"82":1,"83":1,"84":1,"85":1,"86":1,"87":1,"88":1,"89":1,"90":1},"2":{"3":1,"4":2,"22":6,"23":2,"24":3,"25":6,"26":7,"27":1,"28":5,"29":4,"32":12,"33":3,"78":3,"158":1,"162":1,"166":2,"168":1,"239":1,"270":1,"283":1,"287":1,"290":1}}],["algssrelord",{"2":{"46":1,"132":1,"134":1}}],["algorithmic",{"2":{"300":1}}],["algorithms",{"2":{"78":1,"92":1,"272":1}}],["algorithm",{"2":{"17":1,"60":1,"61":1,"73":1,"88":5,"93":2,"96":3,"147":1,"151":1}}],["allowed",{"2":{"113":1,"246":1}}],["allowing",{"2":{"58":1}}],["allows",{"2":{"20":1,"61":2,"146":1}}],["allow",{"2":{"15":2,"127":1,"153":1}}],["all",{"0":{"42":1},"2":{"13":1,"17":7,"20":1,"42":1,"43":2,"58":1,"61":2,"68":3,"70":4,"71":4,"72":1,"73":1,"79":1,"82":1,"84":4,"87":1,"88":3,"89":4,"92":1,"93":2,"96":1,"98":3,"106":2,"107":6,"108":1,"119":2,"120":1,"122":1,"124":3,"125":1,"133":1,"134":1,"137":1,"143":1,"144":1,"145":1,"146":3,"149":1,"151":4,"152":1,"153":1,"160":3,"164":1,"166":1,"176":1,"180":1,"206":1,"213":2,"228":1,"239":2,"250":1,"255":1,"261":1,"266":2,"267":1,"278":1,"282":1,"294":1,"298":1}}],["alternatively",{"2":{"13":1}}],["also",{"2":{"7":1,"14":1,"15":1,"17":8,"18":1,"20":1,"23":1,"29":1,"39":1,"43":1,"68":1,"74":1,"87":3,"103":1,"111":1,"127":1,"130":1,"143":2,"146":2,"149":2,"152":1,"153":2,"166":1,"168":1,"180":1,"184":2,"190":1,"201":1,"202":2,"233":1,"242":1,"246":1,"250":2,"254":1,"266":3,"267":1,"271":1,"285":1,"287":2}}],["always",{"2":{"6":1,"96":1,"109":2,"143":1,"149":1,"158":1,"182":2,"190":1,"270":1}}],["action",{"2":{"222":1}}],["act",{"2":{"211":2}}],["actually",{"2":{"60":4,"61":1,"94":1,"96":1,"127":1,"131":1}}],["actual",{"2":{"20":1}}],["acbfield",{"2":{"112":1}}],["acbfieldelem",{"2":{"103":2,"112":6,"134":2}}],["access",{"0":{"8":1,"89":1},"2":{"68":1,"127":1,"242":1,"278":1}}],["acknowledgement",{"0":{"5":1}}],["acm",{"2":{"4":4}}],["anti",{"2":{"201":10}}],["antic",{"2":{"128":1}}],["anticnumerfield",{"2":{"125":1}}],["ans",{"2":{"146":4}}],["another",{"2":{"129":1,"285":1}}],["anonymous",{"2":{"103":2}}],["annotated",{"2":{"40":1,"42":1}}],["any",{"2":{"25":2,"61":1,"67":3,"68":1,"73":2,"79":1,"87":1,"105":1,"109":1,"118":1,"131":2,"141":1,"143":1,"146":1,"149":1,"150":1,"186":1,"191":1,"213":2,"218":2,"226":2,"231":3,"233":1,"241":2,"266":1,"270":1,"283":2,"285":2,"292":3,"294":2}}],["an",{"0":{"178":1},"2":{"2":1,"7":3,"9":1,"12":1,"16":4,"17":10,"20":1,"22":1,"23":1,"25":2,"26":1,"29":1,"32":1,"33":1,"45":2,"48":1,"51":2,"53":1,"54":1,"57":1,"58":2,"61":2,"64":1,"67":1,"68":4,"70":3,"71":3,"72":1,"73":2,"75":1,"78":1,"81":1,"85":1,"86":1,"87":1,"88":5,"89":8,"90":2,"93":4,"96":2,"97":1,"99":1,"103":2,"104":2,"105":2,"106":3,"108":2,"109":5,"111":7,"113":2,"114":4,"116":3,"117":3,"119":1,"120":5,"121":3,"122":5,"123":2,"125":5,"127":2,"129":2,"131":4,"132":2,"134":5,"135":4,"138":2,"139":2,"140":2,"141":2,"142":1,"143":2,"144":1,"145":3,"146":11,"147":5,"148":2,"150":5,"151":2,"152":1,"153":2,"158":2,"160":1,"162":6,"164":4,"166":2,"172":1,"174":1,"180":2,"184":2,"190":1,"191":1,"196":2,"199":1,"201":3,"202":2,"203":1,"205":1,"209":3,"211":5,"241":2,"242":1,"245":1,"246":3,"249":1,"250":5,"251":2,"261":1,"262":1,"265":1,"266":2,"267":1,"270":3,"271":1,"275":4,"279":1,"290":4,"292":2,"294":3,"296":1}}],["and",{"0":{"0":1,"17":1,"51":1,"55":1,"65":1,"67":1,"83":1,"85":1,"150":1,"162":1,"187":1,"202":1,"264":1,"265":1,"269":1,"270":1,"271":1,"279":1},"1":{"66":1,"67":1,"68":1,"69":1,"70":1,"71":1,"72":1,"151":1,"163":1,"265":1,"266":1,"267":1,"270":1,"271":1,"280":1},"2":{"2":5,"3":6,"4":7,"5":1,"6":1,"7":3,"9":1,"11":2,"13":5,"14":1,"15":5,"16":8,"17":13,"18":3,"19":1,"22":1,"25":1,"26":1,"29":1,"32":2,"36":2,"38":2,"48":1,"53":1,"57":3,"58":4,"59":1,"60":2,"61":5,"62":1,"67":2,"68":5,"73":5,"74":3,"75":2,"78":2,"80":1,"81":1,"86":2,"87":5,"88":9,"89":10,"92":4,"93":6,"94":4,"96":2,"98":5,"99":1,"103":1,"105":2,"106":3,"107":3,"109":3,"111":1,"112":3,"113":3,"116":6,"117":1,"119":8,"120":8,"121":1,"122":7,"123":3,"125":3,"127":3,"131":3,"132":1,"134":2,"135":1,"137":1,"139":4,"140":1,"141":5,"142":1,"143":2,"144":2,"145":3,"146":10,"148":4,"149":1,"150":1,"151":3,"153":2,"156":4,"158":1,"160":1,"162":2,"164":5,"165":1,"166":7,"167":1,"168":10,"170":2,"172":2,"174":2,"176":3,"181":1,"182":1,"184":4,"195":4,"196":4,"198":1,"201":6,"202":2,"206":1,"208":2,"209":3,"210":9,"213":7,"214":1,"222":1,"228":2,"229":2,"231":1,"233":3,"235":3,"236":2,"237":4,"239":3,"241":2,"242":2,"245":1,"246":7,"248":1,"250":4,"253":5,"254":13,"255":11,"257":9,"261":11,"262":3,"263":1,"265":1,"266":8,"267":1,"268":3,"269":1,"270":5,"271":4,"272":3,"275":3,"276":4,"277":4,"278":5,"281":2,"282":2,"283":3,"285":5,"287":10,"292":4,"294":5,"296":10,"298":10,"299":3,"300":5,"301":1}}],["abuse",{"2":{"270":1,"271":1}}],["ab",{"2":{"246":3}}],["abgrp",{"2":{"196":1}}],["about",{"2":{"159":1,"270":1}}],["above",{"2":{"2":1,"39":1,"98":1,"143":1,"146":1,"165":1,"239":1}}],["ab=o",{"2":{"137":1}}],["ab=ok",{"2":{"136":1}}],["abelian",{"2":{"3":1,"6":1,"7":1,"11":5,"12":3,"13":16,"15":7,"16":4,"17":14,"18":2,"29":1,"53":3,"92":5,"93":6,"94":3,"96":9,"97":2,"119":3,"146":2,"153":2,"195":2,"196":4,"197":2,"201":4,"202":8,"203":2,"205":1,"206":4,"211":6,"246":1}}],["absalgassmor",{"2":{"168":4,"287":4}}],["absordquoring",{"2":{"148":2}}],["absolute",{"0":{"128":1,"140":1},"2":{"3":1,"63":1,"84":1,"88":1,"108":1,"109":4,"111":4,"114":4,"117":3,"118":3,"119":3,"121":2,"127":2,"129":1,"131":1,"134":4,"139":2,"140":1,"141":1,"143":1,"149":2,"266":2,"283":2,"284":2}}],["absnonsimplenumfield",{"2":{"127":2}}],["absnonsimplenumfieldelem",{"2":{"116":1,"117":1}}],["absnonsimplenumfieldembedding",{"2":{"108":1}}],["absnumfieldorderset",{"2":{"151":1}}],["absnumfieldorderfractionalideal",{"2":{"136":7,"137":3,"138":4,"147":3,"151":1,"288":1}}],["absnumfieldorderfractionalidealset",{"2":{"61":4}}],["absnumfieldorderelem",{"2":{"98":2,"131":1,"132":1,"133":2,"134":6,"136":1,"144":1,"151":1}}],["absnumfieldorder",{"2":{"94":1,"131":3,"136":7,"138":1,"144":1,"146":1,"147":1,"150":5,"151":6,"152":3,"154":3}}],["absnumfieldorderidealset",{"2":{"58":1,"61":5,"143":1,"144":1}}],["absnumfieldorderideal",{"2":{"58":1,"61":13,"74":2,"83":1,"93":2,"94":2,"97":4,"98":2,"111":2,"119":1,"123":3,"125":1,"136":4,"137":2,"138":1,"143":2,"144":19,"145":12,"146":12,"147":32,"148":7,"151":3,"152":2,"153":3,"164":4,"166":1,"172":1,"174":1,"214":2,"216":1,"231":1,"239":1,"281":3,"283":1,"292":3,"296":1,"298":3}}],["abs",{"2":{"64":1,"84":1,"88":1,"104":3,"112":12,"134":9,"151":2,"180":4}}],["abssimplenumfieldembedding",{"2":{"95":1,"96":1,"100":3,"106":1,"107":1,"124":3,"165":1,"230":1,"232":1,"240":1}}],["abssimplenumfieldelem",{"2":{"2":1,"58":1,"59":1,"61":30,"74":6,"83":1,"93":5,"95":1,"96":3,"97":4,"109":1,"111":6,"112":8,"113":3,"116":3,"117":1,"119":1,"123":3,"125":3,"127":2,"136":1,"138":2,"142":3,"143":1,"144":8,"145":3,"146":18,"147":27,"148":6,"150":2,"151":3,"152":1,"153":3,"163":2,"164":4,"166":1,"172":1,"174":1,"214":2,"215":1,"216":1,"219":1,"227":1,"230":3,"231":1,"232":1,"234":1,"238":1,"239":1,"240":3,"278":6,"280":3,"281":2,"282":3,"283":1,"284":9,"286":6,"289":1,"291":1,"292":3,"293":3,"295":2,"296":1,"297":2,"298":3,"299":10}}],["abssimplenumfieldorderquoringelem",{"2":{"148":1}}],["abssimplenumfieldorderquoring",{"2":{"148":7}}],["abssimplenumfieldorderideal",{"2":{"142":1,"146":4,"165":1,"232":1,"240":3}}],["abssimplenumfieldorderelem",{"2":{"74":2,"131":1,"134":2,"144":8,"146":4,"147":8,"148":4,"151":1}}],["abssimplenumfieldorderfractionalideal",{"2":{"61":5,"74":3,"135":1,"136":2,"145":6,"146":2,"218":2,"231":2,"283":1,"284":2,"288":2,"290":1,"299":3}}],["abssimplenumfieldorder",{"2":{"59":1,"119":1,"134":2,"136":1,"144":12,"146":13,"147":3,"148":3,"150":5,"151":17,"152":6,"153":6}}],["abssimplenumfield",{"2":{"58":1,"59":1,"61":28,"74":2,"83":1,"93":3,"94":1,"95":1,"96":4,"97":4,"109":1,"111":2,"112":1,"113":1,"116":3,"118":3,"119":6,"120":11,"121":4,"122":5,"123":6,"124":3,"125":3,"127":4,"128":1,"134":1,"138":1,"143":1,"144":7,"145":3,"146":12,"147":24,"148":6,"150":4,"151":2,"152":1,"153":3,"164":4,"165":1,"166":1,"172":1,"174":1,"214":2,"216":1,"231":1,"232":1,"239":1,"240":1,"281":2,"283":1,"292":3,"296":1,"298":3}}],["abstractlat",{"2":{"245":1,"249":1,"250":2,"252":3,"253":4,"255":8,"259":2,"261":2,"275":4,"279":5,"281":6,"283":15,"285":22,"287":9,"288":3,"290":7,"292":3,"294":2,"296":6,"298":11}}],["abstractly",{"2":{"214":1,"229":1}}],["abstractspacemor",{"2":{"168":8,"169":2,"170":1,"257":8,"287":8}}],["abstractspaceres",{"2":{"162":1}}],["abstractspace",{"2":{"158":8,"160":6,"162":7,"164":4,"166":2,"168":9,"170":2,"172":1,"245":1,"249":1,"275":4,"279":2,"298":1}}],["abstractstring",{"2":{"116":1}}],["abstractset",{"2":{"67":1}}],["abstractalgebra",{"0":{"85":1},"2":{"85":1,"293":2,"295":1}}],["abstractassociativealgebra",{"2":{"22":1,"23":2,"24":3,"25":2,"26":3,"30":1,"150":2}}],["abstractunitrange",{"2":{"17":2,"87":2}}],["abstractmatrix",{"2":{"13":2,"90":1}}],["abstract",{"2":{"12":1,"20":1,"93":1,"96":1,"148":1}}],["abstractvector",{"2":{"8":1,"13":1,"90":3}}],["a",{"0":{"2":1,"43":1,"72":1,"179":1,"205":1,"206":1,"235":1,"244":1,"245":1,"247":1,"275":1,"276":1,"277":1},"1":{"236":1,"278":1},"2":{"2":3,"4":1,"6":3,"7":11,"8":1,"10":2,"11":1,"12":1,"13":4,"14":15,"15":5,"16":8,"17":24,"18":9,"19":3,"20":1,"22":1,"23":7,"24":9,"25":20,"26":14,"27":1,"29":17,"30":2,"32":5,"33":5,"38":2,"39":6,"40":2,"43":1,"46":7,"48":1,"50":2,"51":4,"53":5,"54":1,"57":1,"58":2,"59":5,"60":2,"61":33,"63":6,"64":5,"67":16,"68":13,"70":1,"71":1,"73":16,"74":3,"75":5,"79":1,"81":8,"82":2,"83":12,"84":10,"85":8,"86":4,"87":27,"88":75,"89":60,"90":26,"92":1,"93":7,"94":12,"95":4,"96":19,"97":11,"98":25,"99":3,"100":2,"101":3,"102":1,"103":4,"104":3,"105":14,"106":8,"107":35,"108":3,"109":3,"111":50,"112":2,"113":17,"114":31,"116":18,"117":15,"118":7,"119":6,"120":10,"121":11,"122":11,"123":15,"125":4,"127":9,"128":1,"129":5,"130":3,"131":8,"132":6,"134":28,"135":4,"136":10,"137":6,"138":12,"139":3,"140":2,"141":5,"142":7,"143":4,"144":18,"145":13,"146":35,"147":74,"148":5,"149":6,"150":23,"151":14,"153":5,"156":2,"157":2,"158":2,"159":2,"160":1,"161":2,"162":6,"163":2,"164":5,"165":1,"166":3,"167":2,"168":10,"170":5,"171":1,"172":4,"173":2,"174":3,"175":2,"176":5,"179":3,"180":5,"182":6,"184":8,"186":6,"188":19,"189":3,"190":8,"191":4,"193":1,"195":5,"196":17,"198":5,"199":7,"201":12,"202":8,"203":3,"206":1,"207":1,"209":1,"210":9,"213":8,"214":3,"215":14,"216":4,"217":4,"218":32,"219":14,"220":8,"221":3,"222":3,"223":4,"224":6,"225":5,"226":6,"227":20,"228":1,"229":4,"230":15,"231":8,"232":16,"233":4,"234":18,"235":6,"236":3,"238":15,"239":1,"240":3,"241":8,"242":4,"245":2,"246":8,"247":1,"250":6,"253":5,"254":10,"255":9,"257":9,"258":1,"261":7,"262":7,"263":4,"265":1,"268":3,"270":12,"271":7,"275":7,"276":11,"277":8,"278":4,"279":1,"280":1,"282":1,"283":15,"284":1,"285":10,"286":2,"287":9,"288":2,"289":1,"290":8,"291":1,"292":9,"293":1,"294":6,"295":1,"296":2,"297":1,"298":17,"299":1,"300":2,"301":6}}],["og10",{"2":{"246":2}}],["og6",{"2":{"246":2}}],["oe",{"2":{"213":1,"218":3,"220":3,"222":1,"239":1,"271":2,"283":1,"285":1,"288":2,"290":2,"294":1}}],["old",{"2":{"207":1}}],["oddity",{"2":{"188":1,"190":4}}],["odd",{"2":{"188":2,"190":1,"209":2,"246":1,"254":2}}],["o→o",{"2":{"148":1}}],["occur",{"2":{"113":1}}],["other",{"0":{"181":1},"2":{"90":1,"130":1,"149":1,"150":1,"160":1,"167":1,"266":1}}],["otherwise",{"2":{"17":1,"18":1,"48":1,"64":1,"99":1,"113":1,"119":1,"120":2,"122":3,"146":2,"151":1,"195":1,"213":1,"253":1,"262":3,"294":1,"298":3}}],["obvious",{"2":{"60":1}}],["objects",{"2":{"67":1,"68":2,"79":1,"86":1,"146":1,"153":1,"168":3,"210":3,"257":3,"287":3}}],["object",{"2":{"58":1,"89":1,"104":1,"111":1,"116":1}}],["obtained",{"2":{"84":1,"88":1,"146":2,"153":1,"162":1,"285":1}}],["obtaining",{"2":{"60":1}}],["obtain",{"2":{"2":1,"18":2,"20":1,"29":1,"61":2,"93":1,"168":7,"210":6,"257":6,"287":6,"301":1}}],["o",{"2":{"46":2,"53":4,"58":1,"59":1,"83":1,"94":2,"109":8,"119":2,"131":14,"132":2,"134":6,"136":16,"138":4,"139":1,"140":3,"141":3,"144":21,"146":34,"147":10,"148":8,"150":7,"151":52,"152":19,"188":2,"193":2}}],["operatinos",{"2":{"133":1}}],["operation",{"2":{"15":1,"16":1,"75":2}}],["operations",{"0":{"75":1,"81":1,"98":1,"110":1,"115":1,"170":1,"255":1,"285":1},"1":{"111":1,"112":1,"113":1,"114":1,"116":1,"117":1,"118":1,"119":1,"120":1,"121":1,"122":1,"123":1,"124":1,"125":1,"171":1,"286":1},"2":{"15":1,"16":1,"81":1,"88":1,"90":1,"130":1,"137":1,"145":1,"255":1}}],["operate",{"2":{"73":1}}],["options",{"2":{"42":1}}],["optionally",{"2":{"51":1}}],["optional",{"2":{"22":1,"54":1,"75":2,"98":3}}],["op",{"2":{"16":2}}],["output",{"2":{"111":2,"152":1,"162":1,"182":1,"184":2,"202":2,"231":1,"245":1,"250":2,"254":2,"261":1,"267":1,"275":4,"276":3,"298":7}}],["outputs",{"2":{"8":1}}],["outside",{"2":{"36":1}}],["outer",{"2":{"16":1}}],["oscar",{"2":{"5":1}}],["original",{"2":{"168":1}}],["orthogonality",{"0":{"170":1},"1":{"171":1}}],["orthogonal",{"0":{"200":1,"258":1},"2":{"160":1,"162":3,"163":1,"168":1,"170":3,"171":1,"174":1,"200":2,"258":3,"262":1,"285":2}}],["ord",{"2":{"151":1}}],["ordered",{"2":{"70":1,"71":1,"109":1,"188":1}}],["ordering",{"2":{"27":1}}],["orders",{"0":{"51":1,"140":1,"141":1,"149":1},"1":{"150":1,"151":1,"152":1,"153":1,"154":1},"2":{"3":4,"109":1,"130":1,"139":3,"141":1,"142":1,"143":2,"146":1,"149":6,"151":2,"152":1}}],["order",{"2":{"2":4,"10":3,"13":1,"14":2,"17":5,"28":1,"51":9,"52":1,"54":1,"61":1,"73":1,"75":1,"83":1,"93":3,"95":1,"96":3,"97":1,"106":2,"109":3,"111":4,"112":3,"113":1,"118":4,"121":2,"130":3,"131":2,"132":2,"134":4,"137":1,"138":3,"139":1,"140":3,"141":3,"142":6,"143":1,"146":15,"147":11,"148":1,"149":6,"150":29,"151":9,"152":7,"154":2,"157":1,"159":2,"165":4,"166":1,"167":1,"173":1,"175":1,"211":3,"215":3,"217":1,"219":1,"221":1,"223":1,"225":1,"227":1,"230":2,"232":1,"236":3,"238":3,"239":2,"240":8,"253":3,"278":4,"282":2,"283":2,"284":12,"286":5,"289":2,"291":1,"292":1,"293":1,"294":3,"295":1,"297":1,"299":13,"301":1}}],["orbit",{"2":{"123":1}}],["or",{"2":{"7":1,"13":1,"17":3,"18":2,"22":1,"29":1,"30":2,"36":1,"42":1,"45":1,"47":1,"59":1,"60":4,"64":1,"67":1,"73":1,"93":1,"94":4,"105":1,"107":2,"109":1,"111":1,"116":5,"124":2,"125":1,"129":2,"131":2,"139":2,"141":2,"142":1,"145":1,"146":5,"149":2,"150":2,"160":1,"167":2,"168":4,"188":2,"206":1,"209":2,"214":2,"218":5,"224":2,"228":2,"229":2,"246":4,"262":2,"270":3,"278":2,"287":4,"290":1,"298":2}}],["organized",{"2":{"38":1}}],["org",{"2":{"4":1,"121":1,"301":1}}],["once",{"2":{"142":1,"271":1,"301":1}}],["only",{"2":{"43":1,"88":2,"92":1,"94":1,"98":4,"100":1,"116":2,"119":2,"121":1,"131":2,"146":5,"149":1,"162":1,"164":1,"180":3,"208":1,"211":5,"213":1,"255":1,"263":1,"266":3,"267":1,"268":1}}],["onto",{"2":{"18":1,"61":1,"146":1,"170":1,"196":1}}],["ones",{"2":{"87":1,"98":1,"213":1}}],["one",{"2":{"7":1,"11":1,"13":3,"18":5,"29":1,"32":3,"39":2,"40":3,"43":3,"51":1,"58":1,"59":1,"68":3,"73":1,"74":1,"78":1,"100":1,"113":1,"116":1,"122":1,"129":1,"142":1,"143":1,"158":1,"159":1,"162":2,"164":1,"165":1,"168":14,"169":1,"180":4,"195":1,"201":2,"209":2,"210":12,"233":1,"254":2,"257":12,"262":2,"266":3,"278":2,"283":1,"285":3,"287":14,"294":1}}],["on",{"2":{"4":3,"18":1,"22":1,"42":2,"43":1,"47":1,"48":7,"50":1,"51":1,"52":3,"53":1,"60":3,"68":1,"70":2,"71":2,"72":1,"73":2,"87":1,"88":2,"96":1,"107":1,"109":1,"130":1,"139":1,"141":1,"146":2,"153":1,"162":1,"168":1,"193":1,"195":1,"196":1,"208":2,"209":2,"218":5,"224":1,"246":4,"253":3,"262":1,"272":1,"287":1,"294":2,"296":2,"301":1}}],["ok→f",{"2":{"2":1}}],["ok",{"2":{"2":9,"109":1,"139":1,"141":4,"151":4,"165":3,"166":1,"167":2,"173":2,"174":2,"175":2,"213":1,"214":2,"215":2,"216":1,"217":2,"218":9,"219":2,"220":4,"221":2,"222":1,"223":2,"225":2,"226":2,"227":2,"228":1,"230":2,"231":1,"232":2,"235":1,"236":2,"237":1,"238":2,"239":1,"271":1,"282":2,"286":2,"288":1,"290":1,"291":2,"293":2,"297":2,"298":3,"299":2,"301":2}}],["overlapping",{"2":{"266":1}}],["overlattice",{"2":{"261":3,"298":6}}],["overlattices",{"0":{"261":1}}],["overorder",{"2":{"151":3}}],["overorders",{"2":{"151":2}}],["overall",{"2":{"30":1}}],["overgroup",{"2":{"17":1}}],["over",{"0":{"2":1,"49":1,"55":1,"276":1,"277":1},"1":{"50":1,"51":1,"52":1,"53":1,"54":1,"278":1},"2":{"2":1,"7":1,"11":1,"22":2,"25":2,"26":3,"28":2,"32":3,"46":3,"48":1,"50":1,"51":2,"52":2,"57":2,"68":1,"78":1,"79":2,"80":2,"86":1,"87":6,"89":3,"95":1,"96":4,"97":7,"98":5,"105":1,"111":5,"114":4,"116":6,"117":1,"118":2,"119":2,"141":1,"142":3,"146":6,"149":1,"151":1,"156":4,"157":4,"158":3,"159":5,"160":1,"164":2,"166":3,"172":1,"174":3,"188":1,"193":1,"196":1,"201":4,"206":4,"213":4,"214":1,"215":4,"216":2,"217":2,"218":15,"220":4,"222":1,"224":2,"226":4,"228":2,"230":2,"231":3,"232":2,"233":2,"235":5,"236":4,"237":2,"238":4,"239":2,"240":21,"242":2,"249":1,"253":1,"261":1,"268":1,"270":5,"271":1,"272":2,"276":11,"277":8,"278":8,"280":5,"281":1,"282":2,"283":4,"284":9,"285":5,"286":10,"288":1,"290":1,"294":1}}],["oft",{"2":{"197":1}}],["offset",{"2":{"88":1}}],["off",{"2":{"75":2,"197":1}}],["of",{"0":{"2":1,"22":1,"43":1,"53":1,"64":1,"72":1,"82":1,"100":1,"116":1,"127":1,"140":1,"141":1,"156":1,"176":1,"177":1,"180":1,"182":1,"214":1,"229":1,"235":1,"237":1,"239":1,"243":1,"274":1},"1":{"157":1,"177":1,"178":2,"179":2,"180":2,"181":2,"182":1,"183":2,"184":2,"185":2,"186":1,"187":1,"188":1,"189":1,"190":1,"191":1,"192":1,"193":1,"215":1,"230":1,"236":1,"238":1,"240":1,"244":1,"245":1,"246":1,"247":1,"248":1,"275":1,"276":1,"277":1,"278":1},"2":{"2":11,"3":2,"4":2,"5":1,"6":2,"7":10,"8":2,"10":1,"11":1,"12":3,"13":11,"14":14,"15":4,"16":2,"17":39,"18":1,"19":1,"20":1,"22":2,"23":2,"24":1,"25":7,"26":8,"27":2,"28":3,"29":3,"30":4,"32":4,"33":1,"36":1,"38":1,"40":1,"42":2,"43":1,"45":1,"46":10,"47":1,"48":6,"50":1,"51":4,"52":10,"53":8,"54":5,"57":2,"58":9,"59":3,"60":2,"61":14,"62":1,"67":6,"68":13,"70":6,"71":6,"72":2,"73":8,"74":4,"75":6,"78":2,"79":5,"81":2,"83":6,"84":7,"85":1,"86":7,"87":4,"88":46,"89":18,"90":2,"92":8,"93":19,"94":13,"95":6,"96":14,"97":10,"98":10,"99":2,"100":7,"101":1,"102":1,"103":4,"104":1,"105":10,"106":7,"107":7,"108":10,"109":20,"111":40,"112":17,"113":7,"114":18,"116":16,"117":6,"118":24,"119":7,"120":11,"121":3,"122":9,"123":16,"124":8,"125":3,"127":8,"128":1,"129":6,"131":13,"132":9,"134":28,"135":2,"136":11,"137":2,"138":12,"139":8,"140":6,"141":3,"142":7,"143":6,"144":10,"145":1,"146":49,"147":32,"148":12,"149":13,"150":13,"151":43,"152":15,"153":6,"154":1,"156":1,"157":5,"158":15,"159":6,"160":3,"162":18,"164":12,"165":11,"166":4,"168":14,"169":1,"170":4,"172":3,"174":7,"176":5,"178":1,"179":1,"180":5,"181":2,"182":19,"184":4,"186":9,"187":2,"188":16,"189":2,"190":16,"191":5,"192":2,"193":1,"195":6,"196":14,"197":14,"198":3,"199":1,"200":1,"201":4,"202":6,"203":1,"204":2,"205":2,"206":2,"208":5,"209":12,"210":6,"211":4,"213":20,"214":6,"215":5,"216":3,"218":45,"220":4,"222":4,"224":12,"226":8,"228":15,"229":5,"230":7,"231":13,"233":10,"235":9,"236":6,"237":8,"238":5,"239":3,"240":12,"241":8,"242":3,"245":2,"246":13,"247":1,"248":1,"249":8,"250":10,"251":4,"252":5,"253":13,"254":21,"255":16,"257":6,"258":3,"259":1,"261":17,"262":13,"263":5,"265":2,"266":8,"267":2,"268":3,"270":15,"271":10,"272":4,"275":4,"276":20,"277":21,"278":16,"279":14,"280":6,"281":6,"282":4,"283":37,"284":18,"285":12,"286":10,"287":10,"288":9,"289":2,"290":9,"292":16,"294":14,"296":11,"298":17,"299":15,"300":6,"301":2}}]],"serializationVersion":2}';export{e as default}; diff --git a/v0.34.8/assets/chunks/framework.DbhH0_mT.js b/v0.34.8/assets/chunks/framework.DbhH0_mT.js index 4516a7f3aa..a529b03f72 100644 --- a/v0.34.8/assets/chunks/framework.DbhH0_mT.js +++ b/v0.34.8/assets/chunks/framework.DbhH0_mT.js @@ -15,4 +15,4 @@ * @vue/runtime-dom v3.5.13 * (c) 2018-present Yuxi (Evan) You and Vue contributors * @license MIT -**/let Is;const Pr=typeof window<"u"&&window.trustedTypes;if(Pr)try{Is=Pr.createPolicy("vue",{createHTML:e=>e})}catch{}const xo=Is?e=>Is.createHTML(e):e=>e,Gc="http://www.w3.org/2000/svg",Yc="http://www.w3.org/1998/Math/MathML",qe=typeof document<"u"?document:null,Lr=qe&&qe.createElement("template"),Xc={insert:(e,t,n)=>{t.insertBefore(e,n||null)},remove:e=>{const t=e.parentNode;t&&t.removeChild(e)},createElement:(e,t,n,s)=>{const r=t==="svg"?qe.createElementNS(Gc,e):t==="mathml"?qe.createElementNS(Yc,e):n?qe.createElement(e,{is:n}):qe.createElement(e);return e==="select"&&s&&s.multiple!=null&&r.setAttribute("multiple",s.multiple),r},createText:e=>qe.createTextNode(e),createComment:e=>qe.createComment(e),setText:(e,t)=>{e.nodeValue=t},setElementText:(e,t)=>{e.textContent=t},parentNode:e=>e.parentNode,nextSibling:e=>e.nextSibling,querySelector:e=>qe.querySelector(e),setScopeId(e,t){e.setAttribute(t,"")},insertStaticContent(e,t,n,s,r,i){const o=n?n.previousSibling:t.lastChild;if(r&&(r===i||r.nextSibling))for(;t.insertBefore(r.cloneNode(!0),n),!(r===i||!(r=r.nextSibling)););else{Lr.innerHTML=xo(s==="svg"?`${e}`:s==="mathml"?`${e}`:e);const l=Lr.content;if(s==="svg"||s==="mathml"){const c=l.firstChild;for(;c.firstChild;)l.appendChild(c.firstChild);l.removeChild(c)}t.insertBefore(l,n)}return[o?o.nextSibling:t.firstChild,n?n.previousSibling:t.lastChild]}},ze="transition",Ht="animation",Qt=Symbol("_vtc"),Eo={name:String,type:String,css:{type:Boolean,default:!0},duration:[String,Number,Object],enterFromClass:String,enterActiveClass:String,enterToClass:String,appearFromClass:String,appearActiveClass:String,appearToClass:String,leaveFromClass:String,leaveActiveClass:String,leaveToClass:String},Jc=ae({},ji,Eo),zc=e=>(e.displayName="Transition",e.props=Jc,e),Lf=zc((e,{slots:t})=>Ls(Kl,Qc(e),t)),ct=(e,t=[])=>{W(e)?e.forEach(n=>n(...t)):e&&e(...t)},Ir=e=>e?W(e)?e.some(t=>t.length>1):e.length>1:!1;function Qc(e){const t={};for(const x in e)x in Eo||(t[x]=e[x]);if(e.css===!1)return t;const{name:n="v",type:s,duration:r,enterFromClass:i=`${n}-enter-from`,enterActiveClass:o=`${n}-enter-active`,enterToClass:l=`${n}-enter-to`,appearFromClass:c=i,appearActiveClass:f=o,appearToClass:a=l,leaveFromClass:h=`${n}-leave-from`,leaveActiveClass:y=`${n}-leave-active`,leaveToClass:v=`${n}-leave-to`}=e,S=Zc(r),_=S&&S[0],K=S&&S[1],{onBeforeEnter:N,onEnter:j,onEnterCancelled:p,onLeave:g,onLeaveCancelled:O,onBeforeAppear:F=N,onAppear:$=j,onAppearCancelled:V=p}=t,R=(x,B,se,le)=>{x._enterCancelled=le,at(x,B?a:l),at(x,B?f:o),se&&se()},b=(x,B)=>{x._isLeaving=!1,at(x,h),at(x,v),at(x,y),B&&B()},I=x=>(B,se)=>{const le=x?$:j,U=()=>R(B,x,se);ct(le,[B,U]),Nr(()=>{at(B,x?c:i),Ke(B,x?a:l),Ir(le)||Fr(B,s,_,U)})};return ae(t,{onBeforeEnter(x){ct(N,[x]),Ke(x,i),Ke(x,o)},onBeforeAppear(x){ct(F,[x]),Ke(x,c),Ke(x,f)},onEnter:I(!1),onAppear:I(!0),onLeave(x,B){x._isLeaving=!0;const se=()=>b(x,B);Ke(x,h),x._enterCancelled?(Ke(x,y),Dr()):(Dr(),Ke(x,y)),Nr(()=>{x._isLeaving&&(at(x,h),Ke(x,v),Ir(g)||Fr(x,s,K,se))}),ct(g,[x,se])},onEnterCancelled(x){R(x,!1,void 0,!0),ct(p,[x])},onAppearCancelled(x){R(x,!0,void 0,!0),ct(V,[x])},onLeaveCancelled(x){b(x),ct(O,[x])}})}function Zc(e){if(e==null)return null;if(ne(e))return[os(e.enter),os(e.leave)];{const t=os(e);return[t,t]}}function os(e){return Jo(e)}function Ke(e,t){t.split(/\s+/).forEach(n=>n&&e.classList.add(n)),(e[Qt]||(e[Qt]=new Set)).add(t)}function at(e,t){t.split(/\s+/).forEach(s=>s&&e.classList.remove(s));const n=e[Qt];n&&(n.delete(t),n.size||(e[Qt]=void 0))}function Nr(e){requestAnimationFrame(()=>{requestAnimationFrame(e)})}let ea=0;function Fr(e,t,n,s){const r=e._endId=++ea,i=()=>{r===e._endId&&s()};if(n!=null)return setTimeout(i,n);const{type:o,timeout:l,propCount:c}=ta(e,t);if(!o)return s();const f=o+"end";let a=0;const h=()=>{e.removeEventListener(f,y),i()},y=v=>{v.target===e&&++a>=c&&h()};setTimeout(()=>{a(n[S]||"").split(", "),r=s(`${ze}Delay`),i=s(`${ze}Duration`),o=Hr(r,i),l=s(`${Ht}Delay`),c=s(`${Ht}Duration`),f=Hr(l,c);let a=null,h=0,y=0;t===ze?o>0&&(a=ze,h=o,y=i.length):t===Ht?f>0&&(a=Ht,h=f,y=c.length):(h=Math.max(o,f),a=h>0?o>f?ze:Ht:null,y=a?a===ze?i.length:c.length:0);const v=a===ze&&/\b(transform|all)(,|$)/.test(s(`${ze}Property`).toString());return{type:a,timeout:h,propCount:y,hasTransform:v}}function Hr(e,t){for(;e.length$r(n)+$r(e[s])))}function $r(e){return e==="auto"?0:Number(e.slice(0,-1).replace(",","."))*1e3}function Dr(){return document.body.offsetHeight}function na(e,t,n){const s=e[Qt];s&&(t=(t?[t,...s]:[...s]).join(" ")),t==null?e.removeAttribute("class"):n?e.setAttribute("class",t):e.className=t}const jr=Symbol("_vod"),sa=Symbol("_vsh"),ra=Symbol(""),ia=/(^|;)\s*display\s*:/;function oa(e,t,n){const s=e.style,r=re(n);let i=!1;if(n&&!r){if(t)if(re(t))for(const o of t.split(";")){const l=o.slice(0,o.indexOf(":")).trim();n[l]==null&&En(s,l,"")}else for(const o in t)n[o]==null&&En(s,o,"");for(const o in n)o==="display"&&(i=!0),En(s,o,n[o])}else if(r){if(t!==n){const o=s[ra];o&&(n+=";"+o),s.cssText=n,i=ia.test(n)}}else t&&e.removeAttribute("style");jr in e&&(e[jr]=i?s.display:"",e[sa]&&(s.display="none"))}const Vr=/\s*!important$/;function En(e,t,n){if(W(n))n.forEach(s=>En(e,t,s));else if(n==null&&(n=""),t.startsWith("--"))e.setProperty(t,n);else{const s=la(e,t);Vr.test(n)?e.setProperty(st(s),n.replace(Vr,""),"important"):e[s]=n}}const Ur=["Webkit","Moz","ms"],ls={};function la(e,t){const n=ls[t];if(n)return n;let s=Le(t);if(s!=="filter"&&s in e)return ls[t]=s;s=Fn(s);for(let r=0;rcs||(ua.then(()=>cs=0),cs=Date.now());function ha(e,t){const n=s=>{if(!s._vts)s._vts=Date.now();else if(s._vts<=n.attached)return;He(pa(s,n.value),t,5,[s])};return n.value=e,n.attached=da(),n}function pa(e,t){if(W(t)){const n=e.stopImmediatePropagation;return e.stopImmediatePropagation=()=>{n.call(e),e._stopped=!0},t.map(s=>r=>!r._stopped&&s&&s(r))}else return t}const Gr=e=>e.charCodeAt(0)===111&&e.charCodeAt(1)===110&&e.charCodeAt(2)>96&&e.charCodeAt(2)<123,ga=(e,t,n,s,r,i)=>{const o=r==="svg";t==="class"?na(e,s,o):t==="style"?oa(e,n,s):en(t)?Fs(t)||aa(e,t,n,s,i):(t[0]==="."?(t=t.slice(1),!0):t[0]==="^"?(t=t.slice(1),!1):ma(e,t,s,o))?(Wr(e,t,s),!e.tagName.includes("-")&&(t==="value"||t==="checked"||t==="selected")&&Br(e,t,s,o,i,t!=="value")):e._isVueCE&&(/[A-Z]/.test(t)||!re(s))?Wr(e,Le(t),s,i,t):(t==="true-value"?e._trueValue=s:t==="false-value"&&(e._falseValue=s),Br(e,t,s,o))};function ma(e,t,n,s){if(s)return!!(t==="innerHTML"||t==="textContent"||t in e&&Gr(t)&&q(n));if(t==="spellcheck"||t==="draggable"||t==="translate"||t==="form"||t==="list"&&e.tagName==="INPUT"||t==="type"&&e.tagName==="TEXTAREA")return!1;if(t==="width"||t==="height"){const r=e.tagName;if(r==="IMG"||r==="VIDEO"||r==="CANVAS"||r==="SOURCE")return!1}return Gr(t)&&re(n)?!1:t in e}const Yr=e=>{const t=e.props["onUpdate:modelValue"]||!1;return W(t)?n=>bn(t,n):t};function ya(e){e.target.composing=!0}function Xr(e){const t=e.target;t.composing&&(t.composing=!1,t.dispatchEvent(new Event("input")))}const as=Symbol("_assign"),If={created(e,{modifiers:{lazy:t,trim:n,number:s}},r){e[as]=Yr(r);const i=s||r.props&&r.props.type==="number";St(e,t?"change":"input",o=>{if(o.target.composing)return;let l=e.value;n&&(l=l.trim()),i&&(l=vs(l)),e[as](l)}),n&&St(e,"change",()=>{e.value=e.value.trim()}),t||(St(e,"compositionstart",ya),St(e,"compositionend",Xr),St(e,"change",Xr))},mounted(e,{value:t}){e.value=t??""},beforeUpdate(e,{value:t,oldValue:n,modifiers:{lazy:s,trim:r,number:i}},o){if(e[as]=Yr(o),e.composing)return;const l=(i||e.type==="number")&&!/^0\d/.test(e.value)?vs(e.value):e.value,c=t??"";l!==c&&(document.activeElement===e&&e.type!=="range"&&(s&&t===n||r&&e.value.trim()===c)||(e.value=c))}},va=["ctrl","shift","alt","meta"],_a={stop:e=>e.stopPropagation(),prevent:e=>e.preventDefault(),self:e=>e.target!==e.currentTarget,ctrl:e=>!e.ctrlKey,shift:e=>!e.shiftKey,alt:e=>!e.altKey,meta:e=>!e.metaKey,left:e=>"button"in e&&e.button!==0,middle:e=>"button"in e&&e.button!==1,right:e=>"button"in e&&e.button!==2,exact:(e,t)=>va.some(n=>e[`${n}Key`]&&!t.includes(n))},Nf=(e,t)=>{const n=e._withMods||(e._withMods={}),s=t.join(".");return n[s]||(n[s]=(r,...i)=>{for(let o=0;o{const n=e._withKeys||(e._withKeys={}),s=t.join(".");return n[s]||(n[s]=r=>{if(!("key"in r))return;const i=st(r.key);if(t.some(o=>o===i||ba[o]===i))return e(r)})},To=ae({patchProp:ga},Xc);let Wt,Jr=!1;function wa(){return Wt||(Wt=xc(To))}function Sa(){return Wt=Jr?Wt:Ec(To),Jr=!0,Wt}const Hf=(...e)=>{const t=wa().createApp(...e),{mount:n}=t;return t.mount=s=>{const r=Ao(s);if(!r)return;const i=t._component;!q(i)&&!i.render&&!i.template&&(i.template=r.innerHTML),r.nodeType===1&&(r.textContent="");const o=n(r,!1,Co(r));return r instanceof Element&&(r.removeAttribute("v-cloak"),r.setAttribute("data-v-app","")),o},t},$f=(...e)=>{const t=Sa().createApp(...e),{mount:n}=t;return t.mount=s=>{const r=Ao(s);if(r)return n(r,!0,Co(r))},t};function Co(e){if(e instanceof SVGElement)return"svg";if(typeof MathMLElement=="function"&&e instanceof MathMLElement)return"mathml"}function Ao(e){return re(e)?document.querySelector(e):e}const Df=(e,t)=>{const n=e.__vccOpts||e;for(const[s,r]of t)n[s]=r;return n},xa=window.__VP_SITE_DATA__;function tr(e){return hi()?(il(e),!0):!1}function Be(e){return typeof e=="function"?e():Oi(e)}const Ro=typeof window<"u"&&typeof document<"u";typeof WorkerGlobalScope<"u"&&globalThis instanceof WorkerGlobalScope;const jf=e=>e!=null,Ea=Object.prototype.toString,Ta=e=>Ea.call(e)==="[object Object]",Zt=()=>{},zr=Ca();function Ca(){var e,t;return Ro&&((e=window==null?void 0:window.navigator)==null?void 0:e.userAgent)&&(/iP(?:ad|hone|od)/.test(window.navigator.userAgent)||((t=window==null?void 0:window.navigator)==null?void 0:t.maxTouchPoints)>2&&/iPad|Macintosh/.test(window==null?void 0:window.navigator.userAgent))}function Aa(e,t){function n(...s){return new Promise((r,i)=>{Promise.resolve(e(()=>t.apply(this,s),{fn:t,thisArg:this,args:s})).then(r).catch(i)})}return n}const Oo=e=>e();function Ra(e,t={}){let n,s,r=Zt;const i=l=>{clearTimeout(l),r(),r=Zt};return l=>{const c=Be(e),f=Be(t.maxWait);return n&&i(n),c<=0||f!==void 0&&f<=0?(s&&(i(s),s=null),Promise.resolve(l())):new Promise((a,h)=>{r=t.rejectOnCancel?h:a,f&&!s&&(s=setTimeout(()=>{n&&i(n),s=null,a(l())},f)),n=setTimeout(()=>{s&&i(s),s=null,a(l())},c)})}}function Oa(e=Oo){const t=oe(!0);function n(){t.value=!1}function s(){t.value=!0}const r=(...i)=>{t.value&&e(...i)};return{isActive:Vn(t),pause:n,resume:s,eventFilter:r}}function Ma(e){return qn()}function Mo(...e){if(e.length!==1)return Ll(...e);const t=e[0];return typeof t=="function"?Vn(Ol(()=>({get:t,set:Zt}))):oe(t)}function Po(e,t,n={}){const{eventFilter:s=Oo,...r}=n;return Fe(e,Aa(s,t),r)}function Pa(e,t,n={}){const{eventFilter:s,...r}=n,{eventFilter:i,pause:o,resume:l,isActive:c}=Oa(s);return{stop:Po(e,t,{...r,eventFilter:i}),pause:o,resume:l,isActive:c}}function nr(e,t=!0,n){Ma()?Lt(e,n):t?e():Un(e)}function Vf(e,t,n={}){const{debounce:s=0,maxWait:r=void 0,...i}=n;return Po(e,t,{...i,eventFilter:Ra(s,{maxWait:r})})}function Uf(e,t,n){let s;fe(n)?s={evaluating:n}:s={};const{lazy:r=!1,evaluating:i=void 0,shallow:o=!0,onError:l=Zt}=s,c=oe(!r),f=o?qs(t):oe(t);let a=0;return Zs(async h=>{if(!c.value)return;a++;const y=a;let v=!1;i&&Promise.resolve().then(()=>{i.value=!0});try{const S=await e(_=>{h(()=>{i&&(i.value=!1),v||_()})});y===a&&(f.value=S)}catch(S){l(S)}finally{i&&y===a&&(i.value=!1),v=!0}}),r?ie(()=>(c.value=!0,f.value)):f}const $e=Ro?window:void 0;function Lo(e){var t;const n=Be(e);return(t=n==null?void 0:n.$el)!=null?t:n}function Pt(...e){let t,n,s,r;if(typeof e[0]=="string"||Array.isArray(e[0])?([n,s,r]=e,t=$e):[t,n,s,r]=e,!t)return Zt;Array.isArray(n)||(n=[n]),Array.isArray(s)||(s=[s]);const i=[],o=()=>{i.forEach(a=>a()),i.length=0},l=(a,h,y,v)=>(a.addEventListener(h,y,v),()=>a.removeEventListener(h,y,v)),c=Fe(()=>[Lo(t),Be(r)],([a,h])=>{if(o(),!a)return;const y=Ta(h)?{...h}:h;i.push(...n.flatMap(v=>s.map(S=>l(a,v,S,y))))},{immediate:!0,flush:"post"}),f=()=>{c(),o()};return tr(f),f}function La(e){return typeof e=="function"?e:typeof e=="string"?t=>t.key===e:Array.isArray(e)?t=>e.includes(t.key):()=>!0}function kf(...e){let t,n,s={};e.length===3?(t=e[0],n=e[1],s=e[2]):e.length===2?typeof e[1]=="object"?(t=!0,n=e[0],s=e[1]):(t=e[0],n=e[1]):(t=!0,n=e[0]);const{target:r=$e,eventName:i="keydown",passive:o=!1,dedupe:l=!1}=s,c=La(t);return Pt(r,i,a=>{a.repeat&&Be(l)||c(a)&&n(a)},o)}function Ia(){const e=oe(!1),t=qn();return t&&Lt(()=>{e.value=!0},t),e}function Na(e){const t=Ia();return ie(()=>(t.value,!!e()))}function Io(e,t={}){const{window:n=$e}=t,s=Na(()=>n&&"matchMedia"in n&&typeof n.matchMedia=="function");let r;const i=oe(!1),o=f=>{i.value=f.matches},l=()=>{r&&("removeEventListener"in r?r.removeEventListener("change",o):r.removeListener(o))},c=Zs(()=>{s.value&&(l(),r=n.matchMedia(Be(e)),"addEventListener"in r?r.addEventListener("change",o):r.addListener(o),i.value=r.matches)});return tr(()=>{c(),l(),r=void 0}),i}const gn=typeof globalThis<"u"?globalThis:typeof window<"u"?window:typeof global<"u"?global:typeof self<"u"?self:{},mn="__vueuse_ssr_handlers__",Fa=Ha();function Ha(){return mn in gn||(gn[mn]=gn[mn]||{}),gn[mn]}function No(e,t){return Fa[e]||t}function sr(e){return Io("(prefers-color-scheme: dark)",e)}function $a(e){return e==null?"any":e instanceof Set?"set":e instanceof Map?"map":e instanceof Date?"date":typeof e=="boolean"?"boolean":typeof e=="string"?"string":typeof e=="object"?"object":Number.isNaN(e)?"any":"number"}const Da={boolean:{read:e=>e==="true",write:e=>String(e)},object:{read:e=>JSON.parse(e),write:e=>JSON.stringify(e)},number:{read:e=>Number.parseFloat(e),write:e=>String(e)},any:{read:e=>e,write:e=>String(e)},string:{read:e=>e,write:e=>String(e)},map:{read:e=>new Map(JSON.parse(e)),write:e=>JSON.stringify(Array.from(e.entries()))},set:{read:e=>new Set(JSON.parse(e)),write:e=>JSON.stringify(Array.from(e))},date:{read:e=>new Date(e),write:e=>e.toISOString()}},Qr="vueuse-storage";function rr(e,t,n,s={}){var r;const{flush:i="pre",deep:o=!0,listenToStorageChanges:l=!0,writeDefaults:c=!0,mergeDefaults:f=!1,shallow:a,window:h=$e,eventFilter:y,onError:v=b=>{console.error(b)},initOnMounted:S}=s,_=(a?qs:oe)(typeof t=="function"?t():t);if(!n)try{n=No("getDefaultStorage",()=>{var b;return(b=$e)==null?void 0:b.localStorage})()}catch(b){v(b)}if(!n)return _;const K=Be(t),N=$a(K),j=(r=s.serializer)!=null?r:Da[N],{pause:p,resume:g}=Pa(_,()=>F(_.value),{flush:i,deep:o,eventFilter:y});h&&l&&nr(()=>{n instanceof Storage?Pt(h,"storage",V):Pt(h,Qr,R),S&&V()}),S||V();function O(b,I){if(h){const x={key:e,oldValue:b,newValue:I,storageArea:n};h.dispatchEvent(n instanceof Storage?new StorageEvent("storage",x):new CustomEvent(Qr,{detail:x}))}}function F(b){try{const I=n.getItem(e);if(b==null)O(I,null),n.removeItem(e);else{const x=j.write(b);I!==x&&(n.setItem(e,x),O(I,x))}}catch(I){v(I)}}function $(b){const I=b?b.newValue:n.getItem(e);if(I==null)return c&&K!=null&&n.setItem(e,j.write(K)),K;if(!b&&f){const x=j.read(I);return typeof f=="function"?f(x,K):N==="object"&&!Array.isArray(x)?{...K,...x}:x}else return typeof I!="string"?I:j.read(I)}function V(b){if(!(b&&b.storageArea!==n)){if(b&&b.key==null){_.value=K;return}if(!(b&&b.key!==e)){p();try{(b==null?void 0:b.newValue)!==j.write(_.value)&&(_.value=$(b))}catch(I){v(I)}finally{b?Un(g):g()}}}}function R(b){V(b.detail)}return _}const ja="*,*::before,*::after{-webkit-transition:none!important;-moz-transition:none!important;-o-transition:none!important;-ms-transition:none!important;transition:none!important}";function Va(e={}){const{selector:t="html",attribute:n="class",initialValue:s="auto",window:r=$e,storage:i,storageKey:o="vueuse-color-scheme",listenToStorageChanges:l=!0,storageRef:c,emitAuto:f,disableTransition:a=!0}=e,h={auto:"",light:"light",dark:"dark",...e.modes||{}},y=sr({window:r}),v=ie(()=>y.value?"dark":"light"),S=c||(o==null?Mo(s):rr(o,s,i,{window:r,listenToStorageChanges:l})),_=ie(()=>S.value==="auto"?v.value:S.value),K=No("updateHTMLAttrs",(g,O,F)=>{const $=typeof g=="string"?r==null?void 0:r.document.querySelector(g):Lo(g);if(!$)return;const V=new Set,R=new Set;let b=null;if(O==="class"){const x=F.split(/\s/g);Object.values(h).flatMap(B=>(B||"").split(/\s/g)).filter(Boolean).forEach(B=>{x.includes(B)?V.add(B):R.add(B)})}else b={key:O,value:F};if(V.size===0&&R.size===0&&b===null)return;let I;a&&(I=r.document.createElement("style"),I.appendChild(document.createTextNode(ja)),r.document.head.appendChild(I));for(const x of V)$.classList.add(x);for(const x of R)$.classList.remove(x);b&&$.setAttribute(b.key,b.value),a&&(r.getComputedStyle(I).opacity,document.head.removeChild(I))});function N(g){var O;K(t,n,(O=h[g])!=null?O:g)}function j(g){e.onChanged?e.onChanged(g,N):N(g)}Fe(_,j,{flush:"post",immediate:!0}),nr(()=>j(_.value));const p=ie({get(){return f?S.value:_.value},set(g){S.value=g}});try{return Object.assign(p,{store:S,system:v,state:_})}catch{return p}}function Ua(e={}){const{valueDark:t="dark",valueLight:n="",window:s=$e}=e,r=Va({...e,onChanged:(l,c)=>{var f;e.onChanged?(f=e.onChanged)==null||f.call(e,l==="dark",c,l):c(l)},modes:{dark:t,light:n}}),i=ie(()=>r.system?r.system.value:sr({window:s}).value?"dark":"light");return ie({get(){return r.value==="dark"},set(l){const c=l?"dark":"light";i.value===c?r.value="auto":r.value=c}})}function fs(e){return typeof Window<"u"&&e instanceof Window?e.document.documentElement:typeof Document<"u"&&e instanceof Document?e.documentElement:e}function Bf(e,t,n={}){const{window:s=$e}=n;return rr(e,t,s==null?void 0:s.localStorage,n)}function Fo(e){const t=window.getComputedStyle(e);if(t.overflowX==="scroll"||t.overflowY==="scroll"||t.overflowX==="auto"&&e.clientWidth1?!0:(t.preventDefault&&t.preventDefault(),!1)}const us=new WeakMap;function Wf(e,t=!1){const n=oe(t);let s=null,r="";Fe(Mo(e),l=>{const c=fs(Be(l));if(c){const f=c;if(us.get(f)||us.set(f,f.style.overflow),f.style.overflow!=="hidden"&&(r=f.style.overflow),f.style.overflow==="hidden")return n.value=!0;if(n.value)return f.style.overflow="hidden"}},{immediate:!0});const i=()=>{const l=fs(Be(e));!l||n.value||(zr&&(s=Pt(l,"touchmove",c=>{ka(c)},{passive:!1})),l.style.overflow="hidden",n.value=!0)},o=()=>{const l=fs(Be(e));!l||!n.value||(zr&&(s==null||s()),l.style.overflow=r,us.delete(l),n.value=!1)};return tr(o),ie({get(){return n.value},set(l){l?i():o()}})}function Kf(e,t,n={}){const{window:s=$e}=n;return rr(e,t,s==null?void 0:s.sessionStorage,n)}function qf(e={}){const{window:t=$e,behavior:n="auto"}=e;if(!t)return{x:oe(0),y:oe(0)};const s=oe(t.scrollX),r=oe(t.scrollY),i=ie({get(){return s.value},set(l){scrollTo({left:l,behavior:n})}}),o=ie({get(){return r.value},set(l){scrollTo({top:l,behavior:n})}});return Pt(t,"scroll",()=>{s.value=t.scrollX,r.value=t.scrollY},{capture:!1,passive:!0}),{x:i,y:o}}function Gf(e={}){const{window:t=$e,initialWidth:n=Number.POSITIVE_INFINITY,initialHeight:s=Number.POSITIVE_INFINITY,listenOrientation:r=!0,includeScrollbar:i=!0,type:o="inner"}=e,l=oe(n),c=oe(s),f=()=>{t&&(o==="outer"?(l.value=t.outerWidth,c.value=t.outerHeight):i?(l.value=t.innerWidth,c.value=t.innerHeight):(l.value=t.document.documentElement.clientWidth,c.value=t.document.documentElement.clientHeight))};if(f(),nr(f),Pt("resize",f,{passive:!0}),r){const a=Io("(orientation: portrait)");Fe(a,()=>f())}return{width:l,height:c}}const ds={BASE_URL:"/Hecke.jl/v0.34.8/",DEV:!1,MODE:"production",PROD:!0,SSR:!1};var hs={};const Ho=/^(?:[a-z]+:|\/\/)/i,Ba="vitepress-theme-appearance",Wa=/#.*$/,Ka=/[?#].*$/,qa=/(?:(^|\/)index)?\.(?:md|html)$/,ge=typeof document<"u",$o={relativePath:"404.md",filePath:"",title:"404",description:"Not Found",headers:[],frontmatter:{sidebar:!1,layout:"page"},lastUpdated:0,isNotFound:!0};function Ga(e,t,n=!1){if(t===void 0)return!1;if(e=Zr(`/${e}`),n)return new RegExp(t).test(e);if(Zr(t)!==e)return!1;const s=t.match(Wa);return s?(ge?location.hash:"")===s[0]:!0}function Zr(e){return decodeURI(e).replace(Ka,"").replace(qa,"$1")}function Ya(e){return Ho.test(e)}function Xa(e,t){return Object.keys((e==null?void 0:e.locales)||{}).find(n=>n!=="root"&&!Ya(n)&&Ga(t,`/${n}/`,!0))||"root"}function Ja(e,t){var s,r,i,o,l,c,f;const n=Xa(e,t);return Object.assign({},e,{localeIndex:n,lang:((s=e.locales[n])==null?void 0:s.lang)??e.lang,dir:((r=e.locales[n])==null?void 0:r.dir)??e.dir,title:((i=e.locales[n])==null?void 0:i.title)??e.title,titleTemplate:((o=e.locales[n])==null?void 0:o.titleTemplate)??e.titleTemplate,description:((l=e.locales[n])==null?void 0:l.description)??e.description,head:jo(e.head,((c=e.locales[n])==null?void 0:c.head)??[]),themeConfig:{...e.themeConfig,...(f=e.locales[n])==null?void 0:f.themeConfig}})}function Do(e,t){const n=t.title||e.title,s=t.titleTemplate??e.titleTemplate;if(typeof s=="string"&&s.includes(":title"))return s.replace(/:title/g,n);const r=za(e.title,s);return n===r.slice(3)?n:`${n}${r}`}function za(e,t){return t===!1?"":t===!0||t===void 0?` | ${e}`:e===t?"":` | ${t}`}function Qa(e,t){const[n,s]=t;if(n!=="meta")return!1;const r=Object.entries(s)[0];return r==null?!1:e.some(([i,o])=>i===n&&o[r[0]]===r[1])}function jo(e,t){return[...e.filter(n=>!Qa(t,n)),...t]}const Za=/[\u0000-\u001F"#$&*+,:;<=>?[\]^`{|}\u007F]/g,ef=/^[a-z]:/i;function ei(e){const t=ef.exec(e),n=t?t[0]:"";return n+e.slice(n.length).replace(Za,"_").replace(/(^|\/)_+(?=[^/]*$)/,"$1")}const ps=new Set;function tf(e){if(ps.size===0){const n=typeof process=="object"&&(hs==null?void 0:hs.VITE_EXTRA_EXTENSIONS)||(ds==null?void 0:ds.VITE_EXTRA_EXTENSIONS)||"";("3g2,3gp,aac,ai,apng,au,avif,bin,bmp,cer,class,conf,crl,css,csv,dll,doc,eps,epub,exe,gif,gz,ics,ief,jar,jpe,jpeg,jpg,js,json,jsonld,m4a,man,mid,midi,mjs,mov,mp2,mp3,mp4,mpe,mpeg,mpg,mpp,oga,ogg,ogv,ogx,opus,otf,p10,p7c,p7m,p7s,pdf,png,ps,qt,roff,rtf,rtx,ser,svg,t,tif,tiff,tr,ts,tsv,ttf,txt,vtt,wav,weba,webm,webp,woff,woff2,xhtml,xml,yaml,yml,zip"+(n&&typeof n=="string"?","+n:"")).split(",").forEach(s=>ps.add(s))}const t=e.split(".").pop();return t==null||!ps.has(t.toLowerCase())}function Yf(e){return e.replace(/[|\\{}()[\]^$+*?.]/g,"\\$&").replace(/-/g,"\\x2d")}const nf=Symbol(),mt=qs(xa);function Xf(e){const t=ie(()=>Ja(mt.value,e.data.relativePath)),n=t.value.appearance,s=n==="force-dark"?oe(!0):n==="force-auto"?sr():n?Ua({storageKey:Ba,initialValue:()=>n==="dark"?"dark":"auto",...typeof n=="object"?n:{}}):oe(!1),r=oe(ge?location.hash:"");return ge&&window.addEventListener("hashchange",()=>{r.value=location.hash}),Fe(()=>e.data,()=>{r.value=ge?location.hash:""}),{site:t,theme:ie(()=>t.value.themeConfig),page:ie(()=>e.data),frontmatter:ie(()=>e.data.frontmatter),params:ie(()=>e.data.params),lang:ie(()=>t.value.lang),dir:ie(()=>e.data.frontmatter.dir||t.value.dir),localeIndex:ie(()=>t.value.localeIndex||"root"),title:ie(()=>Do(t.value,e.data)),description:ie(()=>e.data.description||t.value.description),isDark:s,hash:ie(()=>r.value)}}function sf(){const e=Ot(nf);if(!e)throw new Error("vitepress data not properly injected in app");return e}function rf(e,t){return`${e}${t}`.replace(/\/+/g,"/")}function ti(e){return Ho.test(e)||!e.startsWith("/")?e:rf(mt.value.base,e)}function of(e){let t=e.replace(/\.html$/,"");if(t=decodeURIComponent(t),t=t.replace(/\/$/,"/index"),ge){const n="/Hecke.jl/v0.34.8/";t=ei(t.slice(n.length).replace(/\//g,"_")||"index")+".md";let s=__VP_HASH_MAP__[t.toLowerCase()];if(s||(t=t.endsWith("_index.md")?t.slice(0,-9)+".md":t.slice(0,-3)+"_index.md",s=__VP_HASH_MAP__[t.toLowerCase()]),!s)return null;t=`${n}assets/${t}.${s}.js`}else t=`./${ei(t.slice(1).replace(/\//g,"_"))}.md.js`;return t}let Tn=[];function Jf(e){Tn.push(e),Bn(()=>{Tn=Tn.filter(t=>t!==e)})}function lf(){let e=mt.value.scrollOffset,t=0,n=24;if(typeof e=="object"&&"padding"in e&&(n=e.padding,e=e.selector),typeof e=="number")t=e;else if(typeof e=="string")t=ni(e,n);else if(Array.isArray(e))for(const s of e){const r=ni(s,n);if(r){t=r;break}}return t}function ni(e,t){const n=document.querySelector(e);if(!n)return 0;const s=n.getBoundingClientRect().bottom;return s<0?0:s+t}const cf=Symbol(),Vo="http://a.com",af=()=>({path:"/",component:null,data:$o});function zf(e,t){const n=jn(af()),s={route:n,go:r};async function r(l=ge?location.href:"/"){var c,f;l=gs(l),await((c=s.onBeforeRouteChange)==null?void 0:c.call(s,l))!==!1&&(ge&&l!==gs(location.href)&&(history.replaceState({scrollPosition:window.scrollY},""),history.pushState({},"",l)),await o(l),await((f=s.onAfterRouteChanged)==null?void 0:f.call(s,l)))}let i=null;async function o(l,c=0,f=!1){var y,v;if(await((y=s.onBeforePageLoad)==null?void 0:y.call(s,l))===!1)return;const a=new URL(l,Vo),h=i=a.pathname;try{let S=await e(h);if(!S)throw new Error(`Page not found: ${h}`);if(i===h){i=null;const{default:_,__pageData:K}=S;if(!_)throw new Error(`Invalid route component: ${_}`);await((v=s.onAfterPageLoad)==null?void 0:v.call(s,l)),n.path=ge?h:ti(h),n.component=wn(_),n.data=wn(K),ge&&Un(()=>{let N=mt.value.base+K.relativePath.replace(/(?:(^|\/)index)?\.md$/,"$1");if(!mt.value.cleanUrls&&!N.endsWith("/")&&(N+=".html"),N!==a.pathname&&(a.pathname=N,l=N+a.search+a.hash,history.replaceState({},"",l)),a.hash&&!c){let j=null;try{j=document.getElementById(decodeURIComponent(a.hash).slice(1))}catch(p){console.warn(p)}if(j){si(j,a.hash);return}}window.scrollTo(0,c)})}}catch(S){if(!/fetch|Page not found/.test(S.message)&&!/^\/404(\.html|\/)?$/.test(l)&&console.error(S),!f)try{const _=await fetch(mt.value.base+"hashmap.json");window.__VP_HASH_MAP__=await _.json(),await o(l,c,!0);return}catch{}if(i===h){i=null,n.path=ge?h:ti(h),n.component=t?wn(t):null;const _=ge?h.replace(/(^|\/)$/,"$1index").replace(/(\.html)?$/,".md").replace(/^\//,""):"404.md";n.data={...$o,relativePath:_}}}}return ge&&(history.state===null&&history.replaceState({},""),window.addEventListener("click",l=>{if(l.defaultPrevented||!(l.target instanceof Element)||l.target.closest("button")||l.button!==0||l.ctrlKey||l.shiftKey||l.altKey||l.metaKey)return;const c=l.target.closest("a");if(!c||c.closest(".vp-raw")||c.hasAttribute("download")||c.hasAttribute("target"))return;const f=c.getAttribute("href")??(c instanceof SVGAElement?c.getAttribute("xlink:href"):null);if(f==null)return;const{href:a,origin:h,pathname:y,hash:v,search:S}=new URL(f,c.baseURI),_=new URL(location.href);h===_.origin&&tf(y)&&(l.preventDefault(),y===_.pathname&&S===_.search?(v!==_.hash&&(history.pushState({},"",a),window.dispatchEvent(new HashChangeEvent("hashchange",{oldURL:_.href,newURL:a}))),v?si(c,v,c.classList.contains("header-anchor")):window.scrollTo(0,0)):r(a))},{capture:!0}),window.addEventListener("popstate",async l=>{var c;l.state!==null&&(await o(gs(location.href),l.state&&l.state.scrollPosition||0),(c=s.onAfterRouteChanged)==null||c.call(s,location.href))}),window.addEventListener("hashchange",l=>{l.preventDefault()})),s}function ff(){const e=Ot(cf);if(!e)throw new Error("useRouter() is called without provider.");return e}function Uo(){return ff().route}function si(e,t,n=!1){let s=null;try{s=e.classList.contains("header-anchor")?e:document.getElementById(decodeURIComponent(t).slice(1))}catch(r){console.warn(r)}if(s){let r=function(){!n||Math.abs(o-window.scrollY)>window.innerHeight?window.scrollTo(0,o):window.scrollTo({left:0,top:o,behavior:"smooth"})};const i=parseInt(window.getComputedStyle(s).paddingTop,10),o=window.scrollY+s.getBoundingClientRect().top-lf()+i;requestAnimationFrame(r)}}function gs(e){const t=new URL(e,Vo);return t.pathname=t.pathname.replace(/(^|\/)index(\.html)?$/,"$1"),mt.value.cleanUrls?t.pathname=t.pathname.replace(/\.html$/,""):!t.pathname.endsWith("/")&&!t.pathname.endsWith(".html")&&(t.pathname+=".html"),t.pathname+t.search+t.hash}const yn=()=>Tn.forEach(e=>e()),Qf=Ys({name:"VitePressContent",props:{as:{type:[Object,String],default:"div"}},setup(e){const t=Uo(),{frontmatter:n,site:s}=sf();return Fe(n,yn,{deep:!0,flush:"post"}),()=>Ls(e.as,s.value.contentProps??{style:{position:"relative"}},[t.component?Ls(t.component,{onVnodeMounted:yn,onVnodeUpdated:yn,onVnodeUnmounted:yn}):"404 Page Not Found"])}}),uf="modulepreload",df=function(e){return"/Hecke.jl/v0.34.8/"+e},ri={},Zf=function(t,n,s){let r=Promise.resolve();if(n&&n.length>0){document.getElementsByTagName("link");const o=document.querySelector("meta[property=csp-nonce]"),l=(o==null?void 0:o.nonce)||(o==null?void 0:o.getAttribute("nonce"));r=Promise.allSettled(n.map(c=>{if(c=df(c),c in ri)return;ri[c]=!0;const f=c.endsWith(".css"),a=f?'[rel="stylesheet"]':"";if(document.querySelector(`link[href="${c}"]${a}`))return;const h=document.createElement("link");if(h.rel=f?"stylesheet":uf,f||(h.as="script"),h.crossOrigin="",h.href=c,l&&h.setAttribute("nonce",l),document.head.appendChild(h),f)return new Promise((y,v)=>{h.addEventListener("load",y),h.addEventListener("error",()=>v(new Error(`Unable to preload CSS for ${c}`)))})}))}function i(o){const l=new Event("vite:preloadError",{cancelable:!0});if(l.payload=o,window.dispatchEvent(l),!l.defaultPrevented)throw o}return r.then(o=>{for(const l of o||[])l.status==="rejected"&&i(l.reason);return t().catch(i)})},eu=Ys({setup(e,{slots:t}){const n=oe(!1);return Lt(()=>{n.value=!0}),()=>n.value&&t.default?t.default():null}});function tu(){ge&&window.addEventListener("click",e=>{var n;const t=e.target;if(t.matches(".vp-code-group input")){const s=(n=t.parentElement)==null?void 0:n.parentElement;if(!s)return;const r=Array.from(s.querySelectorAll("input")).indexOf(t);if(r<0)return;const i=s.querySelector(".blocks");if(!i)return;const o=Array.from(i.children).find(f=>f.classList.contains("active"));if(!o)return;const l=i.children[r];if(!l||o===l)return;o.classList.remove("active"),l.classList.add("active");const c=s==null?void 0:s.querySelector(`label[for="${t.id}"]`);c==null||c.scrollIntoView({block:"nearest"})}})}function nu(){if(ge){const e=new WeakMap;window.addEventListener("click",t=>{var s;const n=t.target;if(n.matches('div[class*="language-"] > button.copy')){const r=n.parentElement,i=(s=n.nextElementSibling)==null?void 0:s.nextElementSibling;if(!r||!i)return;const o=/language-(shellscript|shell|bash|sh|zsh)/.test(r.className),l=[".vp-copy-ignore",".diff.remove"],c=i.cloneNode(!0);c.querySelectorAll(l.join(",")).forEach(a=>a.remove());let f=c.textContent||"";o&&(f=f.replace(/^ *(\$|>) /gm,"").trim()),hf(f).then(()=>{n.classList.add("copied"),clearTimeout(e.get(n));const a=setTimeout(()=>{n.classList.remove("copied"),n.blur(),e.delete(n)},2e3);e.set(n,a)})}})}}async function hf(e){try{return navigator.clipboard.writeText(e)}catch{const t=document.createElement("textarea"),n=document.activeElement;t.value=e,t.setAttribute("readonly",""),t.style.contain="strict",t.style.position="absolute",t.style.left="-9999px",t.style.fontSize="12pt";const s=document.getSelection(),r=s?s.rangeCount>0&&s.getRangeAt(0):null;document.body.appendChild(t),t.select(),t.selectionStart=0,t.selectionEnd=e.length,document.execCommand("copy"),document.body.removeChild(t),r&&(s.removeAllRanges(),s.addRange(r)),n&&n.focus()}}function su(e,t){let n=!0,s=[];const r=i=>{if(n){n=!1,i.forEach(l=>{const c=ms(l);for(const f of document.head.children)if(f.isEqualNode(c)){s.push(f);return}});return}const o=i.map(ms);s.forEach((l,c)=>{const f=o.findIndex(a=>a==null?void 0:a.isEqualNode(l??null));f!==-1?delete o[f]:(l==null||l.remove(),delete s[c])}),o.forEach(l=>l&&document.head.appendChild(l)),s=[...s,...o].filter(Boolean)};Zs(()=>{const i=e.data,o=t.value,l=i&&i.description,c=i&&i.frontmatter.head||[],f=Do(o,i);f!==document.title&&(document.title=f);const a=l||o.description;let h=document.querySelector("meta[name=description]");h?h.getAttribute("content")!==a&&h.setAttribute("content",a):ms(["meta",{name:"description",content:a}]),r(jo(o.head,gf(c)))})}function ms([e,t,n]){const s=document.createElement(e);for(const r in t)s.setAttribute(r,t[r]);return n&&(s.innerHTML=n),e==="script"&&t.async==null&&(s.async=!1),s}function pf(e){return e[0]==="meta"&&e[1]&&e[1].name==="description"}function gf(e){return e.filter(t=>!pf(t))}const ys=new Set,ko=()=>document.createElement("link"),mf=e=>{const t=ko();t.rel="prefetch",t.href=e,document.head.appendChild(t)},yf=e=>{const t=new XMLHttpRequest;t.open("GET",e,t.withCredentials=!0),t.send()};let vn;const vf=ge&&(vn=ko())&&vn.relList&&vn.relList.supports&&vn.relList.supports("prefetch")?mf:yf;function ru(){if(!ge||!window.IntersectionObserver)return;let e;if((e=navigator.connection)&&(e.saveData||/2g/.test(e.effectiveType)))return;const t=window.requestIdleCallback||setTimeout;let n=null;const s=()=>{n&&n.disconnect(),n=new IntersectionObserver(i=>{i.forEach(o=>{if(o.isIntersecting){const l=o.target;n.unobserve(l);const{pathname:c}=l;if(!ys.has(c)){ys.add(c);const f=of(c);f&&vf(f)}}})}),t(()=>{document.querySelectorAll("#app a").forEach(i=>{const{hostname:o,pathname:l}=new URL(i.href instanceof SVGAnimatedString?i.href.animVal:i.href,i.baseURI),c=l.match(/\.\w+$/);c&&c[0]!==".html"||i.target!=="_blank"&&o===location.hostname&&(l!==location.pathname?n.observe(i):ys.add(l))})})};Lt(s);const r=Uo();Fe(()=>r.path,s),Bn(()=>{n&&n.disconnect()})}export{Ki as $,lf as A,Sf as B,Ef as C,qs as D,Jf as E,xe as F,ce as G,xf as H,Ho as I,Uo as J,$c as K,Ot as L,Gf as M,Ds as N,kf as O,Un as P,qf as Q,ge as R,Vn as S,Lf as T,wf as U,Zf as V,Wf as W,mc as X,Ff as Y,Cf as Z,Df as _,_o as a,Nf as a0,Af as a1,jn as a2,Ll as a3,Ls as a4,Mf as a5,su as a6,cf as a7,Xf as a8,nf as a9,Qf as aa,eu as ab,mt as ac,$f as ad,zf as ae,of as af,ru as ag,nu as ah,tu as ai,Be as aj,Lo as ak,jf as al,tr as am,Uf as an,Kf as ao,Bf as ap,Vf as aq,ff as ar,Pt as as,_f as at,If as au,fe as av,bf as aw,wn as ax,Hf as ay,Yf as az,Ms as b,Of as c,Ys as d,Pf as e,tf as f,ti as g,ie as h,Ya as i,vo as j,Oi as k,Ga as l,Io as m,js as n,Os as o,oe as p,Fe as q,Tf as r,Zs as s,sl as t,sf as u,Lt as v,Ul as w,Bn as x,Rf as y,nc as z}; +**/let Is;const Pr=typeof window<"u"&&window.trustedTypes;if(Pr)try{Is=Pr.createPolicy("vue",{createHTML:e=>e})}catch{}const xo=Is?e=>Is.createHTML(e):e=>e,Gc="http://www.w3.org/2000/svg",Yc="http://www.w3.org/1998/Math/MathML",qe=typeof document<"u"?document:null,Lr=qe&&qe.createElement("template"),Xc={insert:(e,t,n)=>{t.insertBefore(e,n||null)},remove:e=>{const t=e.parentNode;t&&t.removeChild(e)},createElement:(e,t,n,s)=>{const r=t==="svg"?qe.createElementNS(Gc,e):t==="mathml"?qe.createElementNS(Yc,e):n?qe.createElement(e,{is:n}):qe.createElement(e);return e==="select"&&s&&s.multiple!=null&&r.setAttribute("multiple",s.multiple),r},createText:e=>qe.createTextNode(e),createComment:e=>qe.createComment(e),setText:(e,t)=>{e.nodeValue=t},setElementText:(e,t)=>{e.textContent=t},parentNode:e=>e.parentNode,nextSibling:e=>e.nextSibling,querySelector:e=>qe.querySelector(e),setScopeId(e,t){e.setAttribute(t,"")},insertStaticContent(e,t,n,s,r,i){const o=n?n.previousSibling:t.lastChild;if(r&&(r===i||r.nextSibling))for(;t.insertBefore(r.cloneNode(!0),n),!(r===i||!(r=r.nextSibling)););else{Lr.innerHTML=xo(s==="svg"?`${e}`:s==="mathml"?`${e}`:e);const l=Lr.content;if(s==="svg"||s==="mathml"){const c=l.firstChild;for(;c.firstChild;)l.appendChild(c.firstChild);l.removeChild(c)}t.insertBefore(l,n)}return[o?o.nextSibling:t.firstChild,n?n.previousSibling:t.lastChild]}},ze="transition",Ht="animation",Qt=Symbol("_vtc"),Eo={name:String,type:String,css:{type:Boolean,default:!0},duration:[String,Number,Object],enterFromClass:String,enterActiveClass:String,enterToClass:String,appearFromClass:String,appearActiveClass:String,appearToClass:String,leaveFromClass:String,leaveActiveClass:String,leaveToClass:String},Jc=ae({},ji,Eo),zc=e=>(e.displayName="Transition",e.props=Jc,e),Lf=zc((e,{slots:t})=>Ls(Kl,Qc(e),t)),ct=(e,t=[])=>{W(e)?e.forEach(n=>n(...t)):e&&e(...t)},Ir=e=>e?W(e)?e.some(t=>t.length>1):e.length>1:!1;function Qc(e){const t={};for(const x in e)x in Eo||(t[x]=e[x]);if(e.css===!1)return t;const{name:n="v",type:s,duration:r,enterFromClass:i=`${n}-enter-from`,enterActiveClass:o=`${n}-enter-active`,enterToClass:l=`${n}-enter-to`,appearFromClass:c=i,appearActiveClass:f=o,appearToClass:a=l,leaveFromClass:h=`${n}-leave-from`,leaveActiveClass:y=`${n}-leave-active`,leaveToClass:v=`${n}-leave-to`}=e,S=Zc(r),_=S&&S[0],K=S&&S[1],{onBeforeEnter:N,onEnter:j,onEnterCancelled:p,onLeave:g,onLeaveCancelled:O,onBeforeAppear:F=N,onAppear:$=j,onAppearCancelled:V=p}=t,R=(x,B,se,le)=>{x._enterCancelled=le,at(x,B?a:l),at(x,B?f:o),se&&se()},b=(x,B)=>{x._isLeaving=!1,at(x,h),at(x,v),at(x,y),B&&B()},I=x=>(B,se)=>{const le=x?$:j,U=()=>R(B,x,se);ct(le,[B,U]),Nr(()=>{at(B,x?c:i),Ke(B,x?a:l),Ir(le)||Fr(B,s,_,U)})};return ae(t,{onBeforeEnter(x){ct(N,[x]),Ke(x,i),Ke(x,o)},onBeforeAppear(x){ct(F,[x]),Ke(x,c),Ke(x,f)},onEnter:I(!1),onAppear:I(!0),onLeave(x,B){x._isLeaving=!0;const se=()=>b(x,B);Ke(x,h),x._enterCancelled?(Ke(x,y),Dr()):(Dr(),Ke(x,y)),Nr(()=>{x._isLeaving&&(at(x,h),Ke(x,v),Ir(g)||Fr(x,s,K,se))}),ct(g,[x,se])},onEnterCancelled(x){R(x,!1,void 0,!0),ct(p,[x])},onAppearCancelled(x){R(x,!0,void 0,!0),ct(V,[x])},onLeaveCancelled(x){b(x),ct(O,[x])}})}function Zc(e){if(e==null)return null;if(ne(e))return[os(e.enter),os(e.leave)];{const t=os(e);return[t,t]}}function os(e){return Jo(e)}function Ke(e,t){t.split(/\s+/).forEach(n=>n&&e.classList.add(n)),(e[Qt]||(e[Qt]=new Set)).add(t)}function at(e,t){t.split(/\s+/).forEach(s=>s&&e.classList.remove(s));const n=e[Qt];n&&(n.delete(t),n.size||(e[Qt]=void 0))}function Nr(e){requestAnimationFrame(()=>{requestAnimationFrame(e)})}let ea=0;function Fr(e,t,n,s){const r=e._endId=++ea,i=()=>{r===e._endId&&s()};if(n!=null)return setTimeout(i,n);const{type:o,timeout:l,propCount:c}=ta(e,t);if(!o)return s();const f=o+"end";let a=0;const h=()=>{e.removeEventListener(f,y),i()},y=v=>{v.target===e&&++a>=c&&h()};setTimeout(()=>{a(n[S]||"").split(", "),r=s(`${ze}Delay`),i=s(`${ze}Duration`),o=Hr(r,i),l=s(`${Ht}Delay`),c=s(`${Ht}Duration`),f=Hr(l,c);let a=null,h=0,y=0;t===ze?o>0&&(a=ze,h=o,y=i.length):t===Ht?f>0&&(a=Ht,h=f,y=c.length):(h=Math.max(o,f),a=h>0?o>f?ze:Ht:null,y=a?a===ze?i.length:c.length:0);const v=a===ze&&/\b(transform|all)(,|$)/.test(s(`${ze}Property`).toString());return{type:a,timeout:h,propCount:y,hasTransform:v}}function Hr(e,t){for(;e.length$r(n)+$r(e[s])))}function $r(e){return e==="auto"?0:Number(e.slice(0,-1).replace(",","."))*1e3}function Dr(){return document.body.offsetHeight}function na(e,t,n){const s=e[Qt];s&&(t=(t?[t,...s]:[...s]).join(" ")),t==null?e.removeAttribute("class"):n?e.setAttribute("class",t):e.className=t}const jr=Symbol("_vod"),sa=Symbol("_vsh"),ra=Symbol(""),ia=/(^|;)\s*display\s*:/;function oa(e,t,n){const s=e.style,r=re(n);let i=!1;if(n&&!r){if(t)if(re(t))for(const o of t.split(";")){const l=o.slice(0,o.indexOf(":")).trim();n[l]==null&&En(s,l,"")}else for(const o in t)n[o]==null&&En(s,o,"");for(const o in n)o==="display"&&(i=!0),En(s,o,n[o])}else if(r){if(t!==n){const o=s[ra];o&&(n+=";"+o),s.cssText=n,i=ia.test(n)}}else t&&e.removeAttribute("style");jr in e&&(e[jr]=i?s.display:"",e[sa]&&(s.display="none"))}const Vr=/\s*!important$/;function En(e,t,n){if(W(n))n.forEach(s=>En(e,t,s));else if(n==null&&(n=""),t.startsWith("--"))e.setProperty(t,n);else{const s=la(e,t);Vr.test(n)?e.setProperty(st(s),n.replace(Vr,""),"important"):e[s]=n}}const Ur=["Webkit","Moz","ms"],ls={};function la(e,t){const n=ls[t];if(n)return n;let s=Le(t);if(s!=="filter"&&s in e)return ls[t]=s;s=Fn(s);for(let r=0;rcs||(ua.then(()=>cs=0),cs=Date.now());function ha(e,t){const n=s=>{if(!s._vts)s._vts=Date.now();else if(s._vts<=n.attached)return;He(pa(s,n.value),t,5,[s])};return n.value=e,n.attached=da(),n}function pa(e,t){if(W(t)){const n=e.stopImmediatePropagation;return e.stopImmediatePropagation=()=>{n.call(e),e._stopped=!0},t.map(s=>r=>!r._stopped&&s&&s(r))}else return t}const Gr=e=>e.charCodeAt(0)===111&&e.charCodeAt(1)===110&&e.charCodeAt(2)>96&&e.charCodeAt(2)<123,ga=(e,t,n,s,r,i)=>{const o=r==="svg";t==="class"?na(e,s,o):t==="style"?oa(e,n,s):en(t)?Fs(t)||aa(e,t,n,s,i):(t[0]==="."?(t=t.slice(1),!0):t[0]==="^"?(t=t.slice(1),!1):ma(e,t,s,o))?(Wr(e,t,s),!e.tagName.includes("-")&&(t==="value"||t==="checked"||t==="selected")&&Br(e,t,s,o,i,t!=="value")):e._isVueCE&&(/[A-Z]/.test(t)||!re(s))?Wr(e,Le(t),s,i,t):(t==="true-value"?e._trueValue=s:t==="false-value"&&(e._falseValue=s),Br(e,t,s,o))};function ma(e,t,n,s){if(s)return!!(t==="innerHTML"||t==="textContent"||t in e&&Gr(t)&&q(n));if(t==="spellcheck"||t==="draggable"||t==="translate"||t==="form"||t==="list"&&e.tagName==="INPUT"||t==="type"&&e.tagName==="TEXTAREA")return!1;if(t==="width"||t==="height"){const r=e.tagName;if(r==="IMG"||r==="VIDEO"||r==="CANVAS"||r==="SOURCE")return!1}return Gr(t)&&re(n)?!1:t in e}const Yr=e=>{const t=e.props["onUpdate:modelValue"]||!1;return W(t)?n=>bn(t,n):t};function ya(e){e.target.composing=!0}function Xr(e){const t=e.target;t.composing&&(t.composing=!1,t.dispatchEvent(new Event("input")))}const as=Symbol("_assign"),If={created(e,{modifiers:{lazy:t,trim:n,number:s}},r){e[as]=Yr(r);const i=s||r.props&&r.props.type==="number";St(e,t?"change":"input",o=>{if(o.target.composing)return;let l=e.value;n&&(l=l.trim()),i&&(l=vs(l)),e[as](l)}),n&&St(e,"change",()=>{e.value=e.value.trim()}),t||(St(e,"compositionstart",ya),St(e,"compositionend",Xr),St(e,"change",Xr))},mounted(e,{value:t}){e.value=t??""},beforeUpdate(e,{value:t,oldValue:n,modifiers:{lazy:s,trim:r,number:i}},o){if(e[as]=Yr(o),e.composing)return;const l=(i||e.type==="number")&&!/^0\d/.test(e.value)?vs(e.value):e.value,c=t??"";l!==c&&(document.activeElement===e&&e.type!=="range"&&(s&&t===n||r&&e.value.trim()===c)||(e.value=c))}},va=["ctrl","shift","alt","meta"],_a={stop:e=>e.stopPropagation(),prevent:e=>e.preventDefault(),self:e=>e.target!==e.currentTarget,ctrl:e=>!e.ctrlKey,shift:e=>!e.shiftKey,alt:e=>!e.altKey,meta:e=>!e.metaKey,left:e=>"button"in e&&e.button!==0,middle:e=>"button"in e&&e.button!==1,right:e=>"button"in e&&e.button!==2,exact:(e,t)=>va.some(n=>e[`${n}Key`]&&!t.includes(n))},Nf=(e,t)=>{const n=e._withMods||(e._withMods={}),s=t.join(".");return n[s]||(n[s]=(r,...i)=>{for(let o=0;o{const n=e._withKeys||(e._withKeys={}),s=t.join(".");return n[s]||(n[s]=r=>{if(!("key"in r))return;const i=st(r.key);if(t.some(o=>o===i||ba[o]===i))return e(r)})},To=ae({patchProp:ga},Xc);let Wt,Jr=!1;function wa(){return Wt||(Wt=xc(To))}function Sa(){return Wt=Jr?Wt:Ec(To),Jr=!0,Wt}const Hf=(...e)=>{const t=wa().createApp(...e),{mount:n}=t;return t.mount=s=>{const r=Ao(s);if(!r)return;const i=t._component;!q(i)&&!i.render&&!i.template&&(i.template=r.innerHTML),r.nodeType===1&&(r.textContent="");const o=n(r,!1,Co(r));return r instanceof Element&&(r.removeAttribute("v-cloak"),r.setAttribute("data-v-app","")),o},t},$f=(...e)=>{const t=Sa().createApp(...e),{mount:n}=t;return t.mount=s=>{const r=Ao(s);if(r)return n(r,!0,Co(r))},t};function Co(e){if(e instanceof SVGElement)return"svg";if(typeof MathMLElement=="function"&&e instanceof MathMLElement)return"mathml"}function Ao(e){return re(e)?document.querySelector(e):e}const Df=(e,t)=>{const n=e.__vccOpts||e;for(const[s,r]of t)n[s]=r;return n},xa=window.__VP_SITE_DATA__;function tr(e){return hi()?(il(e),!0):!1}function Be(e){return typeof e=="function"?e():Oi(e)}const Ro=typeof window<"u"&&typeof document<"u";typeof WorkerGlobalScope<"u"&&globalThis instanceof WorkerGlobalScope;const jf=e=>e!=null,Ea=Object.prototype.toString,Ta=e=>Ea.call(e)==="[object Object]",Zt=()=>{},zr=Ca();function Ca(){var e,t;return Ro&&((e=window==null?void 0:window.navigator)==null?void 0:e.userAgent)&&(/iP(?:ad|hone|od)/.test(window.navigator.userAgent)||((t=window==null?void 0:window.navigator)==null?void 0:t.maxTouchPoints)>2&&/iPad|Macintosh/.test(window==null?void 0:window.navigator.userAgent))}function Aa(e,t){function n(...s){return new Promise((r,i)=>{Promise.resolve(e(()=>t.apply(this,s),{fn:t,thisArg:this,args:s})).then(r).catch(i)})}return n}const Oo=e=>e();function Ra(e,t={}){let n,s,r=Zt;const i=l=>{clearTimeout(l),r(),r=Zt};return l=>{const c=Be(e),f=Be(t.maxWait);return n&&i(n),c<=0||f!==void 0&&f<=0?(s&&(i(s),s=null),Promise.resolve(l())):new Promise((a,h)=>{r=t.rejectOnCancel?h:a,f&&!s&&(s=setTimeout(()=>{n&&i(n),s=null,a(l())},f)),n=setTimeout(()=>{s&&i(s),s=null,a(l())},c)})}}function Oa(e=Oo){const t=oe(!0);function n(){t.value=!1}function s(){t.value=!0}const r=(...i)=>{t.value&&e(...i)};return{isActive:Vn(t),pause:n,resume:s,eventFilter:r}}function Ma(e){return qn()}function Mo(...e){if(e.length!==1)return Ll(...e);const t=e[0];return typeof t=="function"?Vn(Ol(()=>({get:t,set:Zt}))):oe(t)}function Po(e,t,n={}){const{eventFilter:s=Oo,...r}=n;return Fe(e,Aa(s,t),r)}function Pa(e,t,n={}){const{eventFilter:s,...r}=n,{eventFilter:i,pause:o,resume:l,isActive:c}=Oa(s);return{stop:Po(e,t,{...r,eventFilter:i}),pause:o,resume:l,isActive:c}}function nr(e,t=!0,n){Ma()?Lt(e,n):t?e():Un(e)}function Vf(e,t,n={}){const{debounce:s=0,maxWait:r=void 0,...i}=n;return Po(e,t,{...i,eventFilter:Ra(s,{maxWait:r})})}function Uf(e,t,n){let s;fe(n)?s={evaluating:n}:s={};const{lazy:r=!1,evaluating:i=void 0,shallow:o=!0,onError:l=Zt}=s,c=oe(!r),f=o?qs(t):oe(t);let a=0;return Zs(async h=>{if(!c.value)return;a++;const y=a;let v=!1;i&&Promise.resolve().then(()=>{i.value=!0});try{const S=await e(_=>{h(()=>{i&&(i.value=!1),v||_()})});y===a&&(f.value=S)}catch(S){l(S)}finally{i&&y===a&&(i.value=!1),v=!0}}),r?ie(()=>(c.value=!0,f.value)):f}const $e=Ro?window:void 0;function Lo(e){var t;const n=Be(e);return(t=n==null?void 0:n.$el)!=null?t:n}function Pt(...e){let t,n,s,r;if(typeof e[0]=="string"||Array.isArray(e[0])?([n,s,r]=e,t=$e):[t,n,s,r]=e,!t)return Zt;Array.isArray(n)||(n=[n]),Array.isArray(s)||(s=[s]);const i=[],o=()=>{i.forEach(a=>a()),i.length=0},l=(a,h,y,v)=>(a.addEventListener(h,y,v),()=>a.removeEventListener(h,y,v)),c=Fe(()=>[Lo(t),Be(r)],([a,h])=>{if(o(),!a)return;const y=Ta(h)?{...h}:h;i.push(...n.flatMap(v=>s.map(S=>l(a,v,S,y))))},{immediate:!0,flush:"post"}),f=()=>{c(),o()};return tr(f),f}function La(e){return typeof e=="function"?e:typeof e=="string"?t=>t.key===e:Array.isArray(e)?t=>e.includes(t.key):()=>!0}function kf(...e){let t,n,s={};e.length===3?(t=e[0],n=e[1],s=e[2]):e.length===2?typeof e[1]=="object"?(t=!0,n=e[0],s=e[1]):(t=e[0],n=e[1]):(t=!0,n=e[0]);const{target:r=$e,eventName:i="keydown",passive:o=!1,dedupe:l=!1}=s,c=La(t);return Pt(r,i,a=>{a.repeat&&Be(l)||c(a)&&n(a)},o)}function Ia(){const e=oe(!1),t=qn();return t&&Lt(()=>{e.value=!0},t),e}function Na(e){const t=Ia();return ie(()=>(t.value,!!e()))}function Io(e,t={}){const{window:n=$e}=t,s=Na(()=>n&&"matchMedia"in n&&typeof n.matchMedia=="function");let r;const i=oe(!1),o=f=>{i.value=f.matches},l=()=>{r&&("removeEventListener"in r?r.removeEventListener("change",o):r.removeListener(o))},c=Zs(()=>{s.value&&(l(),r=n.matchMedia(Be(e)),"addEventListener"in r?r.addEventListener("change",o):r.addListener(o),i.value=r.matches)});return tr(()=>{c(),l(),r=void 0}),i}const gn=typeof globalThis<"u"?globalThis:typeof window<"u"?window:typeof global<"u"?global:typeof self<"u"?self:{},mn="__vueuse_ssr_handlers__",Fa=Ha();function Ha(){return mn in gn||(gn[mn]=gn[mn]||{}),gn[mn]}function No(e,t){return Fa[e]||t}function sr(e){return Io("(prefers-color-scheme: dark)",e)}function $a(e){return e==null?"any":e instanceof Set?"set":e instanceof Map?"map":e instanceof Date?"date":typeof e=="boolean"?"boolean":typeof e=="string"?"string":typeof e=="object"?"object":Number.isNaN(e)?"any":"number"}const Da={boolean:{read:e=>e==="true",write:e=>String(e)},object:{read:e=>JSON.parse(e),write:e=>JSON.stringify(e)},number:{read:e=>Number.parseFloat(e),write:e=>String(e)},any:{read:e=>e,write:e=>String(e)},string:{read:e=>e,write:e=>String(e)},map:{read:e=>new Map(JSON.parse(e)),write:e=>JSON.stringify(Array.from(e.entries()))},set:{read:e=>new Set(JSON.parse(e)),write:e=>JSON.stringify(Array.from(e))},date:{read:e=>new Date(e),write:e=>e.toISOString()}},Qr="vueuse-storage";function rr(e,t,n,s={}){var r;const{flush:i="pre",deep:o=!0,listenToStorageChanges:l=!0,writeDefaults:c=!0,mergeDefaults:f=!1,shallow:a,window:h=$e,eventFilter:y,onError:v=b=>{console.error(b)},initOnMounted:S}=s,_=(a?qs:oe)(typeof t=="function"?t():t);if(!n)try{n=No("getDefaultStorage",()=>{var b;return(b=$e)==null?void 0:b.localStorage})()}catch(b){v(b)}if(!n)return _;const K=Be(t),N=$a(K),j=(r=s.serializer)!=null?r:Da[N],{pause:p,resume:g}=Pa(_,()=>F(_.value),{flush:i,deep:o,eventFilter:y});h&&l&&nr(()=>{n instanceof Storage?Pt(h,"storage",V):Pt(h,Qr,R),S&&V()}),S||V();function O(b,I){if(h){const x={key:e,oldValue:b,newValue:I,storageArea:n};h.dispatchEvent(n instanceof Storage?new StorageEvent("storage",x):new CustomEvent(Qr,{detail:x}))}}function F(b){try{const I=n.getItem(e);if(b==null)O(I,null),n.removeItem(e);else{const x=j.write(b);I!==x&&(n.setItem(e,x),O(I,x))}}catch(I){v(I)}}function $(b){const I=b?b.newValue:n.getItem(e);if(I==null)return c&&K!=null&&n.setItem(e,j.write(K)),K;if(!b&&f){const x=j.read(I);return typeof f=="function"?f(x,K):N==="object"&&!Array.isArray(x)?{...K,...x}:x}else return typeof I!="string"?I:j.read(I)}function V(b){if(!(b&&b.storageArea!==n)){if(b&&b.key==null){_.value=K;return}if(!(b&&b.key!==e)){p();try{(b==null?void 0:b.newValue)!==j.write(_.value)&&(_.value=$(b))}catch(I){v(I)}finally{b?Un(g):g()}}}}function R(b){V(b.detail)}return _}const ja="*,*::before,*::after{-webkit-transition:none!important;-moz-transition:none!important;-o-transition:none!important;-ms-transition:none!important;transition:none!important}";function Va(e={}){const{selector:t="html",attribute:n="class",initialValue:s="auto",window:r=$e,storage:i,storageKey:o="vueuse-color-scheme",listenToStorageChanges:l=!0,storageRef:c,emitAuto:f,disableTransition:a=!0}=e,h={auto:"",light:"light",dark:"dark",...e.modes||{}},y=sr({window:r}),v=ie(()=>y.value?"dark":"light"),S=c||(o==null?Mo(s):rr(o,s,i,{window:r,listenToStorageChanges:l})),_=ie(()=>S.value==="auto"?v.value:S.value),K=No("updateHTMLAttrs",(g,O,F)=>{const $=typeof g=="string"?r==null?void 0:r.document.querySelector(g):Lo(g);if(!$)return;const V=new Set,R=new Set;let b=null;if(O==="class"){const x=F.split(/\s/g);Object.values(h).flatMap(B=>(B||"").split(/\s/g)).filter(Boolean).forEach(B=>{x.includes(B)?V.add(B):R.add(B)})}else b={key:O,value:F};if(V.size===0&&R.size===0&&b===null)return;let I;a&&(I=r.document.createElement("style"),I.appendChild(document.createTextNode(ja)),r.document.head.appendChild(I));for(const x of V)$.classList.add(x);for(const x of R)$.classList.remove(x);b&&$.setAttribute(b.key,b.value),a&&(r.getComputedStyle(I).opacity,document.head.removeChild(I))});function N(g){var O;K(t,n,(O=h[g])!=null?O:g)}function j(g){e.onChanged?e.onChanged(g,N):N(g)}Fe(_,j,{flush:"post",immediate:!0}),nr(()=>j(_.value));const p=ie({get(){return f?S.value:_.value},set(g){S.value=g}});try{return Object.assign(p,{store:S,system:v,state:_})}catch{return p}}function Ua(e={}){const{valueDark:t="dark",valueLight:n="",window:s=$e}=e,r=Va({...e,onChanged:(l,c)=>{var f;e.onChanged?(f=e.onChanged)==null||f.call(e,l==="dark",c,l):c(l)},modes:{dark:t,light:n}}),i=ie(()=>r.system?r.system.value:sr({window:s}).value?"dark":"light");return ie({get(){return r.value==="dark"},set(l){const c=l?"dark":"light";i.value===c?r.value="auto":r.value=c}})}function fs(e){return typeof Window<"u"&&e instanceof Window?e.document.documentElement:typeof Document<"u"&&e instanceof Document?e.documentElement:e}function Bf(e,t,n={}){const{window:s=$e}=n;return rr(e,t,s==null?void 0:s.localStorage,n)}function Fo(e){const t=window.getComputedStyle(e);if(t.overflowX==="scroll"||t.overflowY==="scroll"||t.overflowX==="auto"&&e.clientWidth1?!0:(t.preventDefault&&t.preventDefault(),!1)}const us=new WeakMap;function Wf(e,t=!1){const n=oe(t);let s=null,r="";Fe(Mo(e),l=>{const c=fs(Be(l));if(c){const f=c;if(us.get(f)||us.set(f,f.style.overflow),f.style.overflow!=="hidden"&&(r=f.style.overflow),f.style.overflow==="hidden")return n.value=!0;if(n.value)return f.style.overflow="hidden"}},{immediate:!0});const i=()=>{const l=fs(Be(e));!l||n.value||(zr&&(s=Pt(l,"touchmove",c=>{ka(c)},{passive:!1})),l.style.overflow="hidden",n.value=!0)},o=()=>{const l=fs(Be(e));!l||!n.value||(zr&&(s==null||s()),l.style.overflow=r,us.delete(l),n.value=!1)};return tr(o),ie({get(){return n.value},set(l){l?i():o()}})}function Kf(e,t,n={}){const{window:s=$e}=n;return rr(e,t,s==null?void 0:s.sessionStorage,n)}function qf(e={}){const{window:t=$e,behavior:n="auto"}=e;if(!t)return{x:oe(0),y:oe(0)};const s=oe(t.scrollX),r=oe(t.scrollY),i=ie({get(){return s.value},set(l){scrollTo({left:l,behavior:n})}}),o=ie({get(){return r.value},set(l){scrollTo({top:l,behavior:n})}});return Pt(t,"scroll",()=>{s.value=t.scrollX,r.value=t.scrollY},{capture:!1,passive:!0}),{x:i,y:o}}function Gf(e={}){const{window:t=$e,initialWidth:n=Number.POSITIVE_INFINITY,initialHeight:s=Number.POSITIVE_INFINITY,listenOrientation:r=!0,includeScrollbar:i=!0,type:o="inner"}=e,l=oe(n),c=oe(s),f=()=>{t&&(o==="outer"?(l.value=t.outerWidth,c.value=t.outerHeight):i?(l.value=t.innerWidth,c.value=t.innerHeight):(l.value=t.document.documentElement.clientWidth,c.value=t.document.documentElement.clientHeight))};if(f(),nr(f),Pt("resize",f,{passive:!0}),r){const a=Io("(orientation: portrait)");Fe(a,()=>f())}return{width:l,height:c}}const ds={BASE_URL:"/v0.34.8/",DEV:!1,MODE:"production",PROD:!0,SSR:!1};var hs={};const Ho=/^(?:[a-z]+:|\/\/)/i,Ba="vitepress-theme-appearance",Wa=/#.*$/,Ka=/[?#].*$/,qa=/(?:(^|\/)index)?\.(?:md|html)$/,ge=typeof document<"u",$o={relativePath:"404.md",filePath:"",title:"404",description:"Not Found",headers:[],frontmatter:{sidebar:!1,layout:"page"},lastUpdated:0,isNotFound:!0};function Ga(e,t,n=!1){if(t===void 0)return!1;if(e=Zr(`/${e}`),n)return new RegExp(t).test(e);if(Zr(t)!==e)return!1;const s=t.match(Wa);return s?(ge?location.hash:"")===s[0]:!0}function Zr(e){return decodeURI(e).replace(Ka,"").replace(qa,"$1")}function Ya(e){return Ho.test(e)}function Xa(e,t){return Object.keys((e==null?void 0:e.locales)||{}).find(n=>n!=="root"&&!Ya(n)&&Ga(t,`/${n}/`,!0))||"root"}function Ja(e,t){var s,r,i,o,l,c,f;const n=Xa(e,t);return Object.assign({},e,{localeIndex:n,lang:((s=e.locales[n])==null?void 0:s.lang)??e.lang,dir:((r=e.locales[n])==null?void 0:r.dir)??e.dir,title:((i=e.locales[n])==null?void 0:i.title)??e.title,titleTemplate:((o=e.locales[n])==null?void 0:o.titleTemplate)??e.titleTemplate,description:((l=e.locales[n])==null?void 0:l.description)??e.description,head:jo(e.head,((c=e.locales[n])==null?void 0:c.head)??[]),themeConfig:{...e.themeConfig,...(f=e.locales[n])==null?void 0:f.themeConfig}})}function Do(e,t){const n=t.title||e.title,s=t.titleTemplate??e.titleTemplate;if(typeof s=="string"&&s.includes(":title"))return s.replace(/:title/g,n);const r=za(e.title,s);return n===r.slice(3)?n:`${n}${r}`}function za(e,t){return t===!1?"":t===!0||t===void 0?` | ${e}`:e===t?"":` | ${t}`}function Qa(e,t){const[n,s]=t;if(n!=="meta")return!1;const r=Object.entries(s)[0];return r==null?!1:e.some(([i,o])=>i===n&&o[r[0]]===r[1])}function jo(e,t){return[...e.filter(n=>!Qa(t,n)),...t]}const Za=/[\u0000-\u001F"#$&*+,:;<=>?[\]^`{|}\u007F]/g,ef=/^[a-z]:/i;function ei(e){const t=ef.exec(e),n=t?t[0]:"";return n+e.slice(n.length).replace(Za,"_").replace(/(^|\/)_+(?=[^/]*$)/,"$1")}const ps=new Set;function tf(e){if(ps.size===0){const n=typeof process=="object"&&(hs==null?void 0:hs.VITE_EXTRA_EXTENSIONS)||(ds==null?void 0:ds.VITE_EXTRA_EXTENSIONS)||"";("3g2,3gp,aac,ai,apng,au,avif,bin,bmp,cer,class,conf,crl,css,csv,dll,doc,eps,epub,exe,gif,gz,ics,ief,jar,jpe,jpeg,jpg,js,json,jsonld,m4a,man,mid,midi,mjs,mov,mp2,mp3,mp4,mpe,mpeg,mpg,mpp,oga,ogg,ogv,ogx,opus,otf,p10,p7c,p7m,p7s,pdf,png,ps,qt,roff,rtf,rtx,ser,svg,t,tif,tiff,tr,ts,tsv,ttf,txt,vtt,wav,weba,webm,webp,woff,woff2,xhtml,xml,yaml,yml,zip"+(n&&typeof n=="string"?","+n:"")).split(",").forEach(s=>ps.add(s))}const t=e.split(".").pop();return t==null||!ps.has(t.toLowerCase())}function Yf(e){return e.replace(/[|\\{}()[\]^$+*?.]/g,"\\$&").replace(/-/g,"\\x2d")}const nf=Symbol(),mt=qs(xa);function Xf(e){const t=ie(()=>Ja(mt.value,e.data.relativePath)),n=t.value.appearance,s=n==="force-dark"?oe(!0):n==="force-auto"?sr():n?Ua({storageKey:Ba,initialValue:()=>n==="dark"?"dark":"auto",...typeof n=="object"?n:{}}):oe(!1),r=oe(ge?location.hash:"");return ge&&window.addEventListener("hashchange",()=>{r.value=location.hash}),Fe(()=>e.data,()=>{r.value=ge?location.hash:""}),{site:t,theme:ie(()=>t.value.themeConfig),page:ie(()=>e.data),frontmatter:ie(()=>e.data.frontmatter),params:ie(()=>e.data.params),lang:ie(()=>t.value.lang),dir:ie(()=>e.data.frontmatter.dir||t.value.dir),localeIndex:ie(()=>t.value.localeIndex||"root"),title:ie(()=>Do(t.value,e.data)),description:ie(()=>e.data.description||t.value.description),isDark:s,hash:ie(()=>r.value)}}function sf(){const e=Ot(nf);if(!e)throw new Error("vitepress data not properly injected in app");return e}function rf(e,t){return`${e}${t}`.replace(/\/+/g,"/")}function ti(e){return Ho.test(e)||!e.startsWith("/")?e:rf(mt.value.base,e)}function of(e){let t=e.replace(/\.html$/,"");if(t=decodeURIComponent(t),t=t.replace(/\/$/,"/index"),ge){const n="/v0.34.8/";t=ei(t.slice(n.length).replace(/\//g,"_")||"index")+".md";let s=__VP_HASH_MAP__[t.toLowerCase()];if(s||(t=t.endsWith("_index.md")?t.slice(0,-9)+".md":t.slice(0,-3)+"_index.md",s=__VP_HASH_MAP__[t.toLowerCase()]),!s)return null;t=`${n}assets/${t}.${s}.js`}else t=`./${ei(t.slice(1).replace(/\//g,"_"))}.md.js`;return t}let Tn=[];function Jf(e){Tn.push(e),Bn(()=>{Tn=Tn.filter(t=>t!==e)})}function lf(){let e=mt.value.scrollOffset,t=0,n=24;if(typeof e=="object"&&"padding"in e&&(n=e.padding,e=e.selector),typeof e=="number")t=e;else if(typeof e=="string")t=ni(e,n);else if(Array.isArray(e))for(const s of e){const r=ni(s,n);if(r){t=r;break}}return t}function ni(e,t){const n=document.querySelector(e);if(!n)return 0;const s=n.getBoundingClientRect().bottom;return s<0?0:s+t}const cf=Symbol(),Vo="http://a.com",af=()=>({path:"/",component:null,data:$o});function zf(e,t){const n=jn(af()),s={route:n,go:r};async function r(l=ge?location.href:"/"){var c,f;l=gs(l),await((c=s.onBeforeRouteChange)==null?void 0:c.call(s,l))!==!1&&(ge&&l!==gs(location.href)&&(history.replaceState({scrollPosition:window.scrollY},""),history.pushState({},"",l)),await o(l),await((f=s.onAfterRouteChanged)==null?void 0:f.call(s,l)))}let i=null;async function o(l,c=0,f=!1){var y,v;if(await((y=s.onBeforePageLoad)==null?void 0:y.call(s,l))===!1)return;const a=new URL(l,Vo),h=i=a.pathname;try{let S=await e(h);if(!S)throw new Error(`Page not found: ${h}`);if(i===h){i=null;const{default:_,__pageData:K}=S;if(!_)throw new Error(`Invalid route component: ${_}`);await((v=s.onAfterPageLoad)==null?void 0:v.call(s,l)),n.path=ge?h:ti(h),n.component=wn(_),n.data=wn(K),ge&&Un(()=>{let N=mt.value.base+K.relativePath.replace(/(?:(^|\/)index)?\.md$/,"$1");if(!mt.value.cleanUrls&&!N.endsWith("/")&&(N+=".html"),N!==a.pathname&&(a.pathname=N,l=N+a.search+a.hash,history.replaceState({},"",l)),a.hash&&!c){let j=null;try{j=document.getElementById(decodeURIComponent(a.hash).slice(1))}catch(p){console.warn(p)}if(j){si(j,a.hash);return}}window.scrollTo(0,c)})}}catch(S){if(!/fetch|Page not found/.test(S.message)&&!/^\/404(\.html|\/)?$/.test(l)&&console.error(S),!f)try{const _=await fetch(mt.value.base+"hashmap.json");window.__VP_HASH_MAP__=await _.json(),await o(l,c,!0);return}catch{}if(i===h){i=null,n.path=ge?h:ti(h),n.component=t?wn(t):null;const _=ge?h.replace(/(^|\/)$/,"$1index").replace(/(\.html)?$/,".md").replace(/^\//,""):"404.md";n.data={...$o,relativePath:_}}}}return ge&&(history.state===null&&history.replaceState({},""),window.addEventListener("click",l=>{if(l.defaultPrevented||!(l.target instanceof Element)||l.target.closest("button")||l.button!==0||l.ctrlKey||l.shiftKey||l.altKey||l.metaKey)return;const c=l.target.closest("a");if(!c||c.closest(".vp-raw")||c.hasAttribute("download")||c.hasAttribute("target"))return;const f=c.getAttribute("href")??(c instanceof SVGAElement?c.getAttribute("xlink:href"):null);if(f==null)return;const{href:a,origin:h,pathname:y,hash:v,search:S}=new URL(f,c.baseURI),_=new URL(location.href);h===_.origin&&tf(y)&&(l.preventDefault(),y===_.pathname&&S===_.search?(v!==_.hash&&(history.pushState({},"",a),window.dispatchEvent(new HashChangeEvent("hashchange",{oldURL:_.href,newURL:a}))),v?si(c,v,c.classList.contains("header-anchor")):window.scrollTo(0,0)):r(a))},{capture:!0}),window.addEventListener("popstate",async l=>{var c;l.state!==null&&(await o(gs(location.href),l.state&&l.state.scrollPosition||0),(c=s.onAfterRouteChanged)==null||c.call(s,location.href))}),window.addEventListener("hashchange",l=>{l.preventDefault()})),s}function ff(){const e=Ot(cf);if(!e)throw new Error("useRouter() is called without provider.");return e}function Uo(){return ff().route}function si(e,t,n=!1){let s=null;try{s=e.classList.contains("header-anchor")?e:document.getElementById(decodeURIComponent(t).slice(1))}catch(r){console.warn(r)}if(s){let r=function(){!n||Math.abs(o-window.scrollY)>window.innerHeight?window.scrollTo(0,o):window.scrollTo({left:0,top:o,behavior:"smooth"})};const i=parseInt(window.getComputedStyle(s).paddingTop,10),o=window.scrollY+s.getBoundingClientRect().top-lf()+i;requestAnimationFrame(r)}}function gs(e){const t=new URL(e,Vo);return t.pathname=t.pathname.replace(/(^|\/)index(\.html)?$/,"$1"),mt.value.cleanUrls?t.pathname=t.pathname.replace(/\.html$/,""):!t.pathname.endsWith("/")&&!t.pathname.endsWith(".html")&&(t.pathname+=".html"),t.pathname+t.search+t.hash}const yn=()=>Tn.forEach(e=>e()),Qf=Ys({name:"VitePressContent",props:{as:{type:[Object,String],default:"div"}},setup(e){const t=Uo(),{frontmatter:n,site:s}=sf();return Fe(n,yn,{deep:!0,flush:"post"}),()=>Ls(e.as,s.value.contentProps??{style:{position:"relative"}},[t.component?Ls(t.component,{onVnodeMounted:yn,onVnodeUpdated:yn,onVnodeUnmounted:yn}):"404 Page Not Found"])}}),uf="modulepreload",df=function(e){return"/v0.34.8/"+e},ri={},Zf=function(t,n,s){let r=Promise.resolve();if(n&&n.length>0){document.getElementsByTagName("link");const o=document.querySelector("meta[property=csp-nonce]"),l=(o==null?void 0:o.nonce)||(o==null?void 0:o.getAttribute("nonce"));r=Promise.allSettled(n.map(c=>{if(c=df(c),c in ri)return;ri[c]=!0;const f=c.endsWith(".css"),a=f?'[rel="stylesheet"]':"";if(document.querySelector(`link[href="${c}"]${a}`))return;const h=document.createElement("link");if(h.rel=f?"stylesheet":uf,f||(h.as="script"),h.crossOrigin="",h.href=c,l&&h.setAttribute("nonce",l),document.head.appendChild(h),f)return new Promise((y,v)=>{h.addEventListener("load",y),h.addEventListener("error",()=>v(new Error(`Unable to preload CSS for ${c}`)))})}))}function i(o){const l=new Event("vite:preloadError",{cancelable:!0});if(l.payload=o,window.dispatchEvent(l),!l.defaultPrevented)throw o}return r.then(o=>{for(const l of o||[])l.status==="rejected"&&i(l.reason);return t().catch(i)})},eu=Ys({setup(e,{slots:t}){const n=oe(!1);return Lt(()=>{n.value=!0}),()=>n.value&&t.default?t.default():null}});function tu(){ge&&window.addEventListener("click",e=>{var n;const t=e.target;if(t.matches(".vp-code-group input")){const s=(n=t.parentElement)==null?void 0:n.parentElement;if(!s)return;const r=Array.from(s.querySelectorAll("input")).indexOf(t);if(r<0)return;const i=s.querySelector(".blocks");if(!i)return;const o=Array.from(i.children).find(f=>f.classList.contains("active"));if(!o)return;const l=i.children[r];if(!l||o===l)return;o.classList.remove("active"),l.classList.add("active");const c=s==null?void 0:s.querySelector(`label[for="${t.id}"]`);c==null||c.scrollIntoView({block:"nearest"})}})}function nu(){if(ge){const e=new WeakMap;window.addEventListener("click",t=>{var s;const n=t.target;if(n.matches('div[class*="language-"] > button.copy')){const r=n.parentElement,i=(s=n.nextElementSibling)==null?void 0:s.nextElementSibling;if(!r||!i)return;const o=/language-(shellscript|shell|bash|sh|zsh)/.test(r.className),l=[".vp-copy-ignore",".diff.remove"],c=i.cloneNode(!0);c.querySelectorAll(l.join(",")).forEach(a=>a.remove());let f=c.textContent||"";o&&(f=f.replace(/^ *(\$|>) /gm,"").trim()),hf(f).then(()=>{n.classList.add("copied"),clearTimeout(e.get(n));const a=setTimeout(()=>{n.classList.remove("copied"),n.blur(),e.delete(n)},2e3);e.set(n,a)})}})}}async function hf(e){try{return navigator.clipboard.writeText(e)}catch{const t=document.createElement("textarea"),n=document.activeElement;t.value=e,t.setAttribute("readonly",""),t.style.contain="strict",t.style.position="absolute",t.style.left="-9999px",t.style.fontSize="12pt";const s=document.getSelection(),r=s?s.rangeCount>0&&s.getRangeAt(0):null;document.body.appendChild(t),t.select(),t.selectionStart=0,t.selectionEnd=e.length,document.execCommand("copy"),document.body.removeChild(t),r&&(s.removeAllRanges(),s.addRange(r)),n&&n.focus()}}function su(e,t){let n=!0,s=[];const r=i=>{if(n){n=!1,i.forEach(l=>{const c=ms(l);for(const f of document.head.children)if(f.isEqualNode(c)){s.push(f);return}});return}const o=i.map(ms);s.forEach((l,c)=>{const f=o.findIndex(a=>a==null?void 0:a.isEqualNode(l??null));f!==-1?delete o[f]:(l==null||l.remove(),delete s[c])}),o.forEach(l=>l&&document.head.appendChild(l)),s=[...s,...o].filter(Boolean)};Zs(()=>{const i=e.data,o=t.value,l=i&&i.description,c=i&&i.frontmatter.head||[],f=Do(o,i);f!==document.title&&(document.title=f);const a=l||o.description;let h=document.querySelector("meta[name=description]");h?h.getAttribute("content")!==a&&h.setAttribute("content",a):ms(["meta",{name:"description",content:a}]),r(jo(o.head,gf(c)))})}function ms([e,t,n]){const s=document.createElement(e);for(const r in t)s.setAttribute(r,t[r]);return n&&(s.innerHTML=n),e==="script"&&t.async==null&&(s.async=!1),s}function pf(e){return e[0]==="meta"&&e[1]&&e[1].name==="description"}function gf(e){return e.filter(t=>!pf(t))}const ys=new Set,ko=()=>document.createElement("link"),mf=e=>{const t=ko();t.rel="prefetch",t.href=e,document.head.appendChild(t)},yf=e=>{const t=new XMLHttpRequest;t.open("GET",e,t.withCredentials=!0),t.send()};let vn;const vf=ge&&(vn=ko())&&vn.relList&&vn.relList.supports&&vn.relList.supports("prefetch")?mf:yf;function ru(){if(!ge||!window.IntersectionObserver)return;let e;if((e=navigator.connection)&&(e.saveData||/2g/.test(e.effectiveType)))return;const t=window.requestIdleCallback||setTimeout;let n=null;const s=()=>{n&&n.disconnect(),n=new IntersectionObserver(i=>{i.forEach(o=>{if(o.isIntersecting){const l=o.target;n.unobserve(l);const{pathname:c}=l;if(!ys.has(c)){ys.add(c);const f=of(c);f&&vf(f)}}})}),t(()=>{document.querySelectorAll("#app a").forEach(i=>{const{hostname:o,pathname:l}=new URL(i.href instanceof SVGAnimatedString?i.href.animVal:i.href,i.baseURI),c=l.match(/\.\w+$/);c&&c[0]!==".html"||i.target!=="_blank"&&o===location.hostname&&(l!==location.pathname?n.observe(i):ys.add(l))})})};Lt(s);const r=Uo();Fe(()=>r.path,s),Bn(()=>{n&&n.disconnect()})}export{Ki as $,lf as A,Sf as B,Ef as C,qs as D,Jf as E,xe as F,ce as G,xf as H,Ho as I,Uo as J,$c as K,Ot as L,Gf as M,Ds as N,kf as O,Un as P,qf as Q,ge as R,Vn as S,Lf as T,wf as U,Zf as V,Wf as W,mc as X,Ff as Y,Cf as Z,Df as _,_o as a,Nf as a0,Af as a1,jn as a2,Ll as a3,Ls as a4,Mf as a5,su as a6,cf as a7,Xf as a8,nf as a9,Qf as aa,eu as ab,mt as ac,$f as ad,zf as ae,of as af,ru as ag,nu as ah,tu as ai,Be as aj,Lo as ak,jf as al,tr as am,Uf as an,Kf as ao,Bf as ap,Vf as aq,ff as ar,Pt as as,_f as at,If as au,fe as av,bf as aw,wn as ax,Hf as ay,Yf as az,Ms as b,Of as c,Ys as d,Pf as e,tf as f,ti as g,ie as h,Ya as i,vo as j,Oi as k,Ga as l,Io as m,js as n,Os as o,oe as p,Fe as q,Tf as r,Zs as s,sl as t,sf as u,Lt as v,Ul as w,Bn as x,Rf as y,nc as z}; diff --git a/v0.34.8/assets/manual_abelian_introduction.md.B8MmCMfI.js b/v0.34.8/assets/manual_abelian_introduction.md.B8MmCMfI.js index b937086597..52417611b2 100644 --- a/v0.34.8/assets/manual_abelian_introduction.md.B8MmCMfI.js +++ b/v0.34.8/assets/manual_abelian_introduction.md.B8MmCMfI.js @@ -6,4 +6,4 @@ import{_ as r,c as l,j as t,a as e,a5 as i,G as o,B as Q,o as a}from"./chunks/fr 3-element Vector{FinGenAbGroup}: (Z/2)^3 Z/2 x Z/4 - Z/8

Invariants

`,2)),t("details",U,[t("summary",null,[s[73]||(s[73]=t("a",{id:"is_snf-Tuple{FinGenAbGroup}",href:"#is_snf-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_snf")],-1)),s[74]||(s[74]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[79]||(s[79]=i('
julia
is_snf(G::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[77]||(s[77]=e("Return whether the current relation matrix of the group ")),t("mjx-container",P,[(a(),l("svg",N,s[75]||(s[75]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[76]||(s[76]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[78]||(s[78]=e(" is in Smith normal form."))]),s[80]||(s[80]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q,[t("summary",null,[s[81]||(s[81]=t("a",{id:"number_of_generators-Tuple{FinGenAbGroup}",href:"#number_of_generators-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"number_of_generators")],-1)),s[82]||(s[82]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[87]||(s[87]=i('
julia
number_of_generators(G::FinGenAbGroup) -> Int
',1)),t("p",null,[s[85]||(s[85]=e("Return the number of generators of ")),t("mjx-container",$,[(a(),l("svg",W,s[83]||(s[83]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[84]||(s[84]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[86]||(s[86]=e(" in the current representation."))]),s[88]||(s[88]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",K,[t("summary",null,[s[89]||(s[89]=t("a",{id:"nrels-Tuple{FinGenAbGroup}",href:"#nrels-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"nrels")],-1)),s[90]||(s[90]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[95]||(s[95]=i('
julia
number_of_relations(G::FinGenAbGroup) -> Int
',1)),t("p",null,[s[93]||(s[93]=e("Return the number of relations of ")),t("mjx-container",Y,[(a(),l("svg",_,s[91]||(s[91]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[92]||(s[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[94]||(s[94]=e(" in the current representation."))]),s[96]||(s[96]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t1,[t("summary",null,[s[97]||(s[97]=t("a",{id:"rels-Tuple{FinGenAbGroup}",href:"#rels-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"rels")],-1)),s[98]||(s[98]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[103]||(s[103]=i('
julia
rels(A::FinGenAbGroup) -> ZZMatrix
',1)),t("p",null,[s[101]||(s[101]=e("Return the currently used relations of ")),t("mjx-container",s1,[(a(),l("svg",e1,s[99]||(s[99]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[100]||(s[100]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[102]||(s[102]=e(" as a single matrix."))]),s[104]||(s[104]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",i1,[t("summary",null,[s[105]||(s[105]=t("a",{id:"is_finite-Tuple{FinGenAbGroup}",href:"#is_finite-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_finite")],-1)),s[106]||(s[106]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[111]||(s[111]=i('
julia
isfinite(A::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[109]||(s[109]=e("Return whether ")),t("mjx-container",l1,[(a(),l("svg",a1,s[107]||(s[107]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[108]||(s[108]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[110]||(s[110]=e(" is finite."))]),s[112]||(s[112]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n1,[t("summary",null,[s[113]||(s[113]=t("a",{id:"torsion_free_rank-Tuple{FinGenAbGroup}",href:"#torsion_free_rank-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"torsion_free_rank")],-1)),s[114]||(s[114]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[125]||(s[125]=i('
julia
torsion_free_rank(A::FinGenAbGroup) -> Int
',1)),t("p",null,[s[121]||(s[121]=e("Return the torsion free rank of ")),t("mjx-container",o1,[(a(),l("svg",r1,s[115]||(s[115]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[116]||(s[116]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[122]||(s[122]=e(", that is, the dimension of the ")),t("mjx-container",Q1,[(a(),l("svg",p1,s[117]||(s[117]=[i('',1)]))),s[118]||(s[118]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),s[123]||(s[123]=e("-vectorspace ")),t("mjx-container",d1,[(a(),l("svg",T1,s[119]||(s[119]=[i('',1)]))),s[120]||(s[120]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A"),t("msub",null,[t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),s[124]||(s[124]=e("."))]),s[126]||(s[126]=t("p",null,[e("See also "),t("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#rank-Tuple{ZZGenus}"},[t("code",null,"rank")]),e(".")],-1)),s[127]||(s[127]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h1,[t("summary",null,[s[128]||(s[128]=t("a",{id:"order-Tuple{FinGenAbGroup}",href:"#order-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"order")],-1)),s[129]||(s[129]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[137]||(s[137]=i('
julia
order(A::FinGenAbGroup) -> ZZRingElem
',1)),t("p",null,[s[134]||(s[134]=e("Return the order of ")),t("mjx-container",m1,[(a(),l("svg",g1,s[130]||(s[130]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[131]||(s[131]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[135]||(s[135]=e(". It is assumed that ")),t("mjx-container",u1,[(a(),l("svg",k1,s[132]||(s[132]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[133]||(s[133]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[136]||(s[136]=e(" is finite."))]),s[138]||(s[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",x1,[t("summary",null,[s[139]||(s[139]=t("a",{id:"exponent-Tuple{FinGenAbGroup}",href:"#exponent-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"exponent")],-1)),s[140]||(s[140]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[148]||(s[148]=i('
julia
exponent(A::FinGenAbGroup) -> ZZRingElem
',1)),t("p",null,[s[145]||(s[145]=e("Return the exponent of ")),t("mjx-container",w1,[(a(),l("svg",b1,s[141]||(s[141]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[142]||(s[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[146]||(s[146]=e(". It is assumed that ")),t("mjx-container",c1,[(a(),l("svg",y1,s[143]||(s[143]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[144]||(s[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[147]||(s[147]=e(" is finite."))]),s[149]||(s[149]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",f1,[t("summary",null,[s[150]||(s[150]=t("a",{id:"is_trivial-Tuple{FinGenAbGroup}",href:"#is_trivial-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_trivial")],-1)),s[151]||(s[151]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[156]||(s[156]=i('
julia
is_trivial(A::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[154]||(s[154]=e("Return whether ")),t("mjx-container",v1,[(a(),l("svg",M1,s[152]||(s[152]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[153]||(s[153]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[155]||(s[155]=e(" is the trivial group."))]),s[157]||(s[157]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",L1,[t("summary",null,[s[158]||(s[158]=t("a",{id:"is_torsion-Tuple{FinGenAbGroup}",href:"#is_torsion-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_torsion")],-1)),s[159]||(s[159]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[160]||(s[160]=i('
julia
is_torsion(G::FinGenAbGroup) -> Bool

Return whether G is a torsion group.

source

',3))]),t("details",H1,[t("summary",null,[s[161]||(s[161]=t("a",{id:"is_cyclic-Tuple{FinGenAbGroup}",href:"#is_cyclic-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_cyclic")],-1)),s[162]||(s[162]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[167]||(s[167]=i('
julia
is_cyclic(G::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[165]||(s[165]=e("Return whether ")),t("mjx-container",E1,[(a(),l("svg",j1,s[163]||(s[163]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[164]||(s[164]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[166]||(s[166]=e(" is cyclic."))]),s[168]||(s[168]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",C1,[t("summary",null,[s[169]||(s[169]=t("a",{id:"elementary_divisors-Tuple{FinGenAbGroup}",href:"#elementary_divisors-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"elementary_divisors")],-1)),s[170]||(s[170]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[190]||(s[190]=i('
julia
elementary_divisors(G::FinGenAbGroup) -> Vector{ZZRingElem}
',1)),t("p",null,[s[183]||(s[183]=e("Given ")),t("mjx-container",F1,[(a(),l("svg",Z1,s[171]||(s[171]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[172]||(s[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[184]||(s[184]=e(", return the elementary divisors of ")),t("mjx-container",D1,[(a(),l("svg",A1,s[173]||(s[173]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[174]||(s[174]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[185]||(s[185]=e(", that is, the unique non-negative integers ")),t("mjx-container",G1,[(a(),l("svg",V1,s[175]||(s[175]=[i('',1)]))),s[176]||(s[176]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"e"),t("mi",null,"k")])])],-1))]),s[186]||(s[186]=e(" with ")),t("mjx-container",B1,[(a(),l("svg",O1,s[177]||(s[177]=[i('',1)]))),s[178]||(s[178]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mi",null,"i")]),t("mo",null,"∣"),t("msub",null,[t("mi",null,"e"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mn",null,"1")])])])],-1))]),s[187]||(s[187]=e(" and ")),t("mjx-container",R1,[(a(),l("svg",S1,s[179]||(s[179]=[i('',1)]))),s[180]||(s[180]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mi",null,"i")]),t("mo",null,"≠"),t("mn",null,"1")])],-1))]),s[188]||(s[188]=e(" such that ")),t("mjx-container",J1,[(a(),l("svg",z1,s[181]||(s[181]=[i('',1)]))),s[182]||(s[182]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G"),t("mo",null,"≅"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mi",null,"e"),t("mn",null,"1")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",null,"×"),t("mo",null,"⋯"),t("mo",null,"×"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mi",null,"e"),t("mi",null,"k")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[189]||(s[189]=e("."))]),s[191]||(s[191]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const K1=r(p,[["render",I1]]);export{W1 as __pageData,K1 as default}; + Z/8

Invariants

`,2)),t("details",U,[t("summary",null,[s[73]||(s[73]=t("a",{id:"is_snf-Tuple{FinGenAbGroup}",href:"#is_snf-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_snf")],-1)),s[74]||(s[74]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[79]||(s[79]=i('
julia
is_snf(G::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[77]||(s[77]=e("Return whether the current relation matrix of the group ")),t("mjx-container",P,[(a(),l("svg",N,s[75]||(s[75]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[76]||(s[76]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[78]||(s[78]=e(" is in Smith normal form."))]),s[80]||(s[80]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q,[t("summary",null,[s[81]||(s[81]=t("a",{id:"number_of_generators-Tuple{FinGenAbGroup}",href:"#number_of_generators-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"number_of_generators")],-1)),s[82]||(s[82]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[87]||(s[87]=i('
julia
number_of_generators(G::FinGenAbGroup) -> Int
',1)),t("p",null,[s[85]||(s[85]=e("Return the number of generators of ")),t("mjx-container",$,[(a(),l("svg",W,s[83]||(s[83]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[84]||(s[84]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[86]||(s[86]=e(" in the current representation."))]),s[88]||(s[88]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",K,[t("summary",null,[s[89]||(s[89]=t("a",{id:"nrels-Tuple{FinGenAbGroup}",href:"#nrels-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"nrels")],-1)),s[90]||(s[90]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[95]||(s[95]=i('
julia
number_of_relations(G::FinGenAbGroup) -> Int
',1)),t("p",null,[s[93]||(s[93]=e("Return the number of relations of ")),t("mjx-container",Y,[(a(),l("svg",_,s[91]||(s[91]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[92]||(s[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[94]||(s[94]=e(" in the current representation."))]),s[96]||(s[96]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t1,[t("summary",null,[s[97]||(s[97]=t("a",{id:"rels-Tuple{FinGenAbGroup}",href:"#rels-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"rels")],-1)),s[98]||(s[98]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[103]||(s[103]=i('
julia
rels(A::FinGenAbGroup) -> ZZMatrix
',1)),t("p",null,[s[101]||(s[101]=e("Return the currently used relations of ")),t("mjx-container",s1,[(a(),l("svg",e1,s[99]||(s[99]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[100]||(s[100]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[102]||(s[102]=e(" as a single matrix."))]),s[104]||(s[104]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",i1,[t("summary",null,[s[105]||(s[105]=t("a",{id:"is_finite-Tuple{FinGenAbGroup}",href:"#is_finite-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_finite")],-1)),s[106]||(s[106]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[111]||(s[111]=i('
julia
isfinite(A::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[109]||(s[109]=e("Return whether ")),t("mjx-container",l1,[(a(),l("svg",a1,s[107]||(s[107]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[108]||(s[108]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[110]||(s[110]=e(" is finite."))]),s[112]||(s[112]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n1,[t("summary",null,[s[113]||(s[113]=t("a",{id:"torsion_free_rank-Tuple{FinGenAbGroup}",href:"#torsion_free_rank-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"torsion_free_rank")],-1)),s[114]||(s[114]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[125]||(s[125]=i('
julia
torsion_free_rank(A::FinGenAbGroup) -> Int
',1)),t("p",null,[s[121]||(s[121]=e("Return the torsion free rank of ")),t("mjx-container",o1,[(a(),l("svg",r1,s[115]||(s[115]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[116]||(s[116]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[122]||(s[122]=e(", that is, the dimension of the ")),t("mjx-container",Q1,[(a(),l("svg",p1,s[117]||(s[117]=[i('',1)]))),s[118]||(s[118]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),s[123]||(s[123]=e("-vectorspace ")),t("mjx-container",d1,[(a(),l("svg",T1,s[119]||(s[119]=[i('',1)]))),s[120]||(s[120]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A"),t("msub",null,[t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),s[124]||(s[124]=e("."))]),s[126]||(s[126]=t("p",null,[e("See also "),t("a",{href:"/v0.34.8/manual/quad_forms/Zgenera#rank-Tuple{ZZGenus}"},[t("code",null,"rank")]),e(".")],-1)),s[127]||(s[127]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h1,[t("summary",null,[s[128]||(s[128]=t("a",{id:"order-Tuple{FinGenAbGroup}",href:"#order-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"order")],-1)),s[129]||(s[129]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[137]||(s[137]=i('
julia
order(A::FinGenAbGroup) -> ZZRingElem
',1)),t("p",null,[s[134]||(s[134]=e("Return the order of ")),t("mjx-container",m1,[(a(),l("svg",g1,s[130]||(s[130]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[131]||(s[131]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[135]||(s[135]=e(". It is assumed that ")),t("mjx-container",u1,[(a(),l("svg",k1,s[132]||(s[132]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[133]||(s[133]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[136]||(s[136]=e(" is finite."))]),s[138]||(s[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",x1,[t("summary",null,[s[139]||(s[139]=t("a",{id:"exponent-Tuple{FinGenAbGroup}",href:"#exponent-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"exponent")],-1)),s[140]||(s[140]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[148]||(s[148]=i('
julia
exponent(A::FinGenAbGroup) -> ZZRingElem
',1)),t("p",null,[s[145]||(s[145]=e("Return the exponent of ")),t("mjx-container",w1,[(a(),l("svg",b1,s[141]||(s[141]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[142]||(s[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[146]||(s[146]=e(". It is assumed that ")),t("mjx-container",c1,[(a(),l("svg",y1,s[143]||(s[143]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[144]||(s[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[147]||(s[147]=e(" is finite."))]),s[149]||(s[149]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",f1,[t("summary",null,[s[150]||(s[150]=t("a",{id:"is_trivial-Tuple{FinGenAbGroup}",href:"#is_trivial-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_trivial")],-1)),s[151]||(s[151]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[156]||(s[156]=i('
julia
is_trivial(A::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[154]||(s[154]=e("Return whether ")),t("mjx-container",v1,[(a(),l("svg",M1,s[152]||(s[152]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[153]||(s[153]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[155]||(s[155]=e(" is the trivial group."))]),s[157]||(s[157]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",L1,[t("summary",null,[s[158]||(s[158]=t("a",{id:"is_torsion-Tuple{FinGenAbGroup}",href:"#is_torsion-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_torsion")],-1)),s[159]||(s[159]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[160]||(s[160]=i('
julia
is_torsion(G::FinGenAbGroup) -> Bool

Return whether G is a torsion group.

source

',3))]),t("details",H1,[t("summary",null,[s[161]||(s[161]=t("a",{id:"is_cyclic-Tuple{FinGenAbGroup}",href:"#is_cyclic-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_cyclic")],-1)),s[162]||(s[162]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[167]||(s[167]=i('
julia
is_cyclic(G::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[165]||(s[165]=e("Return whether ")),t("mjx-container",E1,[(a(),l("svg",j1,s[163]||(s[163]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[164]||(s[164]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[166]||(s[166]=e(" is cyclic."))]),s[168]||(s[168]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",C1,[t("summary",null,[s[169]||(s[169]=t("a",{id:"elementary_divisors-Tuple{FinGenAbGroup}",href:"#elementary_divisors-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"elementary_divisors")],-1)),s[170]||(s[170]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[190]||(s[190]=i('
julia
elementary_divisors(G::FinGenAbGroup) -> Vector{ZZRingElem}
',1)),t("p",null,[s[183]||(s[183]=e("Given ")),t("mjx-container",F1,[(a(),l("svg",Z1,s[171]||(s[171]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[172]||(s[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[184]||(s[184]=e(", return the elementary divisors of ")),t("mjx-container",D1,[(a(),l("svg",A1,s[173]||(s[173]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[174]||(s[174]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[185]||(s[185]=e(", that is, the unique non-negative integers ")),t("mjx-container",G1,[(a(),l("svg",V1,s[175]||(s[175]=[i('',1)]))),s[176]||(s[176]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"e"),t("mi",null,"k")])])],-1))]),s[186]||(s[186]=e(" with ")),t("mjx-container",B1,[(a(),l("svg",O1,s[177]||(s[177]=[i('',1)]))),s[178]||(s[178]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mi",null,"i")]),t("mo",null,"∣"),t("msub",null,[t("mi",null,"e"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mn",null,"1")])])])],-1))]),s[187]||(s[187]=e(" and ")),t("mjx-container",R1,[(a(),l("svg",S1,s[179]||(s[179]=[i('',1)]))),s[180]||(s[180]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mi",null,"i")]),t("mo",null,"≠"),t("mn",null,"1")])],-1))]),s[188]||(s[188]=e(" such that ")),t("mjx-container",J1,[(a(),l("svg",z1,s[181]||(s[181]=[i('',1)]))),s[182]||(s[182]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G"),t("mo",null,"≅"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mi",null,"e"),t("mn",null,"1")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",null,"×"),t("mo",null,"⋯"),t("mo",null,"×"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mi",null,"e"),t("mi",null,"k")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[189]||(s[189]=e("."))]),s[191]||(s[191]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const K1=r(p,[["render",I1]]);export{W1 as __pageData,K1 as default}; diff --git a/v0.34.8/assets/manual_abelian_introduction.md.B8MmCMfI.lean.js b/v0.34.8/assets/manual_abelian_introduction.md.B8MmCMfI.lean.js index b937086597..52417611b2 100644 --- a/v0.34.8/assets/manual_abelian_introduction.md.B8MmCMfI.lean.js +++ b/v0.34.8/assets/manual_abelian_introduction.md.B8MmCMfI.lean.js @@ -6,4 +6,4 @@ import{_ as r,c as l,j as t,a as e,a5 as i,G as o,B as Q,o as a}from"./chunks/fr 3-element Vector{FinGenAbGroup}: (Z/2)^3 Z/2 x Z/4 - Z/8

Invariants

`,2)),t("details",U,[t("summary",null,[s[73]||(s[73]=t("a",{id:"is_snf-Tuple{FinGenAbGroup}",href:"#is_snf-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_snf")],-1)),s[74]||(s[74]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[79]||(s[79]=i('
julia
is_snf(G::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[77]||(s[77]=e("Return whether the current relation matrix of the group ")),t("mjx-container",P,[(a(),l("svg",N,s[75]||(s[75]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[76]||(s[76]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[78]||(s[78]=e(" is in Smith normal form."))]),s[80]||(s[80]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q,[t("summary",null,[s[81]||(s[81]=t("a",{id:"number_of_generators-Tuple{FinGenAbGroup}",href:"#number_of_generators-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"number_of_generators")],-1)),s[82]||(s[82]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[87]||(s[87]=i('
julia
number_of_generators(G::FinGenAbGroup) -> Int
',1)),t("p",null,[s[85]||(s[85]=e("Return the number of generators of ")),t("mjx-container",$,[(a(),l("svg",W,s[83]||(s[83]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[84]||(s[84]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[86]||(s[86]=e(" in the current representation."))]),s[88]||(s[88]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",K,[t("summary",null,[s[89]||(s[89]=t("a",{id:"nrels-Tuple{FinGenAbGroup}",href:"#nrels-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"nrels")],-1)),s[90]||(s[90]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[95]||(s[95]=i('
julia
number_of_relations(G::FinGenAbGroup) -> Int
',1)),t("p",null,[s[93]||(s[93]=e("Return the number of relations of ")),t("mjx-container",Y,[(a(),l("svg",_,s[91]||(s[91]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[92]||(s[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[94]||(s[94]=e(" in the current representation."))]),s[96]||(s[96]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t1,[t("summary",null,[s[97]||(s[97]=t("a",{id:"rels-Tuple{FinGenAbGroup}",href:"#rels-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"rels")],-1)),s[98]||(s[98]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[103]||(s[103]=i('
julia
rels(A::FinGenAbGroup) -> ZZMatrix
',1)),t("p",null,[s[101]||(s[101]=e("Return the currently used relations of ")),t("mjx-container",s1,[(a(),l("svg",e1,s[99]||(s[99]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[100]||(s[100]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[102]||(s[102]=e(" as a single matrix."))]),s[104]||(s[104]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",i1,[t("summary",null,[s[105]||(s[105]=t("a",{id:"is_finite-Tuple{FinGenAbGroup}",href:"#is_finite-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_finite")],-1)),s[106]||(s[106]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[111]||(s[111]=i('
julia
isfinite(A::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[109]||(s[109]=e("Return whether ")),t("mjx-container",l1,[(a(),l("svg",a1,s[107]||(s[107]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[108]||(s[108]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[110]||(s[110]=e(" is finite."))]),s[112]||(s[112]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n1,[t("summary",null,[s[113]||(s[113]=t("a",{id:"torsion_free_rank-Tuple{FinGenAbGroup}",href:"#torsion_free_rank-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"torsion_free_rank")],-1)),s[114]||(s[114]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[125]||(s[125]=i('
julia
torsion_free_rank(A::FinGenAbGroup) -> Int
',1)),t("p",null,[s[121]||(s[121]=e("Return the torsion free rank of ")),t("mjx-container",o1,[(a(),l("svg",r1,s[115]||(s[115]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[116]||(s[116]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[122]||(s[122]=e(", that is, the dimension of the ")),t("mjx-container",Q1,[(a(),l("svg",p1,s[117]||(s[117]=[i('',1)]))),s[118]||(s[118]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),s[123]||(s[123]=e("-vectorspace ")),t("mjx-container",d1,[(a(),l("svg",T1,s[119]||(s[119]=[i('',1)]))),s[120]||(s[120]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A"),t("msub",null,[t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),s[124]||(s[124]=e("."))]),s[126]||(s[126]=t("p",null,[e("See also "),t("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#rank-Tuple{ZZGenus}"},[t("code",null,"rank")]),e(".")],-1)),s[127]||(s[127]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h1,[t("summary",null,[s[128]||(s[128]=t("a",{id:"order-Tuple{FinGenAbGroup}",href:"#order-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"order")],-1)),s[129]||(s[129]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[137]||(s[137]=i('
julia
order(A::FinGenAbGroup) -> ZZRingElem
',1)),t("p",null,[s[134]||(s[134]=e("Return the order of ")),t("mjx-container",m1,[(a(),l("svg",g1,s[130]||(s[130]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[131]||(s[131]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[135]||(s[135]=e(". It is assumed that ")),t("mjx-container",u1,[(a(),l("svg",k1,s[132]||(s[132]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[133]||(s[133]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[136]||(s[136]=e(" is finite."))]),s[138]||(s[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",x1,[t("summary",null,[s[139]||(s[139]=t("a",{id:"exponent-Tuple{FinGenAbGroup}",href:"#exponent-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"exponent")],-1)),s[140]||(s[140]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[148]||(s[148]=i('
julia
exponent(A::FinGenAbGroup) -> ZZRingElem
',1)),t("p",null,[s[145]||(s[145]=e("Return the exponent of ")),t("mjx-container",w1,[(a(),l("svg",b1,s[141]||(s[141]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[142]||(s[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[146]||(s[146]=e(". It is assumed that ")),t("mjx-container",c1,[(a(),l("svg",y1,s[143]||(s[143]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[144]||(s[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[147]||(s[147]=e(" is finite."))]),s[149]||(s[149]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",f1,[t("summary",null,[s[150]||(s[150]=t("a",{id:"is_trivial-Tuple{FinGenAbGroup}",href:"#is_trivial-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_trivial")],-1)),s[151]||(s[151]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[156]||(s[156]=i('
julia
is_trivial(A::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[154]||(s[154]=e("Return whether ")),t("mjx-container",v1,[(a(),l("svg",M1,s[152]||(s[152]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[153]||(s[153]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[155]||(s[155]=e(" is the trivial group."))]),s[157]||(s[157]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",L1,[t("summary",null,[s[158]||(s[158]=t("a",{id:"is_torsion-Tuple{FinGenAbGroup}",href:"#is_torsion-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_torsion")],-1)),s[159]||(s[159]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[160]||(s[160]=i('
julia
is_torsion(G::FinGenAbGroup) -> Bool

Return whether G is a torsion group.

source

',3))]),t("details",H1,[t("summary",null,[s[161]||(s[161]=t("a",{id:"is_cyclic-Tuple{FinGenAbGroup}",href:"#is_cyclic-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_cyclic")],-1)),s[162]||(s[162]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[167]||(s[167]=i('
julia
is_cyclic(G::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[165]||(s[165]=e("Return whether ")),t("mjx-container",E1,[(a(),l("svg",j1,s[163]||(s[163]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[164]||(s[164]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[166]||(s[166]=e(" is cyclic."))]),s[168]||(s[168]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",C1,[t("summary",null,[s[169]||(s[169]=t("a",{id:"elementary_divisors-Tuple{FinGenAbGroup}",href:"#elementary_divisors-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"elementary_divisors")],-1)),s[170]||(s[170]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[190]||(s[190]=i('
julia
elementary_divisors(G::FinGenAbGroup) -> Vector{ZZRingElem}
',1)),t("p",null,[s[183]||(s[183]=e("Given ")),t("mjx-container",F1,[(a(),l("svg",Z1,s[171]||(s[171]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[172]||(s[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[184]||(s[184]=e(", return the elementary divisors of ")),t("mjx-container",D1,[(a(),l("svg",A1,s[173]||(s[173]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[174]||(s[174]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[185]||(s[185]=e(", that is, the unique non-negative integers ")),t("mjx-container",G1,[(a(),l("svg",V1,s[175]||(s[175]=[i('',1)]))),s[176]||(s[176]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"e"),t("mi",null,"k")])])],-1))]),s[186]||(s[186]=e(" with ")),t("mjx-container",B1,[(a(),l("svg",O1,s[177]||(s[177]=[i('',1)]))),s[178]||(s[178]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mi",null,"i")]),t("mo",null,"∣"),t("msub",null,[t("mi",null,"e"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mn",null,"1")])])])],-1))]),s[187]||(s[187]=e(" and ")),t("mjx-container",R1,[(a(),l("svg",S1,s[179]||(s[179]=[i('',1)]))),s[180]||(s[180]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mi",null,"i")]),t("mo",null,"≠"),t("mn",null,"1")])],-1))]),s[188]||(s[188]=e(" such that ")),t("mjx-container",J1,[(a(),l("svg",z1,s[181]||(s[181]=[i('',1)]))),s[182]||(s[182]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G"),t("mo",null,"≅"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mi",null,"e"),t("mn",null,"1")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",null,"×"),t("mo",null,"⋯"),t("mo",null,"×"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mi",null,"e"),t("mi",null,"k")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[189]||(s[189]=e("."))]),s[191]||(s[191]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const K1=r(p,[["render",I1]]);export{W1 as __pageData,K1 as default}; + Z/8

Invariants

`,2)),t("details",U,[t("summary",null,[s[73]||(s[73]=t("a",{id:"is_snf-Tuple{FinGenAbGroup}",href:"#is_snf-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_snf")],-1)),s[74]||(s[74]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[79]||(s[79]=i('
julia
is_snf(G::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[77]||(s[77]=e("Return whether the current relation matrix of the group ")),t("mjx-container",P,[(a(),l("svg",N,s[75]||(s[75]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[76]||(s[76]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[78]||(s[78]=e(" is in Smith normal form."))]),s[80]||(s[80]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q,[t("summary",null,[s[81]||(s[81]=t("a",{id:"number_of_generators-Tuple{FinGenAbGroup}",href:"#number_of_generators-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"number_of_generators")],-1)),s[82]||(s[82]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[87]||(s[87]=i('
julia
number_of_generators(G::FinGenAbGroup) -> Int
',1)),t("p",null,[s[85]||(s[85]=e("Return the number of generators of ")),t("mjx-container",$,[(a(),l("svg",W,s[83]||(s[83]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[84]||(s[84]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[86]||(s[86]=e(" in the current representation."))]),s[88]||(s[88]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",K,[t("summary",null,[s[89]||(s[89]=t("a",{id:"nrels-Tuple{FinGenAbGroup}",href:"#nrels-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"nrels")],-1)),s[90]||(s[90]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[95]||(s[95]=i('
julia
number_of_relations(G::FinGenAbGroup) -> Int
',1)),t("p",null,[s[93]||(s[93]=e("Return the number of relations of ")),t("mjx-container",Y,[(a(),l("svg",_,s[91]||(s[91]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[92]||(s[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[94]||(s[94]=e(" in the current representation."))]),s[96]||(s[96]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t1,[t("summary",null,[s[97]||(s[97]=t("a",{id:"rels-Tuple{FinGenAbGroup}",href:"#rels-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"rels")],-1)),s[98]||(s[98]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[103]||(s[103]=i('
julia
rels(A::FinGenAbGroup) -> ZZMatrix
',1)),t("p",null,[s[101]||(s[101]=e("Return the currently used relations of ")),t("mjx-container",s1,[(a(),l("svg",e1,s[99]||(s[99]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[100]||(s[100]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[102]||(s[102]=e(" as a single matrix."))]),s[104]||(s[104]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",i1,[t("summary",null,[s[105]||(s[105]=t("a",{id:"is_finite-Tuple{FinGenAbGroup}",href:"#is_finite-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_finite")],-1)),s[106]||(s[106]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[111]||(s[111]=i('
julia
isfinite(A::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[109]||(s[109]=e("Return whether ")),t("mjx-container",l1,[(a(),l("svg",a1,s[107]||(s[107]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[108]||(s[108]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[110]||(s[110]=e(" is finite."))]),s[112]||(s[112]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n1,[t("summary",null,[s[113]||(s[113]=t("a",{id:"torsion_free_rank-Tuple{FinGenAbGroup}",href:"#torsion_free_rank-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"torsion_free_rank")],-1)),s[114]||(s[114]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[125]||(s[125]=i('
julia
torsion_free_rank(A::FinGenAbGroup) -> Int
',1)),t("p",null,[s[121]||(s[121]=e("Return the torsion free rank of ")),t("mjx-container",o1,[(a(),l("svg",r1,s[115]||(s[115]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[116]||(s[116]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[122]||(s[122]=e(", that is, the dimension of the ")),t("mjx-container",Q1,[(a(),l("svg",p1,s[117]||(s[117]=[i('',1)]))),s[118]||(s[118]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),s[123]||(s[123]=e("-vectorspace ")),t("mjx-container",d1,[(a(),l("svg",T1,s[119]||(s[119]=[i('',1)]))),s[120]||(s[120]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A"),t("msub",null,[t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),s[124]||(s[124]=e("."))]),s[126]||(s[126]=t("p",null,[e("See also "),t("a",{href:"/v0.34.8/manual/quad_forms/Zgenera#rank-Tuple{ZZGenus}"},[t("code",null,"rank")]),e(".")],-1)),s[127]||(s[127]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h1,[t("summary",null,[s[128]||(s[128]=t("a",{id:"order-Tuple{FinGenAbGroup}",href:"#order-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"order")],-1)),s[129]||(s[129]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[137]||(s[137]=i('
julia
order(A::FinGenAbGroup) -> ZZRingElem
',1)),t("p",null,[s[134]||(s[134]=e("Return the order of ")),t("mjx-container",m1,[(a(),l("svg",g1,s[130]||(s[130]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[131]||(s[131]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[135]||(s[135]=e(". It is assumed that ")),t("mjx-container",u1,[(a(),l("svg",k1,s[132]||(s[132]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[133]||(s[133]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[136]||(s[136]=e(" is finite."))]),s[138]||(s[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",x1,[t("summary",null,[s[139]||(s[139]=t("a",{id:"exponent-Tuple{FinGenAbGroup}",href:"#exponent-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"exponent")],-1)),s[140]||(s[140]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[148]||(s[148]=i('
julia
exponent(A::FinGenAbGroup) -> ZZRingElem
',1)),t("p",null,[s[145]||(s[145]=e("Return the exponent of ")),t("mjx-container",w1,[(a(),l("svg",b1,s[141]||(s[141]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[142]||(s[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[146]||(s[146]=e(". It is assumed that ")),t("mjx-container",c1,[(a(),l("svg",y1,s[143]||(s[143]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[144]||(s[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[147]||(s[147]=e(" is finite."))]),s[149]||(s[149]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",f1,[t("summary",null,[s[150]||(s[150]=t("a",{id:"is_trivial-Tuple{FinGenAbGroup}",href:"#is_trivial-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_trivial")],-1)),s[151]||(s[151]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[156]||(s[156]=i('
julia
is_trivial(A::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[154]||(s[154]=e("Return whether ")),t("mjx-container",v1,[(a(),l("svg",M1,s[152]||(s[152]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),s[153]||(s[153]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),s[155]||(s[155]=e(" is the trivial group."))]),s[157]||(s[157]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",L1,[t("summary",null,[s[158]||(s[158]=t("a",{id:"is_torsion-Tuple{FinGenAbGroup}",href:"#is_torsion-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_torsion")],-1)),s[159]||(s[159]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[160]||(s[160]=i('
julia
is_torsion(G::FinGenAbGroup) -> Bool

Return whether G is a torsion group.

source

',3))]),t("details",H1,[t("summary",null,[s[161]||(s[161]=t("a",{id:"is_cyclic-Tuple{FinGenAbGroup}",href:"#is_cyclic-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_cyclic")],-1)),s[162]||(s[162]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[167]||(s[167]=i('
julia
is_cyclic(G::FinGenAbGroup) -> Bool
',1)),t("p",null,[s[165]||(s[165]=e("Return whether ")),t("mjx-container",E1,[(a(),l("svg",j1,s[163]||(s[163]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[164]||(s[164]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[166]||(s[166]=e(" is cyclic."))]),s[168]||(s[168]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",C1,[t("summary",null,[s[169]||(s[169]=t("a",{id:"elementary_divisors-Tuple{FinGenAbGroup}",href:"#elementary_divisors-Tuple{FinGenAbGroup}"},[t("span",{class:"jlbinding"},"elementary_divisors")],-1)),s[170]||(s[170]=e()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[190]||(s[190]=i('
julia
elementary_divisors(G::FinGenAbGroup) -> Vector{ZZRingElem}
',1)),t("p",null,[s[183]||(s[183]=e("Given ")),t("mjx-container",F1,[(a(),l("svg",Z1,s[171]||(s[171]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[172]||(s[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[184]||(s[184]=e(", return the elementary divisors of ")),t("mjx-container",D1,[(a(),l("svg",A1,s[173]||(s[173]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[174]||(s[174]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[185]||(s[185]=e(", that is, the unique non-negative integers ")),t("mjx-container",G1,[(a(),l("svg",V1,s[175]||(s[175]=[i('',1)]))),s[176]||(s[176]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"e"),t("mi",null,"k")])])],-1))]),s[186]||(s[186]=e(" with ")),t("mjx-container",B1,[(a(),l("svg",O1,s[177]||(s[177]=[i('',1)]))),s[178]||(s[178]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mi",null,"i")]),t("mo",null,"∣"),t("msub",null,[t("mi",null,"e"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mn",null,"1")])])])],-1))]),s[187]||(s[187]=e(" and ")),t("mjx-container",R1,[(a(),l("svg",S1,s[179]||(s[179]=[i('',1)]))),s[180]||(s[180]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"e"),t("mi",null,"i")]),t("mo",null,"≠"),t("mn",null,"1")])],-1))]),s[188]||(s[188]=e(" such that ")),t("mjx-container",J1,[(a(),l("svg",z1,s[181]||(s[181]=[i('',1)]))),s[182]||(s[182]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G"),t("mo",null,"≅"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mi",null,"e"),t("mn",null,"1")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",null,"×"),t("mo",null,"⋯"),t("mo",null,"×"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mi",null,"e"),t("mi",null,"k")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[189]||(s[189]=e("."))]),s[191]||(s[191]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const K1=r(p,[["render",I1]]);export{W1 as __pageData,K1 as default}; diff --git a/v0.34.8/assets/manual_abelian_structural.md.BDMufbJO.js b/v0.34.8/assets/manual_abelian_structural.md.BDMufbJO.js index 42ea28a819..dde9f67c70 100644 --- a/v0.34.8/assets/manual_abelian_structural.md.BDMufbJO.js +++ b/v0.34.8/assets/manual_abelian_structural.md.BDMufbJO.js @@ -8,7 +8,7 @@ import{_ as Q,c as e,a5 as a,j as t,a as i,G as o,B as r,o as l}from"./chunks/fr julia> divexact(order(A), order(H)) 45

source

`,3))]),t("details",M2,[t("summary",null,[s[159]||(s[159]=t("a",{id:"has_quotient-Tuple{FinGenAbGroup, Vector{Int64}}",href:"#has_quotient-Tuple{FinGenAbGroup, Vector{Int64}}"},[t("span",{class:"jlbinding"},"has_quotient")],-1)),s[160]||(s[160]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[165]||(s[165]=a('
julia
has_quotient(G::FinGenAbGroup, invariant::Vector{Int}) -> Bool
',1)),t("p",null,[s[163]||(s[163]=i("Given an abelian group ")),t("mjx-container",C2,[(l(),e("svg",L2,s[161]||(s[161]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[162]||(s[162]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[164]||(s[164]=i(", return true if it has a quotient with given elementary divisors and false otherwise."))]),s[166]||(s[166]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",j2,[t("summary",null,[s[167]||(s[167]=t("a",{id:"has_complement-Tuple{FinGenAbGroupHom}",href:"#has_complement-Tuple{FinGenAbGroupHom}"},[t("span",{class:"jlbinding"},"has_complement")],-1)),s[168]||(s[168]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[180]||(s[180]=a(`
julia
has_complement(f::FinGenAbGroupHom) -> Bool, FinGenAbGroupHom
-has_complement(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool, FinGenAbGroupHom
`,1)),t("p",null,[s[173]||(s[173]=i("Given a map representing a subgroup of a group ")),t("mjx-container",G2,[(l(),e("svg",A2,s[169]||(s[169]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[170]||(s[170]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[174]||(s[174]=i(", or a subgroup ")),s[175]||(s[175]=t("code",null,"U",-1)),s[176]||(s[176]=i(" of a group ")),s[177]||(s[177]=t("code",null,"G",-1)),s[178]||(s[178]=i(", return either true and an injection of a complement in ")),t("mjx-container",Z2,[(l(),e("svg",B2,s[171]||(s[171]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[172]||(s[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[179]||(s[179]=i(", or false."))]),s[181]||(s[181]=t("p",null,[i("See also: "),t("a",{href:"/Hecke.jl/v0.34.8/manual/abelian/structural#is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("code",null,"is_pure")])],-1)),s[182]||(s[182]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",D2,[t("summary",null,[s[183]||(s[183]=t("a",{id:"is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_pure")],-1)),s[184]||(s[184]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[185]||(s[185]=a(`
julia
is_pure(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called pure if for all n an element in U that is in the image of the multiplication by n map of G is also a multiple of an element in U.

For finite abelian groups this is equivalent to U having a complement in G. They are also know as isolated subgroups and serving subgroups.

See also: is_neat, has_complement

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
+has_complement(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool, FinGenAbGroupHom
`,1)),t("p",null,[s[173]||(s[173]=i("Given a map representing a subgroup of a group ")),t("mjx-container",G2,[(l(),e("svg",A2,s[169]||(s[169]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[170]||(s[170]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[174]||(s[174]=i(", or a subgroup ")),s[175]||(s[175]=t("code",null,"U",-1)),s[176]||(s[176]=i(" of a group ")),s[177]||(s[177]=t("code",null,"G",-1)),s[178]||(s[178]=i(", return either true and an injection of a complement in ")),t("mjx-container",Z2,[(l(),e("svg",B2,s[171]||(s[171]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[172]||(s[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[179]||(s[179]=i(", or false."))]),s[181]||(s[181]=t("p",null,[i("See also: "),t("a",{href:"/v0.34.8/manual/abelian/structural#is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("code",null,"is_pure")])],-1)),s[182]||(s[182]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",D2,[t("summary",null,[s[183]||(s[183]=t("a",{id:"is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_pure")],-1)),s[184]||(s[184]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[185]||(s[185]=a(`
julia
is_pure(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called pure if for all n an element in U that is in the image of the multiplication by n map of G is also a multiple of an element in U.

For finite abelian groups this is equivalent to U having a complement in G. They are also know as isolated subgroups and serving subgroups.

See also: is_neat, has_complement

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
 
 julia> U, _ = sub(G, [G[1]+2*G[2]]);
 
@@ -21,7 +21,7 @@ import{_ as Q,c as e,a5 as a,j as t,a as i,G as o,B as r,o as l}from"./chunks/fr
 true
 
 julia> has_complement(U, G)[1]
-true

source

`,7))]),t("details",V2,[t("summary",null,[s[186]||(s[186]=t("a",{id:"is_neat-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#is_neat-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_neat")],-1)),s[187]||(s[187]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[188]||(s[188]=a(`
julia
is_neat(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called neat if for all primes p an element in U that is in the image of the multiplication by p map of G is also a multiple of an element in U.

See also: is_pure

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
+true

source

`,7))]),t("details",V2,[t("summary",null,[s[186]||(s[186]=t("a",{id:"is_neat-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#is_neat-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_neat")],-1)),s[187]||(s[187]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[188]||(s[188]=a(`
julia
is_neat(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called neat if for all primes p an element in U that is in the image of the multiplication by p map of G is also a multiple of an element in U.

See also: is_pure

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
 
 julia> U, _ = sub(G, [G[1] + 2*G[2]]);
 
@@ -29,7 +29,7 @@ import{_ as Q,c as e,a5 as a,j as t,a as i,G as o,B as r,o as l}from"./chunks/fr
 true
 
 julia> is_pure(U, G)
-false

source

`,6))]),t("details",S2,[t("summary",null,[s[189]||(s[189]=t("a",{id:"saturate-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#saturate-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"saturate")],-1)),s[190]||(s[190]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[191]||(s[191]=a('
julia
saturate(U::FinGenAbGroup, G::FinGenAbGroup) -> FinGenAbGroup

For a subgroup U of G find a minimal overgroup that is pure, and thus has a complement.

See also: is_pure, has_complement

source

',4))]),s[468]||(s[468]=t("p",null,"A sophisticated algorithm for the enumeration of all (or selected) subgroups of a finite abelian group is available.",-1)),t("details",J2,[t("summary",null,[s[192]||(s[192]=t("a",{id:"psubgroups-Tuple{FinGenAbGroup, Integer}",href:"#psubgroups-Tuple{FinGenAbGroup, Integer}"},[t("span",{class:"jlbinding"},"psubgroups")],-1)),s[193]||(s[193]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[205]||(s[205]=a(`
julia
psubgroups(g::FinGenAbGroup, p::Integer;
+false

source

`,6))]),t("details",S2,[t("summary",null,[s[189]||(s[189]=t("a",{id:"saturate-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#saturate-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"saturate")],-1)),s[190]||(s[190]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[191]||(s[191]=a('
julia
saturate(U::FinGenAbGroup, G::FinGenAbGroup) -> FinGenAbGroup

For a subgroup U of G find a minimal overgroup that is pure, and thus has a complement.

See also: is_pure, has_complement

source

',4))]),s[468]||(s[468]=t("p",null,"A sophisticated algorithm for the enumeration of all (or selected) subgroups of a finite abelian group is available.",-1)),t("details",J2,[t("summary",null,[s[192]||(s[192]=t("a",{id:"psubgroups-Tuple{FinGenAbGroup, Integer}",href:"#psubgroups-Tuple{FinGenAbGroup, Integer}"},[t("span",{class:"jlbinding"},"psubgroups")],-1)),s[193]||(s[193]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[205]||(s[205]=a(`
julia
psubgroups(g::FinGenAbGroup, p::Integer;
            subtype = :all,
            quotype = :all,
            index = -1,
diff --git a/v0.34.8/assets/manual_abelian_structural.md.BDMufbJO.lean.js b/v0.34.8/assets/manual_abelian_structural.md.BDMufbJO.lean.js
index 42ea28a819..dde9f67c70 100644
--- a/v0.34.8/assets/manual_abelian_structural.md.BDMufbJO.lean.js
+++ b/v0.34.8/assets/manual_abelian_structural.md.BDMufbJO.lean.js
@@ -8,7 +8,7 @@ import{_ as Q,c as e,a5 as a,j as t,a as i,G as o,B as r,o as l}from"./chunks/fr
 
 julia> divexact(order(A), order(H))
 45

source

`,3))]),t("details",M2,[t("summary",null,[s[159]||(s[159]=t("a",{id:"has_quotient-Tuple{FinGenAbGroup, Vector{Int64}}",href:"#has_quotient-Tuple{FinGenAbGroup, Vector{Int64}}"},[t("span",{class:"jlbinding"},"has_quotient")],-1)),s[160]||(s[160]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[165]||(s[165]=a('
julia
has_quotient(G::FinGenAbGroup, invariant::Vector{Int}) -> Bool
',1)),t("p",null,[s[163]||(s[163]=i("Given an abelian group ")),t("mjx-container",C2,[(l(),e("svg",L2,s[161]||(s[161]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[162]||(s[162]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[164]||(s[164]=i(", return true if it has a quotient with given elementary divisors and false otherwise."))]),s[166]||(s[166]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",j2,[t("summary",null,[s[167]||(s[167]=t("a",{id:"has_complement-Tuple{FinGenAbGroupHom}",href:"#has_complement-Tuple{FinGenAbGroupHom}"},[t("span",{class:"jlbinding"},"has_complement")],-1)),s[168]||(s[168]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[180]||(s[180]=a(`
julia
has_complement(f::FinGenAbGroupHom) -> Bool, FinGenAbGroupHom
-has_complement(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool, FinGenAbGroupHom
`,1)),t("p",null,[s[173]||(s[173]=i("Given a map representing a subgroup of a group ")),t("mjx-container",G2,[(l(),e("svg",A2,s[169]||(s[169]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[170]||(s[170]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[174]||(s[174]=i(", or a subgroup ")),s[175]||(s[175]=t("code",null,"U",-1)),s[176]||(s[176]=i(" of a group ")),s[177]||(s[177]=t("code",null,"G",-1)),s[178]||(s[178]=i(", return either true and an injection of a complement in ")),t("mjx-container",Z2,[(l(),e("svg",B2,s[171]||(s[171]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[172]||(s[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[179]||(s[179]=i(", or false."))]),s[181]||(s[181]=t("p",null,[i("See also: "),t("a",{href:"/Hecke.jl/v0.34.8/manual/abelian/structural#is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("code",null,"is_pure")])],-1)),s[182]||(s[182]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",D2,[t("summary",null,[s[183]||(s[183]=t("a",{id:"is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_pure")],-1)),s[184]||(s[184]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[185]||(s[185]=a(`
julia
is_pure(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called pure if for all n an element in U that is in the image of the multiplication by n map of G is also a multiple of an element in U.

For finite abelian groups this is equivalent to U having a complement in G. They are also know as isolated subgroups and serving subgroups.

See also: is_neat, has_complement

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
+has_complement(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool, FinGenAbGroupHom
`,1)),t("p",null,[s[173]||(s[173]=i("Given a map representing a subgroup of a group ")),t("mjx-container",G2,[(l(),e("svg",A2,s[169]||(s[169]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[170]||(s[170]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[174]||(s[174]=i(", or a subgroup ")),s[175]||(s[175]=t("code",null,"U",-1)),s[176]||(s[176]=i(" of a group ")),s[177]||(s[177]=t("code",null,"G",-1)),s[178]||(s[178]=i(", return either true and an injection of a complement in ")),t("mjx-container",Z2,[(l(),e("svg",B2,s[171]||(s[171]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[172]||(s[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"G")])],-1))]),s[179]||(s[179]=i(", or false."))]),s[181]||(s[181]=t("p",null,[i("See also: "),t("a",{href:"/v0.34.8/manual/abelian/structural#is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("code",null,"is_pure")])],-1)),s[182]||(s[182]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",D2,[t("summary",null,[s[183]||(s[183]=t("a",{id:"is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#is_pure-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_pure")],-1)),s[184]||(s[184]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[185]||(s[185]=a(`
julia
is_pure(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called pure if for all n an element in U that is in the image of the multiplication by n map of G is also a multiple of an element in U.

For finite abelian groups this is equivalent to U having a complement in G. They are also know as isolated subgroups and serving subgroups.

See also: is_neat, has_complement

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
 
 julia> U, _ = sub(G, [G[1]+2*G[2]]);
 
@@ -21,7 +21,7 @@ import{_ as Q,c as e,a5 as a,j as t,a as i,G as o,B as r,o as l}from"./chunks/fr
 true
 
 julia> has_complement(U, G)[1]
-true

source

`,7))]),t("details",V2,[t("summary",null,[s[186]||(s[186]=t("a",{id:"is_neat-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#is_neat-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_neat")],-1)),s[187]||(s[187]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[188]||(s[188]=a(`
julia
is_neat(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called neat if for all primes p an element in U that is in the image of the multiplication by p map of G is also a multiple of an element in U.

See also: is_pure

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
+true

source

`,7))]),t("details",V2,[t("summary",null,[s[186]||(s[186]=t("a",{id:"is_neat-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#is_neat-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"is_neat")],-1)),s[187]||(s[187]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[188]||(s[188]=a(`
julia
is_neat(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called neat if for all primes p an element in U that is in the image of the multiplication by p map of G is also a multiple of an element in U.

See also: is_pure

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
 
 julia> U, _ = sub(G, [G[1] + 2*G[2]]);
 
@@ -29,7 +29,7 @@ import{_ as Q,c as e,a5 as a,j as t,a as i,G as o,B as r,o as l}from"./chunks/fr
 true
 
 julia> is_pure(U, G)
-false

source

`,6))]),t("details",S2,[t("summary",null,[s[189]||(s[189]=t("a",{id:"saturate-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#saturate-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"saturate")],-1)),s[190]||(s[190]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[191]||(s[191]=a('
julia
saturate(U::FinGenAbGroup, G::FinGenAbGroup) -> FinGenAbGroup

For a subgroup U of G find a minimal overgroup that is pure, and thus has a complement.

See also: is_pure, has_complement

source

',4))]),s[468]||(s[468]=t("p",null,"A sophisticated algorithm for the enumeration of all (or selected) subgroups of a finite abelian group is available.",-1)),t("details",J2,[t("summary",null,[s[192]||(s[192]=t("a",{id:"psubgroups-Tuple{FinGenAbGroup, Integer}",href:"#psubgroups-Tuple{FinGenAbGroup, Integer}"},[t("span",{class:"jlbinding"},"psubgroups")],-1)),s[193]||(s[193]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[205]||(s[205]=a(`
julia
psubgroups(g::FinGenAbGroup, p::Integer;
+false

source

`,6))]),t("details",S2,[t("summary",null,[s[189]||(s[189]=t("a",{id:"saturate-Tuple{FinGenAbGroup, FinGenAbGroup}",href:"#saturate-Tuple{FinGenAbGroup, FinGenAbGroup}"},[t("span",{class:"jlbinding"},"saturate")],-1)),s[190]||(s[190]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[191]||(s[191]=a('
julia
saturate(U::FinGenAbGroup, G::FinGenAbGroup) -> FinGenAbGroup

For a subgroup U of G find a minimal overgroup that is pure, and thus has a complement.

See also: is_pure, has_complement

source

',4))]),s[468]||(s[468]=t("p",null,"A sophisticated algorithm for the enumeration of all (or selected) subgroups of a finite abelian group is available.",-1)),t("details",J2,[t("summary",null,[s[192]||(s[192]=t("a",{id:"psubgroups-Tuple{FinGenAbGroup, Integer}",href:"#psubgroups-Tuple{FinGenAbGroup, Integer}"},[t("span",{class:"jlbinding"},"psubgroups")],-1)),s[193]||(s[193]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[205]||(s[205]=a(`
julia
psubgroups(g::FinGenAbGroup, p::Integer;
            subtype = :all,
            quotype = :all,
            index = -1,
diff --git a/v0.34.8/assets/manual_algebras_basics.md.CCIsU1L-.js b/v0.34.8/assets/manual_algebras_basics.md.CCIsU1L-.js
index 05f25ef047..e34f8f296c 100644
--- a/v0.34.8/assets/manual_algebras_basics.md.CCIsU1L-.js
+++ b/v0.34.8/assets/manual_algebras_basics.md.CCIsU1L-.js
@@ -1,8 +1,8 @@
-import{_ as r,c as e,a5 as a,j as s,a as i,G as o,B as p,o as l}from"./chunks/framework.DbhH0_mT.js";const qs=JSON.parse('{"title":"Basics","description":"","frontmatter":{},"headers":[],"relativePath":"manual/algebras/basics.md","filePath":"manual/algebras/basics.md","lastUpdated":null}'),h={name:"manual/algebras/basics.md"},d={class:"jldocstring custom-block",open:""},Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},g={class:"jldocstring custom-block",open:""},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},b={class:"jldocstring custom-block",open:""},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},j={class:"jldocstring custom-block",open:""},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},B={class:"jldocstring custom-block",open:""},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},N={class:"jldocstring custom-block",open:""},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},ss={class:"jldocstring custom-block",open:""},ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},es={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},as={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ns={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.888ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3928.3 1000","aria-hidden":"true"},os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},ps={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},hs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},ks={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},gs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},ms={class:"jldocstring custom-block",open:""},us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ws={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},cs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.936ex",height:"1.67ex",role:"img",focusable:"false",viewBox:"0 -716 3065.6 738","aria-hidden":"true"},ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},vs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Es={class:"jldocstring custom-block",open:""},fs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Cs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Fs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Hs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},js={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},Ms={class:"jldocstring custom-block",open:""},As={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Bs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Zs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Gs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ss={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"};function Js(Ks,t,Os,Ps,Is,Ns){const n=p("Badge");return l(),e("div",null,[t[175]||(t[175]=a('

Basics

Creation of algebras

See the corresponding sections on structure constant algebras.

',3)),s("details",d,[s("summary",null,[t[0]||(t[0]=s("a",{id:"zero_algebra-Tuple{Field}",href:"#zero_algebra-Tuple{Field}"},[s("span",{class:"jlbinding"},"zero_algebra")],-1)),t[1]||(t[1]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[6]||(t[6]=a('
julia
zero_algebra([T, ] K::Field) -> AbstractAssociativeAlgebra
',1)),s("p",null,[t[4]||(t[4]=i("Return the zero ring as an algebra over the field ")),s("mjx-container",Q,[(l(),e("svg",k,t[2]||(t[2]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[3]||(t[3]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[5]||(t[5]=i("."))]),t[7]||(t[7]=a(`

The optional first argument determines the type of the algebra, and can be StructureConstantAlgebra (default) or MatrixAlgebra.

Examples

julia
julia> A = zero_algebra(QQ)
-Structure constant algebra of dimension 0 over QQ

source

`,4))]),t[176]||(t[176]=s("h2",{id:"Basic-properties",tabindex:"-1"},[i("Basic properties "),s("a",{class:"header-anchor",href:"#Basic-properties","aria-label":'Permalink to "Basic properties {#Basic-properties}"'},"​")],-1)),s("details",g,[s("summary",null,[t[8]||(t[8]=s("a",{id:"base_ring-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#base_ring-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"base_ring")],-1)),t[9]||(t[9]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[20]||(t[20]=a('
julia
base_ring(A::AbstractAssociativeAlgebra) -> Field
',1)),s("p",null,[t[16]||(t[16]=i("Given a ")),s("mjx-container",m,[(l(),e("svg",u,t[10]||(t[10]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[11]||(t[11]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[17]||(t[17]=i("-algebra ")),s("mjx-container",x,[(l(),e("svg",T,t[12]||(t[12]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[13]||(t[13]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[18]||(t[18]=i(", return ")),s("mjx-container",w,[(l(),e("svg",c,t[14]||(t[14]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[15]||(t[15]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[19]||(t[19]=i("."))]),t[21]||(t[21]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",b,[s("summary",null,[t[22]||(t[22]=s("a",{id:"basis-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#basis-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"basis")],-1)),t[23]||(t[23]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[39]||(t[39]=a('
julia
basis(A::AbstractAssociativeAlgebra) -> Vector
',1)),s("p",null,[t[32]||(t[32]=i("Given a ")),s("mjx-container",y,[(l(),e("svg",v,t[24]||(t[24]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[25]||(t[25]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[33]||(t[33]=i("-algebra ")),s("mjx-container",E,[(l(),e("svg",f,t[26]||(t[26]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[27]||(t[27]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[34]||(t[34]=i(" return the ")),s("mjx-container",C,[(l(),e("svg",F,t[28]||(t[28]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[29]||(t[29]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[35]||(t[35]=i("-basis of ")),s("mjx-container",L,[(l(),e("svg",H,t[30]||(t[30]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[31]||(t[31]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[36]||(t[36]=i(". See also ")),t[37]||(t[37]=s("a",{href:"/Hecke.jl/v0.34.8/manual/number_fields/elements#coordinates-Tuple{NumFieldElem}"},[s("code",null,"coordinates")],-1)),t[38]||(t[38]=i(" to get the the coordinates of an element with respect to the bases."))]),t[40]||(t[40]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[177]||(t[177]=s("h2",{id:"predicates",tabindex:"-1"},[i("Predicates "),s("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),s("details",j,[s("summary",null,[t[41]||(t[41]=s("a",{id:"is_zero-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_zero-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_zero")],-1)),t[42]||(t[42]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[47]||(t[47]=a('
julia
is_zero(A::AbstractAssociativeAlgebra) -> Bool
',1)),s("p",null,[t[45]||(t[45]=i("Return whether ")),s("mjx-container",M,[(l(),e("svg",A,t[43]||(t[43]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[44]||(t[44]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[46]||(t[46]=i(" is the zero algebra."))]),t[48]||(t[48]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",B,[s("summary",null,[t[49]||(t[49]=s("a",{id:"is_commutative-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_commutative-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_commutative")],-1)),t[50]||(t[50]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[55]||(t[55]=a('
julia
is_commutative(A::AbstractAssociativeAlgebra) -> Bool
',1)),s("p",null,[t[53]||(t[53]=i("Return whether ")),s("mjx-container",D,[(l(),e("svg",Z,t[51]||(t[51]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[52]||(t[52]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[54]||(t[54]=i(" is commutative."))]),t[56]||(t[56]=a(`

Examples

julia
julia> A = matrix_algebra(QQ, 2);
+import{_ as r,c as e,a5 as a,j as s,a as i,G as o,B as p,o as l}from"./chunks/framework.DbhH0_mT.js";const qs=JSON.parse('{"title":"Basics","description":"","frontmatter":{},"headers":[],"relativePath":"manual/algebras/basics.md","filePath":"manual/algebras/basics.md","lastUpdated":null}'),h={name:"manual/algebras/basics.md"},d={class:"jldocstring custom-block",open:""},Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},g={class:"jldocstring custom-block",open:""},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},b={class:"jldocstring custom-block",open:""},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},j={class:"jldocstring custom-block",open:""},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},B={class:"jldocstring custom-block",open:""},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},N={class:"jldocstring custom-block",open:""},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},ss={class:"jldocstring custom-block",open:""},ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},es={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},as={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ns={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.888ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3928.3 1000","aria-hidden":"true"},os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},ps={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},hs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},ks={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},gs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},ms={class:"jldocstring custom-block",open:""},us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ws={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},cs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.936ex",height:"1.67ex",role:"img",focusable:"false",viewBox:"0 -716 3065.6 738","aria-hidden":"true"},ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},vs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Es={class:"jldocstring custom-block",open:""},fs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Cs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Fs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Hs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},js={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},Ms={class:"jldocstring custom-block",open:""},As={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Bs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Zs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Gs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ss={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"};function Js(Ks,t,Os,Ps,Is,Ns){const n=p("Badge");return l(),e("div",null,[t[175]||(t[175]=a('

Basics

Creation of algebras

See the corresponding sections on structure constant algebras.

',3)),s("details",d,[s("summary",null,[t[0]||(t[0]=s("a",{id:"zero_algebra-Tuple{Field}",href:"#zero_algebra-Tuple{Field}"},[s("span",{class:"jlbinding"},"zero_algebra")],-1)),t[1]||(t[1]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[6]||(t[6]=a('
julia
zero_algebra([T, ] K::Field) -> AbstractAssociativeAlgebra
',1)),s("p",null,[t[4]||(t[4]=i("Return the zero ring as an algebra over the field ")),s("mjx-container",Q,[(l(),e("svg",k,t[2]||(t[2]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[3]||(t[3]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[5]||(t[5]=i("."))]),t[7]||(t[7]=a(`

The optional first argument determines the type of the algebra, and can be StructureConstantAlgebra (default) or MatrixAlgebra.

Examples

julia
julia> A = zero_algebra(QQ)
+Structure constant algebra of dimension 0 over QQ

source

`,4))]),t[176]||(t[176]=s("h2",{id:"Basic-properties",tabindex:"-1"},[i("Basic properties "),s("a",{class:"header-anchor",href:"#Basic-properties","aria-label":'Permalink to "Basic properties {#Basic-properties}"'},"​")],-1)),s("details",g,[s("summary",null,[t[8]||(t[8]=s("a",{id:"base_ring-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#base_ring-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"base_ring")],-1)),t[9]||(t[9]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[20]||(t[20]=a('
julia
base_ring(A::AbstractAssociativeAlgebra) -> Field
',1)),s("p",null,[t[16]||(t[16]=i("Given a ")),s("mjx-container",m,[(l(),e("svg",u,t[10]||(t[10]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[11]||(t[11]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[17]||(t[17]=i("-algebra ")),s("mjx-container",x,[(l(),e("svg",T,t[12]||(t[12]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[13]||(t[13]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[18]||(t[18]=i(", return ")),s("mjx-container",w,[(l(),e("svg",c,t[14]||(t[14]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[15]||(t[15]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[19]||(t[19]=i("."))]),t[21]||(t[21]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",b,[s("summary",null,[t[22]||(t[22]=s("a",{id:"basis-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#basis-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"basis")],-1)),t[23]||(t[23]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[39]||(t[39]=a('
julia
basis(A::AbstractAssociativeAlgebra) -> Vector
',1)),s("p",null,[t[32]||(t[32]=i("Given a ")),s("mjx-container",y,[(l(),e("svg",v,t[24]||(t[24]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[25]||(t[25]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[33]||(t[33]=i("-algebra ")),s("mjx-container",E,[(l(),e("svg",f,t[26]||(t[26]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[27]||(t[27]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[34]||(t[34]=i(" return the ")),s("mjx-container",C,[(l(),e("svg",F,t[28]||(t[28]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[29]||(t[29]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[35]||(t[35]=i("-basis of ")),s("mjx-container",L,[(l(),e("svg",H,t[30]||(t[30]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[31]||(t[31]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[36]||(t[36]=i(". See also ")),t[37]||(t[37]=s("a",{href:"/v0.34.8/manual/number_fields/elements#coordinates-Tuple{NumFieldElem}"},[s("code",null,"coordinates")],-1)),t[38]||(t[38]=i(" to get the the coordinates of an element with respect to the bases."))]),t[40]||(t[40]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[177]||(t[177]=s("h2",{id:"predicates",tabindex:"-1"},[i("Predicates "),s("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),s("details",j,[s("summary",null,[t[41]||(t[41]=s("a",{id:"is_zero-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_zero-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_zero")],-1)),t[42]||(t[42]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[47]||(t[47]=a('
julia
is_zero(A::AbstractAssociativeAlgebra) -> Bool
',1)),s("p",null,[t[45]||(t[45]=i("Return whether ")),s("mjx-container",M,[(l(),e("svg",A,t[43]||(t[43]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[44]||(t[44]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[46]||(t[46]=i(" is the zero algebra."))]),t[48]||(t[48]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",B,[s("summary",null,[t[49]||(t[49]=s("a",{id:"is_commutative-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_commutative-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_commutative")],-1)),t[50]||(t[50]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[55]||(t[55]=a('
julia
is_commutative(A::AbstractAssociativeAlgebra) -> Bool
',1)),s("p",null,[t[53]||(t[53]=i("Return whether ")),s("mjx-container",D,[(l(),e("svg",Z,t[51]||(t[51]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[52]||(t[52]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[54]||(t[54]=i(" is commutative."))]),t[56]||(t[56]=a(`

Examples

julia
julia> A = matrix_algebra(QQ, 2);
 
 julia> is_commutative(A)
-false

source

`,3))]),s("details",V,[s("summary",null,[t[57]||(t[57]=s("a",{id:"is_central-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_central-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_central")],-1)),t[58]||(t[58]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[72]||(t[72]=a('
julia
is_central(A::AbstractAssociativeAlgebra)
',1)),s("p",null,[t[67]||(t[67]=i("Return whether the ")),s("mjx-container",G,[(l(),e("svg",z,t[59]||(t[59]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[60]||(t[60]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[68]||(t[68]=i("-algebra ")),s("mjx-container",S,[(l(),e("svg",J,t[61]||(t[61]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[62]||(t[62]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[69]||(t[69]=i(" is central, that is, whether ")),s("mjx-container",K,[(l(),e("svg",O,t[63]||(t[63]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[64]||(t[64]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[70]||(t[70]=i(" is the center of ")),s("mjx-container",P,[(l(),e("svg",I,t[65]||(t[65]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[66]||(t[66]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[71]||(t[71]=i("."))]),t[73]||(t[73]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[178]||(t[178]=s("h2",{id:"generators",tabindex:"-1"},[i("Generators "),s("a",{class:"header-anchor",href:"#generators","aria-label":'Permalink to "Generators"'},"​")],-1)),s("details",N,[s("summary",null,[t[74]||(t[74]=s("a",{id:"gens-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#gens-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"gens")],-1)),t[75]||(t[75]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[91]||(t[91]=a('
julia
gens(A::AbstractAssociativeAlgebra; thorough_search::Bool = false) -> Vector
',1)),s("p",null,[t[84]||(t[84]=i("Given a ")),s("mjx-container",R,[(l(),e("svg",q,t[76]||(t[76]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[77]||(t[77]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[85]||(t[85]=i("-algebra ")),s("mjx-container",$,[(l(),e("svg",U,t[78]||(t[78]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[79]||(t[79]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[86]||(t[86]=i(", return a subset of ")),t[87]||(t[87]=s("code",null,"basis(A)",-1)),t[88]||(t[88]=i(", which generates ")),s("mjx-container",W,[(l(),e("svg",X,t[80]||(t[80]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[81]||(t[81]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[89]||(t[89]=i(" as an algebra over ")),s("mjx-container",Y,[(l(),e("svg",_,t[82]||(t[82]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[83]||(t[83]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[90]||(t[90]=i("."))]),t[92]||(t[92]=a(`

If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.

The gens_with_data function computes additional data for expressing a basis as words in the generators.

Examples

julia
julia> A = matrix_algebra(QQ, 3);
+false

source

`,3))]),s("details",V,[s("summary",null,[t[57]||(t[57]=s("a",{id:"is_central-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_central-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_central")],-1)),t[58]||(t[58]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[72]||(t[72]=a('
julia
is_central(A::AbstractAssociativeAlgebra)
',1)),s("p",null,[t[67]||(t[67]=i("Return whether the ")),s("mjx-container",G,[(l(),e("svg",z,t[59]||(t[59]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[60]||(t[60]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[68]||(t[68]=i("-algebra ")),s("mjx-container",S,[(l(),e("svg",J,t[61]||(t[61]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[62]||(t[62]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[69]||(t[69]=i(" is central, that is, whether ")),s("mjx-container",K,[(l(),e("svg",O,t[63]||(t[63]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[64]||(t[64]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[70]||(t[70]=i(" is the center of ")),s("mjx-container",P,[(l(),e("svg",I,t[65]||(t[65]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[66]||(t[66]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[71]||(t[71]=i("."))]),t[73]||(t[73]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[178]||(t[178]=s("h2",{id:"generators",tabindex:"-1"},[i("Generators "),s("a",{class:"header-anchor",href:"#generators","aria-label":'Permalink to "Generators"'},"​")],-1)),s("details",N,[s("summary",null,[t[74]||(t[74]=s("a",{id:"gens-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#gens-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"gens")],-1)),t[75]||(t[75]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[91]||(t[91]=a('
julia
gens(A::AbstractAssociativeAlgebra; thorough_search::Bool = false) -> Vector
',1)),s("p",null,[t[84]||(t[84]=i("Given a ")),s("mjx-container",R,[(l(),e("svg",q,t[76]||(t[76]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[77]||(t[77]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[85]||(t[85]=i("-algebra ")),s("mjx-container",$,[(l(),e("svg",U,t[78]||(t[78]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[79]||(t[79]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[86]||(t[86]=i(", return a subset of ")),t[87]||(t[87]=s("code",null,"basis(A)",-1)),t[88]||(t[88]=i(", which generates ")),s("mjx-container",W,[(l(),e("svg",X,t[80]||(t[80]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[81]||(t[81]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[89]||(t[89]=i(" as an algebra over ")),s("mjx-container",Y,[(l(),e("svg",_,t[82]||(t[82]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[83]||(t[83]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[90]||(t[90]=i("."))]),t[92]||(t[92]=a(`

If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.

The gens_with_data function computes additional data for expressing a basis as words in the generators.

Examples

julia
julia> A = matrix_algebra(QQ, 3);
 
 julia> gens(A; thorough_search = true)
 5-element Vector{MatAlgebraElem{QQFieldElem, QQMatrix}}:
diff --git a/v0.34.8/assets/manual_algebras_basics.md.CCIsU1L-.lean.js b/v0.34.8/assets/manual_algebras_basics.md.CCIsU1L-.lean.js
index 05f25ef047..e34f8f296c 100644
--- a/v0.34.8/assets/manual_algebras_basics.md.CCIsU1L-.lean.js
+++ b/v0.34.8/assets/manual_algebras_basics.md.CCIsU1L-.lean.js
@@ -1,8 +1,8 @@
-import{_ as r,c as e,a5 as a,j as s,a as i,G as o,B as p,o as l}from"./chunks/framework.DbhH0_mT.js";const qs=JSON.parse('{"title":"Basics","description":"","frontmatter":{},"headers":[],"relativePath":"manual/algebras/basics.md","filePath":"manual/algebras/basics.md","lastUpdated":null}'),h={name:"manual/algebras/basics.md"},d={class:"jldocstring custom-block",open:""},Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},g={class:"jldocstring custom-block",open:""},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},b={class:"jldocstring custom-block",open:""},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},j={class:"jldocstring custom-block",open:""},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},B={class:"jldocstring custom-block",open:""},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},N={class:"jldocstring custom-block",open:""},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},ss={class:"jldocstring custom-block",open:""},ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},es={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},as={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ns={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.888ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3928.3 1000","aria-hidden":"true"},os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},ps={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},hs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},ks={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},gs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},ms={class:"jldocstring custom-block",open:""},us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ws={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},cs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.936ex",height:"1.67ex",role:"img",focusable:"false",viewBox:"0 -716 3065.6 738","aria-hidden":"true"},ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},vs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Es={class:"jldocstring custom-block",open:""},fs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Cs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Fs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Hs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},js={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},Ms={class:"jldocstring custom-block",open:""},As={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Bs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Zs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Gs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ss={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"};function Js(Ks,t,Os,Ps,Is,Ns){const n=p("Badge");return l(),e("div",null,[t[175]||(t[175]=a('

Basics

Creation of algebras

See the corresponding sections on structure constant algebras.

',3)),s("details",d,[s("summary",null,[t[0]||(t[0]=s("a",{id:"zero_algebra-Tuple{Field}",href:"#zero_algebra-Tuple{Field}"},[s("span",{class:"jlbinding"},"zero_algebra")],-1)),t[1]||(t[1]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[6]||(t[6]=a('
julia
zero_algebra([T, ] K::Field) -> AbstractAssociativeAlgebra
',1)),s("p",null,[t[4]||(t[4]=i("Return the zero ring as an algebra over the field ")),s("mjx-container",Q,[(l(),e("svg",k,t[2]||(t[2]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[3]||(t[3]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[5]||(t[5]=i("."))]),t[7]||(t[7]=a(`

The optional first argument determines the type of the algebra, and can be StructureConstantAlgebra (default) or MatrixAlgebra.

Examples

julia
julia> A = zero_algebra(QQ)
-Structure constant algebra of dimension 0 over QQ

source

`,4))]),t[176]||(t[176]=s("h2",{id:"Basic-properties",tabindex:"-1"},[i("Basic properties "),s("a",{class:"header-anchor",href:"#Basic-properties","aria-label":'Permalink to "Basic properties {#Basic-properties}"'},"​")],-1)),s("details",g,[s("summary",null,[t[8]||(t[8]=s("a",{id:"base_ring-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#base_ring-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"base_ring")],-1)),t[9]||(t[9]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[20]||(t[20]=a('
julia
base_ring(A::AbstractAssociativeAlgebra) -> Field
',1)),s("p",null,[t[16]||(t[16]=i("Given a ")),s("mjx-container",m,[(l(),e("svg",u,t[10]||(t[10]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[11]||(t[11]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[17]||(t[17]=i("-algebra ")),s("mjx-container",x,[(l(),e("svg",T,t[12]||(t[12]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[13]||(t[13]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[18]||(t[18]=i(", return ")),s("mjx-container",w,[(l(),e("svg",c,t[14]||(t[14]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[15]||(t[15]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[19]||(t[19]=i("."))]),t[21]||(t[21]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",b,[s("summary",null,[t[22]||(t[22]=s("a",{id:"basis-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#basis-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"basis")],-1)),t[23]||(t[23]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[39]||(t[39]=a('
julia
basis(A::AbstractAssociativeAlgebra) -> Vector
',1)),s("p",null,[t[32]||(t[32]=i("Given a ")),s("mjx-container",y,[(l(),e("svg",v,t[24]||(t[24]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[25]||(t[25]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[33]||(t[33]=i("-algebra ")),s("mjx-container",E,[(l(),e("svg",f,t[26]||(t[26]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[27]||(t[27]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[34]||(t[34]=i(" return the ")),s("mjx-container",C,[(l(),e("svg",F,t[28]||(t[28]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[29]||(t[29]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[35]||(t[35]=i("-basis of ")),s("mjx-container",L,[(l(),e("svg",H,t[30]||(t[30]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[31]||(t[31]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[36]||(t[36]=i(". See also ")),t[37]||(t[37]=s("a",{href:"/Hecke.jl/v0.34.8/manual/number_fields/elements#coordinates-Tuple{NumFieldElem}"},[s("code",null,"coordinates")],-1)),t[38]||(t[38]=i(" to get the the coordinates of an element with respect to the bases."))]),t[40]||(t[40]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[177]||(t[177]=s("h2",{id:"predicates",tabindex:"-1"},[i("Predicates "),s("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),s("details",j,[s("summary",null,[t[41]||(t[41]=s("a",{id:"is_zero-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_zero-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_zero")],-1)),t[42]||(t[42]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[47]||(t[47]=a('
julia
is_zero(A::AbstractAssociativeAlgebra) -> Bool
',1)),s("p",null,[t[45]||(t[45]=i("Return whether ")),s("mjx-container",M,[(l(),e("svg",A,t[43]||(t[43]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[44]||(t[44]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[46]||(t[46]=i(" is the zero algebra."))]),t[48]||(t[48]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",B,[s("summary",null,[t[49]||(t[49]=s("a",{id:"is_commutative-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_commutative-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_commutative")],-1)),t[50]||(t[50]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[55]||(t[55]=a('
julia
is_commutative(A::AbstractAssociativeAlgebra) -> Bool
',1)),s("p",null,[t[53]||(t[53]=i("Return whether ")),s("mjx-container",D,[(l(),e("svg",Z,t[51]||(t[51]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[52]||(t[52]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[54]||(t[54]=i(" is commutative."))]),t[56]||(t[56]=a(`

Examples

julia
julia> A = matrix_algebra(QQ, 2);
+import{_ as r,c as e,a5 as a,j as s,a as i,G as o,B as p,o as l}from"./chunks/framework.DbhH0_mT.js";const qs=JSON.parse('{"title":"Basics","description":"","frontmatter":{},"headers":[],"relativePath":"manual/algebras/basics.md","filePath":"manual/algebras/basics.md","lastUpdated":null}'),h={name:"manual/algebras/basics.md"},d={class:"jldocstring custom-block",open:""},Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},g={class:"jldocstring custom-block",open:""},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},b={class:"jldocstring custom-block",open:""},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},j={class:"jldocstring custom-block",open:""},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},B={class:"jldocstring custom-block",open:""},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},N={class:"jldocstring custom-block",open:""},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},ss={class:"jldocstring custom-block",open:""},ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},es={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},as={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ns={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.888ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3928.3 1000","aria-hidden":"true"},os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},ps={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},hs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},ks={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},gs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},ms={class:"jldocstring custom-block",open:""},us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ws={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},cs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.936ex",height:"1.67ex",role:"img",focusable:"false",viewBox:"0 -716 3065.6 738","aria-hidden":"true"},ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},vs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Es={class:"jldocstring custom-block",open:""},fs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Cs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Fs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Hs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},js={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"},Ms={class:"jldocstring custom-block",open:""},As={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Bs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},Ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Zs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},Vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Gs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 760 727","aria-hidden":"true"},zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ss={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.697ex",height:"1.62ex",role:"img",focusable:"false",viewBox:"0 -716 750 716","aria-hidden":"true"};function Js(Ks,t,Os,Ps,Is,Ns){const n=p("Badge");return l(),e("div",null,[t[175]||(t[175]=a('

Basics

Creation of algebras

See the corresponding sections on structure constant algebras.

',3)),s("details",d,[s("summary",null,[t[0]||(t[0]=s("a",{id:"zero_algebra-Tuple{Field}",href:"#zero_algebra-Tuple{Field}"},[s("span",{class:"jlbinding"},"zero_algebra")],-1)),t[1]||(t[1]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[6]||(t[6]=a('
julia
zero_algebra([T, ] K::Field) -> AbstractAssociativeAlgebra
',1)),s("p",null,[t[4]||(t[4]=i("Return the zero ring as an algebra over the field ")),s("mjx-container",Q,[(l(),e("svg",k,t[2]||(t[2]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[3]||(t[3]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[5]||(t[5]=i("."))]),t[7]||(t[7]=a(`

The optional first argument determines the type of the algebra, and can be StructureConstantAlgebra (default) or MatrixAlgebra.

Examples

julia
julia> A = zero_algebra(QQ)
+Structure constant algebra of dimension 0 over QQ

source

`,4))]),t[176]||(t[176]=s("h2",{id:"Basic-properties",tabindex:"-1"},[i("Basic properties "),s("a",{class:"header-anchor",href:"#Basic-properties","aria-label":'Permalink to "Basic properties {#Basic-properties}"'},"​")],-1)),s("details",g,[s("summary",null,[t[8]||(t[8]=s("a",{id:"base_ring-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#base_ring-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"base_ring")],-1)),t[9]||(t[9]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[20]||(t[20]=a('
julia
base_ring(A::AbstractAssociativeAlgebra) -> Field
',1)),s("p",null,[t[16]||(t[16]=i("Given a ")),s("mjx-container",m,[(l(),e("svg",u,t[10]||(t[10]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[11]||(t[11]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[17]||(t[17]=i("-algebra ")),s("mjx-container",x,[(l(),e("svg",T,t[12]||(t[12]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[13]||(t[13]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[18]||(t[18]=i(", return ")),s("mjx-container",w,[(l(),e("svg",c,t[14]||(t[14]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[15]||(t[15]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[19]||(t[19]=i("."))]),t[21]||(t[21]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",b,[s("summary",null,[t[22]||(t[22]=s("a",{id:"basis-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#basis-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"basis")],-1)),t[23]||(t[23]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[39]||(t[39]=a('
julia
basis(A::AbstractAssociativeAlgebra) -> Vector
',1)),s("p",null,[t[32]||(t[32]=i("Given a ")),s("mjx-container",y,[(l(),e("svg",v,t[24]||(t[24]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[25]||(t[25]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[33]||(t[33]=i("-algebra ")),s("mjx-container",E,[(l(),e("svg",f,t[26]||(t[26]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[27]||(t[27]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[34]||(t[34]=i(" return the ")),s("mjx-container",C,[(l(),e("svg",F,t[28]||(t[28]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[29]||(t[29]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[35]||(t[35]=i("-basis of ")),s("mjx-container",L,[(l(),e("svg",H,t[30]||(t[30]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[31]||(t[31]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[36]||(t[36]=i(". See also ")),t[37]||(t[37]=s("a",{href:"/v0.34.8/manual/number_fields/elements#coordinates-Tuple{NumFieldElem}"},[s("code",null,"coordinates")],-1)),t[38]||(t[38]=i(" to get the the coordinates of an element with respect to the bases."))]),t[40]||(t[40]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[177]||(t[177]=s("h2",{id:"predicates",tabindex:"-1"},[i("Predicates "),s("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),s("details",j,[s("summary",null,[t[41]||(t[41]=s("a",{id:"is_zero-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_zero-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_zero")],-1)),t[42]||(t[42]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[47]||(t[47]=a('
julia
is_zero(A::AbstractAssociativeAlgebra) -> Bool
',1)),s("p",null,[t[45]||(t[45]=i("Return whether ")),s("mjx-container",M,[(l(),e("svg",A,t[43]||(t[43]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[44]||(t[44]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[46]||(t[46]=i(" is the zero algebra."))]),t[48]||(t[48]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",B,[s("summary",null,[t[49]||(t[49]=s("a",{id:"is_commutative-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_commutative-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_commutative")],-1)),t[50]||(t[50]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[55]||(t[55]=a('
julia
is_commutative(A::AbstractAssociativeAlgebra) -> Bool
',1)),s("p",null,[t[53]||(t[53]=i("Return whether ")),s("mjx-container",D,[(l(),e("svg",Z,t[51]||(t[51]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[52]||(t[52]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[54]||(t[54]=i(" is commutative."))]),t[56]||(t[56]=a(`

Examples

julia
julia> A = matrix_algebra(QQ, 2);
 
 julia> is_commutative(A)
-false

source

`,3))]),s("details",V,[s("summary",null,[t[57]||(t[57]=s("a",{id:"is_central-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_central-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_central")],-1)),t[58]||(t[58]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[72]||(t[72]=a('
julia
is_central(A::AbstractAssociativeAlgebra)
',1)),s("p",null,[t[67]||(t[67]=i("Return whether the ")),s("mjx-container",G,[(l(),e("svg",z,t[59]||(t[59]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[60]||(t[60]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[68]||(t[68]=i("-algebra ")),s("mjx-container",S,[(l(),e("svg",J,t[61]||(t[61]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[62]||(t[62]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[69]||(t[69]=i(" is central, that is, whether ")),s("mjx-container",K,[(l(),e("svg",O,t[63]||(t[63]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[64]||(t[64]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[70]||(t[70]=i(" is the center of ")),s("mjx-container",P,[(l(),e("svg",I,t[65]||(t[65]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[66]||(t[66]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[71]||(t[71]=i("."))]),t[73]||(t[73]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[178]||(t[178]=s("h2",{id:"generators",tabindex:"-1"},[i("Generators "),s("a",{class:"header-anchor",href:"#generators","aria-label":'Permalink to "Generators"'},"​")],-1)),s("details",N,[s("summary",null,[t[74]||(t[74]=s("a",{id:"gens-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#gens-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"gens")],-1)),t[75]||(t[75]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[91]||(t[91]=a('
julia
gens(A::AbstractAssociativeAlgebra; thorough_search::Bool = false) -> Vector
',1)),s("p",null,[t[84]||(t[84]=i("Given a ")),s("mjx-container",R,[(l(),e("svg",q,t[76]||(t[76]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[77]||(t[77]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[85]||(t[85]=i("-algebra ")),s("mjx-container",$,[(l(),e("svg",U,t[78]||(t[78]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[79]||(t[79]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[86]||(t[86]=i(", return a subset of ")),t[87]||(t[87]=s("code",null,"basis(A)",-1)),t[88]||(t[88]=i(", which generates ")),s("mjx-container",W,[(l(),e("svg",X,t[80]||(t[80]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[81]||(t[81]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[89]||(t[89]=i(" as an algebra over ")),s("mjx-container",Y,[(l(),e("svg",_,t[82]||(t[82]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[83]||(t[83]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[90]||(t[90]=i("."))]),t[92]||(t[92]=a(`

If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.

The gens_with_data function computes additional data for expressing a basis as words in the generators.

Examples

julia
julia> A = matrix_algebra(QQ, 3);
+false

source

`,3))]),s("details",V,[s("summary",null,[t[57]||(t[57]=s("a",{id:"is_central-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#is_central-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"is_central")],-1)),t[58]||(t[58]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[72]||(t[72]=a('
julia
is_central(A::AbstractAssociativeAlgebra)
',1)),s("p",null,[t[67]||(t[67]=i("Return whether the ")),s("mjx-container",G,[(l(),e("svg",z,t[59]||(t[59]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[60]||(t[60]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[68]||(t[68]=i("-algebra ")),s("mjx-container",S,[(l(),e("svg",J,t[61]||(t[61]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[62]||(t[62]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[69]||(t[69]=i(" is central, that is, whether ")),s("mjx-container",K,[(l(),e("svg",O,t[63]||(t[63]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[64]||(t[64]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[70]||(t[70]=i(" is the center of ")),s("mjx-container",P,[(l(),e("svg",I,t[65]||(t[65]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[66]||(t[66]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[71]||(t[71]=i("."))]),t[73]||(t[73]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[178]||(t[178]=s("h2",{id:"generators",tabindex:"-1"},[i("Generators "),s("a",{class:"header-anchor",href:"#generators","aria-label":'Permalink to "Generators"'},"​")],-1)),s("details",N,[s("summary",null,[t[74]||(t[74]=s("a",{id:"gens-Tuple{Hecke.AbstractAssociativeAlgebra}",href:"#gens-Tuple{Hecke.AbstractAssociativeAlgebra}"},[s("span",{class:"jlbinding"},"gens")],-1)),t[75]||(t[75]=i()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[91]||(t[91]=a('
julia
gens(A::AbstractAssociativeAlgebra; thorough_search::Bool = false) -> Vector
',1)),s("p",null,[t[84]||(t[84]=i("Given a ")),s("mjx-container",R,[(l(),e("svg",q,t[76]||(t[76]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[77]||(t[77]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[85]||(t[85]=i("-algebra ")),s("mjx-container",$,[(l(),e("svg",U,t[78]||(t[78]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[79]||(t[79]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[86]||(t[86]=i(", return a subset of ")),t[87]||(t[87]=s("code",null,"basis(A)",-1)),t[88]||(t[88]=i(", which generates ")),s("mjx-container",W,[(l(),e("svg",X,t[80]||(t[80]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[81]||(t[81]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[89]||(t[89]=i(" as an algebra over ")),s("mjx-container",Y,[(l(),e("svg",_,t[82]||(t[82]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[83]||(t[83]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[90]||(t[90]=i("."))]),t[92]||(t[92]=a(`

If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.

The gens_with_data function computes additional data for expressing a basis as words in the generators.

Examples

julia
julia> A = matrix_algebra(QQ, 3);
 
 julia> gens(A; thorough_search = true)
 5-element Vector{MatAlgebraElem{QQFieldElem, QQMatrix}}:
diff --git a/v0.34.8/assets/manual_algebras_structureconstant.md.DVA5t00J.js b/v0.34.8/assets/manual_algebras_structureconstant.md.DVA5t00J.js
index e2afe1a5fd..6c42c101ad 100644
--- a/v0.34.8/assets/manual_algebras_structureconstant.md.DVA5t00J.js
+++ b/v0.34.8/assets/manual_algebras_structureconstant.md.DVA5t00J.js
@@ -3,7 +3,7 @@ import{_ as o,c as e,j as s,a as i,G as r,a5 as l,B as p,o as a}from"./chunks/fr
 Structure constant algebra of dimension 2 over QQ

source

`,4))]),s("details",w,[s("summary",null,[t[24]||(t[24]=s("a",{id:"structure_constant_algebra-Tuple{SimpleNumField}",href:"#structure_constant_algebra-Tuple{SimpleNumField}"},[s("span",{class:"jlbinding"},"structure_constant_algebra")],-1)),t[25]||(t[25]=i()),r(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[45]||(t[45]=l('
julia
structure_constant_algebra(K::SimpleNumField) -> StructureConstantAlgebra, Map
',1)),s("p",null,[t[38]||(t[38]=i("Given a number field ")),s("mjx-container",b,[(a(),e("svg",C,t[26]||(t[26]=[l('',1)]))),t[27]||(t[27]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"L"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"K")])],-1))]),t[39]||(t[39]=i(", return ")),s("mjx-container",v,[(a(),e("svg",F,t[28]||(t[28]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[29]||(t[29]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"L")])],-1))]),t[40]||(t[40]=i(" as a ")),s("mjx-container",f,[(a(),e("svg",H,t[30]||(t[30]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[31]||(t[31]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[41]||(t[41]=i("-algebra ")),s("mjx-container",M,[(a(),e("svg",L,t[32]||(t[32]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[33]||(t[33]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[42]||(t[42]=i(" together with a ")),s("mjx-container",B,[(a(),e("svg",j,t[34]||(t[34]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[35]||(t[35]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[43]||(t[43]=i("-linear map ")),s("mjx-container",A,[(a(),e("svg",D,t[36]||(t[36]=[l('',1)]))),t[37]||(t[37]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"L")])],-1))]),t[44]||(t[44]=i("."))]),t[46]||(t[46]=l(`

Examples

julia
julia> L, = quadratic_field(2);
 
 julia> structure_constant_algebra(L)
-(Structure constant algebra of dimension 2 over QQ, Map: structure constant algebra -> real quadratic field)

source

`,3))]),t[62]||(t[62]=s("h2",{id:"Structure-constant-table",tabindex:"-1"},[i("Structure constant table "),s("a",{class:"header-anchor",href:"#Structure-constant-table","aria-label":'Permalink to "Structure constant table {#Structure-constant-table}"'},"​")],-1)),s("details",S,[s("summary",null,[t[47]||(t[47]=s("a",{id:"structure_constant_table-Tuple{StructureConstantAlgebra}",href:"#structure_constant_table-Tuple{StructureConstantAlgebra}"},[s("span",{class:"jlbinding"},"structure_constant_table")],-1)),t[48]||(t[48]=i()),r(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[58]||(t[58]=l('
julia
structure_constant_table(A::StructureConstantAlgebra; copy::Bool = true) -> Array{_, 3}
',1)),s("p",null,[t[53]||(t[53]=i("Given an algebra ")),s("mjx-container",Z,[(a(),e("svg",V,t[49]||(t[49]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[50]||(t[50]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[54]||(t[54]=i(", return the structure constant table of ")),s("mjx-container",G,[(a(),e("svg",J,t[51]||(t[51]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[52]||(t[52]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[55]||(t[55]=i(". See ")),t[56]||(t[56]=s("a",{href:"/Hecke.jl/v0.34.8/manual/algebras/structureconstant#structure_constant_algebra-Tuple{Ring, Array{<:Any, 3}}"},[s("code",null,"structure_constant_algebra")],-1)),t[57]||(t[57]=i(" for the defining property."))]),t[59]||(t[59]=l(`

Examples

julia
julia> A = associative_algebra(QQ, reshape([1, 0, 0, 2, 0, 1, 1, 0], (2, 2, 2)));
+(Structure constant algebra of dimension 2 over QQ, Map: structure constant algebra -> real quadratic field)

source

`,3))]),t[62]||(t[62]=s("h2",{id:"Structure-constant-table",tabindex:"-1"},[i("Structure constant table "),s("a",{class:"header-anchor",href:"#Structure-constant-table","aria-label":'Permalink to "Structure constant table {#Structure-constant-table}"'},"​")],-1)),s("details",S,[s("summary",null,[t[47]||(t[47]=s("a",{id:"structure_constant_table-Tuple{StructureConstantAlgebra}",href:"#structure_constant_table-Tuple{StructureConstantAlgebra}"},[s("span",{class:"jlbinding"},"structure_constant_table")],-1)),t[48]||(t[48]=i()),r(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[58]||(t[58]=l('
julia
structure_constant_table(A::StructureConstantAlgebra; copy::Bool = true) -> Array{_, 3}
',1)),s("p",null,[t[53]||(t[53]=i("Given an algebra ")),s("mjx-container",Z,[(a(),e("svg",V,t[49]||(t[49]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[50]||(t[50]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[54]||(t[54]=i(", return the structure constant table of ")),s("mjx-container",G,[(a(),e("svg",J,t[51]||(t[51]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[52]||(t[52]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[55]||(t[55]=i(". See ")),t[56]||(t[56]=s("a",{href:"/v0.34.8/manual/algebras/structureconstant#structure_constant_algebra-Tuple{Ring, Array{<:Any, 3}}"},[s("code",null,"structure_constant_algebra")],-1)),t[57]||(t[57]=i(" for the defining property."))]),t[59]||(t[59]=l(`

Examples

julia
julia> A = associative_algebra(QQ, reshape([1, 0, 0, 2, 0, 1, 1, 0], (2, 2, 2)));
 
 julia> structure_constant_table(A)
 2×2×2 Array{QQFieldElem, 3}:
diff --git a/v0.34.8/assets/manual_algebras_structureconstant.md.DVA5t00J.lean.js b/v0.34.8/assets/manual_algebras_structureconstant.md.DVA5t00J.lean.js
index e2afe1a5fd..6c42c101ad 100644
--- a/v0.34.8/assets/manual_algebras_structureconstant.md.DVA5t00J.lean.js
+++ b/v0.34.8/assets/manual_algebras_structureconstant.md.DVA5t00J.lean.js
@@ -3,7 +3,7 @@ import{_ as o,c as e,j as s,a as i,G as r,a5 as l,B as p,o as a}from"./chunks/fr
 Structure constant algebra of dimension 2 over QQ

source

`,4))]),s("details",w,[s("summary",null,[t[24]||(t[24]=s("a",{id:"structure_constant_algebra-Tuple{SimpleNumField}",href:"#structure_constant_algebra-Tuple{SimpleNumField}"},[s("span",{class:"jlbinding"},"structure_constant_algebra")],-1)),t[25]||(t[25]=i()),r(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[45]||(t[45]=l('
julia
structure_constant_algebra(K::SimpleNumField) -> StructureConstantAlgebra, Map
',1)),s("p",null,[t[38]||(t[38]=i("Given a number field ")),s("mjx-container",b,[(a(),e("svg",C,t[26]||(t[26]=[l('',1)]))),t[27]||(t[27]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"L"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"K")])],-1))]),t[39]||(t[39]=i(", return ")),s("mjx-container",v,[(a(),e("svg",F,t[28]||(t[28]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),t[29]||(t[29]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"L")])],-1))]),t[40]||(t[40]=i(" as a ")),s("mjx-container",f,[(a(),e("svg",H,t[30]||(t[30]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[31]||(t[31]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[41]||(t[41]=i("-algebra ")),s("mjx-container",M,[(a(),e("svg",L,t[32]||(t[32]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[33]||(t[33]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[42]||(t[42]=i(" together with a ")),s("mjx-container",B,[(a(),e("svg",j,t[34]||(t[34]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),t[35]||(t[35]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"K")])],-1))]),t[43]||(t[43]=i("-linear map ")),s("mjx-container",A,[(a(),e("svg",D,t[36]||(t[36]=[l('',1)]))),t[37]||(t[37]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"L")])],-1))]),t[44]||(t[44]=i("."))]),t[46]||(t[46]=l(`

Examples

julia
julia> L, = quadratic_field(2);
 
 julia> structure_constant_algebra(L)
-(Structure constant algebra of dimension 2 over QQ, Map: structure constant algebra -> real quadratic field)

source

`,3))]),t[62]||(t[62]=s("h2",{id:"Structure-constant-table",tabindex:"-1"},[i("Structure constant table "),s("a",{class:"header-anchor",href:"#Structure-constant-table","aria-label":'Permalink to "Structure constant table {#Structure-constant-table}"'},"​")],-1)),s("details",S,[s("summary",null,[t[47]||(t[47]=s("a",{id:"structure_constant_table-Tuple{StructureConstantAlgebra}",href:"#structure_constant_table-Tuple{StructureConstantAlgebra}"},[s("span",{class:"jlbinding"},"structure_constant_table")],-1)),t[48]||(t[48]=i()),r(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[58]||(t[58]=l('
julia
structure_constant_table(A::StructureConstantAlgebra; copy::Bool = true) -> Array{_, 3}
',1)),s("p",null,[t[53]||(t[53]=i("Given an algebra ")),s("mjx-container",Z,[(a(),e("svg",V,t[49]||(t[49]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[50]||(t[50]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[54]||(t[54]=i(", return the structure constant table of ")),s("mjx-container",G,[(a(),e("svg",J,t[51]||(t[51]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[52]||(t[52]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[55]||(t[55]=i(". See ")),t[56]||(t[56]=s("a",{href:"/Hecke.jl/v0.34.8/manual/algebras/structureconstant#structure_constant_algebra-Tuple{Ring, Array{<:Any, 3}}"},[s("code",null,"structure_constant_algebra")],-1)),t[57]||(t[57]=i(" for the defining property."))]),t[59]||(t[59]=l(`

Examples

julia
julia> A = associative_algebra(QQ, reshape([1, 0, 0, 2, 0, 1, 1, 0], (2, 2, 2)));
+(Structure constant algebra of dimension 2 over QQ, Map: structure constant algebra -> real quadratic field)

source

`,3))]),t[62]||(t[62]=s("h2",{id:"Structure-constant-table",tabindex:"-1"},[i("Structure constant table "),s("a",{class:"header-anchor",href:"#Structure-constant-table","aria-label":'Permalink to "Structure constant table {#Structure-constant-table}"'},"​")],-1)),s("details",S,[s("summary",null,[t[47]||(t[47]=s("a",{id:"structure_constant_table-Tuple{StructureConstantAlgebra}",href:"#structure_constant_table-Tuple{StructureConstantAlgebra}"},[s("span",{class:"jlbinding"},"structure_constant_table")],-1)),t[48]||(t[48]=i()),r(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[58]||(t[58]=l('
julia
structure_constant_table(A::StructureConstantAlgebra; copy::Bool = true) -> Array{_, 3}
',1)),s("p",null,[t[53]||(t[53]=i("Given an algebra ")),s("mjx-container",Z,[(a(),e("svg",V,t[49]||(t[49]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[50]||(t[50]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[54]||(t[54]=i(", return the structure constant table of ")),s("mjx-container",G,[(a(),e("svg",J,t[51]||(t[51]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[52]||(t[52]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"A")])],-1))]),t[55]||(t[55]=i(". See ")),t[56]||(t[56]=s("a",{href:"/v0.34.8/manual/algebras/structureconstant#structure_constant_algebra-Tuple{Ring, Array{<:Any, 3}}"},[s("code",null,"structure_constant_algebra")],-1)),t[57]||(t[57]=i(" for the defining property."))]),t[59]||(t[59]=l(`

Examples

julia
julia> A = associative_algebra(QQ, reshape([1, 0, 0, 2, 0, 1, 1, 0], (2, 2, 2)));
 
 julia> structure_constant_table(A)
 2×2×2 Array{QQFieldElem, 3}:
diff --git a/v0.34.8/assets/manual_misc_FacElem.md.D_L3aOnQ.js b/v0.34.8/assets/manual_misc_FacElem.md.D_L3aOnQ.js
index 4a712c872a..dae18b558c 100644
--- a/v0.34.8/assets/manual_misc_FacElem.md.D_L3aOnQ.js
+++ b/v0.34.8/assets/manual_misc_FacElem.md.D_L3aOnQ.js
@@ -5,4 +5,4 @@ import{_ as r,c as i,j as e,a as s,a5 as a,G as o,B as d,o as l}from"./chunks/fr
 simplify(x::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> FacElem
`,1)),e("p",null,[t[93]||(t[93]=s("Uses ")),t[94]||(t[94]=e("code",null,"coprime_base",-1)),t[95]||(t[95]=s(" to obtain a simplified version of ")),e("mjx-container",W,[(l(),i("svg",Y,t[91]||(t[91]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[92]||(t[92]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[96]||(t[96]=s(", ie. in the simplified version all base ideals will be pariwise coprime but not necessarily prime!."))]),t[98]||(t[98]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",_,[e("summary",null,[t[99]||(t[99]=e("a",{id:"simplify-Tuple{FacElem{QQFieldElem}}",href:"#simplify-Tuple{FacElem{QQFieldElem}}"},[e("span",{class:"jlbinding"},"simplify")],-1)),t[100]||(t[100]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[101]||(t[101]=a(`
julia
simplify(x::FacElem{QQFieldElem}) -> FacElem{QQFieldElem}
 simplify(x::FacElem{ZZRingElem}) -> FacElem{ZZRingElem}

Simplfies the factored element, i.e. arranges for the base to be coprime.

source

`,3))]),t[295]||(t[295]=e("p",null,"The simplified version can then be used further:",-1)),e("details",e1,[e("summary",null,[t[102]||(t[102]=e("a",{id:"isone-Tuple{FacElem{QQFieldElem}}",href:"#isone-Tuple{FacElem{QQFieldElem}}"},[e("span",{class:"jlbinding"},"isone")],-1)),t[103]||(t[103]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[111]||(t[111]=a(`
julia
isone(x::FacElem{QQFieldElem}) -> Bool
 isone(x::FacElem{ZZRingElem}) -> Bool
`,1)),e("p",null,[t[108]||(t[108]=s("Tests if ")),e("mjx-container",t1,[(l(),i("svg",s1,t[104]||(t[104]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[105]||(t[105]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[109]||(t[109]=s(" represents ")),e("mjx-container",i1,[(l(),i("svg",l1,t[106]||(t[106]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mn"},[e("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),t[107]||(t[107]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mn",null,"1")])],-1))]),t[110]||(t[110]=s(" without an evaluation."))]),t[112]||(t[112]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",a1,[e("summary",null,[t[113]||(t[113]=e("a",{id:"factor_coprime-Tuple{FacElem{ZZRingElem}}",href:"#factor_coprime-Tuple{FacElem{ZZRingElem}}"},[e("span",{class:"jlbinding"},"factor_coprime")],-1)),t[114]||(t[114]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[122]||(t[122]=a('
julia
factor_coprime(x::FacElem{ZZRingElem}) -> Fac{ZZRingElem}
',1)),e("p",null,[t[119]||(t[119]=s("Computed a partial factorisation of ")),e("mjx-container",n1,[(l(),i("svg",o1,t[115]||(t[115]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[116]||(t[116]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[120]||(t[120]=s(", ie. writes ")),e("mjx-container",r1,[(l(),i("svg",d1,t[117]||(t[117]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[118]||(t[118]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[121]||(t[121]=s(" as a product of pariwise coprime integers."))]),t[123]||(t[123]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Q1,[e("summary",null,[t[124]||(t[124]=e("a",{id:"factor_coprime-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#factor_coprime-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"factor_coprime")],-1)),t[125]||(t[125]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[133]||(t[133]=a('
julia
factor_coprime(x::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}
',1)),e("p",null,[t[130]||(t[130]=s("Computed a partial factorisation of ")),e("mjx-container",p1,[(l(),i("svg",m1,t[126]||(t[126]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[127]||(t[127]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[131]||(t[131]=s(", ie. writes ")),e("mjx-container",T1,[(l(),i("svg",h1,t[128]||(t[128]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[129]||(t[129]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[132]||(t[132]=s(" as a product of pariwise coprime integral ideals."))]),t[134]||(t[134]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",u1,[e("summary",null,[t[135]||(t[135]=e("a",{id:"factor_coprime-Tuple{FacElem{AbsSimpleNumFieldOrderFractionalIdeal, Hecke.AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#factor_coprime-Tuple{FacElem{AbsSimpleNumFieldOrderFractionalIdeal, Hecke.AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"factor_coprime")],-1)),t[136]||(t[136]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[144]||(t[144]=a('
julia
factor_coprime(Q::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}
',1)),e("p",null,[t[141]||(t[141]=s("A coprime factorisation of ")),e("mjx-container",g1,[(l(),i("svg",k1,t[137]||(t[137]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D444",d:"M399 -80Q399 -47 400 -30T402 -11V-7L387 -11Q341 -22 303 -22Q208 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435Q740 255 592 107Q529 47 461 16L444 8V3Q444 2 449 -24T470 -66T516 -82Q551 -82 583 -60T625 -3Q631 11 638 11Q647 11 649 2Q649 -6 639 -34T611 -100T557 -165T481 -194Q399 -194 399 -87V-80ZM636 468Q636 523 621 564T580 625T530 655T477 665Q429 665 379 640Q277 591 215 464T153 216Q153 110 207 59Q231 38 236 38V46Q236 86 269 120T347 155Q372 155 390 144T417 114T429 82T435 55L448 64Q512 108 557 185T619 334T636 468ZM314 18Q362 18 404 39L403 49Q399 104 366 115Q354 117 347 117Q344 117 341 117T337 118Q317 118 296 98T274 52Q274 18 314 18Z",style:{"stroke-width":"3"}})])])],-1)]))),t[138]||(t[138]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"Q")])],-1))]),t[142]||(t[142]=s(": each ideal in ")),e("mjx-container",x1,[(l(),i("svg",c1,t[139]||(t[139]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D444",d:"M399 -80Q399 -47 400 -30T402 -11V-7L387 -11Q341 -22 303 -22Q208 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435Q740 255 592 107Q529 47 461 16L444 8V3Q444 2 449 -24T470 -66T516 -82Q551 -82 583 -60T625 -3Q631 11 638 11Q647 11 649 2Q649 -6 639 -34T611 -100T557 -165T481 -194Q399 -194 399 -87V-80ZM636 468Q636 523 621 564T580 625T530 655T477 665Q429 665 379 640Q277 591 215 464T153 216Q153 110 207 59Q231 38 236 38V46Q236 86 269 120T347 155Q372 155 390 144T417 114T429 82T435 55L448 64Q512 108 557 185T619 334T636 468ZM314 18Q362 18 404 39L403 49Q399 104 366 115Q354 117 347 117Q344 117 341 117T337 118Q317 118 296 98T274 52Q274 18 314 18Z",style:{"stroke-width":"3"}})])])],-1)]))),t[140]||(t[140]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"Q")])],-1))]),t[143]||(t[143]=s(" is split using \\code{integral_split} and then a coprime basis is computed. This does {\\bf not} use any factorisation."))]),t[145]||(t[145]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",w1,[e("summary",null,[t[146]||(t[146]=e("a",{id:"factor_coprime-Tuple{Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}",href:"#factor_coprime-Tuple{Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}"},[e("span",{class:"jlbinding"},"factor_coprime")],-1)),t[147]||(t[147]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[155]||(t[155]=a('
julia
factor_coprime(I::AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, ZZRingElem}
',1)),e("p",null,[t[152]||(t[152]=s("Factors the rincipal ideal generated by ")),e("mjx-container",b1,[(l(),i("svg",y1,t[148]||(t[148]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[149]||(t[149]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[153]||(t[153]=s(" into coprimes by computing a coprime basis from the principal ideals in the factorisation of ")),e("mjx-container",f1,[(l(),i("svg",v1,t[150]||(t[150]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[151]||(t[151]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[154]||(t[154]=s("."))]),t[156]||(t[156]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",E1,[e("summary",null,[t[157]||(t[157]=e("a",{id:"factor-Tuple{FacElem{AbsSimpleNumFieldOrderFractionalIdeal, Hecke.AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#factor-Tuple{FacElem{AbsSimpleNumFieldOrderFractionalIdeal, Hecke.AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"factor")],-1)),t[158]||(t[158]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[163]||(t[163]=a('
julia
 factor(Q::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}
',1)),e("p",null,[t[161]||(t[161]=s("The factorisation of ")),e("mjx-container",F1,[(l(),i("svg",M1,t[159]||(t[159]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D444",d:"M399 -80Q399 -47 400 -30T402 -11V-7L387 -11Q341 -22 303 -22Q208 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435Q740 255 592 107Q529 47 461 16L444 8V3Q444 2 449 -24T470 -66T516 -82Q551 -82 583 -60T625 -3Q631 11 638 11Q647 11 649 2Q649 -6 639 -34T611 -100T557 -165T481 -194Q399 -194 399 -87V-80ZM636 468Q636 523 621 564T580 625T530 655T477 665Q429 665 379 640Q277 591 215 464T153 216Q153 110 207 59Q231 38 236 38V46Q236 86 269 120T347 155Q372 155 390 144T417 114T429 82T435 55L448 64Q512 108 557 185T619 334T636 468ZM314 18Q362 18 404 39L403 49Q399 104 366 115Q354 117 347 117Q344 117 341 117T337 118Q317 118 296 98T274 52Q274 18 314 18Z",style:{"stroke-width":"3"}})])])],-1)]))),t[160]||(t[160]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"Q")])],-1))]),t[162]||(t[162]=s(", by refining a coprime factorisation."))]),t[164]||(t[164]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",H1,[e("summary",null,[t[165]||(t[165]=e("a",{id:"factor-Tuple{Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}",href:"#factor-Tuple{Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}"},[e("span",{class:"jlbinding"},"factor")],-1)),t[166]||(t[166]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[171]||(t[171]=a('
julia
factor(I::AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, ZZRingElem}
',1)),e("p",null,[t[169]||(t[169]=s("Factors the principal ideal generated by ")),e("mjx-container",j1,[(l(),i("svg",C1,t[167]||(t[167]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[168]||(t[168]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[170]||(t[170]=s(" by refining a coprime factorisation."))]),t[172]||(t[172]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[296]||(t[296]=e("p",null,"For factorised algebraic numbers a unique simplification is not possible, however, this allows still do obtain partial results:",-1)),e("details",L1,[e("summary",null,[t[173]||(t[173]=e("a",{id:"compact_presentation",href:"#compact_presentation"},[e("span",{class:"jlbinding"},"compact_presentation")],-1)),t[174]||(t[174]=s()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),t[197]||(t[197]=a('
julia
compact_presentation(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, n::Int = 2; decom, arb_prec = 100, short_prec = 1000) -> FacElem
',1)),e("p",null,[t[189]||(t[189]=s("Computes a presentation ")),e("mjx-container",A1,[(l(),i("svg",Z1,t[175]||(t[175]=[a('',1)]))),t[176]||(t[176]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a"),e("mo",null,"="),e("mo",{"data-mjx-texclass":"OP"},"∏"),e("msubsup",null,[e("mi",null,"a"),e("mi",null,"i"),e("mrow",{"data-mjx-texclass":"ORD"},[e("msub",null,[e("mi",null,"n"),e("mi",null,"i")])])])])],-1))]),t[190]||(t[190]=s(" where all the exponents ")),e("mjx-container",S1,[(l(),i("svg",D1,t[177]||(t[177]=[a('',1)]))),t[178]||(t[178]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("msub",null,[e("mi",null,"n"),e("mi",null,"i")])])],-1))]),t[191]||(t[191]=s(" are powers of ")),e("mjx-container",V1,[(l(),i("svg",N1,t[179]||(t[179]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),t[180]||(t[180]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"n")])],-1))]),t[192]||(t[192]=s(" and, the elements ")),e("mjx-container",B1,[(l(),i("svg",O1,t[181]||(t[181]=[a('',1)]))),t[182]||(t[182]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("msub",null,[e("mi",null,"a"),e("mi",null,"i")])])],-1))]),t[193]||(t[193]=s(' are "small", generically, they have a norm bounded by ')),e("mjx-container",I1,[(l(),i("svg",z1,t[183]||(t[183]=[a('',1)]))),t[184]||(t[184]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("msup",null,[e("mi",null,"d"),e("mrow",{"data-mjx-texclass":"ORD"},[e("mi",null,"n"),e("mrow",{"data-mjx-texclass":"ORD"},[e("mo",null,"/")]),e("mn",null,"2")])])])],-1))]),t[194]||(t[194]=s(" where ")),e("mjx-container",G1,[(l(),i("svg",J1,t[185]||(t[185]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),t[186]||(t[186]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"d")])],-1))]),t[195]||(t[195]=s(" is the discriminant of the maximal order. As the algorithm needs the factorisation of the principal ideal generated by ")),e("mjx-container",R1,[(l(),i("svg",P1,t[187]||(t[187]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[188]||(t[188]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[196]||(t[196]=s(", it can be passed in in \\code{decom}."))]),t[198]||(t[198]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",q1,[e("summary",null,[t[199]||(t[199]=e("a",{id:"valuation-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderIdeal}",href:"#valuation-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderIdeal}"},[e("span",{class:"jlbinding"},"valuation")],-1)),t[200]||(t[200]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[208]||(t[208]=a('
julia
valuation(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
',1)),e("p",null,[t[205]||(t[205]=s("The valuation of ")),e("mjx-container",U1,[(l(),i("svg",X1,t[201]||(t[201]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[202]||(t[202]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[206]||(t[206]=s(" at ")),e("mjx-container",$1,[(l(),i("svg",K1,t[203]||(t[203]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[204]||(t[204]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"P")])],-1))]),t[207]||(t[207]=s("."))]),t[209]||(t[209]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",W1,[e("summary",null,[t[210]||(t[210]=e("a",{id:"valuation-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, AbsSimpleNumFieldOrderIdeal}",href:"#valuation-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, AbsSimpleNumFieldOrderIdeal}"},[e("span",{class:"jlbinding"},"valuation")],-1)),t[211]||(t[211]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[219]||(t[219]=a(`
julia
valuation(A::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})
-valuation(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})
`,1)),e("p",null,[t[216]||(t[216]=s("The valuation of ")),e("mjx-container",Y1,[(l(),i("svg",_1,t[212]||(t[212]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[213]||(t[213]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"A")])],-1))]),t[217]||(t[217]=s(" at ")),e("mjx-container",e2,[(l(),i("svg",t2,t[214]||(t[214]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[215]||(t[215]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"P")])],-1))]),t[218]||(t[218]=s("."))]),t[220]||(t[220]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",s2,[e("summary",null,[t[221]||(t[221]=e("a",{id:"evaluate_mod-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderFractionalIdeal}",href:"#evaluate_mod-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderFractionalIdeal}"},[e("span",{class:"jlbinding"},"evaluate_mod")],-1)),t[222]||(t[222]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[236]||(t[236]=a('
julia
evaluate_mod(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, B::AbsSimpleNumFieldOrderFractionalIdeal) -> AbsSimpleNumFieldElem
',1)),e("p",null,[t[231]||(t[231]=s("Evaluates ")),e("mjx-container",i2,[(l(),i("svg",l2,t[223]||(t[223]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[224]||(t[224]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[232]||(t[232]=s(" using CRT and small primes. Assumes that the ideal generated by ")),e("mjx-container",a2,[(l(),i("svg",n2,t[225]||(t[225]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[226]||(t[226]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[233]||(t[233]=s(" is in fact ")),e("mjx-container",o2,[(l(),i("svg",r2,t[227]||(t[227]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[228]||(t[228]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"B")])],-1))]),t[234]||(t[234]=s(". Useful in cases where ")),e("mjx-container",d2,[(l(),i("svg",Q2,t[229]||(t[229]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[230]||(t[230]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[235]||(t[235]=s(' has huge exponents, but the evaluated element is actually "small".'))]),t[237]||(t[237]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",p2,[e("summary",null,[t[238]||(t[238]=e("a",{id:"reduce_ideal-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#reduce_ideal-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"reduce_ideal")],-1)),t[239]||(t[239]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[250]||(t[250]=a('
julia
reduce_ideal(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem}
',1)),e("p",null,[t[246]||(t[246]=s("Computes ")),e("mjx-container",m2,[(l(),i("svg",T2,t[240]||(t[240]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[241]||(t[241]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"B")])],-1))]),t[247]||(t[247]=s(" and ")),e("mjx-container",h2,[(l(),i("svg",u2,t[242]||(t[242]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D6FC",d:"M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z",style:{"stroke-width":"3"}})])])],-1)]))),t[243]||(t[243]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"α")])],-1))]),t[248]||(t[248]=s(" in factored form, such that ")),e("mjx-container",g2,[(l(),i("svg",k2,t[244]||(t[244]=[a('',1)]))),t[245]||(t[245]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"α"),e("mi",null,"B"),e("mo",null,"="),e("mi",null,"A")])],-1))]),t[249]||(t[249]=s("."))]),t[251]||(t[251]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",x2,[e("summary",null,[t[252]||(t[252]=e("a",{id:"modular_proj-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, Hecke.modular_env}",href:"#modular_proj-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, Hecke.modular_env}"},[e("span",{class:"jlbinding"},"modular_proj")],-1)),t[253]||(t[253]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[261]||(t[261]=a('
julia
modular_proj(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, me::modular_env) -> Vector{fqPolyRepFieldElem}
',1)),e("p",null,[t[258]||(t[258]=s("Given an algebraic number ")),e("mjx-container",c2,[(l(),i("svg",w2,t[254]||(t[254]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[255]||(t[255]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[259]||(t[259]=s(" in factored form and data \\code{me} as computed by \\code{modular_init}, project ")),e("mjx-container",b2,[(l(),i("svg",y2,t[256]||(t[256]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[257]||(t[257]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[260]||(t[260]=s(" onto the residue class fields."))]),t[262]||(t[262]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[297]||(t[297]=a('

Positivity & Signs

Factored elements can be used instead of number field elements for the functions sign, signs, is_positive, is_negative and is_totally_positive, see Positivity & Signs

Miscellaneous

',3)),e("details",f2,[e("summary",null,[t[263]||(t[263]=e("a",{id:"max_exp-Tuple{FacElem}",href:"#max_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"max_exp")],-1)),t[264]||(t[264]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[269]||(t[269]=a('
julia
max_exp(a::FacElem)
',1)),e("p",null,[t[267]||(t[267]=s("Finds the largest exponent in the factored element ")),e("mjx-container",v2,[(l(),i("svg",E2,t[265]||(t[265]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[266]||(t[266]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[268]||(t[268]=s("."))]),t[270]||(t[270]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",F2,[e("summary",null,[t[271]||(t[271]=e("a",{id:"min_exp-Tuple{FacElem}",href:"#min_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"min_exp")],-1)),t[272]||(t[272]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[277]||(t[277]=a('
julia
min_exp(a::FacElem)
',1)),e("p",null,[t[275]||(t[275]=s("Finds the smallest exponent in the factored element ")),e("mjx-container",M2,[(l(),i("svg",H2,t[273]||(t[273]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[274]||(t[274]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[276]||(t[276]=s("."))]),t[278]||(t[278]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",j2,[e("summary",null,[t[279]||(t[279]=e("a",{id:"maxabs_exp-Tuple{FacElem}",href:"#maxabs_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"maxabs_exp")],-1)),t[280]||(t[280]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[285]||(t[285]=a('
julia
maxabs_exp(a::FacElem)
',1)),e("p",null,[t[283]||(t[283]=s("Finds the largest exponent by absolute value in the factored element ")),e("mjx-container",C2,[(l(),i("svg",L2,t[281]||(t[281]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[282]||(t[282]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[284]||(t[284]=s("."))]),t[286]||(t[286]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const I2=r(Q,[["render",A2]]);export{O2 as __pageData,I2 as default}; +valuation(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})
`,1)),e("p",null,[t[216]||(t[216]=s("The valuation of ")),e("mjx-container",Y1,[(l(),i("svg",_1,t[212]||(t[212]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[213]||(t[213]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"A")])],-1))]),t[217]||(t[217]=s(" at ")),e("mjx-container",e2,[(l(),i("svg",t2,t[214]||(t[214]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[215]||(t[215]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"P")])],-1))]),t[218]||(t[218]=s("."))]),t[220]||(t[220]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",s2,[e("summary",null,[t[221]||(t[221]=e("a",{id:"evaluate_mod-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderFractionalIdeal}",href:"#evaluate_mod-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderFractionalIdeal}"},[e("span",{class:"jlbinding"},"evaluate_mod")],-1)),t[222]||(t[222]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[236]||(t[236]=a('
julia
evaluate_mod(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, B::AbsSimpleNumFieldOrderFractionalIdeal) -> AbsSimpleNumFieldElem
',1)),e("p",null,[t[231]||(t[231]=s("Evaluates ")),e("mjx-container",i2,[(l(),i("svg",l2,t[223]||(t[223]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[224]||(t[224]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[232]||(t[232]=s(" using CRT and small primes. Assumes that the ideal generated by ")),e("mjx-container",a2,[(l(),i("svg",n2,t[225]||(t[225]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[226]||(t[226]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[233]||(t[233]=s(" is in fact ")),e("mjx-container",o2,[(l(),i("svg",r2,t[227]||(t[227]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[228]||(t[228]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"B")])],-1))]),t[234]||(t[234]=s(". Useful in cases where ")),e("mjx-container",d2,[(l(),i("svg",Q2,t[229]||(t[229]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[230]||(t[230]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[235]||(t[235]=s(' has huge exponents, but the evaluated element is actually "small".'))]),t[237]||(t[237]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",p2,[e("summary",null,[t[238]||(t[238]=e("a",{id:"reduce_ideal-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#reduce_ideal-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"reduce_ideal")],-1)),t[239]||(t[239]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[250]||(t[250]=a('
julia
reduce_ideal(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem}
',1)),e("p",null,[t[246]||(t[246]=s("Computes ")),e("mjx-container",m2,[(l(),i("svg",T2,t[240]||(t[240]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[241]||(t[241]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"B")])],-1))]),t[247]||(t[247]=s(" and ")),e("mjx-container",h2,[(l(),i("svg",u2,t[242]||(t[242]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D6FC",d:"M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z",style:{"stroke-width":"3"}})])])],-1)]))),t[243]||(t[243]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"α")])],-1))]),t[248]||(t[248]=s(" in factored form, such that ")),e("mjx-container",g2,[(l(),i("svg",k2,t[244]||(t[244]=[a('',1)]))),t[245]||(t[245]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"α"),e("mi",null,"B"),e("mo",null,"="),e("mi",null,"A")])],-1))]),t[249]||(t[249]=s("."))]),t[251]||(t[251]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",x2,[e("summary",null,[t[252]||(t[252]=e("a",{id:"modular_proj-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, Hecke.modular_env}",href:"#modular_proj-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, Hecke.modular_env}"},[e("span",{class:"jlbinding"},"modular_proj")],-1)),t[253]||(t[253]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[261]||(t[261]=a('
julia
modular_proj(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, me::modular_env) -> Vector{fqPolyRepFieldElem}
',1)),e("p",null,[t[258]||(t[258]=s("Given an algebraic number ")),e("mjx-container",c2,[(l(),i("svg",w2,t[254]||(t[254]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[255]||(t[255]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[259]||(t[259]=s(" in factored form and data \\code{me} as computed by \\code{modular_init}, project ")),e("mjx-container",b2,[(l(),i("svg",y2,t[256]||(t[256]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[257]||(t[257]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[260]||(t[260]=s(" onto the residue class fields."))]),t[262]||(t[262]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[297]||(t[297]=a('

Positivity & Signs

Factored elements can be used instead of number field elements for the functions sign, signs, is_positive, is_negative and is_totally_positive, see Positivity & Signs

Miscellaneous

',3)),e("details",f2,[e("summary",null,[t[263]||(t[263]=e("a",{id:"max_exp-Tuple{FacElem}",href:"#max_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"max_exp")],-1)),t[264]||(t[264]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[269]||(t[269]=a('
julia
max_exp(a::FacElem)
',1)),e("p",null,[t[267]||(t[267]=s("Finds the largest exponent in the factored element ")),e("mjx-container",v2,[(l(),i("svg",E2,t[265]||(t[265]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[266]||(t[266]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[268]||(t[268]=s("."))]),t[270]||(t[270]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",F2,[e("summary",null,[t[271]||(t[271]=e("a",{id:"min_exp-Tuple{FacElem}",href:"#min_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"min_exp")],-1)),t[272]||(t[272]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[277]||(t[277]=a('
julia
min_exp(a::FacElem)
',1)),e("p",null,[t[275]||(t[275]=s("Finds the smallest exponent in the factored element ")),e("mjx-container",M2,[(l(),i("svg",H2,t[273]||(t[273]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[274]||(t[274]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[276]||(t[276]=s("."))]),t[278]||(t[278]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",j2,[e("summary",null,[t[279]||(t[279]=e("a",{id:"maxabs_exp-Tuple{FacElem}",href:"#maxabs_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"maxabs_exp")],-1)),t[280]||(t[280]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[285]||(t[285]=a('
julia
maxabs_exp(a::FacElem)
',1)),e("p",null,[t[283]||(t[283]=s("Finds the largest exponent by absolute value in the factored element ")),e("mjx-container",C2,[(l(),i("svg",L2,t[281]||(t[281]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[282]||(t[282]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[284]||(t[284]=s("."))]),t[286]||(t[286]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const I2=r(Q,[["render",A2]]);export{O2 as __pageData,I2 as default}; diff --git a/v0.34.8/assets/manual_misc_FacElem.md.D_L3aOnQ.lean.js b/v0.34.8/assets/manual_misc_FacElem.md.D_L3aOnQ.lean.js index 4a712c872a..dae18b558c 100644 --- a/v0.34.8/assets/manual_misc_FacElem.md.D_L3aOnQ.lean.js +++ b/v0.34.8/assets/manual_misc_FacElem.md.D_L3aOnQ.lean.js @@ -5,4 +5,4 @@ import{_ as r,c as i,j as e,a as s,a5 as a,G as o,B as d,o as l}from"./chunks/fr simplify(x::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> FacElem
`,1)),e("p",null,[t[93]||(t[93]=s("Uses ")),t[94]||(t[94]=e("code",null,"coprime_base",-1)),t[95]||(t[95]=s(" to obtain a simplified version of ")),e("mjx-container",W,[(l(),i("svg",Y,t[91]||(t[91]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[92]||(t[92]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[96]||(t[96]=s(", ie. in the simplified version all base ideals will be pariwise coprime but not necessarily prime!."))]),t[98]||(t[98]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",_,[e("summary",null,[t[99]||(t[99]=e("a",{id:"simplify-Tuple{FacElem{QQFieldElem}}",href:"#simplify-Tuple{FacElem{QQFieldElem}}"},[e("span",{class:"jlbinding"},"simplify")],-1)),t[100]||(t[100]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[101]||(t[101]=a(`
julia
simplify(x::FacElem{QQFieldElem}) -> FacElem{QQFieldElem}
 simplify(x::FacElem{ZZRingElem}) -> FacElem{ZZRingElem}

Simplfies the factored element, i.e. arranges for the base to be coprime.

source

`,3))]),t[295]||(t[295]=e("p",null,"The simplified version can then be used further:",-1)),e("details",e1,[e("summary",null,[t[102]||(t[102]=e("a",{id:"isone-Tuple{FacElem{QQFieldElem}}",href:"#isone-Tuple{FacElem{QQFieldElem}}"},[e("span",{class:"jlbinding"},"isone")],-1)),t[103]||(t[103]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[111]||(t[111]=a(`
julia
isone(x::FacElem{QQFieldElem}) -> Bool
 isone(x::FacElem{ZZRingElem}) -> Bool
`,1)),e("p",null,[t[108]||(t[108]=s("Tests if ")),e("mjx-container",t1,[(l(),i("svg",s1,t[104]||(t[104]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[105]||(t[105]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[109]||(t[109]=s(" represents ")),e("mjx-container",i1,[(l(),i("svg",l1,t[106]||(t[106]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mn"},[e("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),t[107]||(t[107]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mn",null,"1")])],-1))]),t[110]||(t[110]=s(" without an evaluation."))]),t[112]||(t[112]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",a1,[e("summary",null,[t[113]||(t[113]=e("a",{id:"factor_coprime-Tuple{FacElem{ZZRingElem}}",href:"#factor_coprime-Tuple{FacElem{ZZRingElem}}"},[e("span",{class:"jlbinding"},"factor_coprime")],-1)),t[114]||(t[114]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[122]||(t[122]=a('
julia
factor_coprime(x::FacElem{ZZRingElem}) -> Fac{ZZRingElem}
',1)),e("p",null,[t[119]||(t[119]=s("Computed a partial factorisation of ")),e("mjx-container",n1,[(l(),i("svg",o1,t[115]||(t[115]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[116]||(t[116]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[120]||(t[120]=s(", ie. writes ")),e("mjx-container",r1,[(l(),i("svg",d1,t[117]||(t[117]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[118]||(t[118]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[121]||(t[121]=s(" as a product of pariwise coprime integers."))]),t[123]||(t[123]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",Q1,[e("summary",null,[t[124]||(t[124]=e("a",{id:"factor_coprime-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#factor_coprime-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"factor_coprime")],-1)),t[125]||(t[125]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[133]||(t[133]=a('
julia
factor_coprime(x::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}
',1)),e("p",null,[t[130]||(t[130]=s("Computed a partial factorisation of ")),e("mjx-container",p1,[(l(),i("svg",m1,t[126]||(t[126]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[127]||(t[127]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[131]||(t[131]=s(", ie. writes ")),e("mjx-container",T1,[(l(),i("svg",h1,t[128]||(t[128]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),t[129]||(t[129]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"x")])],-1))]),t[132]||(t[132]=s(" as a product of pariwise coprime integral ideals."))]),t[134]||(t[134]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",u1,[e("summary",null,[t[135]||(t[135]=e("a",{id:"factor_coprime-Tuple{FacElem{AbsSimpleNumFieldOrderFractionalIdeal, Hecke.AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#factor_coprime-Tuple{FacElem{AbsSimpleNumFieldOrderFractionalIdeal, Hecke.AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"factor_coprime")],-1)),t[136]||(t[136]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[144]||(t[144]=a('
julia
factor_coprime(Q::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}
',1)),e("p",null,[t[141]||(t[141]=s("A coprime factorisation of ")),e("mjx-container",g1,[(l(),i("svg",k1,t[137]||(t[137]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D444",d:"M399 -80Q399 -47 400 -30T402 -11V-7L387 -11Q341 -22 303 -22Q208 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435Q740 255 592 107Q529 47 461 16L444 8V3Q444 2 449 -24T470 -66T516 -82Q551 -82 583 -60T625 -3Q631 11 638 11Q647 11 649 2Q649 -6 639 -34T611 -100T557 -165T481 -194Q399 -194 399 -87V-80ZM636 468Q636 523 621 564T580 625T530 655T477 665Q429 665 379 640Q277 591 215 464T153 216Q153 110 207 59Q231 38 236 38V46Q236 86 269 120T347 155Q372 155 390 144T417 114T429 82T435 55L448 64Q512 108 557 185T619 334T636 468ZM314 18Q362 18 404 39L403 49Q399 104 366 115Q354 117 347 117Q344 117 341 117T337 118Q317 118 296 98T274 52Q274 18 314 18Z",style:{"stroke-width":"3"}})])])],-1)]))),t[138]||(t[138]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"Q")])],-1))]),t[142]||(t[142]=s(": each ideal in ")),e("mjx-container",x1,[(l(),i("svg",c1,t[139]||(t[139]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D444",d:"M399 -80Q399 -47 400 -30T402 -11V-7L387 -11Q341 -22 303 -22Q208 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435Q740 255 592 107Q529 47 461 16L444 8V3Q444 2 449 -24T470 -66T516 -82Q551 -82 583 -60T625 -3Q631 11 638 11Q647 11 649 2Q649 -6 639 -34T611 -100T557 -165T481 -194Q399 -194 399 -87V-80ZM636 468Q636 523 621 564T580 625T530 655T477 665Q429 665 379 640Q277 591 215 464T153 216Q153 110 207 59Q231 38 236 38V46Q236 86 269 120T347 155Q372 155 390 144T417 114T429 82T435 55L448 64Q512 108 557 185T619 334T636 468ZM314 18Q362 18 404 39L403 49Q399 104 366 115Q354 117 347 117Q344 117 341 117T337 118Q317 118 296 98T274 52Q274 18 314 18Z",style:{"stroke-width":"3"}})])])],-1)]))),t[140]||(t[140]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"Q")])],-1))]),t[143]||(t[143]=s(" is split using \\code{integral_split} and then a coprime basis is computed. This does {\\bf not} use any factorisation."))]),t[145]||(t[145]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",w1,[e("summary",null,[t[146]||(t[146]=e("a",{id:"factor_coprime-Tuple{Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}",href:"#factor_coprime-Tuple{Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}"},[e("span",{class:"jlbinding"},"factor_coprime")],-1)),t[147]||(t[147]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[155]||(t[155]=a('
julia
factor_coprime(I::AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, ZZRingElem}
',1)),e("p",null,[t[152]||(t[152]=s("Factors the rincipal ideal generated by ")),e("mjx-container",b1,[(l(),i("svg",y1,t[148]||(t[148]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[149]||(t[149]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[153]||(t[153]=s(" into coprimes by computing a coprime basis from the principal ideals in the factorisation of ")),e("mjx-container",f1,[(l(),i("svg",v1,t[150]||(t[150]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[151]||(t[151]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[154]||(t[154]=s("."))]),t[156]||(t[156]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",E1,[e("summary",null,[t[157]||(t[157]=e("a",{id:"factor-Tuple{FacElem{AbsSimpleNumFieldOrderFractionalIdeal, Hecke.AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#factor-Tuple{FacElem{AbsSimpleNumFieldOrderFractionalIdeal, Hecke.AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"factor")],-1)),t[158]||(t[158]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[163]||(t[163]=a('
julia
 factor(Q::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}
',1)),e("p",null,[t[161]||(t[161]=s("The factorisation of ")),e("mjx-container",F1,[(l(),i("svg",M1,t[159]||(t[159]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D444",d:"M399 -80Q399 -47 400 -30T402 -11V-7L387 -11Q341 -22 303 -22Q208 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435Q740 255 592 107Q529 47 461 16L444 8V3Q444 2 449 -24T470 -66T516 -82Q551 -82 583 -60T625 -3Q631 11 638 11Q647 11 649 2Q649 -6 639 -34T611 -100T557 -165T481 -194Q399 -194 399 -87V-80ZM636 468Q636 523 621 564T580 625T530 655T477 665Q429 665 379 640Q277 591 215 464T153 216Q153 110 207 59Q231 38 236 38V46Q236 86 269 120T347 155Q372 155 390 144T417 114T429 82T435 55L448 64Q512 108 557 185T619 334T636 468ZM314 18Q362 18 404 39L403 49Q399 104 366 115Q354 117 347 117Q344 117 341 117T337 118Q317 118 296 98T274 52Q274 18 314 18Z",style:{"stroke-width":"3"}})])])],-1)]))),t[160]||(t[160]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"Q")])],-1))]),t[162]||(t[162]=s(", by refining a coprime factorisation."))]),t[164]||(t[164]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",H1,[e("summary",null,[t[165]||(t[165]=e("a",{id:"factor-Tuple{Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}",href:"#factor-Tuple{Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}"},[e("span",{class:"jlbinding"},"factor")],-1)),t[166]||(t[166]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[171]||(t[171]=a('
julia
factor(I::AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, ZZRingElem}
',1)),e("p",null,[t[169]||(t[169]=s("Factors the principal ideal generated by ")),e("mjx-container",j1,[(l(),i("svg",C1,t[167]||(t[167]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[168]||(t[168]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[170]||(t[170]=s(" by refining a coprime factorisation."))]),t[172]||(t[172]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[296]||(t[296]=e("p",null,"For factorised algebraic numbers a unique simplification is not possible, however, this allows still do obtain partial results:",-1)),e("details",L1,[e("summary",null,[t[173]||(t[173]=e("a",{id:"compact_presentation",href:"#compact_presentation"},[e("span",{class:"jlbinding"},"compact_presentation")],-1)),t[174]||(t[174]=s()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),t[197]||(t[197]=a('
julia
compact_presentation(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, n::Int = 2; decom, arb_prec = 100, short_prec = 1000) -> FacElem
',1)),e("p",null,[t[189]||(t[189]=s("Computes a presentation ")),e("mjx-container",A1,[(l(),i("svg",Z1,t[175]||(t[175]=[a('',1)]))),t[176]||(t[176]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a"),e("mo",null,"="),e("mo",{"data-mjx-texclass":"OP"},"∏"),e("msubsup",null,[e("mi",null,"a"),e("mi",null,"i"),e("mrow",{"data-mjx-texclass":"ORD"},[e("msub",null,[e("mi",null,"n"),e("mi",null,"i")])])])])],-1))]),t[190]||(t[190]=s(" where all the exponents ")),e("mjx-container",S1,[(l(),i("svg",D1,t[177]||(t[177]=[a('',1)]))),t[178]||(t[178]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("msub",null,[e("mi",null,"n"),e("mi",null,"i")])])],-1))]),t[191]||(t[191]=s(" are powers of ")),e("mjx-container",V1,[(l(),i("svg",N1,t[179]||(t[179]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),t[180]||(t[180]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"n")])],-1))]),t[192]||(t[192]=s(" and, the elements ")),e("mjx-container",B1,[(l(),i("svg",O1,t[181]||(t[181]=[a('',1)]))),t[182]||(t[182]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("msub",null,[e("mi",null,"a"),e("mi",null,"i")])])],-1))]),t[193]||(t[193]=s(' are "small", generically, they have a norm bounded by ')),e("mjx-container",I1,[(l(),i("svg",z1,t[183]||(t[183]=[a('',1)]))),t[184]||(t[184]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("msup",null,[e("mi",null,"d"),e("mrow",{"data-mjx-texclass":"ORD"},[e("mi",null,"n"),e("mrow",{"data-mjx-texclass":"ORD"},[e("mo",null,"/")]),e("mn",null,"2")])])])],-1))]),t[194]||(t[194]=s(" where ")),e("mjx-container",G1,[(l(),i("svg",J1,t[185]||(t[185]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),t[186]||(t[186]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"d")])],-1))]),t[195]||(t[195]=s(" is the discriminant of the maximal order. As the algorithm needs the factorisation of the principal ideal generated by ")),e("mjx-container",R1,[(l(),i("svg",P1,t[187]||(t[187]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[188]||(t[188]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[196]||(t[196]=s(", it can be passed in in \\code{decom}."))]),t[198]||(t[198]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",q1,[e("summary",null,[t[199]||(t[199]=e("a",{id:"valuation-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderIdeal}",href:"#valuation-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderIdeal}"},[e("span",{class:"jlbinding"},"valuation")],-1)),t[200]||(t[200]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[208]||(t[208]=a('
julia
valuation(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
',1)),e("p",null,[t[205]||(t[205]=s("The valuation of ")),e("mjx-container",U1,[(l(),i("svg",X1,t[201]||(t[201]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[202]||(t[202]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[206]||(t[206]=s(" at ")),e("mjx-container",$1,[(l(),i("svg",K1,t[203]||(t[203]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[204]||(t[204]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"P")])],-1))]),t[207]||(t[207]=s("."))]),t[209]||(t[209]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",W1,[e("summary",null,[t[210]||(t[210]=e("a",{id:"valuation-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, AbsSimpleNumFieldOrderIdeal}",href:"#valuation-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, AbsSimpleNumFieldOrderIdeal}"},[e("span",{class:"jlbinding"},"valuation")],-1)),t[211]||(t[211]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[219]||(t[219]=a(`
julia
valuation(A::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})
-valuation(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})
`,1)),e("p",null,[t[216]||(t[216]=s("The valuation of ")),e("mjx-container",Y1,[(l(),i("svg",_1,t[212]||(t[212]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[213]||(t[213]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"A")])],-1))]),t[217]||(t[217]=s(" at ")),e("mjx-container",e2,[(l(),i("svg",t2,t[214]||(t[214]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[215]||(t[215]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"P")])],-1))]),t[218]||(t[218]=s("."))]),t[220]||(t[220]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",s2,[e("summary",null,[t[221]||(t[221]=e("a",{id:"evaluate_mod-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderFractionalIdeal}",href:"#evaluate_mod-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderFractionalIdeal}"},[e("span",{class:"jlbinding"},"evaluate_mod")],-1)),t[222]||(t[222]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[236]||(t[236]=a('
julia
evaluate_mod(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, B::AbsSimpleNumFieldOrderFractionalIdeal) -> AbsSimpleNumFieldElem
',1)),e("p",null,[t[231]||(t[231]=s("Evaluates ")),e("mjx-container",i2,[(l(),i("svg",l2,t[223]||(t[223]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[224]||(t[224]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[232]||(t[232]=s(" using CRT and small primes. Assumes that the ideal generated by ")),e("mjx-container",a2,[(l(),i("svg",n2,t[225]||(t[225]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[226]||(t[226]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[233]||(t[233]=s(" is in fact ")),e("mjx-container",o2,[(l(),i("svg",r2,t[227]||(t[227]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[228]||(t[228]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"B")])],-1))]),t[234]||(t[234]=s(". Useful in cases where ")),e("mjx-container",d2,[(l(),i("svg",Q2,t[229]||(t[229]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[230]||(t[230]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[235]||(t[235]=s(' has huge exponents, but the evaluated element is actually "small".'))]),t[237]||(t[237]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",p2,[e("summary",null,[t[238]||(t[238]=e("a",{id:"reduce_ideal-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#reduce_ideal-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"reduce_ideal")],-1)),t[239]||(t[239]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[250]||(t[250]=a('
julia
reduce_ideal(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem}
',1)),e("p",null,[t[246]||(t[246]=s("Computes ")),e("mjx-container",m2,[(l(),i("svg",T2,t[240]||(t[240]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[241]||(t[241]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"B")])],-1))]),t[247]||(t[247]=s(" and ")),e("mjx-container",h2,[(l(),i("svg",u2,t[242]||(t[242]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D6FC",d:"M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z",style:{"stroke-width":"3"}})])])],-1)]))),t[243]||(t[243]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"α")])],-1))]),t[248]||(t[248]=s(" in factored form, such that ")),e("mjx-container",g2,[(l(),i("svg",k2,t[244]||(t[244]=[a('',1)]))),t[245]||(t[245]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"α"),e("mi",null,"B"),e("mo",null,"="),e("mi",null,"A")])],-1))]),t[249]||(t[249]=s("."))]),t[251]||(t[251]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",x2,[e("summary",null,[t[252]||(t[252]=e("a",{id:"modular_proj-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, Hecke.modular_env}",href:"#modular_proj-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, Hecke.modular_env}"},[e("span",{class:"jlbinding"},"modular_proj")],-1)),t[253]||(t[253]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[261]||(t[261]=a('
julia
modular_proj(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, me::modular_env) -> Vector{fqPolyRepFieldElem}
',1)),e("p",null,[t[258]||(t[258]=s("Given an algebraic number ")),e("mjx-container",c2,[(l(),i("svg",w2,t[254]||(t[254]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[255]||(t[255]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[259]||(t[259]=s(" in factored form and data \\code{me} as computed by \\code{modular_init}, project ")),e("mjx-container",b2,[(l(),i("svg",y2,t[256]||(t[256]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[257]||(t[257]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[260]||(t[260]=s(" onto the residue class fields."))]),t[262]||(t[262]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[297]||(t[297]=a('

Positivity & Signs

Factored elements can be used instead of number field elements for the functions sign, signs, is_positive, is_negative and is_totally_positive, see Positivity & Signs

Miscellaneous

',3)),e("details",f2,[e("summary",null,[t[263]||(t[263]=e("a",{id:"max_exp-Tuple{FacElem}",href:"#max_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"max_exp")],-1)),t[264]||(t[264]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[269]||(t[269]=a('
julia
max_exp(a::FacElem)
',1)),e("p",null,[t[267]||(t[267]=s("Finds the largest exponent in the factored element ")),e("mjx-container",v2,[(l(),i("svg",E2,t[265]||(t[265]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[266]||(t[266]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[268]||(t[268]=s("."))]),t[270]||(t[270]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",F2,[e("summary",null,[t[271]||(t[271]=e("a",{id:"min_exp-Tuple{FacElem}",href:"#min_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"min_exp")],-1)),t[272]||(t[272]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[277]||(t[277]=a('
julia
min_exp(a::FacElem)
',1)),e("p",null,[t[275]||(t[275]=s("Finds the smallest exponent in the factored element ")),e("mjx-container",M2,[(l(),i("svg",H2,t[273]||(t[273]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[274]||(t[274]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[276]||(t[276]=s("."))]),t[278]||(t[278]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",j2,[e("summary",null,[t[279]||(t[279]=e("a",{id:"maxabs_exp-Tuple{FacElem}",href:"#maxabs_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"maxabs_exp")],-1)),t[280]||(t[280]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[285]||(t[285]=a('
julia
maxabs_exp(a::FacElem)
',1)),e("p",null,[t[283]||(t[283]=s("Finds the largest exponent by absolute value in the factored element ")),e("mjx-container",C2,[(l(),i("svg",L2,t[281]||(t[281]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[282]||(t[282]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[284]||(t[284]=s("."))]),t[286]||(t[286]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const I2=r(Q,[["render",A2]]);export{O2 as __pageData,I2 as default}; +valuation(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})
`,1)),e("p",null,[t[216]||(t[216]=s("The valuation of ")),e("mjx-container",Y1,[(l(),i("svg",_1,t[212]||(t[212]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),t[213]||(t[213]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"A")])],-1))]),t[217]||(t[217]=s(" at ")),e("mjx-container",e2,[(l(),i("svg",t2,t[214]||(t[214]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),t[215]||(t[215]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"P")])],-1))]),t[218]||(t[218]=s("."))]),t[220]||(t[220]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",s2,[e("summary",null,[t[221]||(t[221]=e("a",{id:"evaluate_mod-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderFractionalIdeal}",href:"#evaluate_mod-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, AbsSimpleNumFieldOrderFractionalIdeal}"},[e("span",{class:"jlbinding"},"evaluate_mod")],-1)),t[222]||(t[222]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[236]||(t[236]=a('
julia
evaluate_mod(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, B::AbsSimpleNumFieldOrderFractionalIdeal) -> AbsSimpleNumFieldElem
',1)),e("p",null,[t[231]||(t[231]=s("Evaluates ")),e("mjx-container",i2,[(l(),i("svg",l2,t[223]||(t[223]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[224]||(t[224]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[232]||(t[232]=s(" using CRT and small primes. Assumes that the ideal generated by ")),e("mjx-container",a2,[(l(),i("svg",n2,t[225]||(t[225]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[226]||(t[226]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[233]||(t[233]=s(" is in fact ")),e("mjx-container",o2,[(l(),i("svg",r2,t[227]||(t[227]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[228]||(t[228]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"B")])],-1))]),t[234]||(t[234]=s(". Useful in cases where ")),e("mjx-container",d2,[(l(),i("svg",Q2,t[229]||(t[229]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[230]||(t[230]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[235]||(t[235]=s(' has huge exponents, but the evaluated element is actually "small".'))]),t[237]||(t[237]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",p2,[e("summary",null,[t[238]||(t[238]=e("a",{id:"reduce_ideal-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}",href:"#reduce_ideal-Tuple{FacElem{AbsSimpleNumFieldOrderIdeal, Hecke.AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}}"},[e("span",{class:"jlbinding"},"reduce_ideal")],-1)),t[239]||(t[239]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[250]||(t[250]=a('
julia
reduce_ideal(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem}
',1)),e("p",null,[t[246]||(t[246]=s("Computes ")),e("mjx-container",m2,[(l(),i("svg",T2,t[240]||(t[240]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),t[241]||(t[241]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"B")])],-1))]),t[247]||(t[247]=s(" and ")),e("mjx-container",h2,[(l(),i("svg",u2,t[242]||(t[242]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D6FC",d:"M34 156Q34 270 120 356T309 442Q379 442 421 402T478 304Q484 275 485 237V208Q534 282 560 374Q564 388 566 390T582 393Q603 393 603 385Q603 376 594 346T558 261T497 161L486 147L487 123Q489 67 495 47T514 26Q528 28 540 37T557 60Q559 67 562 68T577 70Q597 70 597 62Q597 56 591 43Q579 19 556 5T512 -10H505Q438 -10 414 62L411 69L400 61Q390 53 370 41T325 18T267 -2T203 -11Q124 -11 79 39T34 156ZM208 26Q257 26 306 47T379 90L403 112Q401 255 396 290Q382 405 304 405Q235 405 183 332Q156 292 139 224T121 120Q121 71 146 49T208 26Z",style:{"stroke-width":"3"}})])])],-1)]))),t[243]||(t[243]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"α")])],-1))]),t[248]||(t[248]=s(" in factored form, such that ")),e("mjx-container",g2,[(l(),i("svg",k2,t[244]||(t[244]=[a('',1)]))),t[245]||(t[245]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"α"),e("mi",null,"B"),e("mo",null,"="),e("mi",null,"A")])],-1))]),t[249]||(t[249]=s("."))]),t[251]||(t[251]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",x2,[e("summary",null,[t[252]||(t[252]=e("a",{id:"modular_proj-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, Hecke.modular_env}",href:"#modular_proj-Tuple{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, Hecke.modular_env}"},[e("span",{class:"jlbinding"},"modular_proj")],-1)),t[253]||(t[253]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[261]||(t[261]=a('
julia
modular_proj(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, me::modular_env) -> Vector{fqPolyRepFieldElem}
',1)),e("p",null,[t[258]||(t[258]=s("Given an algebraic number ")),e("mjx-container",c2,[(l(),i("svg",w2,t[254]||(t[254]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[255]||(t[255]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[259]||(t[259]=s(" in factored form and data \\code{me} as computed by \\code{modular_init}, project ")),e("mjx-container",b2,[(l(),i("svg",y2,t[256]||(t[256]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[257]||(t[257]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[260]||(t[260]=s(" onto the residue class fields."))]),t[262]||(t[262]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t[297]||(t[297]=a('

Positivity & Signs

Factored elements can be used instead of number field elements for the functions sign, signs, is_positive, is_negative and is_totally_positive, see Positivity & Signs

Miscellaneous

',3)),e("details",f2,[e("summary",null,[t[263]||(t[263]=e("a",{id:"max_exp-Tuple{FacElem}",href:"#max_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"max_exp")],-1)),t[264]||(t[264]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[269]||(t[269]=a('
julia
max_exp(a::FacElem)
',1)),e("p",null,[t[267]||(t[267]=s("Finds the largest exponent in the factored element ")),e("mjx-container",v2,[(l(),i("svg",E2,t[265]||(t[265]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[266]||(t[266]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[268]||(t[268]=s("."))]),t[270]||(t[270]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",F2,[e("summary",null,[t[271]||(t[271]=e("a",{id:"min_exp-Tuple{FacElem}",href:"#min_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"min_exp")],-1)),t[272]||(t[272]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[277]||(t[277]=a('
julia
min_exp(a::FacElem)
',1)),e("p",null,[t[275]||(t[275]=s("Finds the smallest exponent in the factored element ")),e("mjx-container",M2,[(l(),i("svg",H2,t[273]||(t[273]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[274]||(t[274]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[276]||(t[276]=s("."))]),t[278]||(t[278]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e("details",j2,[e("summary",null,[t[279]||(t[279]=e("a",{id:"maxabs_exp-Tuple{FacElem}",href:"#maxabs_exp-Tuple{FacElem}"},[e("span",{class:"jlbinding"},"maxabs_exp")],-1)),t[280]||(t[280]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),t[285]||(t[285]=a('
julia
maxabs_exp(a::FacElem)
',1)),e("p",null,[t[283]||(t[283]=s("Finds the largest exponent by absolute value in the factored element ")),e("mjx-container",C2,[(l(),i("svg",L2,t[281]||(t[281]=[e("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[e("g",{"data-mml-node":"math"},[e("g",{"data-mml-node":"mi"},[e("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),t[282]||(t[282]=e("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[e("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[e("mi",null,"a")])],-1))]),t[284]||(t[284]=s("."))]),t[286]||(t[286]=e("p",null,[e("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const I2=r(Q,[["render",A2]]);export{O2 as __pageData,I2 as default}; diff --git a/v0.34.8/assets/manual_misc_pmat.md.DCq1lfbi.js b/v0.34.8/assets/manual_misc_pmat.md.DCq1lfbi.js index adbcd8c8a2..5a1de95d80 100644 --- a/v0.34.8/assets/manual_misc_pmat.md.DCq1lfbi.js +++ b/v0.34.8/assets/manual_misc_pmat.md.DCq1lfbi.js @@ -1 +1 @@ -import{_ as n,c as s,j as t,a as l,a5 as Q,G as a,B as T,o as i}from"./chunks/framework.DbhH0_mT.js";const G2=JSON.parse('{"title":"Pseudo-matrices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/misc/pmat.md","filePath":"manual/misc/pmat.md","lastUpdated":null}'),r={name:"manual/misc/pmat.md"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"3.277ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1448.3 683","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.135ex",height:"1.636ex",role:"img",focusable:"false",viewBox:"0 -683 3153.6 723","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.364ex",height:"1.932ex",role:"img",focusable:"false",viewBox:"0 -696 1045 853.8","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.653ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 2940.5 840.8","aria-hidden":"true"},N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.672ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5601.1 1000","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.059ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.032ex",height:"1.633ex",role:"img",focusable:"false",viewBox:"0 -696 1340 722","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.059ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.624ex",height:"1.633ex",role:"img",focusable:"false",viewBox:"0 -696 718 722","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.913ex",height:"1.636ex",role:"img",focusable:"false",viewBox:"0 -683 2613.6 723","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.277ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3216.6 1000","aria-hidden":"true"},_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},t1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.447ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5501.7 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},i1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.147ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 949 600.8","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},a1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.928ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 852 683","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.364ex",height:"1.932ex",role:"img",focusable:"false",viewBox:"0 -696 1045 853.8","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.966ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 3963.1 804","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.744ex",height:"1.697ex",role:"img",focusable:"false",viewBox:"0 -710.2 4306.9 750.2","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.781ex",height:"1.52ex",role:"img",focusable:"false",viewBox:"0 -661 345 672","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.781ex",height:"1.52ex",role:"img",focusable:"false",viewBox:"0 -661 345 672","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},v1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.31ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6325.1 1000","aria-hidden":"true"},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},H1={class:"jldocstring custom-block",open:""},j1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},Z1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.212ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3187.6 1000","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 760 599.8","aria-hidden":"true"},S1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.98ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 433 453","aria-hidden":"true"},B1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},G1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},z1={class:"jldocstring custom-block",open:""},O1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},N1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.212ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3187.6 1000","aria-hidden":"true"},I1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 760 599.8","aria-hidden":"true"},K1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.98ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 433 453","aria-hidden":"true"},$1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},W1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},_1={class:"jldocstring custom-block",open:""},t2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},l2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.059ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3562 1000","aria-hidden":"true"},i2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},o2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},n2={class:"jldocstring custom-block",open:""},T2={class:"jldocstring custom-block",open:""},r2={class:"jldocstring custom-block",open:""},d2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},p2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},x2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},w2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},c2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},b2={class:"jldocstring custom-block",open:""},f2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},y2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},M2={class:"jldocstring custom-block",open:""},H2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},C2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"};function D2(V2,e,E2,S2,F2,B2){const o=T("Badge");return i(),s("div",null,[e[231]||(e[231]=t("h1",{id:"PMatLink",tabindex:"-1"},[l("Pseudo-matrices "),t("a",{class:"header-anchor",href:"#PMatLink","aria-label":'Permalink to "Pseudo-matrices {#PMatLink}"'},"​")],-1)),e[232]||(e[232]=t("p",null,[l("This chapter deals with pseudo-matrices. We follow the common terminology and conventions introduced in ["),t("a",{href:"/Hecke.jl/v0.34.8/references#Coh00"},"1"),l("], however, we operate on rows, not on columns.")],-1)),t("p",null,[e[20]||(e[20]=l("Let ")),t("mjx-container",d,[(i(),s("svg",m,e[0]||(e[0]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[1]||(e[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[21]||(e[21]=l(" be a Dedekind domain, typically, the maximal order of some number field ")),t("mjx-container",p,[(i(),s("svg",h,e[2]||(e[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[22]||(e[22]=l(", further fix some finite dimensional ")),t("mjx-container",x,[(i(),s("svg",u,e[4]||(e[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[23]||(e[23]=l("-vectorspace ")),t("mjx-container",w,[(i(),s("svg",g,e[6]||(e[6]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),e[24]||(e[24]=l(" (with some basis), frequently ")),t("mjx-container",c,[(i(),s("svg",k,e[8]||(e[8]=[Q('',1)]))),e[9]||(e[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"K"),t("mi",null,"n")])])],-1))]),e[25]||(e[25]=l(" or the ")),t("mjx-container",b,[(i(),s("svg",f,e[10]||(e[10]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[11]||(e[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[26]||(e[26]=l("-structure of some extension of ")),t("mjx-container",v,[(i(),s("svg",y,e[12]||(e[12]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[13]||(e[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[27]||(e[27]=l(". Since in general ")),t("mjx-container",L,[(i(),s("svg",M,e[14]||(e[14]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[15]||(e[15]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[28]||(e[28]=l(" is not a PID, the ")),t("mjx-container",H,[(i(),s("svg",j,e[16]||(e[16]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[17]||(e[17]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[29]||(e[29]=l("-modules in ")),t("mjx-container",C,[(i(),s("svg",Z,e[18]||(e[18]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),e[19]||(e[19]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),e[30]||(e[30]=l(" are usually not free, but still projective."))]),t("p",null,[e[45]||(e[45]=l("Any finitely generated ")),t("mjx-container",D,[(i(),s("svg",V,e[31]||(e[31]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[32]||(e[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[46]||(e[46]=l("-module ")),t("mjx-container",E,[(i(),s("svg",S,e[33]||(e[33]=[Q('',1)]))),e[34]||(e[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊂"),t("mi",null,"V")])],-1))]),e[47]||(e[47]=l(" can be represented as a pseudo-matrix ")),e[48]||(e[48]=t("code",null,"PMat",-1)),e[49]||(e[49]=l(" as follows: The structure theory of ")),t("mjx-container",F,[(i(),s("svg",B,e[35]||(e[35]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[36]||(e[36]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[50]||(e[50]=l("-modules gives the existence of (fractional) ")),t("mjx-container",A,[(i(),s("svg",G,e[37]||(e[37]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[38]||(e[38]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[51]||(e[51]=l("-ideals ")),t("mjx-container",J,[(i(),s("svg",z,e[39]||(e[39]=[Q('',1)]))),e[40]||(e[40]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")])])],-1))]),e[52]||(e[52]=l(" and elements ")),t("mjx-container",O,[(i(),s("svg",P,e[41]||(e[41]=[Q('',1)]))),e[42]||(e[42]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mi",null,"V")])],-1))]),e[53]||(e[53]=l(" such that ")),t("mjx-container",N,[(i(),s("svg",R,e[43]||(e[43]=[Q('',1)]))),e[44]||(e[44]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"="),t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[54]||(e[54]=l(" and the sum is direct."))]),t("p",null,[e[71]||(e[71]=l("Following Cohen we call modules of the form ")),t("mjx-container",I,[(i(),s("svg",X,e[55]||(e[55]=[Q('',1)]))),e[56]||(e[56]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"ω")])],-1))]),e[72]||(e[72]=l(" for some ideal ")),t("mjx-container",K,[(i(),s("svg",U,e[57]||(e[57]=[Q('',1)]))),e[58]||(e[58]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")])])],-1))]),e[73]||(e[73]=l(" and ")),t("mjx-container",$,[(i(),s("svg",q,e[59]||(e[59]=[Q('',1)]))),e[60]||(e[60]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω"),t("mo",null,"∈"),t("mi",null,"V")])],-1))]),e[74]||(e[74]=l(" a ")),e[75]||(e[75]=t("em",null,"pseudo element",-1)),e[76]||(e[76]=l(". A system ")),t("mjx-container",W,[(i(),s("svg",Y,e[61]||(e[61]=[Q('',1)]))),e[62]||(e[62]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",{stretchy:"false"},")")])],-1))]),e[77]||(e[77]=l(" is called a pseudo-generating system for ")),t("mjx-container",_,[(i(),s("svg",t1,e[63]||(e[63]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[64]||(e[64]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[78]||(e[78]=l(" if ")),t("mjx-container",e1,[(i(),s("svg",l1,e[65]||(e[65]=[Q('',1)]))),e[66]||(e[66]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"⟨"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"i"),t("mo",{fence:"false",stretchy:"false"},"⟨"),t("mo",null,"="),t("mi",null,"M")])],-1))]),e[79]||(e[79]=l(". A pseudo-generating system is called a pseudo-basis if the ")),t("mjx-container",s1,[(i(),s("svg",i1,e[67]||(e[67]=[Q('',1)]))),e[68]||(e[68]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[80]||(e[80]=l(" are ")),t("mjx-container",Q1,[(i(),s("svg",o1,e[69]||(e[69]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[70]||(e[70]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[81]||(e[81]=l("-linear independent."))]),t("p",null,[e[98]||(e[98]=l("A ")),e[99]||(e[99]=t("em",null,"pseudo-matrix",-1)),e[100]||(e[100]=l()),t("mjx-container",a1,[(i(),s("svg",n1,e[82]||(e[82]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44B",d:"M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z",style:{"stroke-width":"3"}})])])],-1)]))),e[83]||(e[83]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"X")])],-1))]),e[101]||(e[101]=l(" is a tuple containing a vector of ideals ")),t("mjx-container",T1,[(i(),s("svg",r1,e[84]||(e[84]=[Q('',1)]))),e[85]||(e[85]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")])])],-1))]),e[102]||(e[102]=l(" (")),t("mjx-container",d1,[(i(),s("svg",m1,e[86]||(e[86]=[Q('',1)]))),e[87]||(e[87]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r")])],-1))]),e[103]||(e[103]=l(") and a matrix ")),t("mjx-container",p1,[(i(),s("svg",h1,e[88]||(e[88]=[Q('',1)]))),e[89]||(e[89]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U"),t("mo",null,"∈"),t("msup",null,[t("mi",null,"K"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"×"),t("mi",null,"n")])])])],-1))]),e[104]||(e[104]=l(". The ")),t("mjx-container",x1,[(i(),s("svg",u1,e[90]||(e[90]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[91]||(e[91]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[105]||(e[105]=l("-th row together with the ")),t("mjx-container",w1,[(i(),s("svg",g1,e[92]||(e[92]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[93]||(e[93]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[106]||(e[106]=l("-th ideal defines a pseudo-element, thus an ")),t("mjx-container",c1,[(i(),s("svg",k1,e[94]||(e[94]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[95]||(e[95]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[107]||(e[107]=l("-module, all of them together generate a module ")),t("mjx-container",b1,[(i(),s("svg",f1,e[96]||(e[96]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[97]||(e[97]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[108]||(e[108]=l("."))]),t("p",null,[e[113]||(e[113]=l("A pseudo-matrix ")),t("mjx-container",v1,[(i(),s("svg",y1,e[109]||(e[109]=[Q('',1)]))),e[110]||(e[110]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"X"),t("mo",null,"="),t("mo",{stretchy:"false"},"("),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"i")]),t("mo",null,","),t("mi",null,"U"),t("mo",{stretchy:"false"},")")])],-1))]),e[114]||(e[114]=l(" is said to be in pseudo-hnf if ")),t("mjx-container",L1,[(i(),s("svg",M1,e[111]||(e[111]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[112]||(e[112]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U")])],-1))]),e[115]||(e[115]=l(" is essentially upper triangular. Similar to the classical hnf, there is an algorithm that transforms any pseudo-matrix into one in pseudo-hnf while maintaining the module."))]),e[233]||(e[233]=t("h2",{id:"creation",tabindex:"-1"},[l("Creation "),t("a",{class:"header-anchor",href:"#creation","aria-label":'Permalink to "Creation"'},"​")],-1)),e[234]||(e[234]=t("p",null,[l("In general to create a "),t("code",null,"PMat"),l(" one has to specify a matrix and a vector of ideals:")],-1)),t("details",H1,[t("summary",null,[e[116]||(e[116]=t("a",{id:"pseudo_matrix-Tuple{MatElem{AbsSimpleNumFieldElem}, Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#pseudo_matrix-Tuple{MatElem{AbsSimpleNumFieldElem}, Vector{AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[117]||(e[117]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[137]||(e[137]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[130]||(e[130]=l("Returns the (row) pseudo matrix representing the ")),t("mjx-container",j1,[(i(),s("svg",C1,e[118]||(e[118]=[Q('',1)]))),e[119]||(e[119]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[131]||(e[131]=l("-module ")),t("mjx-container",Z1,[(i(),s("svg",D1,e[120]||(e[120]=[Q('',1)]))),e[121]||(e[121]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[132]||(e[132]=l(" where ")),t("mjx-container",V1,[(i(),s("svg",E1,e[122]||(e[122]=[Q('',1)]))),e[123]||(e[123]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")])])],-1))]),e[133]||(e[133]=l(" are the ideals in ")),t("mjx-container",S1,[(i(),s("svg",F1,e[124]||(e[124]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D450",d:"M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z",style:{"stroke-width":"3"}})])])],-1)]))),e[125]||(e[125]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"c")])],-1))]),e[134]||(e[134]=l(" and ")),t("mjx-container",B1,[(i(),s("svg",A1,e[126]||(e[126]=[Q('',1)]))),e[127]||(e[127]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[135]||(e[135]=l(" the rows of ")),t("mjx-container",G1,[(i(),s("svg",J1,e[128]||(e[128]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[129]||(e[129]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[136]||(e[136]=l("."))]),e[138]||(e[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",z1,[t("summary",null,[e[139]||(e[139]=t("a",{id:"pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldOrderElem}, Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldOrderElem}, Vector{AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[140]||(e[140]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[160]||(e[160]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[153]||(e[153]=l("Returns the (row) pseudo matrix representing the ")),t("mjx-container",O1,[(i(),s("svg",P1,e[141]||(e[141]=[Q('',1)]))),e[142]||(e[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[154]||(e[154]=l("-module ")),t("mjx-container",N1,[(i(),s("svg",R1,e[143]||(e[143]=[Q('',1)]))),e[144]||(e[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[155]||(e[155]=l(" where ")),t("mjx-container",I1,[(i(),s("svg",X1,e[145]||(e[145]=[Q('',1)]))),e[146]||(e[146]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")])])],-1))]),e[156]||(e[156]=l(" are the ideals in ")),t("mjx-container",K1,[(i(),s("svg",U1,e[147]||(e[147]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D450",d:"M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z",style:{"stroke-width":"3"}})])])],-1)]))),e[148]||(e[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"c")])],-1))]),e[157]||(e[157]=l(" and ")),t("mjx-container",$1,[(i(),s("svg",q1,e[149]||(e[149]=[Q('',1)]))),e[150]||(e[150]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[158]||(e[158]=l(" the rows of ")),t("mjx-container",W1,[(i(),s("svg",Y1,e[151]||(e[151]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[152]||(e[152]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[159]||(e[159]=l("."))]),e[161]||(e[161]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_1,[t("summary",null,[e[162]||(e[162]=t("a",{id:"pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldElem}}",href:"#pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldElem}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[163]||(e[163]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[177]||(e[177]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[172]||(e[172]=l("Returns the free (row) pseudo matrix representing the ")),t("mjx-container",t2,[(i(),s("svg",e2,e[164]||(e[164]=[Q('',1)]))),e[165]||(e[165]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[173]||(e[173]=l("-module ")),t("mjx-container",l2,[(i(),s("svg",s2,e[166]||(e[166]=[Q('',1)]))),e[167]||(e[167]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[174]||(e[174]=l(" where ")),t("mjx-container",i2,[(i(),s("svg",Q2,e[168]||(e[168]=[Q('',1)]))),e[169]||(e[169]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[175]||(e[175]=l(" are the rows of ")),t("mjx-container",o2,[(i(),s("svg",a2,e[170]||(e[170]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[171]||(e[171]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[176]||(e[176]=l("."))]),e[178]||(e[178]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[235]||(e[235]=t("p",null,[l("(Those functions are also available as "),t("code",null,"pseudo_matrix"),l(")")],-1)),e[236]||(e[236]=t("h2",{id:"operations",tabindex:"-1"},[l("Operations "),t("a",{class:"header-anchor",href:"#operations","aria-label":'Permalink to "Operations"'},"​")],-1)),t("details",n2,[t("summary",null,[e[179]||(e[179]=t("a",{id:"coefficient_ideals-Tuple{Hecke.PMat}",href:"#coefficient_ideals-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"coefficient_ideals")],-1)),e[180]||(e[180]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[181]||(e[181]=Q('
julia
coefficient_ideals(M::PMat)

Returns the vector of coefficient ideals.

source

',3))]),t("details",T2,[t("summary",null,[e[182]||(e[182]=t("a",{id:"matrix-Tuple{Hecke.PMat}",href:"#matrix-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"matrix")],-1)),e[183]||(e[183]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[184]||(e[184]=Q('
julia
matrix(M::PMat)

Returns the matrix part of the PMat.

source

',3))]),t("details",r2,[t("summary",null,[e[185]||(e[185]=t("a",{id:"base_ring-Tuple{Hecke.PMat}",href:"#base_ring-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"base_ring")],-1)),e[186]||(e[186]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[205]||(e[205]=Q('
julia
base_ring(M::PMat)
',1)),t("p",null,[e[197]||(e[197]=l("The ")),e[198]||(e[198]=t("code",null,"PMat",-1)),e[199]||(e[199]=l()),t("mjx-container",d2,[(i(),s("svg",m2,e[187]||(e[187]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[188]||(e[188]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[200]||(e[200]=l(" defines an ")),t("mjx-container",p2,[(i(),s("svg",h2,e[189]||(e[189]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[190]||(e[190]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[201]||(e[201]=l("-module for some maximal order ")),t("mjx-container",x2,[(i(),s("svg",u2,e[191]||(e[191]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[192]||(e[192]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[202]||(e[202]=l(". This function returns the ")),t("mjx-container",w2,[(i(),s("svg",g2,e[193]||(e[193]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[194]||(e[194]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[203]||(e[203]=l(" that was used to defined ")),t("mjx-container",c2,[(i(),s("svg",k2,e[195]||(e[195]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[196]||(e[196]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[204]||(e[204]=l("."))]),e[206]||(e[206]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",b2,[t("summary",null,[e[207]||(e[207]=t("a",{id:"pseudo_hnf-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}",href:"#pseudo_hnf-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_hnf")],-1)),e[208]||(e[208]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[216]||(e[216]=Q('
julia
pseudo_hnf(P::PMat)
',1)),t("p",null,[e[213]||(e[213]=l("Transforms ")),t("mjx-container",f2,[(i(),s("svg",v2,e[209]||(e[209]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[210]||(e[210]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[214]||(e[214]=l(" into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of ")),t("mjx-container",y2,[(i(),s("svg",L2,e[211]||(e[211]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[212]||(e[212]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[215]||(e[215]=l(" will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module."))]),e[217]||(e[217]=t("p",null,[l("A optional second argument can be specified as a symbols, indicating the desired shape of the echelon form. Possible are "),t("code",null,":upperright"),l(" (the default) and "),t("code",null,":lowerleft")],-1)),e[218]||(e[218]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",M2,[t("summary",null,[e[219]||(e[219]=t("a",{id:"pseudo_hnf_with_transform-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}",href:"#pseudo_hnf_with_transform-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_hnf_with_transform")],-1)),e[220]||(e[220]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[228]||(e[228]=Q('
julia
pseudo_hnf_with_transform(P::PMat)
',1)),t("p",null,[e[225]||(e[225]=l("Transforms ")),t("mjx-container",H2,[(i(),s("svg",j2,e[221]||(e[221]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[222]||(e[222]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[226]||(e[226]=l(" into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of ")),t("mjx-container",C2,[(i(),s("svg",Z2,e[223]||(e[223]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[224]||(e[224]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[227]||(e[227]=l(" will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module. The used transformation is returned as a second return value."))]),e[229]||(e[229]=t("p",null,[l("A optional second argument can be specified as a symbol, indicating the desired shape of the echelon form. Possible are "),t("code",null,":upperright"),l(" (the default) and "),t("code",null,":lowerleft")],-1)),e[230]||(e[230]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[237]||(e[237]=t("h2",{id:"examples",tabindex:"-1"},[l("Examples "),t("a",{class:"header-anchor",href:"#examples","aria-label":'Permalink to "Examples"'},"​")],-1))])}const J2=n(r,[["render",D2]]);export{G2 as __pageData,J2 as default}; +import{_ as n,c as s,j as t,a as l,a5 as Q,G as a,B as T,o as i}from"./chunks/framework.DbhH0_mT.js";const G2=JSON.parse('{"title":"Pseudo-matrices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/misc/pmat.md","filePath":"manual/misc/pmat.md","lastUpdated":null}'),r={name:"manual/misc/pmat.md"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"3.277ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1448.3 683","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.135ex",height:"1.636ex",role:"img",focusable:"false",viewBox:"0 -683 3153.6 723","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.364ex",height:"1.932ex",role:"img",focusable:"false",viewBox:"0 -696 1045 853.8","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.653ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 2940.5 840.8","aria-hidden":"true"},N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.672ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5601.1 1000","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.059ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.032ex",height:"1.633ex",role:"img",focusable:"false",viewBox:"0 -696 1340 722","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.059ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.624ex",height:"1.633ex",role:"img",focusable:"false",viewBox:"0 -696 718 722","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.913ex",height:"1.636ex",role:"img",focusable:"false",viewBox:"0 -683 2613.6 723","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.277ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3216.6 1000","aria-hidden":"true"},_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},t1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.447ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5501.7 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},i1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.147ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 949 600.8","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},a1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.928ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 852 683","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.364ex",height:"1.932ex",role:"img",focusable:"false",viewBox:"0 -696 1045 853.8","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.966ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 3963.1 804","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.744ex",height:"1.697ex",role:"img",focusable:"false",viewBox:"0 -710.2 4306.9 750.2","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.781ex",height:"1.52ex",role:"img",focusable:"false",viewBox:"0 -661 345 672","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.781ex",height:"1.52ex",role:"img",focusable:"false",viewBox:"0 -661 345 672","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},v1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.31ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6325.1 1000","aria-hidden":"true"},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},H1={class:"jldocstring custom-block",open:""},j1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},Z1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.212ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3187.6 1000","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 760 599.8","aria-hidden":"true"},S1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.98ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 433 453","aria-hidden":"true"},B1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},G1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},z1={class:"jldocstring custom-block",open:""},O1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},N1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.212ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3187.6 1000","aria-hidden":"true"},I1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 760 599.8","aria-hidden":"true"},K1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.98ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 433 453","aria-hidden":"true"},$1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},W1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},_1={class:"jldocstring custom-block",open:""},t2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},l2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.059ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3562 1000","aria-hidden":"true"},i2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},o2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},n2={class:"jldocstring custom-block",open:""},T2={class:"jldocstring custom-block",open:""},r2={class:"jldocstring custom-block",open:""},d2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},p2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},x2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},w2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},c2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},b2={class:"jldocstring custom-block",open:""},f2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},y2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},M2={class:"jldocstring custom-block",open:""},H2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},C2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"};function D2(V2,e,E2,S2,F2,B2){const o=T("Badge");return i(),s("div",null,[e[231]||(e[231]=t("h1",{id:"PMatLink",tabindex:"-1"},[l("Pseudo-matrices "),t("a",{class:"header-anchor",href:"#PMatLink","aria-label":'Permalink to "Pseudo-matrices {#PMatLink}"'},"​")],-1)),e[232]||(e[232]=t("p",null,[l("This chapter deals with pseudo-matrices. We follow the common terminology and conventions introduced in ["),t("a",{href:"/v0.34.8/references#Coh00"},"1"),l("], however, we operate on rows, not on columns.")],-1)),t("p",null,[e[20]||(e[20]=l("Let ")),t("mjx-container",d,[(i(),s("svg",m,e[0]||(e[0]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[1]||(e[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[21]||(e[21]=l(" be a Dedekind domain, typically, the maximal order of some number field ")),t("mjx-container",p,[(i(),s("svg",h,e[2]||(e[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[22]||(e[22]=l(", further fix some finite dimensional ")),t("mjx-container",x,[(i(),s("svg",u,e[4]||(e[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[23]||(e[23]=l("-vectorspace ")),t("mjx-container",w,[(i(),s("svg",g,e[6]||(e[6]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),e[24]||(e[24]=l(" (with some basis), frequently ")),t("mjx-container",c,[(i(),s("svg",k,e[8]||(e[8]=[Q('',1)]))),e[9]||(e[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"K"),t("mi",null,"n")])])],-1))]),e[25]||(e[25]=l(" or the ")),t("mjx-container",b,[(i(),s("svg",f,e[10]||(e[10]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[11]||(e[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[26]||(e[26]=l("-structure of some extension of ")),t("mjx-container",v,[(i(),s("svg",y,e[12]||(e[12]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[13]||(e[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[27]||(e[27]=l(". Since in general ")),t("mjx-container",L,[(i(),s("svg",M,e[14]||(e[14]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[15]||(e[15]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[28]||(e[28]=l(" is not a PID, the ")),t("mjx-container",H,[(i(),s("svg",j,e[16]||(e[16]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[17]||(e[17]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[29]||(e[29]=l("-modules in ")),t("mjx-container",C,[(i(),s("svg",Z,e[18]||(e[18]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),e[19]||(e[19]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),e[30]||(e[30]=l(" are usually not free, but still projective."))]),t("p",null,[e[45]||(e[45]=l("Any finitely generated ")),t("mjx-container",D,[(i(),s("svg",V,e[31]||(e[31]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[32]||(e[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[46]||(e[46]=l("-module ")),t("mjx-container",E,[(i(),s("svg",S,e[33]||(e[33]=[Q('',1)]))),e[34]||(e[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊂"),t("mi",null,"V")])],-1))]),e[47]||(e[47]=l(" can be represented as a pseudo-matrix ")),e[48]||(e[48]=t("code",null,"PMat",-1)),e[49]||(e[49]=l(" as follows: The structure theory of ")),t("mjx-container",F,[(i(),s("svg",B,e[35]||(e[35]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[36]||(e[36]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[50]||(e[50]=l("-modules gives the existence of (fractional) ")),t("mjx-container",A,[(i(),s("svg",G,e[37]||(e[37]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[38]||(e[38]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[51]||(e[51]=l("-ideals ")),t("mjx-container",J,[(i(),s("svg",z,e[39]||(e[39]=[Q('',1)]))),e[40]||(e[40]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")])])],-1))]),e[52]||(e[52]=l(" and elements ")),t("mjx-container",O,[(i(),s("svg",P,e[41]||(e[41]=[Q('',1)]))),e[42]||(e[42]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mi",null,"V")])],-1))]),e[53]||(e[53]=l(" such that ")),t("mjx-container",N,[(i(),s("svg",R,e[43]||(e[43]=[Q('',1)]))),e[44]||(e[44]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"="),t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[54]||(e[54]=l(" and the sum is direct."))]),t("p",null,[e[71]||(e[71]=l("Following Cohen we call modules of the form ")),t("mjx-container",I,[(i(),s("svg",X,e[55]||(e[55]=[Q('',1)]))),e[56]||(e[56]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"ω")])],-1))]),e[72]||(e[72]=l(" for some ideal ")),t("mjx-container",K,[(i(),s("svg",U,e[57]||(e[57]=[Q('',1)]))),e[58]||(e[58]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")])])],-1))]),e[73]||(e[73]=l(" and ")),t("mjx-container",$,[(i(),s("svg",q,e[59]||(e[59]=[Q('',1)]))),e[60]||(e[60]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω"),t("mo",null,"∈"),t("mi",null,"V")])],-1))]),e[74]||(e[74]=l(" a ")),e[75]||(e[75]=t("em",null,"pseudo element",-1)),e[76]||(e[76]=l(". A system ")),t("mjx-container",W,[(i(),s("svg",Y,e[61]||(e[61]=[Q('',1)]))),e[62]||(e[62]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",{stretchy:"false"},")")])],-1))]),e[77]||(e[77]=l(" is called a pseudo-generating system for ")),t("mjx-container",_,[(i(),s("svg",t1,e[63]||(e[63]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[64]||(e[64]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[78]||(e[78]=l(" if ")),t("mjx-container",e1,[(i(),s("svg",l1,e[65]||(e[65]=[Q('',1)]))),e[66]||(e[66]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"⟨"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"i"),t("mo",{fence:"false",stretchy:"false"},"⟨"),t("mo",null,"="),t("mi",null,"M")])],-1))]),e[79]||(e[79]=l(". A pseudo-generating system is called a pseudo-basis if the ")),t("mjx-container",s1,[(i(),s("svg",i1,e[67]||(e[67]=[Q('',1)]))),e[68]||(e[68]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[80]||(e[80]=l(" are ")),t("mjx-container",Q1,[(i(),s("svg",o1,e[69]||(e[69]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[70]||(e[70]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[81]||(e[81]=l("-linear independent."))]),t("p",null,[e[98]||(e[98]=l("A ")),e[99]||(e[99]=t("em",null,"pseudo-matrix",-1)),e[100]||(e[100]=l()),t("mjx-container",a1,[(i(),s("svg",n1,e[82]||(e[82]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44B",d:"M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z",style:{"stroke-width":"3"}})])])],-1)]))),e[83]||(e[83]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"X")])],-1))]),e[101]||(e[101]=l(" is a tuple containing a vector of ideals ")),t("mjx-container",T1,[(i(),s("svg",r1,e[84]||(e[84]=[Q('',1)]))),e[85]||(e[85]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")])])],-1))]),e[102]||(e[102]=l(" (")),t("mjx-container",d1,[(i(),s("svg",m1,e[86]||(e[86]=[Q('',1)]))),e[87]||(e[87]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r")])],-1))]),e[103]||(e[103]=l(") and a matrix ")),t("mjx-container",p1,[(i(),s("svg",h1,e[88]||(e[88]=[Q('',1)]))),e[89]||(e[89]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U"),t("mo",null,"∈"),t("msup",null,[t("mi",null,"K"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"×"),t("mi",null,"n")])])])],-1))]),e[104]||(e[104]=l(". The ")),t("mjx-container",x1,[(i(),s("svg",u1,e[90]||(e[90]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[91]||(e[91]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[105]||(e[105]=l("-th row together with the ")),t("mjx-container",w1,[(i(),s("svg",g1,e[92]||(e[92]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[93]||(e[93]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[106]||(e[106]=l("-th ideal defines a pseudo-element, thus an ")),t("mjx-container",c1,[(i(),s("svg",k1,e[94]||(e[94]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[95]||(e[95]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[107]||(e[107]=l("-module, all of them together generate a module ")),t("mjx-container",b1,[(i(),s("svg",f1,e[96]||(e[96]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[97]||(e[97]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[108]||(e[108]=l("."))]),t("p",null,[e[113]||(e[113]=l("A pseudo-matrix ")),t("mjx-container",v1,[(i(),s("svg",y1,e[109]||(e[109]=[Q('',1)]))),e[110]||(e[110]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"X"),t("mo",null,"="),t("mo",{stretchy:"false"},"("),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"i")]),t("mo",null,","),t("mi",null,"U"),t("mo",{stretchy:"false"},")")])],-1))]),e[114]||(e[114]=l(" is said to be in pseudo-hnf if ")),t("mjx-container",L1,[(i(),s("svg",M1,e[111]||(e[111]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[112]||(e[112]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U")])],-1))]),e[115]||(e[115]=l(" is essentially upper triangular. Similar to the classical hnf, there is an algorithm that transforms any pseudo-matrix into one in pseudo-hnf while maintaining the module."))]),e[233]||(e[233]=t("h2",{id:"creation",tabindex:"-1"},[l("Creation "),t("a",{class:"header-anchor",href:"#creation","aria-label":'Permalink to "Creation"'},"​")],-1)),e[234]||(e[234]=t("p",null,[l("In general to create a "),t("code",null,"PMat"),l(" one has to specify a matrix and a vector of ideals:")],-1)),t("details",H1,[t("summary",null,[e[116]||(e[116]=t("a",{id:"pseudo_matrix-Tuple{MatElem{AbsSimpleNumFieldElem}, Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#pseudo_matrix-Tuple{MatElem{AbsSimpleNumFieldElem}, Vector{AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[117]||(e[117]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[137]||(e[137]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[130]||(e[130]=l("Returns the (row) pseudo matrix representing the ")),t("mjx-container",j1,[(i(),s("svg",C1,e[118]||(e[118]=[Q('',1)]))),e[119]||(e[119]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[131]||(e[131]=l("-module ")),t("mjx-container",Z1,[(i(),s("svg",D1,e[120]||(e[120]=[Q('',1)]))),e[121]||(e[121]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[132]||(e[132]=l(" where ")),t("mjx-container",V1,[(i(),s("svg",E1,e[122]||(e[122]=[Q('',1)]))),e[123]||(e[123]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")])])],-1))]),e[133]||(e[133]=l(" are the ideals in ")),t("mjx-container",S1,[(i(),s("svg",F1,e[124]||(e[124]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D450",d:"M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z",style:{"stroke-width":"3"}})])])],-1)]))),e[125]||(e[125]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"c")])],-1))]),e[134]||(e[134]=l(" and ")),t("mjx-container",B1,[(i(),s("svg",A1,e[126]||(e[126]=[Q('',1)]))),e[127]||(e[127]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[135]||(e[135]=l(" the rows of ")),t("mjx-container",G1,[(i(),s("svg",J1,e[128]||(e[128]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[129]||(e[129]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[136]||(e[136]=l("."))]),e[138]||(e[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",z1,[t("summary",null,[e[139]||(e[139]=t("a",{id:"pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldOrderElem}, Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldOrderElem}, Vector{AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[140]||(e[140]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[160]||(e[160]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[153]||(e[153]=l("Returns the (row) pseudo matrix representing the ")),t("mjx-container",O1,[(i(),s("svg",P1,e[141]||(e[141]=[Q('',1)]))),e[142]||(e[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[154]||(e[154]=l("-module ")),t("mjx-container",N1,[(i(),s("svg",R1,e[143]||(e[143]=[Q('',1)]))),e[144]||(e[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[155]||(e[155]=l(" where ")),t("mjx-container",I1,[(i(),s("svg",X1,e[145]||(e[145]=[Q('',1)]))),e[146]||(e[146]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")])])],-1))]),e[156]||(e[156]=l(" are the ideals in ")),t("mjx-container",K1,[(i(),s("svg",U1,e[147]||(e[147]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D450",d:"M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z",style:{"stroke-width":"3"}})])])],-1)]))),e[148]||(e[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"c")])],-1))]),e[157]||(e[157]=l(" and ")),t("mjx-container",$1,[(i(),s("svg",q1,e[149]||(e[149]=[Q('',1)]))),e[150]||(e[150]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[158]||(e[158]=l(" the rows of ")),t("mjx-container",W1,[(i(),s("svg",Y1,e[151]||(e[151]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[152]||(e[152]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[159]||(e[159]=l("."))]),e[161]||(e[161]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_1,[t("summary",null,[e[162]||(e[162]=t("a",{id:"pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldElem}}",href:"#pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldElem}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[163]||(e[163]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[177]||(e[177]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[172]||(e[172]=l("Returns the free (row) pseudo matrix representing the ")),t("mjx-container",t2,[(i(),s("svg",e2,e[164]||(e[164]=[Q('',1)]))),e[165]||(e[165]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[173]||(e[173]=l("-module ")),t("mjx-container",l2,[(i(),s("svg",s2,e[166]||(e[166]=[Q('',1)]))),e[167]||(e[167]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[174]||(e[174]=l(" where ")),t("mjx-container",i2,[(i(),s("svg",Q2,e[168]||(e[168]=[Q('',1)]))),e[169]||(e[169]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[175]||(e[175]=l(" are the rows of ")),t("mjx-container",o2,[(i(),s("svg",a2,e[170]||(e[170]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[171]||(e[171]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[176]||(e[176]=l("."))]),e[178]||(e[178]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[235]||(e[235]=t("p",null,[l("(Those functions are also available as "),t("code",null,"pseudo_matrix"),l(")")],-1)),e[236]||(e[236]=t("h2",{id:"operations",tabindex:"-1"},[l("Operations "),t("a",{class:"header-anchor",href:"#operations","aria-label":'Permalink to "Operations"'},"​")],-1)),t("details",n2,[t("summary",null,[e[179]||(e[179]=t("a",{id:"coefficient_ideals-Tuple{Hecke.PMat}",href:"#coefficient_ideals-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"coefficient_ideals")],-1)),e[180]||(e[180]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[181]||(e[181]=Q('
julia
coefficient_ideals(M::PMat)

Returns the vector of coefficient ideals.

source

',3))]),t("details",T2,[t("summary",null,[e[182]||(e[182]=t("a",{id:"matrix-Tuple{Hecke.PMat}",href:"#matrix-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"matrix")],-1)),e[183]||(e[183]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[184]||(e[184]=Q('
julia
matrix(M::PMat)

Returns the matrix part of the PMat.

source

',3))]),t("details",r2,[t("summary",null,[e[185]||(e[185]=t("a",{id:"base_ring-Tuple{Hecke.PMat}",href:"#base_ring-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"base_ring")],-1)),e[186]||(e[186]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[205]||(e[205]=Q('
julia
base_ring(M::PMat)
',1)),t("p",null,[e[197]||(e[197]=l("The ")),e[198]||(e[198]=t("code",null,"PMat",-1)),e[199]||(e[199]=l()),t("mjx-container",d2,[(i(),s("svg",m2,e[187]||(e[187]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[188]||(e[188]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[200]||(e[200]=l(" defines an ")),t("mjx-container",p2,[(i(),s("svg",h2,e[189]||(e[189]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[190]||(e[190]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[201]||(e[201]=l("-module for some maximal order ")),t("mjx-container",x2,[(i(),s("svg",u2,e[191]||(e[191]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[192]||(e[192]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[202]||(e[202]=l(". This function returns the ")),t("mjx-container",w2,[(i(),s("svg",g2,e[193]||(e[193]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[194]||(e[194]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[203]||(e[203]=l(" that was used to defined ")),t("mjx-container",c2,[(i(),s("svg",k2,e[195]||(e[195]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[196]||(e[196]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[204]||(e[204]=l("."))]),e[206]||(e[206]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",b2,[t("summary",null,[e[207]||(e[207]=t("a",{id:"pseudo_hnf-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}",href:"#pseudo_hnf-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_hnf")],-1)),e[208]||(e[208]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[216]||(e[216]=Q('
julia
pseudo_hnf(P::PMat)
',1)),t("p",null,[e[213]||(e[213]=l("Transforms ")),t("mjx-container",f2,[(i(),s("svg",v2,e[209]||(e[209]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[210]||(e[210]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[214]||(e[214]=l(" into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of ")),t("mjx-container",y2,[(i(),s("svg",L2,e[211]||(e[211]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[212]||(e[212]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[215]||(e[215]=l(" will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module."))]),e[217]||(e[217]=t("p",null,[l("A optional second argument can be specified as a symbols, indicating the desired shape of the echelon form. Possible are "),t("code",null,":upperright"),l(" (the default) and "),t("code",null,":lowerleft")],-1)),e[218]||(e[218]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",M2,[t("summary",null,[e[219]||(e[219]=t("a",{id:"pseudo_hnf_with_transform-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}",href:"#pseudo_hnf_with_transform-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_hnf_with_transform")],-1)),e[220]||(e[220]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[228]||(e[228]=Q('
julia
pseudo_hnf_with_transform(P::PMat)
',1)),t("p",null,[e[225]||(e[225]=l("Transforms ")),t("mjx-container",H2,[(i(),s("svg",j2,e[221]||(e[221]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[222]||(e[222]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[226]||(e[226]=l(" into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of ")),t("mjx-container",C2,[(i(),s("svg",Z2,e[223]||(e[223]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[224]||(e[224]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[227]||(e[227]=l(" will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module. The used transformation is returned as a second return value."))]),e[229]||(e[229]=t("p",null,[l("A optional second argument can be specified as a symbol, indicating the desired shape of the echelon form. Possible are "),t("code",null,":upperright"),l(" (the default) and "),t("code",null,":lowerleft")],-1)),e[230]||(e[230]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[237]||(e[237]=t("h2",{id:"examples",tabindex:"-1"},[l("Examples "),t("a",{class:"header-anchor",href:"#examples","aria-label":'Permalink to "Examples"'},"​")],-1))])}const J2=n(r,[["render",D2]]);export{G2 as __pageData,J2 as default}; diff --git a/v0.34.8/assets/manual_misc_pmat.md.DCq1lfbi.lean.js b/v0.34.8/assets/manual_misc_pmat.md.DCq1lfbi.lean.js index adbcd8c8a2..5a1de95d80 100644 --- a/v0.34.8/assets/manual_misc_pmat.md.DCq1lfbi.lean.js +++ b/v0.34.8/assets/manual_misc_pmat.md.DCq1lfbi.lean.js @@ -1 +1 @@ -import{_ as n,c as s,j as t,a as l,a5 as Q,G as a,B as T,o as i}from"./chunks/framework.DbhH0_mT.js";const G2=JSON.parse('{"title":"Pseudo-matrices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/misc/pmat.md","filePath":"manual/misc/pmat.md","lastUpdated":null}'),r={name:"manual/misc/pmat.md"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"3.277ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1448.3 683","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.135ex",height:"1.636ex",role:"img",focusable:"false",viewBox:"0 -683 3153.6 723","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.364ex",height:"1.932ex",role:"img",focusable:"false",viewBox:"0 -696 1045 853.8","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.653ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 2940.5 840.8","aria-hidden":"true"},N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.672ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5601.1 1000","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.059ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.032ex",height:"1.633ex",role:"img",focusable:"false",viewBox:"0 -696 1340 722","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.059ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.624ex",height:"1.633ex",role:"img",focusable:"false",viewBox:"0 -696 718 722","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.913ex",height:"1.636ex",role:"img",focusable:"false",viewBox:"0 -683 2613.6 723","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.277ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3216.6 1000","aria-hidden":"true"},_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},t1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.447ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5501.7 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},i1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.147ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 949 600.8","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},a1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.928ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 852 683","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.364ex",height:"1.932ex",role:"img",focusable:"false",viewBox:"0 -696 1045 853.8","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.966ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 3963.1 804","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.744ex",height:"1.697ex",role:"img",focusable:"false",viewBox:"0 -710.2 4306.9 750.2","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.781ex",height:"1.52ex",role:"img",focusable:"false",viewBox:"0 -661 345 672","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.781ex",height:"1.52ex",role:"img",focusable:"false",viewBox:"0 -661 345 672","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},v1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.31ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6325.1 1000","aria-hidden":"true"},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},H1={class:"jldocstring custom-block",open:""},j1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},Z1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.212ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3187.6 1000","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 760 599.8","aria-hidden":"true"},S1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.98ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 433 453","aria-hidden":"true"},B1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},G1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},z1={class:"jldocstring custom-block",open:""},O1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},N1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.212ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3187.6 1000","aria-hidden":"true"},I1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 760 599.8","aria-hidden":"true"},K1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.98ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 433 453","aria-hidden":"true"},$1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},W1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},_1={class:"jldocstring custom-block",open:""},t2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},l2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.059ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3562 1000","aria-hidden":"true"},i2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},o2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},n2={class:"jldocstring custom-block",open:""},T2={class:"jldocstring custom-block",open:""},r2={class:"jldocstring custom-block",open:""},d2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},p2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},x2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},w2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},c2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},b2={class:"jldocstring custom-block",open:""},f2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},y2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},M2={class:"jldocstring custom-block",open:""},H2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},C2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"};function D2(V2,e,E2,S2,F2,B2){const o=T("Badge");return i(),s("div",null,[e[231]||(e[231]=t("h1",{id:"PMatLink",tabindex:"-1"},[l("Pseudo-matrices "),t("a",{class:"header-anchor",href:"#PMatLink","aria-label":'Permalink to "Pseudo-matrices {#PMatLink}"'},"​")],-1)),e[232]||(e[232]=t("p",null,[l("This chapter deals with pseudo-matrices. We follow the common terminology and conventions introduced in ["),t("a",{href:"/Hecke.jl/v0.34.8/references#Coh00"},"1"),l("], however, we operate on rows, not on columns.")],-1)),t("p",null,[e[20]||(e[20]=l("Let ")),t("mjx-container",d,[(i(),s("svg",m,e[0]||(e[0]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[1]||(e[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[21]||(e[21]=l(" be a Dedekind domain, typically, the maximal order of some number field ")),t("mjx-container",p,[(i(),s("svg",h,e[2]||(e[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[22]||(e[22]=l(", further fix some finite dimensional ")),t("mjx-container",x,[(i(),s("svg",u,e[4]||(e[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[23]||(e[23]=l("-vectorspace ")),t("mjx-container",w,[(i(),s("svg",g,e[6]||(e[6]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),e[24]||(e[24]=l(" (with some basis), frequently ")),t("mjx-container",c,[(i(),s("svg",k,e[8]||(e[8]=[Q('',1)]))),e[9]||(e[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"K"),t("mi",null,"n")])])],-1))]),e[25]||(e[25]=l(" or the ")),t("mjx-container",b,[(i(),s("svg",f,e[10]||(e[10]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[11]||(e[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[26]||(e[26]=l("-structure of some extension of ")),t("mjx-container",v,[(i(),s("svg",y,e[12]||(e[12]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[13]||(e[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[27]||(e[27]=l(". Since in general ")),t("mjx-container",L,[(i(),s("svg",M,e[14]||(e[14]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[15]||(e[15]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[28]||(e[28]=l(" is not a PID, the ")),t("mjx-container",H,[(i(),s("svg",j,e[16]||(e[16]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[17]||(e[17]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[29]||(e[29]=l("-modules in ")),t("mjx-container",C,[(i(),s("svg",Z,e[18]||(e[18]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),e[19]||(e[19]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),e[30]||(e[30]=l(" are usually not free, but still projective."))]),t("p",null,[e[45]||(e[45]=l("Any finitely generated ")),t("mjx-container",D,[(i(),s("svg",V,e[31]||(e[31]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[32]||(e[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[46]||(e[46]=l("-module ")),t("mjx-container",E,[(i(),s("svg",S,e[33]||(e[33]=[Q('',1)]))),e[34]||(e[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊂"),t("mi",null,"V")])],-1))]),e[47]||(e[47]=l(" can be represented as a pseudo-matrix ")),e[48]||(e[48]=t("code",null,"PMat",-1)),e[49]||(e[49]=l(" as follows: The structure theory of ")),t("mjx-container",F,[(i(),s("svg",B,e[35]||(e[35]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[36]||(e[36]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[50]||(e[50]=l("-modules gives the existence of (fractional) ")),t("mjx-container",A,[(i(),s("svg",G,e[37]||(e[37]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[38]||(e[38]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[51]||(e[51]=l("-ideals ")),t("mjx-container",J,[(i(),s("svg",z,e[39]||(e[39]=[Q('',1)]))),e[40]||(e[40]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")])])],-1))]),e[52]||(e[52]=l(" and elements ")),t("mjx-container",O,[(i(),s("svg",P,e[41]||(e[41]=[Q('',1)]))),e[42]||(e[42]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mi",null,"V")])],-1))]),e[53]||(e[53]=l(" such that ")),t("mjx-container",N,[(i(),s("svg",R,e[43]||(e[43]=[Q('',1)]))),e[44]||(e[44]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"="),t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[54]||(e[54]=l(" and the sum is direct."))]),t("p",null,[e[71]||(e[71]=l("Following Cohen we call modules of the form ")),t("mjx-container",I,[(i(),s("svg",X,e[55]||(e[55]=[Q('',1)]))),e[56]||(e[56]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"ω")])],-1))]),e[72]||(e[72]=l(" for some ideal ")),t("mjx-container",K,[(i(),s("svg",U,e[57]||(e[57]=[Q('',1)]))),e[58]||(e[58]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")])])],-1))]),e[73]||(e[73]=l(" and ")),t("mjx-container",$,[(i(),s("svg",q,e[59]||(e[59]=[Q('',1)]))),e[60]||(e[60]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω"),t("mo",null,"∈"),t("mi",null,"V")])],-1))]),e[74]||(e[74]=l(" a ")),e[75]||(e[75]=t("em",null,"pseudo element",-1)),e[76]||(e[76]=l(". A system ")),t("mjx-container",W,[(i(),s("svg",Y,e[61]||(e[61]=[Q('',1)]))),e[62]||(e[62]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",{stretchy:"false"},")")])],-1))]),e[77]||(e[77]=l(" is called a pseudo-generating system for ")),t("mjx-container",_,[(i(),s("svg",t1,e[63]||(e[63]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[64]||(e[64]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[78]||(e[78]=l(" if ")),t("mjx-container",e1,[(i(),s("svg",l1,e[65]||(e[65]=[Q('',1)]))),e[66]||(e[66]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"⟨"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"i"),t("mo",{fence:"false",stretchy:"false"},"⟨"),t("mo",null,"="),t("mi",null,"M")])],-1))]),e[79]||(e[79]=l(". A pseudo-generating system is called a pseudo-basis if the ")),t("mjx-container",s1,[(i(),s("svg",i1,e[67]||(e[67]=[Q('',1)]))),e[68]||(e[68]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[80]||(e[80]=l(" are ")),t("mjx-container",Q1,[(i(),s("svg",o1,e[69]||(e[69]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[70]||(e[70]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[81]||(e[81]=l("-linear independent."))]),t("p",null,[e[98]||(e[98]=l("A ")),e[99]||(e[99]=t("em",null,"pseudo-matrix",-1)),e[100]||(e[100]=l()),t("mjx-container",a1,[(i(),s("svg",n1,e[82]||(e[82]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44B",d:"M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z",style:{"stroke-width":"3"}})])])],-1)]))),e[83]||(e[83]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"X")])],-1))]),e[101]||(e[101]=l(" is a tuple containing a vector of ideals ")),t("mjx-container",T1,[(i(),s("svg",r1,e[84]||(e[84]=[Q('',1)]))),e[85]||(e[85]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")])])],-1))]),e[102]||(e[102]=l(" (")),t("mjx-container",d1,[(i(),s("svg",m1,e[86]||(e[86]=[Q('',1)]))),e[87]||(e[87]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r")])],-1))]),e[103]||(e[103]=l(") and a matrix ")),t("mjx-container",p1,[(i(),s("svg",h1,e[88]||(e[88]=[Q('',1)]))),e[89]||(e[89]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U"),t("mo",null,"∈"),t("msup",null,[t("mi",null,"K"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"×"),t("mi",null,"n")])])])],-1))]),e[104]||(e[104]=l(". The ")),t("mjx-container",x1,[(i(),s("svg",u1,e[90]||(e[90]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[91]||(e[91]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[105]||(e[105]=l("-th row together with the ")),t("mjx-container",w1,[(i(),s("svg",g1,e[92]||(e[92]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[93]||(e[93]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[106]||(e[106]=l("-th ideal defines a pseudo-element, thus an ")),t("mjx-container",c1,[(i(),s("svg",k1,e[94]||(e[94]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[95]||(e[95]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[107]||(e[107]=l("-module, all of them together generate a module ")),t("mjx-container",b1,[(i(),s("svg",f1,e[96]||(e[96]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[97]||(e[97]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[108]||(e[108]=l("."))]),t("p",null,[e[113]||(e[113]=l("A pseudo-matrix ")),t("mjx-container",v1,[(i(),s("svg",y1,e[109]||(e[109]=[Q('',1)]))),e[110]||(e[110]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"X"),t("mo",null,"="),t("mo",{stretchy:"false"},"("),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"i")]),t("mo",null,","),t("mi",null,"U"),t("mo",{stretchy:"false"},")")])],-1))]),e[114]||(e[114]=l(" is said to be in pseudo-hnf if ")),t("mjx-container",L1,[(i(),s("svg",M1,e[111]||(e[111]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[112]||(e[112]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U")])],-1))]),e[115]||(e[115]=l(" is essentially upper triangular. Similar to the classical hnf, there is an algorithm that transforms any pseudo-matrix into one in pseudo-hnf while maintaining the module."))]),e[233]||(e[233]=t("h2",{id:"creation",tabindex:"-1"},[l("Creation "),t("a",{class:"header-anchor",href:"#creation","aria-label":'Permalink to "Creation"'},"​")],-1)),e[234]||(e[234]=t("p",null,[l("In general to create a "),t("code",null,"PMat"),l(" one has to specify a matrix and a vector of ideals:")],-1)),t("details",H1,[t("summary",null,[e[116]||(e[116]=t("a",{id:"pseudo_matrix-Tuple{MatElem{AbsSimpleNumFieldElem}, Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#pseudo_matrix-Tuple{MatElem{AbsSimpleNumFieldElem}, Vector{AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[117]||(e[117]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[137]||(e[137]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[130]||(e[130]=l("Returns the (row) pseudo matrix representing the ")),t("mjx-container",j1,[(i(),s("svg",C1,e[118]||(e[118]=[Q('',1)]))),e[119]||(e[119]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[131]||(e[131]=l("-module ")),t("mjx-container",Z1,[(i(),s("svg",D1,e[120]||(e[120]=[Q('',1)]))),e[121]||(e[121]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[132]||(e[132]=l(" where ")),t("mjx-container",V1,[(i(),s("svg",E1,e[122]||(e[122]=[Q('',1)]))),e[123]||(e[123]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")])])],-1))]),e[133]||(e[133]=l(" are the ideals in ")),t("mjx-container",S1,[(i(),s("svg",F1,e[124]||(e[124]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D450",d:"M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z",style:{"stroke-width":"3"}})])])],-1)]))),e[125]||(e[125]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"c")])],-1))]),e[134]||(e[134]=l(" and ")),t("mjx-container",B1,[(i(),s("svg",A1,e[126]||(e[126]=[Q('',1)]))),e[127]||(e[127]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[135]||(e[135]=l(" the rows of ")),t("mjx-container",G1,[(i(),s("svg",J1,e[128]||(e[128]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[129]||(e[129]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[136]||(e[136]=l("."))]),e[138]||(e[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",z1,[t("summary",null,[e[139]||(e[139]=t("a",{id:"pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldOrderElem}, Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldOrderElem}, Vector{AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[140]||(e[140]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[160]||(e[160]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[153]||(e[153]=l("Returns the (row) pseudo matrix representing the ")),t("mjx-container",O1,[(i(),s("svg",P1,e[141]||(e[141]=[Q('',1)]))),e[142]||(e[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[154]||(e[154]=l("-module ")),t("mjx-container",N1,[(i(),s("svg",R1,e[143]||(e[143]=[Q('',1)]))),e[144]||(e[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[155]||(e[155]=l(" where ")),t("mjx-container",I1,[(i(),s("svg",X1,e[145]||(e[145]=[Q('',1)]))),e[146]||(e[146]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")])])],-1))]),e[156]||(e[156]=l(" are the ideals in ")),t("mjx-container",K1,[(i(),s("svg",U1,e[147]||(e[147]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D450",d:"M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z",style:{"stroke-width":"3"}})])])],-1)]))),e[148]||(e[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"c")])],-1))]),e[157]||(e[157]=l(" and ")),t("mjx-container",$1,[(i(),s("svg",q1,e[149]||(e[149]=[Q('',1)]))),e[150]||(e[150]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[158]||(e[158]=l(" the rows of ")),t("mjx-container",W1,[(i(),s("svg",Y1,e[151]||(e[151]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[152]||(e[152]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[159]||(e[159]=l("."))]),e[161]||(e[161]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_1,[t("summary",null,[e[162]||(e[162]=t("a",{id:"pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldElem}}",href:"#pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldElem}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[163]||(e[163]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[177]||(e[177]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[172]||(e[172]=l("Returns the free (row) pseudo matrix representing the ")),t("mjx-container",t2,[(i(),s("svg",e2,e[164]||(e[164]=[Q('',1)]))),e[165]||(e[165]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[173]||(e[173]=l("-module ")),t("mjx-container",l2,[(i(),s("svg",s2,e[166]||(e[166]=[Q('',1)]))),e[167]||(e[167]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[174]||(e[174]=l(" where ")),t("mjx-container",i2,[(i(),s("svg",Q2,e[168]||(e[168]=[Q('',1)]))),e[169]||(e[169]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[175]||(e[175]=l(" are the rows of ")),t("mjx-container",o2,[(i(),s("svg",a2,e[170]||(e[170]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[171]||(e[171]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[176]||(e[176]=l("."))]),e[178]||(e[178]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[235]||(e[235]=t("p",null,[l("(Those functions are also available as "),t("code",null,"pseudo_matrix"),l(")")],-1)),e[236]||(e[236]=t("h2",{id:"operations",tabindex:"-1"},[l("Operations "),t("a",{class:"header-anchor",href:"#operations","aria-label":'Permalink to "Operations"'},"​")],-1)),t("details",n2,[t("summary",null,[e[179]||(e[179]=t("a",{id:"coefficient_ideals-Tuple{Hecke.PMat}",href:"#coefficient_ideals-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"coefficient_ideals")],-1)),e[180]||(e[180]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[181]||(e[181]=Q('
julia
coefficient_ideals(M::PMat)

Returns the vector of coefficient ideals.

source

',3))]),t("details",T2,[t("summary",null,[e[182]||(e[182]=t("a",{id:"matrix-Tuple{Hecke.PMat}",href:"#matrix-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"matrix")],-1)),e[183]||(e[183]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[184]||(e[184]=Q('
julia
matrix(M::PMat)

Returns the matrix part of the PMat.

source

',3))]),t("details",r2,[t("summary",null,[e[185]||(e[185]=t("a",{id:"base_ring-Tuple{Hecke.PMat}",href:"#base_ring-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"base_ring")],-1)),e[186]||(e[186]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[205]||(e[205]=Q('
julia
base_ring(M::PMat)
',1)),t("p",null,[e[197]||(e[197]=l("The ")),e[198]||(e[198]=t("code",null,"PMat",-1)),e[199]||(e[199]=l()),t("mjx-container",d2,[(i(),s("svg",m2,e[187]||(e[187]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[188]||(e[188]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[200]||(e[200]=l(" defines an ")),t("mjx-container",p2,[(i(),s("svg",h2,e[189]||(e[189]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[190]||(e[190]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[201]||(e[201]=l("-module for some maximal order ")),t("mjx-container",x2,[(i(),s("svg",u2,e[191]||(e[191]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[192]||(e[192]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[202]||(e[202]=l(". This function returns the ")),t("mjx-container",w2,[(i(),s("svg",g2,e[193]||(e[193]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[194]||(e[194]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[203]||(e[203]=l(" that was used to defined ")),t("mjx-container",c2,[(i(),s("svg",k2,e[195]||(e[195]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[196]||(e[196]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[204]||(e[204]=l("."))]),e[206]||(e[206]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",b2,[t("summary",null,[e[207]||(e[207]=t("a",{id:"pseudo_hnf-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}",href:"#pseudo_hnf-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_hnf")],-1)),e[208]||(e[208]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[216]||(e[216]=Q('
julia
pseudo_hnf(P::PMat)
',1)),t("p",null,[e[213]||(e[213]=l("Transforms ")),t("mjx-container",f2,[(i(),s("svg",v2,e[209]||(e[209]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[210]||(e[210]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[214]||(e[214]=l(" into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of ")),t("mjx-container",y2,[(i(),s("svg",L2,e[211]||(e[211]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[212]||(e[212]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[215]||(e[215]=l(" will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module."))]),e[217]||(e[217]=t("p",null,[l("A optional second argument can be specified as a symbols, indicating the desired shape of the echelon form. Possible are "),t("code",null,":upperright"),l(" (the default) and "),t("code",null,":lowerleft")],-1)),e[218]||(e[218]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",M2,[t("summary",null,[e[219]||(e[219]=t("a",{id:"pseudo_hnf_with_transform-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}",href:"#pseudo_hnf_with_transform-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_hnf_with_transform")],-1)),e[220]||(e[220]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[228]||(e[228]=Q('
julia
pseudo_hnf_with_transform(P::PMat)
',1)),t("p",null,[e[225]||(e[225]=l("Transforms ")),t("mjx-container",H2,[(i(),s("svg",j2,e[221]||(e[221]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[222]||(e[222]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[226]||(e[226]=l(" into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of ")),t("mjx-container",C2,[(i(),s("svg",Z2,e[223]||(e[223]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[224]||(e[224]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[227]||(e[227]=l(" will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module. The used transformation is returned as a second return value."))]),e[229]||(e[229]=t("p",null,[l("A optional second argument can be specified as a symbol, indicating the desired shape of the echelon form. Possible are "),t("code",null,":upperright"),l(" (the default) and "),t("code",null,":lowerleft")],-1)),e[230]||(e[230]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[237]||(e[237]=t("h2",{id:"examples",tabindex:"-1"},[l("Examples "),t("a",{class:"header-anchor",href:"#examples","aria-label":'Permalink to "Examples"'},"​")],-1))])}const J2=n(r,[["render",D2]]);export{G2 as __pageData,J2 as default}; +import{_ as n,c as s,j as t,a as l,a5 as Q,G as a,B as T,o as i}from"./chunks/framework.DbhH0_mT.js";const G2=JSON.parse('{"title":"Pseudo-matrices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/misc/pmat.md","filePath":"manual/misc/pmat.md","lastUpdated":null}'),r={name:"manual/misc/pmat.md"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"3.277ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1448.3 683","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.135ex",height:"1.636ex",role:"img",focusable:"false",viewBox:"0 -683 3153.6 723","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.364ex",height:"1.932ex",role:"img",focusable:"false",viewBox:"0 -696 1045 853.8","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.653ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 2940.5 840.8","aria-hidden":"true"},N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.672ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5601.1 1000","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.059ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.032ex",height:"1.633ex",role:"img",focusable:"false",viewBox:"0 -696 1340 722","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.059ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.624ex",height:"1.633ex",role:"img",focusable:"false",viewBox:"0 -696 718 722","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.913ex",height:"1.636ex",role:"img",focusable:"false",viewBox:"0 -683 2613.6 723","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.277ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3216.6 1000","aria-hidden":"true"},_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},t1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.447ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5501.7 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},i1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.147ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 949 600.8","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},a1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.928ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 852 683","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.364ex",height:"1.932ex",role:"img",focusable:"false",viewBox:"0 -696 1045 853.8","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.966ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 3963.1 804","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.09ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.744ex",height:"1.697ex",role:"img",focusable:"false",viewBox:"0 -710.2 4306.9 750.2","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.781ex",height:"1.52ex",role:"img",focusable:"false",viewBox:"0 -661 345 672","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.781ex",height:"1.52ex",role:"img",focusable:"false",viewBox:"0 -661 345 672","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},v1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.31ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6325.1 1000","aria-hidden":"true"},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},H1={class:"jldocstring custom-block",open:""},j1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},Z1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.212ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3187.6 1000","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 760 599.8","aria-hidden":"true"},S1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.98ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 433 453","aria-hidden":"true"},B1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},G1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},z1={class:"jldocstring custom-block",open:""},O1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},N1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.212ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3187.6 1000","aria-hidden":"true"},I1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.719ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 760 599.8","aria-hidden":"true"},K1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.98ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 433 453","aria-hidden":"true"},$1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},W1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},_1={class:"jldocstring custom-block",open:""},t2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.567ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1134.4 840.8","aria-hidden":"true"},l2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.059ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3562 1000","aria-hidden":"true"},i2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.726ex",height:"1.357ex",role:"img",focusable:"false",viewBox:"0 -442 1205 599.8","aria-hidden":"true"},o2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},n2={class:"jldocstring custom-block",open:""},T2={class:"jldocstring custom-block",open:""},r2={class:"jldocstring custom-block",open:""},d2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},p2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},x2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},w2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},c2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},b2={class:"jldocstring custom-block",open:""},f2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},y2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},M2={class:"jldocstring custom-block",open:""},H2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"},C2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.699ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 751 683","aria-hidden":"true"};function D2(V2,e,E2,S2,F2,B2){const o=T("Badge");return i(),s("div",null,[e[231]||(e[231]=t("h1",{id:"PMatLink",tabindex:"-1"},[l("Pseudo-matrices "),t("a",{class:"header-anchor",href:"#PMatLink","aria-label":'Permalink to "Pseudo-matrices {#PMatLink}"'},"​")],-1)),e[232]||(e[232]=t("p",null,[l("This chapter deals with pseudo-matrices. We follow the common terminology and conventions introduced in ["),t("a",{href:"/v0.34.8/references#Coh00"},"1"),l("], however, we operate on rows, not on columns.")],-1)),t("p",null,[e[20]||(e[20]=l("Let ")),t("mjx-container",d,[(i(),s("svg",m,e[0]||(e[0]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[1]||(e[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[21]||(e[21]=l(" be a Dedekind domain, typically, the maximal order of some number field ")),t("mjx-container",p,[(i(),s("svg",h,e[2]||(e[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[22]||(e[22]=l(", further fix some finite dimensional ")),t("mjx-container",x,[(i(),s("svg",u,e[4]||(e[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[23]||(e[23]=l("-vectorspace ")),t("mjx-container",w,[(i(),s("svg",g,e[6]||(e[6]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),e[24]||(e[24]=l(" (with some basis), frequently ")),t("mjx-container",c,[(i(),s("svg",k,e[8]||(e[8]=[Q('',1)]))),e[9]||(e[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"K"),t("mi",null,"n")])])],-1))]),e[25]||(e[25]=l(" or the ")),t("mjx-container",b,[(i(),s("svg",f,e[10]||(e[10]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[11]||(e[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[26]||(e[26]=l("-structure of some extension of ")),t("mjx-container",v,[(i(),s("svg",y,e[12]||(e[12]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[13]||(e[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[27]||(e[27]=l(". Since in general ")),t("mjx-container",L,[(i(),s("svg",M,e[14]||(e[14]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[15]||(e[15]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[28]||(e[28]=l(" is not a PID, the ")),t("mjx-container",H,[(i(),s("svg",j,e[16]||(e[16]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[17]||(e[17]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[29]||(e[29]=l("-modules in ")),t("mjx-container",C,[(i(),s("svg",Z,e[18]||(e[18]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),e[19]||(e[19]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),e[30]||(e[30]=l(" are usually not free, but still projective."))]),t("p",null,[e[45]||(e[45]=l("Any finitely generated ")),t("mjx-container",D,[(i(),s("svg",V,e[31]||(e[31]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[32]||(e[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[46]||(e[46]=l("-module ")),t("mjx-container",E,[(i(),s("svg",S,e[33]||(e[33]=[Q('',1)]))),e[34]||(e[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊂"),t("mi",null,"V")])],-1))]),e[47]||(e[47]=l(" can be represented as a pseudo-matrix ")),e[48]||(e[48]=t("code",null,"PMat",-1)),e[49]||(e[49]=l(" as follows: The structure theory of ")),t("mjx-container",F,[(i(),s("svg",B,e[35]||(e[35]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[36]||(e[36]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[50]||(e[50]=l("-modules gives the existence of (fractional) ")),t("mjx-container",A,[(i(),s("svg",G,e[37]||(e[37]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[38]||(e[38]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[51]||(e[51]=l("-ideals ")),t("mjx-container",J,[(i(),s("svg",z,e[39]||(e[39]=[Q('',1)]))),e[40]||(e[40]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")])])],-1))]),e[52]||(e[52]=l(" and elements ")),t("mjx-container",O,[(i(),s("svg",P,e[41]||(e[41]=[Q('',1)]))),e[42]||(e[42]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mi",null,"V")])],-1))]),e[53]||(e[53]=l(" such that ")),t("mjx-container",N,[(i(),s("svg",R,e[43]||(e[43]=[Q('',1)]))),e[44]||(e[44]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"="),t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[54]||(e[54]=l(" and the sum is direct."))]),t("p",null,[e[71]||(e[71]=l("Following Cohen we call modules of the form ")),t("mjx-container",I,[(i(),s("svg",X,e[55]||(e[55]=[Q('',1)]))),e[56]||(e[56]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"ω")])],-1))]),e[72]||(e[72]=l(" for some ideal ")),t("mjx-container",K,[(i(),s("svg",U,e[57]||(e[57]=[Q('',1)]))),e[58]||(e[58]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")])])],-1))]),e[73]||(e[73]=l(" and ")),t("mjx-container",$,[(i(),s("svg",q,e[59]||(e[59]=[Q('',1)]))),e[60]||(e[60]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω"),t("mo",null,"∈"),t("mi",null,"V")])],-1))]),e[74]||(e[74]=l(" a ")),e[75]||(e[75]=t("em",null,"pseudo element",-1)),e[76]||(e[76]=l(". A system ")),t("mjx-container",W,[(i(),s("svg",Y,e[61]||(e[61]=[Q('',1)]))),e[62]||(e[62]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",{stretchy:"false"},")")])],-1))]),e[77]||(e[77]=l(" is called a pseudo-generating system for ")),t("mjx-container",_,[(i(),s("svg",t1,e[63]||(e[63]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[64]||(e[64]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[78]||(e[78]=l(" if ")),t("mjx-container",e1,[(i(),s("svg",l1,e[65]||(e[65]=[Q('',1)]))),e[66]||(e[66]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"⟨"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"i"),t("mo",{fence:"false",stretchy:"false"},"⟨"),t("mo",null,"="),t("mi",null,"M")])],-1))]),e[79]||(e[79]=l(". A pseudo-generating system is called a pseudo-basis if the ")),t("mjx-container",s1,[(i(),s("svg",i1,e[67]||(e[67]=[Q('',1)]))),e[68]||(e[68]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[80]||(e[80]=l(" are ")),t("mjx-container",Q1,[(i(),s("svg",o1,e[69]||(e[69]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[70]||(e[70]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[81]||(e[81]=l("-linear independent."))]),t("p",null,[e[98]||(e[98]=l("A ")),e[99]||(e[99]=t("em",null,"pseudo-matrix",-1)),e[100]||(e[100]=l()),t("mjx-container",a1,[(i(),s("svg",n1,e[82]||(e[82]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44B",d:"M42 0H40Q26 0 26 11Q26 15 29 27Q33 41 36 43T55 46Q141 49 190 98Q200 108 306 224T411 342Q302 620 297 625Q288 636 234 637H206Q200 643 200 645T202 664Q206 677 212 683H226Q260 681 347 681Q380 681 408 681T453 682T473 682Q490 682 490 671Q490 670 488 658Q484 643 481 640T465 637Q434 634 411 620L488 426L541 485Q646 598 646 610Q646 628 622 635Q617 635 609 637Q594 637 594 648Q594 650 596 664Q600 677 606 683H618Q619 683 643 683T697 681T738 680Q828 680 837 683H845Q852 676 852 672Q850 647 840 637H824Q790 636 763 628T722 611T698 593L687 584Q687 585 592 480L505 384Q505 383 536 304T601 142T638 56Q648 47 699 46Q734 46 734 37Q734 35 732 23Q728 7 725 4T711 1Q708 1 678 1T589 2Q528 2 496 2T461 1Q444 1 444 10Q444 11 446 25Q448 35 450 39T455 44T464 46T480 47T506 54Q523 62 523 64Q522 64 476 181L429 299Q241 95 236 84Q232 76 232 72Q232 53 261 47Q262 47 267 47T273 46Q276 46 277 46T280 45T283 42T284 35Q284 26 282 19Q279 6 276 4T261 1Q258 1 243 1T201 2T142 2Q64 2 42 0Z",style:{"stroke-width":"3"}})])])],-1)]))),e[83]||(e[83]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"X")])],-1))]),e[101]||(e[101]=l(" is a tuple containing a vector of ideals ")),t("mjx-container",T1,[(i(),s("svg",r1,e[84]||(e[84]=[Q('',1)]))),e[85]||(e[85]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")])])],-1))]),e[102]||(e[102]=l(" (")),t("mjx-container",d1,[(i(),s("svg",m1,e[86]||(e[86]=[Q('',1)]))),e[87]||(e[87]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r")])],-1))]),e[103]||(e[103]=l(") and a matrix ")),t("mjx-container",p1,[(i(),s("svg",h1,e[88]||(e[88]=[Q('',1)]))),e[89]||(e[89]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U"),t("mo",null,"∈"),t("msup",null,[t("mi",null,"K"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"×"),t("mi",null,"n")])])])],-1))]),e[104]||(e[104]=l(". The ")),t("mjx-container",x1,[(i(),s("svg",u1,e[90]||(e[90]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[91]||(e[91]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[105]||(e[105]=l("-th row together with the ")),t("mjx-container",w1,[(i(),s("svg",g1,e[92]||(e[92]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[93]||(e[93]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[106]||(e[106]=l("-th ideal defines a pseudo-element, thus an ")),t("mjx-container",c1,[(i(),s("svg",k1,e[94]||(e[94]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[95]||(e[95]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[107]||(e[107]=l("-module, all of them together generate a module ")),t("mjx-container",b1,[(i(),s("svg",f1,e[96]||(e[96]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[97]||(e[97]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[108]||(e[108]=l("."))]),t("p",null,[e[113]||(e[113]=l("A pseudo-matrix ")),t("mjx-container",v1,[(i(),s("svg",y1,e[109]||(e[109]=[Q('',1)]))),e[110]||(e[110]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"X"),t("mo",null,"="),t("mo",{stretchy:"false"},"("),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"A")]),t("mi",null,"i")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"i")]),t("mo",null,","),t("mi",null,"U"),t("mo",{stretchy:"false"},")")])],-1))]),e[114]||(e[114]=l(" is said to be in pseudo-hnf if ")),t("mjx-container",L1,[(i(),s("svg",M1,e[111]||(e[111]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[112]||(e[112]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U")])],-1))]),e[115]||(e[115]=l(" is essentially upper triangular. Similar to the classical hnf, there is an algorithm that transforms any pseudo-matrix into one in pseudo-hnf while maintaining the module."))]),e[233]||(e[233]=t("h2",{id:"creation",tabindex:"-1"},[l("Creation "),t("a",{class:"header-anchor",href:"#creation","aria-label":'Permalink to "Creation"'},"​")],-1)),e[234]||(e[234]=t("p",null,[l("In general to create a "),t("code",null,"PMat"),l(" one has to specify a matrix and a vector of ideals:")],-1)),t("details",H1,[t("summary",null,[e[116]||(e[116]=t("a",{id:"pseudo_matrix-Tuple{MatElem{AbsSimpleNumFieldElem}, Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#pseudo_matrix-Tuple{MatElem{AbsSimpleNumFieldElem}, Vector{AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[117]||(e[117]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[137]||(e[137]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[130]||(e[130]=l("Returns the (row) pseudo matrix representing the ")),t("mjx-container",j1,[(i(),s("svg",C1,e[118]||(e[118]=[Q('',1)]))),e[119]||(e[119]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[131]||(e[131]=l("-module ")),t("mjx-container",Z1,[(i(),s("svg",D1,e[120]||(e[120]=[Q('',1)]))),e[121]||(e[121]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[132]||(e[132]=l(" where ")),t("mjx-container",V1,[(i(),s("svg",E1,e[122]||(e[122]=[Q('',1)]))),e[123]||(e[123]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")])])],-1))]),e[133]||(e[133]=l(" are the ideals in ")),t("mjx-container",S1,[(i(),s("svg",F1,e[124]||(e[124]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D450",d:"M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z",style:{"stroke-width":"3"}})])])],-1)]))),e[125]||(e[125]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"c")])],-1))]),e[134]||(e[134]=l(" and ")),t("mjx-container",B1,[(i(),s("svg",A1,e[126]||(e[126]=[Q('',1)]))),e[127]||(e[127]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[135]||(e[135]=l(" the rows of ")),t("mjx-container",G1,[(i(),s("svg",J1,e[128]||(e[128]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[129]||(e[129]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[136]||(e[136]=l("."))]),e[138]||(e[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",z1,[t("summary",null,[e[139]||(e[139]=t("a",{id:"pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldOrderElem}, Vector{AbsSimpleNumFieldOrderIdeal}}",href:"#pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldOrderElem}, Vector{AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[140]||(e[140]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[160]||(e[160]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[153]||(e[153]=l("Returns the (row) pseudo matrix representing the ")),t("mjx-container",O1,[(i(),s("svg",P1,e[141]||(e[141]=[Q('',1)]))),e[142]||(e[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[154]||(e[154]=l("-module ")),t("mjx-container",N1,[(i(),s("svg",R1,e[143]||(e[143]=[Q('',1)]))),e[144]||(e[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[155]||(e[155]=l(" where ")),t("mjx-container",I1,[(i(),s("svg",X1,e[145]||(e[145]=[Q('',1)]))),e[146]||(e[146]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")])])],-1))]),e[156]||(e[156]=l(" are the ideals in ")),t("mjx-container",K1,[(i(),s("svg",U1,e[147]||(e[147]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D450",d:"M34 159Q34 268 120 355T306 442Q362 442 394 418T427 355Q427 326 408 306T360 285Q341 285 330 295T319 325T330 359T352 380T366 386H367Q367 388 361 392T340 400T306 404Q276 404 249 390Q228 381 206 359Q162 315 142 235T121 119Q121 73 147 50Q169 26 205 26H209Q321 26 394 111Q403 121 406 121Q410 121 419 112T429 98T420 83T391 55T346 25T282 0T202 -11Q127 -11 81 37T34 159Z",style:{"stroke-width":"3"}})])])],-1)]))),e[148]||(e[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"c")])],-1))]),e[157]||(e[157]=l(" and ")),t("mjx-container",$1,[(i(),s("svg",q1,e[149]||(e[149]=[Q('',1)]))),e[150]||(e[150]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[158]||(e[158]=l(" the rows of ")),t("mjx-container",W1,[(i(),s("svg",Y1,e[151]||(e[151]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[152]||(e[152]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[159]||(e[159]=l("."))]),e[161]||(e[161]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_1,[t("summary",null,[e[162]||(e[162]=t("a",{id:"pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldElem}}",href:"#pseudo_matrix-Tuple{AbstractAlgebra.Generic.Mat{AbsSimpleNumFieldElem}}"},[t("span",{class:"jlbinding"},"pseudo_matrix")],-1)),e[163]||(e[163]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[177]||(e[177]=Q('
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}
',1)),t("p",null,[e[172]||(e[172]=l("Returns the free (row) pseudo matrix representing the ")),t("mjx-container",t2,[(i(),s("svg",e2,e[164]||(e[164]=[Q('',1)]))),e[165]||(e[165]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")])])],-1))]),e[173]||(e[173]=l("-module ")),t("mjx-container",l2,[(i(),s("svg",s2,e[166]||(e[166]=[Q('',1)]))),e[167]||(e[167]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mi",null,"Z"),t("mi",null,"k")]),t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[174]||(e[174]=l(" where ")),t("mjx-container",i2,[(i(),s("svg",Q2,e[168]||(e[168]=[Q('',1)]))),e[169]||(e[169]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"m"),t("mi",null,"i")])])],-1))]),e[175]||(e[175]=l(" are the rows of ")),t("mjx-container",o2,[(i(),s("svg",a2,e[170]||(e[170]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[171]||(e[171]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[176]||(e[176]=l("."))]),e[178]||(e[178]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[235]||(e[235]=t("p",null,[l("(Those functions are also available as "),t("code",null,"pseudo_matrix"),l(")")],-1)),e[236]||(e[236]=t("h2",{id:"operations",tabindex:"-1"},[l("Operations "),t("a",{class:"header-anchor",href:"#operations","aria-label":'Permalink to "Operations"'},"​")],-1)),t("details",n2,[t("summary",null,[e[179]||(e[179]=t("a",{id:"coefficient_ideals-Tuple{Hecke.PMat}",href:"#coefficient_ideals-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"coefficient_ideals")],-1)),e[180]||(e[180]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[181]||(e[181]=Q('
julia
coefficient_ideals(M::PMat)

Returns the vector of coefficient ideals.

source

',3))]),t("details",T2,[t("summary",null,[e[182]||(e[182]=t("a",{id:"matrix-Tuple{Hecke.PMat}",href:"#matrix-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"matrix")],-1)),e[183]||(e[183]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[184]||(e[184]=Q('
julia
matrix(M::PMat)

Returns the matrix part of the PMat.

source

',3))]),t("details",r2,[t("summary",null,[e[185]||(e[185]=t("a",{id:"base_ring-Tuple{Hecke.PMat}",href:"#base_ring-Tuple{Hecke.PMat}"},[t("span",{class:"jlbinding"},"base_ring")],-1)),e[186]||(e[186]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[205]||(e[205]=Q('
julia
base_ring(M::PMat)
',1)),t("p",null,[e[197]||(e[197]=l("The ")),e[198]||(e[198]=t("code",null,"PMat",-1)),e[199]||(e[199]=l()),t("mjx-container",d2,[(i(),s("svg",m2,e[187]||(e[187]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[188]||(e[188]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[200]||(e[200]=l(" defines an ")),t("mjx-container",p2,[(i(),s("svg",h2,e[189]||(e[189]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[190]||(e[190]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[201]||(e[201]=l("-module for some maximal order ")),t("mjx-container",x2,[(i(),s("svg",u2,e[191]||(e[191]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[192]||(e[192]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[202]||(e[202]=l(". This function returns the ")),t("mjx-container",w2,[(i(),s("svg",g2,e[193]||(e[193]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[194]||(e[194]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[203]||(e[203]=l(" that was used to defined ")),t("mjx-container",c2,[(i(),s("svg",k2,e[195]||(e[195]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[196]||(e[196]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[204]||(e[204]=l("."))]),e[206]||(e[206]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",b2,[t("summary",null,[e[207]||(e[207]=t("a",{id:"pseudo_hnf-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}",href:"#pseudo_hnf-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_hnf")],-1)),e[208]||(e[208]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[216]||(e[216]=Q('
julia
pseudo_hnf(P::PMat)
',1)),t("p",null,[e[213]||(e[213]=l("Transforms ")),t("mjx-container",f2,[(i(),s("svg",v2,e[209]||(e[209]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[210]||(e[210]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[214]||(e[214]=l(" into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of ")),t("mjx-container",y2,[(i(),s("svg",L2,e[211]||(e[211]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[212]||(e[212]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[215]||(e[215]=l(" will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module."))]),e[217]||(e[217]=t("p",null,[l("A optional second argument can be specified as a symbols, indicating the desired shape of the echelon form. Possible are "),t("code",null,":upperright"),l(" (the default) and "),t("code",null,":lowerleft")],-1)),e[218]||(e[218]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",M2,[t("summary",null,[e[219]||(e[219]=t("a",{id:"pseudo_hnf_with_transform-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}",href:"#pseudo_hnf_with_transform-Tuple{Hecke.PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}}"},[t("span",{class:"jlbinding"},"pseudo_hnf_with_transform")],-1)),e[220]||(e[220]=l()),a(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[228]||(e[228]=Q('
julia
pseudo_hnf_with_transform(P::PMat)
',1)),t("p",null,[e[225]||(e[225]=l("Transforms ")),t("mjx-container",H2,[(i(),s("svg",j2,e[221]||(e[221]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[222]||(e[222]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[226]||(e[226]=l(" into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of ")),t("mjx-container",C2,[(i(),s("svg",Z2,e[223]||(e[223]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[224]||(e[224]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[227]||(e[227]=l(" will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module. The used transformation is returned as a second return value."))]),e[229]||(e[229]=t("p",null,[l("A optional second argument can be specified as a symbol, indicating the desired shape of the echelon form. Possible are "),t("code",null,":upperright"),l(" (the default) and "),t("code",null,":lowerleft")],-1)),e[230]||(e[230]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[237]||(e[237]=t("h2",{id:"examples",tabindex:"-1"},[l("Examples "),t("a",{class:"header-anchor",href:"#examples","aria-label":'Permalink to "Examples"'},"​")],-1))])}const J2=n(r,[["render",D2]]);export{G2 as __pageData,J2 as default}; diff --git a/v0.34.8/assets/manual_number_fields_conventions.md.BvkZaf1P.js b/v0.34.8/assets/manual_number_fields_conventions.md.BvkZaf1P.js index e16a94e408..3b0eea436a 100644 --- a/v0.34.8/assets/manual_number_fields_conventions.md.BvkZaf1P.js +++ b/v0.34.8/assets/manual_number_fields_conventions.md.BvkZaf1P.js @@ -1 +1 @@ -import{_ as s,c as a,j as t,a as T,a5 as l,o as e}from"./chunks/framework.DbhH0_mT.js";const a3=JSON.parse('{"title":"Conventions","description":"","frontmatter":{},"headers":[],"relativePath":"manual/number_fields/conventions.md","filePath":"manual/number_fields/conventions.md","lastUpdated":null}'),o={name:"manual/number_fields/conventions.md"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.437ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.955ex",height:"2.011ex",role:"img",focusable:"false",viewBox:"0 -696 864 889","aria-hidden":"true"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},i={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"22.484ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 9938.1 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.151ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4044.6 1000","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.34ex",height:"2.497ex",role:"img",focusable:"false",viewBox:"0 -853.7 8106.3 1103.7","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.176ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -694 520 704","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.805ex",height:"2.084ex",role:"img",focusable:"false",viewBox:"0 -705 6985.8 921","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"39.764ex",height:"2.61ex",role:"img",focusable:"false",viewBox:"0 -903.7 17575.6 1153.7","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.848ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2142.7 1000","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.02ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 451 453","aria-hidden":"true"},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.518ex",height:"1.909ex",role:"img",focusable:"false",viewBox:"0 -686 4649.2 843.8","aria-hidden":"true"},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.966ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 3963.1 804","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.192ex",height:"1.529ex",role:"img",focusable:"false",viewBox:"0 -666 969 676","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.448ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -697 4618.2 854.8","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.138ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 4481.1 804","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.471ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.075ex",height:"2.188ex",role:"img",focusable:"false",viewBox:"0 -759 4011.2 967","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.579ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 7328 804","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.437ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.955ex",height:"2.011ex",role:"img",focusable:"false",viewBox:"0 -696 864 889","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.114ex"},xmlns:"http://www.w3.org/2000/svg",width:"95.609ex",height:"7.359ex",role:"img",focusable:"false",viewBox:"0 -1876.4 42259.2 3252.7","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.191ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504.6 1000","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.296ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1899 1000","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},k1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.623ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5137.2 1000","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},D1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.38ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6798.1 1000","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},R1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.62ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2926 1000","aria-hidden":"true"},B1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},z1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.114ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4028.6 1000","aria-hidden":"true"},X1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.852ex",height:"2.452ex",role:"img",focusable:"false",viewBox:"0 -833.9 3912.7 1083.9","aria-hidden":"true"},J1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.241ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4084.6 1000","aria-hidden":"true"},q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},P1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},K1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-11.653ex"},xmlns:"http://www.w3.org/2000/svg",width:"99.393ex",height:"24.438ex",role:"img",focusable:"false",viewBox:"0 -5650.8 43931.9 10801.5","aria-hidden":"true"},I1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"};function U1(W1,Q,Y1,_1,t3,Q3){return e(),a("div",null,[Q[171]||(Q[171]=t("h1",{id:"conventions",tabindex:"-1"},[T("Conventions "),t("a",{class:"header-anchor",href:"#conventions","aria-label":'Permalink to "Conventions"'},"​")],-1)),t("p",null,[Q[8]||(Q[8]=T("By an absolute number field we mean finite extensions of ")),t("mjx-container",m,[(e(),a("svg",n,Q[0]||(Q[0]=[l('',1)]))),Q[1]||(Q[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),Q[9]||(Q[9]=T(", which is of type ")),Q[10]||(Q[10]=t("code",null,"AbsSimpleNumField",-1)),Q[11]||(Q[11]=T(" and whose elements are of type ")),Q[12]||(Q[12]=t("code",null,"AbsSimpleNumFieldElem",-1)),Q[13]||(Q[13]=T(". Such an absolute number field ")),t("mjx-container",d,[(e(),a("svg",r,Q[2]||(Q[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[3]||(Q[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[14]||(Q[14]=T(" is always given in the form ")),t("mjx-container",i,[(e(),a("svg",h,Q[4]||(Q[4]=[l('',1)]))),Q[5]||(Q[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"X"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),Q[15]||(Q[15]=T(", where ")),t("mjx-container",p,[(e(),a("svg",g,Q[6]||(Q[6]=[l('',1)]))),Q[7]||(Q[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"X"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[16]||(Q[16]=T(" is an irreducible polynomial. See ")),Q[17]||(Q[17]=t("a",{href:"/Hecke.jl/v0.34.8/manual/number_fields/intro#NumberFieldsLink"},"here",-1)),Q[18]||(Q[18]=T(" for more information on the different types of fields supported."))]),t("p",null,[Q[35]||(Q[35]=T("We call ")),t("mjx-container",H,[(e(),a("svg",x,Q[19]||(Q[19]=[l('',1)]))),Q[20]||(Q[20]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mn",null,"2")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")")])],-1))]),Q[36]||(Q[36]=T(", where ")),t("mjx-container",w,[(e(),a("svg",u,Q[21]||(Q[21]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[22]||(Q[22]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),Q[37]||(Q[37]=T(" is the degree ")),t("mjx-container",c,[(e(),a("svg",f,Q[23]||(Q[23]=[l('',1)]))),Q[24]||(Q[24]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),Q[38]||(Q[38]=T(" the ")),Q[39]||(Q[39]=t("em",null,"power basis",-1)),Q[40]||(Q[40]=T(" of ")),t("mjx-container",L,[(e(),a("svg",y,Q[25]||(Q[25]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[26]||(Q[26]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[41]||(Q[41]=T(". If ")),t("mjx-container",V,[(e(),a("svg",M,Q[27]||(Q[27]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D6FD",d:"M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[28]||(Q[28]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"β")])],-1))]),Q[42]||(Q[42]=T(" is any element of ")),t("mjx-container",k,[(e(),a("svg",Z,Q[29]||(Q[29]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[30]||(Q[30]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[43]||(Q[43]=T(", then the ")),Q[44]||(Q[44]=t("em",null,"representation matrix",-1)),Q[45]||(Q[45]=T(" of ")),t("mjx-container",b,[(e(),a("svg",v,Q[31]||(Q[31]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D6FD",d:"M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[32]||(Q[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"β")])],-1))]),Q[46]||(Q[46]=T(" is the matrix representing ")),t("mjx-container",D,[(e(),a("svg",j,Q[33]||(Q[33]=[l('',1)]))),Q[34]||(Q[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mi",null,"K"),t("mo",null,","),t("mi",null,"γ"),t("mo",{stretchy:"false"},"↦"),t("mi",null,"β"),t("mi",null,"γ")])],-1))]),Q[47]||(Q[47]=T(" with respect to the power basis, that is,"))]),t("mjx-container",C,[(e(),a("svg",O,Q[48]||(Q[48]=[l('',1)]))),Q[49]||(Q[49]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mi",null,"β"),t("mo",null,"⋅"),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("msub",null,[t("mi",null,"M"),t("mi",null,"α")]),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")"),t("mo",null,".")])],-1))]),t("p",null,[Q[74]||(Q[74]=T("Let ")),t("mjx-container",R,[(e(),a("svg",A,Q[50]||(Q[50]=[l('',1)]))),Q[51]||(Q[51]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"r"),t("mo",null,","),t("mi",null,"s"),t("mo",{stretchy:"false"},")")])],-1))]),Q[75]||(Q[75]=T(" be the signature of ")),t("mjx-container",B,[(e(),a("svg",E,Q[52]||(Q[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[53]||(Q[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[76]||(Q[76]=T(", that is, ")),t("mjx-container",z,[(e(),a("svg",F,Q[54]||(Q[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[55]||(Q[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[77]||(Q[77]=T(" has ")),t("mjx-container",X,[(e(),a("svg",S,Q[56]||(Q[56]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45F",d:"M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[57]||(Q[57]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r")])],-1))]),Q[78]||(Q[78]=T(" real embeddings ")),t("mjx-container",J,[(e(),a("svg",G,Q[58]||(Q[58]=[l('',1)]))),Q[59]||(Q[59]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")])])],-1))]),Q[79]||(Q[79]=T(", ")),t("mjx-container",q,[(e(),a("svg",N,Q[60]||(Q[60]=[l('',1)]))),Q[61]||(Q[61]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r")])],-1))]),Q[80]||(Q[80]=T(", and ")),t("mjx-container",P,[(e(),a("svg",K,Q[62]||(Q[62]=[l('',1)]))),Q[63]||(Q[63]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"2"),t("mi",null,"s")])],-1))]),Q[81]||(Q[81]=T(" complex embeddings ")),t("mjx-container",I,[(e(),a("svg",$,Q[64]||(Q[64]=[l('',1)]))),Q[65]||(Q[65]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"C")])])],-1))]),Q[82]||(Q[82]=T(", ")),t("mjx-container",U,[(e(),a("svg",W,Q[66]||(Q[66]=[l('',1)]))),Q[67]||(Q[67]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mn",null,"2"),t("mi",null,"s")])],-1))]),Q[83]||(Q[83]=T(". In Hecke the complex embeddings are always ordered such that ")),t("mjx-container",Y,[(e(),a("svg",_,Q[68]||(Q[68]=[l('',1)]))),Q[69]||(Q[69]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",null,"="),t("mover",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{accent:"true"},"―")])])],-1))]),Q[84]||(Q[84]=T(" for ")),t("mjx-container",t1,[(e(),a("svg",Q1,Q[70]||(Q[70]=[l('',1)]))),Q[71]||(Q[71]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),Q[85]||(Q[85]=T(". The ")),t("mjx-container",T1,[(e(),a("svg",a1,Q[72]||(Q[72]=[l('',1)]))),Q[73]||(Q[73]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),Q[86]||(Q[86]=T("-linear function"))]),t("mjx-container",e1,[(e(),a("svg",l1,Q[87]||(Q[87]=[l('',1)]))),Q[88]||(Q[88]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mtable",{displaystyle:"true",columnspacing:"1em",rowspacing:"3pt"},[t("mtr",null,[t("mtd",null,[t("mi",null,"K"),t("mo",{stretchy:"false"},"⟶"),t("msup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d")])])])]),t("mtr",null,[t("mtd",null,[t("mi",null,"α"),t("mo",{stretchy:"false"},"⟼"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.623em",maxsize:"1.623em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.623em",maxsize:"1.623em"},")")])])])])])],-1))]),Q[172]||(Q[172]=t("p",null,[T("is called the "),t("em",null,"Minkowski map"),T(" (or "),t("em",null,"Minkowski embedding"),T(").")],-1)),t("p",null,[Q[115]||(Q[115]=T("If ")),t("mjx-container",s1,[(e(),a("svg",o1,Q[89]||(Q[89]=[l('',1)]))),Q[90]||(Q[90]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")")])],-1))]),Q[116]||(Q[116]=T(" is an absolute number field, then an ")),Q[117]||(Q[117]=t("em",null,"order",-1)),Q[118]||(Q[118]=T()),t("mjx-container",m1,[(e(),a("svg",n1,Q[91]||(Q[91]=[l('',1)]))),Q[92]||(Q[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[119]||(Q[119]=T(" of ")),t("mjx-container",d1,[(e(),a("svg",r1,Q[93]||(Q[93]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[94]||(Q[94]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[120]||(Q[120]=T(" is a subring of the ring of integers ")),t("mjx-container",i1,[(e(),a("svg",h1,Q[95]||(Q[95]=[l('',1)]))),Q[96]||(Q[96]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),Q[121]||(Q[121]=T(", which is free of rank ")),t("mjx-container",p1,[(e(),a("svg",g1,Q[97]||(Q[97]=[l('',1)]))),Q[98]||(Q[98]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),Q[122]||(Q[122]=T(" as a ")),t("mjx-container",H1,[(e(),a("svg",x1,Q[99]||(Q[99]=[l('',1)]))),Q[100]||(Q[100]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),Q[123]||(Q[123]=T("-module. The natural order ")),t("mjx-container",w1,[(e(),a("svg",u1,Q[101]||(Q[101]=[l('',1)]))),Q[102]||(Q[102]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[124]||(Q[124]=T(" is called the ")),Q[125]||(Q[125]=t("em",null,"equation order",-1)),Q[126]||(Q[126]=T(" of ")),t("mjx-container",c1,[(e(),a("svg",f1,Q[103]||(Q[103]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[104]||(Q[104]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[127]||(Q[127]=T(". In Hecke orders of absolute number fields are constructed (implicitly) by specifying a ")),t("mjx-container",L1,[(e(),a("svg",y1,Q[105]||(Q[105]=[l('',1)]))),Q[106]||(Q[106]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),Q[128]||(Q[128]=T("-basis, which is referred to as the ")),Q[129]||(Q[129]=t("em",null,"basis",-1)),Q[130]||(Q[130]=T(" of ")),t("mjx-container",V1,[(e(),a("svg",M1,Q[107]||(Q[107]=[l('',1)]))),Q[108]||(Q[108]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[131]||(Q[131]=T(". If ")),t("mjx-container",k1,[(e(),a("svg",Z1,Q[109]||(Q[109]=[l('',1)]))),Q[110]||(Q[110]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),Q[132]||(Q[132]=T(" is the basis of ")),t("mjx-container",b1,[(e(),a("svg",v1,Q[111]||(Q[111]=[l('',1)]))),Q[112]||(Q[112]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[133]||(Q[133]=T(", then the matrix ")),t("mjx-container",D1,[(e(),a("svg",j1,Q[113]||(Q[113]=[l('',1)]))),Q[114]||(Q[114]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"B"),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},")")])],-1))]),Q[134]||(Q[134]=T(" with"))]),t("p",null,[Q[149]||(Q[149]=T("is called the ")),Q[150]||(Q[150]=t("em",null,"basis matrix",-1)),Q[151]||(Q[151]=T(" of ")),t("mjx-container",C1,[(e(),a("svg",O1,Q[135]||(Q[135]=[l('',1)]))),Q[136]||(Q[136]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[152]||(Q[152]=T(". We call ")),t("mjx-container",R1,[(e(),a("svg",A1,Q[137]||(Q[137]=[l('',1)]))),Q[138]||(Q[138]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP",movablelimits:"true"},"det"),t("mo",{stretchy:"false"},"("),t("mi",null,"B"),t("mo",{stretchy:"false"},")")])],-1))]),Q[153]||(Q[153]=T(" the ")),Q[154]||(Q[154]=t("em",null,"generalized index",-1)),Q[155]||(Q[155]=T(" of ")),t("mjx-container",B1,[(e(),a("svg",E1,Q[139]||(Q[139]=[l('',1)]))),Q[140]||(Q[140]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[156]||(Q[156]=T(". In case ")),t("mjx-container",z1,[(e(),a("svg",F1,Q[141]||(Q[141]=[l('',1)]))),Q[142]||(Q[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",null,"⊆"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[157]||(Q[157]=T(", the determinant ")),t("mjx-container",X1,[(e(),a("svg",S1,Q[143]||(Q[143]=[l('',1)]))),Q[144]||(Q[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP",movablelimits:"true"},"det"),t("mo",{stretchy:"false"},"("),t("mi",null,"B"),t("msup",null,[t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"−"),t("mn",null,"1")])])])],-1))]),Q[158]||(Q[158]=T(" is in fact equal to ")),t("mjx-container",J1,[(e(),a("svg",G1,Q[145]||(Q[145]=[l('',1)]))),Q[146]||(Q[146]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[159]||(Q[159]=T(" and is called the ")),Q[160]||(Q[160]=t("em",null,"index",-1)),Q[161]||(Q[161]=T(" of ")),t("mjx-container",q1,[(e(),a("svg",N1,Q[147]||(Q[147]=[l('',1)]))),Q[148]||(Q[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[162]||(Q[162]=T(". The matrix"))]),t("mjx-container",P1,[(e(),a("svg",K1,Q[163]||(Q[163]=[l('',1)]))),Q[164]||(Q[164]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mo",null,"⋱")]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mo",null,"⋱")]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")]),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mo",{stretchy:"false"},")"),t("mo",null,".")])],-1))]),t("p",null,[Q[167]||(Q[167]=T("is called the ")),Q[168]||(Q[168]=t("em",null,"Minkowski matrix",-1)),Q[169]||(Q[169]=T(" of ")),t("mjx-container",I1,[(e(),a("svg",$1,Q[165]||(Q[165]=[l('',1)]))),Q[166]||(Q[166]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[170]||(Q[170]=T("."))])])}const e3=s(o,[["render",U1]]);export{a3 as __pageData,e3 as default}; +import{_ as s,c as a,j as t,a as T,a5 as l,o as e}from"./chunks/framework.DbhH0_mT.js";const a3=JSON.parse('{"title":"Conventions","description":"","frontmatter":{},"headers":[],"relativePath":"manual/number_fields/conventions.md","filePath":"manual/number_fields/conventions.md","lastUpdated":null}'),o={name:"manual/number_fields/conventions.md"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.437ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.955ex",height:"2.011ex",role:"img",focusable:"false",viewBox:"0 -696 864 889","aria-hidden":"true"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},i={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"22.484ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 9938.1 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.151ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4044.6 1000","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.34ex",height:"2.497ex",role:"img",focusable:"false",viewBox:"0 -853.7 8106.3 1103.7","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.176ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -694 520 704","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.805ex",height:"2.084ex",role:"img",focusable:"false",viewBox:"0 -705 6985.8 921","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"39.764ex",height:"2.61ex",role:"img",focusable:"false",viewBox:"0 -903.7 17575.6 1153.7","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.848ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2142.7 1000","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.02ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 451 453","aria-hidden":"true"},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.518ex",height:"1.909ex",role:"img",focusable:"false",viewBox:"0 -686 4649.2 843.8","aria-hidden":"true"},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.966ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 3963.1 804","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.192ex",height:"1.529ex",role:"img",focusable:"false",viewBox:"0 -666 969 676","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.448ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -697 4618.2 854.8","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.138ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 4481.1 804","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.471ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.075ex",height:"2.188ex",role:"img",focusable:"false",viewBox:"0 -759 4011.2 967","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.579ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 7328 804","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.437ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.955ex",height:"2.011ex",role:"img",focusable:"false",viewBox:"0 -696 864 889","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.114ex"},xmlns:"http://www.w3.org/2000/svg",width:"95.609ex",height:"7.359ex",role:"img",focusable:"false",viewBox:"0 -1876.4 42259.2 3252.7","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.191ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504.6 1000","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.296ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1899 1000","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},k1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.623ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5137.2 1000","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},D1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.38ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6798.1 1000","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},R1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.62ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2926 1000","aria-hidden":"true"},B1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},z1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.114ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4028.6 1000","aria-hidden":"true"},X1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.852ex",height:"2.452ex",role:"img",focusable:"false",viewBox:"0 -833.9 3912.7 1083.9","aria-hidden":"true"},J1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.241ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4084.6 1000","aria-hidden":"true"},q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},P1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},K1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-11.653ex"},xmlns:"http://www.w3.org/2000/svg",width:"99.393ex",height:"24.438ex",role:"img",focusable:"false",viewBox:"0 -5650.8 43931.9 10801.5","aria-hidden":"true"},I1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"};function U1(W1,Q,Y1,_1,t3,Q3){return e(),a("div",null,[Q[171]||(Q[171]=t("h1",{id:"conventions",tabindex:"-1"},[T("Conventions "),t("a",{class:"header-anchor",href:"#conventions","aria-label":'Permalink to "Conventions"'},"​")],-1)),t("p",null,[Q[8]||(Q[8]=T("By an absolute number field we mean finite extensions of ")),t("mjx-container",m,[(e(),a("svg",n,Q[0]||(Q[0]=[l('',1)]))),Q[1]||(Q[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),Q[9]||(Q[9]=T(", which is of type ")),Q[10]||(Q[10]=t("code",null,"AbsSimpleNumField",-1)),Q[11]||(Q[11]=T(" and whose elements are of type ")),Q[12]||(Q[12]=t("code",null,"AbsSimpleNumFieldElem",-1)),Q[13]||(Q[13]=T(". Such an absolute number field ")),t("mjx-container",d,[(e(),a("svg",r,Q[2]||(Q[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[3]||(Q[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[14]||(Q[14]=T(" is always given in the form ")),t("mjx-container",i,[(e(),a("svg",h,Q[4]||(Q[4]=[l('',1)]))),Q[5]||(Q[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"X"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),Q[15]||(Q[15]=T(", where ")),t("mjx-container",p,[(e(),a("svg",g,Q[6]||(Q[6]=[l('',1)]))),Q[7]||(Q[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"X"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[16]||(Q[16]=T(" is an irreducible polynomial. See ")),Q[17]||(Q[17]=t("a",{href:"/v0.34.8/manual/number_fields/intro#NumberFieldsLink"},"here",-1)),Q[18]||(Q[18]=T(" for more information on the different types of fields supported."))]),t("p",null,[Q[35]||(Q[35]=T("We call ")),t("mjx-container",H,[(e(),a("svg",x,Q[19]||(Q[19]=[l('',1)]))),Q[20]||(Q[20]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mn",null,"2")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")")])],-1))]),Q[36]||(Q[36]=T(", where ")),t("mjx-container",w,[(e(),a("svg",u,Q[21]||(Q[21]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[22]||(Q[22]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),Q[37]||(Q[37]=T(" is the degree ")),t("mjx-container",c,[(e(),a("svg",f,Q[23]||(Q[23]=[l('',1)]))),Q[24]||(Q[24]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),Q[38]||(Q[38]=T(" the ")),Q[39]||(Q[39]=t("em",null,"power basis",-1)),Q[40]||(Q[40]=T(" of ")),t("mjx-container",L,[(e(),a("svg",y,Q[25]||(Q[25]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[26]||(Q[26]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[41]||(Q[41]=T(". If ")),t("mjx-container",V,[(e(),a("svg",M,Q[27]||(Q[27]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D6FD",d:"M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[28]||(Q[28]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"β")])],-1))]),Q[42]||(Q[42]=T(" is any element of ")),t("mjx-container",k,[(e(),a("svg",Z,Q[29]||(Q[29]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[30]||(Q[30]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[43]||(Q[43]=T(", then the ")),Q[44]||(Q[44]=t("em",null,"representation matrix",-1)),Q[45]||(Q[45]=T(" of ")),t("mjx-container",b,[(e(),a("svg",v,Q[31]||(Q[31]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D6FD",d:"M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[32]||(Q[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"β")])],-1))]),Q[46]||(Q[46]=T(" is the matrix representing ")),t("mjx-container",D,[(e(),a("svg",j,Q[33]||(Q[33]=[l('',1)]))),Q[34]||(Q[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mi",null,"K"),t("mo",null,","),t("mi",null,"γ"),t("mo",{stretchy:"false"},"↦"),t("mi",null,"β"),t("mi",null,"γ")])],-1))]),Q[47]||(Q[47]=T(" with respect to the power basis, that is,"))]),t("mjx-container",C,[(e(),a("svg",O,Q[48]||(Q[48]=[l('',1)]))),Q[49]||(Q[49]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mi",null,"β"),t("mo",null,"⋅"),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("msub",null,[t("mi",null,"M"),t("mi",null,"α")]),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")"),t("mo",null,".")])],-1))]),t("p",null,[Q[74]||(Q[74]=T("Let ")),t("mjx-container",R,[(e(),a("svg",A,Q[50]||(Q[50]=[l('',1)]))),Q[51]||(Q[51]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"r"),t("mo",null,","),t("mi",null,"s"),t("mo",{stretchy:"false"},")")])],-1))]),Q[75]||(Q[75]=T(" be the signature of ")),t("mjx-container",B,[(e(),a("svg",E,Q[52]||(Q[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[53]||(Q[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[76]||(Q[76]=T(", that is, ")),t("mjx-container",z,[(e(),a("svg",F,Q[54]||(Q[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[55]||(Q[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[77]||(Q[77]=T(" has ")),t("mjx-container",X,[(e(),a("svg",S,Q[56]||(Q[56]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45F",d:"M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[57]||(Q[57]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r")])],-1))]),Q[78]||(Q[78]=T(" real embeddings ")),t("mjx-container",J,[(e(),a("svg",G,Q[58]||(Q[58]=[l('',1)]))),Q[59]||(Q[59]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")])])],-1))]),Q[79]||(Q[79]=T(", ")),t("mjx-container",q,[(e(),a("svg",N,Q[60]||(Q[60]=[l('',1)]))),Q[61]||(Q[61]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r")])],-1))]),Q[80]||(Q[80]=T(", and ")),t("mjx-container",P,[(e(),a("svg",K,Q[62]||(Q[62]=[l('',1)]))),Q[63]||(Q[63]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"2"),t("mi",null,"s")])],-1))]),Q[81]||(Q[81]=T(" complex embeddings ")),t("mjx-container",I,[(e(),a("svg",$,Q[64]||(Q[64]=[l('',1)]))),Q[65]||(Q[65]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"C")])])],-1))]),Q[82]||(Q[82]=T(", ")),t("mjx-container",U,[(e(),a("svg",W,Q[66]||(Q[66]=[l('',1)]))),Q[67]||(Q[67]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mn",null,"2"),t("mi",null,"s")])],-1))]),Q[83]||(Q[83]=T(". In Hecke the complex embeddings are always ordered such that ")),t("mjx-container",Y,[(e(),a("svg",_,Q[68]||(Q[68]=[l('',1)]))),Q[69]||(Q[69]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",null,"="),t("mover",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{accent:"true"},"―")])])],-1))]),Q[84]||(Q[84]=T(" for ")),t("mjx-container",t1,[(e(),a("svg",Q1,Q[70]||(Q[70]=[l('',1)]))),Q[71]||(Q[71]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),Q[85]||(Q[85]=T(". The ")),t("mjx-container",T1,[(e(),a("svg",a1,Q[72]||(Q[72]=[l('',1)]))),Q[73]||(Q[73]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),Q[86]||(Q[86]=T("-linear function"))]),t("mjx-container",e1,[(e(),a("svg",l1,Q[87]||(Q[87]=[l('',1)]))),Q[88]||(Q[88]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mtable",{displaystyle:"true",columnspacing:"1em",rowspacing:"3pt"},[t("mtr",null,[t("mtd",null,[t("mi",null,"K"),t("mo",{stretchy:"false"},"⟶"),t("msup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d")])])])]),t("mtr",null,[t("mtd",null,[t("mi",null,"α"),t("mo",{stretchy:"false"},"⟼"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.623em",maxsize:"1.623em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.623em",maxsize:"1.623em"},")")])])])])])],-1))]),Q[172]||(Q[172]=t("p",null,[T("is called the "),t("em",null,"Minkowski map"),T(" (or "),t("em",null,"Minkowski embedding"),T(").")],-1)),t("p",null,[Q[115]||(Q[115]=T("If ")),t("mjx-container",s1,[(e(),a("svg",o1,Q[89]||(Q[89]=[l('',1)]))),Q[90]||(Q[90]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")")])],-1))]),Q[116]||(Q[116]=T(" is an absolute number field, then an ")),Q[117]||(Q[117]=t("em",null,"order",-1)),Q[118]||(Q[118]=T()),t("mjx-container",m1,[(e(),a("svg",n1,Q[91]||(Q[91]=[l('',1)]))),Q[92]||(Q[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[119]||(Q[119]=T(" of ")),t("mjx-container",d1,[(e(),a("svg",r1,Q[93]||(Q[93]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[94]||(Q[94]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[120]||(Q[120]=T(" is a subring of the ring of integers ")),t("mjx-container",i1,[(e(),a("svg",h1,Q[95]||(Q[95]=[l('',1)]))),Q[96]||(Q[96]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),Q[121]||(Q[121]=T(", which is free of rank ")),t("mjx-container",p1,[(e(),a("svg",g1,Q[97]||(Q[97]=[l('',1)]))),Q[98]||(Q[98]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),Q[122]||(Q[122]=T(" as a ")),t("mjx-container",H1,[(e(),a("svg",x1,Q[99]||(Q[99]=[l('',1)]))),Q[100]||(Q[100]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),Q[123]||(Q[123]=T("-module. The natural order ")),t("mjx-container",w1,[(e(),a("svg",u1,Q[101]||(Q[101]=[l('',1)]))),Q[102]||(Q[102]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[124]||(Q[124]=T(" is called the ")),Q[125]||(Q[125]=t("em",null,"equation order",-1)),Q[126]||(Q[126]=T(" of ")),t("mjx-container",c1,[(e(),a("svg",f1,Q[103]||(Q[103]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[104]||(Q[104]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[127]||(Q[127]=T(". In Hecke orders of absolute number fields are constructed (implicitly) by specifying a ")),t("mjx-container",L1,[(e(),a("svg",y1,Q[105]||(Q[105]=[l('',1)]))),Q[106]||(Q[106]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),Q[128]||(Q[128]=T("-basis, which is referred to as the ")),Q[129]||(Q[129]=t("em",null,"basis",-1)),Q[130]||(Q[130]=T(" of ")),t("mjx-container",V1,[(e(),a("svg",M1,Q[107]||(Q[107]=[l('',1)]))),Q[108]||(Q[108]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[131]||(Q[131]=T(". If ")),t("mjx-container",k1,[(e(),a("svg",Z1,Q[109]||(Q[109]=[l('',1)]))),Q[110]||(Q[110]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),Q[132]||(Q[132]=T(" is the basis of ")),t("mjx-container",b1,[(e(),a("svg",v1,Q[111]||(Q[111]=[l('',1)]))),Q[112]||(Q[112]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[133]||(Q[133]=T(", then the matrix ")),t("mjx-container",D1,[(e(),a("svg",j1,Q[113]||(Q[113]=[l('',1)]))),Q[114]||(Q[114]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"B"),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},")")])],-1))]),Q[134]||(Q[134]=T(" with"))]),t("p",null,[Q[149]||(Q[149]=T("is called the ")),Q[150]||(Q[150]=t("em",null,"basis matrix",-1)),Q[151]||(Q[151]=T(" of ")),t("mjx-container",C1,[(e(),a("svg",O1,Q[135]||(Q[135]=[l('',1)]))),Q[136]||(Q[136]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[152]||(Q[152]=T(". We call ")),t("mjx-container",R1,[(e(),a("svg",A1,Q[137]||(Q[137]=[l('',1)]))),Q[138]||(Q[138]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP",movablelimits:"true"},"det"),t("mo",{stretchy:"false"},"("),t("mi",null,"B"),t("mo",{stretchy:"false"},")")])],-1))]),Q[153]||(Q[153]=T(" the ")),Q[154]||(Q[154]=t("em",null,"generalized index",-1)),Q[155]||(Q[155]=T(" of ")),t("mjx-container",B1,[(e(),a("svg",E1,Q[139]||(Q[139]=[l('',1)]))),Q[140]||(Q[140]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[156]||(Q[156]=T(". In case ")),t("mjx-container",z1,[(e(),a("svg",F1,Q[141]||(Q[141]=[l('',1)]))),Q[142]||(Q[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",null,"⊆"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[157]||(Q[157]=T(", the determinant ")),t("mjx-container",X1,[(e(),a("svg",S1,Q[143]||(Q[143]=[l('',1)]))),Q[144]||(Q[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP",movablelimits:"true"},"det"),t("mo",{stretchy:"false"},"("),t("mi",null,"B"),t("msup",null,[t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"−"),t("mn",null,"1")])])])],-1))]),Q[158]||(Q[158]=T(" is in fact equal to ")),t("mjx-container",J1,[(e(),a("svg",G1,Q[145]||(Q[145]=[l('',1)]))),Q[146]||(Q[146]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[159]||(Q[159]=T(" and is called the ")),Q[160]||(Q[160]=t("em",null,"index",-1)),Q[161]||(Q[161]=T(" of ")),t("mjx-container",q1,[(e(),a("svg",N1,Q[147]||(Q[147]=[l('',1)]))),Q[148]||(Q[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[162]||(Q[162]=T(". The matrix"))]),t("mjx-container",P1,[(e(),a("svg",K1,Q[163]||(Q[163]=[l('',1)]))),Q[164]||(Q[164]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mo",null,"⋱")]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mo",null,"⋱")]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")]),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mo",{stretchy:"false"},")"),t("mo",null,".")])],-1))]),t("p",null,[Q[167]||(Q[167]=T("is called the ")),Q[168]||(Q[168]=t("em",null,"Minkowski matrix",-1)),Q[169]||(Q[169]=T(" of ")),t("mjx-container",I1,[(e(),a("svg",$1,Q[165]||(Q[165]=[l('',1)]))),Q[166]||(Q[166]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[170]||(Q[170]=T("."))])])}const e3=s(o,[["render",U1]]);export{a3 as __pageData,e3 as default}; diff --git a/v0.34.8/assets/manual_number_fields_conventions.md.BvkZaf1P.lean.js b/v0.34.8/assets/manual_number_fields_conventions.md.BvkZaf1P.lean.js index e16a94e408..3b0eea436a 100644 --- a/v0.34.8/assets/manual_number_fields_conventions.md.BvkZaf1P.lean.js +++ b/v0.34.8/assets/manual_number_fields_conventions.md.BvkZaf1P.lean.js @@ -1 +1 @@ -import{_ as s,c as a,j as t,a as T,a5 as l,o as e}from"./chunks/framework.DbhH0_mT.js";const a3=JSON.parse('{"title":"Conventions","description":"","frontmatter":{},"headers":[],"relativePath":"manual/number_fields/conventions.md","filePath":"manual/number_fields/conventions.md","lastUpdated":null}'),o={name:"manual/number_fields/conventions.md"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.437ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.955ex",height:"2.011ex",role:"img",focusable:"false",viewBox:"0 -696 864 889","aria-hidden":"true"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},i={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"22.484ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 9938.1 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.151ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4044.6 1000","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.34ex",height:"2.497ex",role:"img",focusable:"false",viewBox:"0 -853.7 8106.3 1103.7","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.176ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -694 520 704","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.805ex",height:"2.084ex",role:"img",focusable:"false",viewBox:"0 -705 6985.8 921","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"39.764ex",height:"2.61ex",role:"img",focusable:"false",viewBox:"0 -903.7 17575.6 1153.7","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.848ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2142.7 1000","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.02ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 451 453","aria-hidden":"true"},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.518ex",height:"1.909ex",role:"img",focusable:"false",viewBox:"0 -686 4649.2 843.8","aria-hidden":"true"},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.966ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 3963.1 804","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.192ex",height:"1.529ex",role:"img",focusable:"false",viewBox:"0 -666 969 676","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.448ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -697 4618.2 854.8","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.138ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 4481.1 804","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.471ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.075ex",height:"2.188ex",role:"img",focusable:"false",viewBox:"0 -759 4011.2 967","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.579ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 7328 804","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.437ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.955ex",height:"2.011ex",role:"img",focusable:"false",viewBox:"0 -696 864 889","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.114ex"},xmlns:"http://www.w3.org/2000/svg",width:"95.609ex",height:"7.359ex",role:"img",focusable:"false",viewBox:"0 -1876.4 42259.2 3252.7","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.191ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504.6 1000","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.296ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1899 1000","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},k1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.623ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5137.2 1000","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},D1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.38ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6798.1 1000","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},R1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.62ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2926 1000","aria-hidden":"true"},B1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},z1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.114ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4028.6 1000","aria-hidden":"true"},X1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.852ex",height:"2.452ex",role:"img",focusable:"false",viewBox:"0 -833.9 3912.7 1083.9","aria-hidden":"true"},J1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.241ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4084.6 1000","aria-hidden":"true"},q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},P1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},K1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-11.653ex"},xmlns:"http://www.w3.org/2000/svg",width:"99.393ex",height:"24.438ex",role:"img",focusable:"false",viewBox:"0 -5650.8 43931.9 10801.5","aria-hidden":"true"},I1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"};function U1(W1,Q,Y1,_1,t3,Q3){return e(),a("div",null,[Q[171]||(Q[171]=t("h1",{id:"conventions",tabindex:"-1"},[T("Conventions "),t("a",{class:"header-anchor",href:"#conventions","aria-label":'Permalink to "Conventions"'},"​")],-1)),t("p",null,[Q[8]||(Q[8]=T("By an absolute number field we mean finite extensions of ")),t("mjx-container",m,[(e(),a("svg",n,Q[0]||(Q[0]=[l('',1)]))),Q[1]||(Q[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),Q[9]||(Q[9]=T(", which is of type ")),Q[10]||(Q[10]=t("code",null,"AbsSimpleNumField",-1)),Q[11]||(Q[11]=T(" and whose elements are of type ")),Q[12]||(Q[12]=t("code",null,"AbsSimpleNumFieldElem",-1)),Q[13]||(Q[13]=T(". Such an absolute number field ")),t("mjx-container",d,[(e(),a("svg",r,Q[2]||(Q[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[3]||(Q[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[14]||(Q[14]=T(" is always given in the form ")),t("mjx-container",i,[(e(),a("svg",h,Q[4]||(Q[4]=[l('',1)]))),Q[5]||(Q[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"X"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),Q[15]||(Q[15]=T(", where ")),t("mjx-container",p,[(e(),a("svg",g,Q[6]||(Q[6]=[l('',1)]))),Q[7]||(Q[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"X"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[16]||(Q[16]=T(" is an irreducible polynomial. See ")),Q[17]||(Q[17]=t("a",{href:"/Hecke.jl/v0.34.8/manual/number_fields/intro#NumberFieldsLink"},"here",-1)),Q[18]||(Q[18]=T(" for more information on the different types of fields supported."))]),t("p",null,[Q[35]||(Q[35]=T("We call ")),t("mjx-container",H,[(e(),a("svg",x,Q[19]||(Q[19]=[l('',1)]))),Q[20]||(Q[20]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mn",null,"2")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")")])],-1))]),Q[36]||(Q[36]=T(", where ")),t("mjx-container",w,[(e(),a("svg",u,Q[21]||(Q[21]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[22]||(Q[22]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),Q[37]||(Q[37]=T(" is the degree ")),t("mjx-container",c,[(e(),a("svg",f,Q[23]||(Q[23]=[l('',1)]))),Q[24]||(Q[24]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),Q[38]||(Q[38]=T(" the ")),Q[39]||(Q[39]=t("em",null,"power basis",-1)),Q[40]||(Q[40]=T(" of ")),t("mjx-container",L,[(e(),a("svg",y,Q[25]||(Q[25]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[26]||(Q[26]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[41]||(Q[41]=T(". If ")),t("mjx-container",V,[(e(),a("svg",M,Q[27]||(Q[27]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D6FD",d:"M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[28]||(Q[28]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"β")])],-1))]),Q[42]||(Q[42]=T(" is any element of ")),t("mjx-container",k,[(e(),a("svg",Z,Q[29]||(Q[29]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[30]||(Q[30]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[43]||(Q[43]=T(", then the ")),Q[44]||(Q[44]=t("em",null,"representation matrix",-1)),Q[45]||(Q[45]=T(" of ")),t("mjx-container",b,[(e(),a("svg",v,Q[31]||(Q[31]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D6FD",d:"M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[32]||(Q[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"β")])],-1))]),Q[46]||(Q[46]=T(" is the matrix representing ")),t("mjx-container",D,[(e(),a("svg",j,Q[33]||(Q[33]=[l('',1)]))),Q[34]||(Q[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mi",null,"K"),t("mo",null,","),t("mi",null,"γ"),t("mo",{stretchy:"false"},"↦"),t("mi",null,"β"),t("mi",null,"γ")])],-1))]),Q[47]||(Q[47]=T(" with respect to the power basis, that is,"))]),t("mjx-container",C,[(e(),a("svg",O,Q[48]||(Q[48]=[l('',1)]))),Q[49]||(Q[49]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mi",null,"β"),t("mo",null,"⋅"),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("msub",null,[t("mi",null,"M"),t("mi",null,"α")]),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")"),t("mo",null,".")])],-1))]),t("p",null,[Q[74]||(Q[74]=T("Let ")),t("mjx-container",R,[(e(),a("svg",A,Q[50]||(Q[50]=[l('',1)]))),Q[51]||(Q[51]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"r"),t("mo",null,","),t("mi",null,"s"),t("mo",{stretchy:"false"},")")])],-1))]),Q[75]||(Q[75]=T(" be the signature of ")),t("mjx-container",B,[(e(),a("svg",E,Q[52]||(Q[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[53]||(Q[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[76]||(Q[76]=T(", that is, ")),t("mjx-container",z,[(e(),a("svg",F,Q[54]||(Q[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[55]||(Q[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[77]||(Q[77]=T(" has ")),t("mjx-container",X,[(e(),a("svg",S,Q[56]||(Q[56]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45F",d:"M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[57]||(Q[57]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r")])],-1))]),Q[78]||(Q[78]=T(" real embeddings ")),t("mjx-container",J,[(e(),a("svg",G,Q[58]||(Q[58]=[l('',1)]))),Q[59]||(Q[59]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")])])],-1))]),Q[79]||(Q[79]=T(", ")),t("mjx-container",q,[(e(),a("svg",N,Q[60]||(Q[60]=[l('',1)]))),Q[61]||(Q[61]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r")])],-1))]),Q[80]||(Q[80]=T(", and ")),t("mjx-container",P,[(e(),a("svg",K,Q[62]||(Q[62]=[l('',1)]))),Q[63]||(Q[63]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"2"),t("mi",null,"s")])],-1))]),Q[81]||(Q[81]=T(" complex embeddings ")),t("mjx-container",I,[(e(),a("svg",$,Q[64]||(Q[64]=[l('',1)]))),Q[65]||(Q[65]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"C")])])],-1))]),Q[82]||(Q[82]=T(", ")),t("mjx-container",U,[(e(),a("svg",W,Q[66]||(Q[66]=[l('',1)]))),Q[67]||(Q[67]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mn",null,"2"),t("mi",null,"s")])],-1))]),Q[83]||(Q[83]=T(". In Hecke the complex embeddings are always ordered such that ")),t("mjx-container",Y,[(e(),a("svg",_,Q[68]||(Q[68]=[l('',1)]))),Q[69]||(Q[69]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",null,"="),t("mover",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{accent:"true"},"―")])])],-1))]),Q[84]||(Q[84]=T(" for ")),t("mjx-container",t1,[(e(),a("svg",Q1,Q[70]||(Q[70]=[l('',1)]))),Q[71]||(Q[71]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),Q[85]||(Q[85]=T(". The ")),t("mjx-container",T1,[(e(),a("svg",a1,Q[72]||(Q[72]=[l('',1)]))),Q[73]||(Q[73]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),Q[86]||(Q[86]=T("-linear function"))]),t("mjx-container",e1,[(e(),a("svg",l1,Q[87]||(Q[87]=[l('',1)]))),Q[88]||(Q[88]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mtable",{displaystyle:"true",columnspacing:"1em",rowspacing:"3pt"},[t("mtr",null,[t("mtd",null,[t("mi",null,"K"),t("mo",{stretchy:"false"},"⟶"),t("msup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d")])])])]),t("mtr",null,[t("mtd",null,[t("mi",null,"α"),t("mo",{stretchy:"false"},"⟼"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.623em",maxsize:"1.623em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.623em",maxsize:"1.623em"},")")])])])])])],-1))]),Q[172]||(Q[172]=t("p",null,[T("is called the "),t("em",null,"Minkowski map"),T(" (or "),t("em",null,"Minkowski embedding"),T(").")],-1)),t("p",null,[Q[115]||(Q[115]=T("If ")),t("mjx-container",s1,[(e(),a("svg",o1,Q[89]||(Q[89]=[l('',1)]))),Q[90]||(Q[90]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")")])],-1))]),Q[116]||(Q[116]=T(" is an absolute number field, then an ")),Q[117]||(Q[117]=t("em",null,"order",-1)),Q[118]||(Q[118]=T()),t("mjx-container",m1,[(e(),a("svg",n1,Q[91]||(Q[91]=[l('',1)]))),Q[92]||(Q[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[119]||(Q[119]=T(" of ")),t("mjx-container",d1,[(e(),a("svg",r1,Q[93]||(Q[93]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[94]||(Q[94]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[120]||(Q[120]=T(" is a subring of the ring of integers ")),t("mjx-container",i1,[(e(),a("svg",h1,Q[95]||(Q[95]=[l('',1)]))),Q[96]||(Q[96]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),Q[121]||(Q[121]=T(", which is free of rank ")),t("mjx-container",p1,[(e(),a("svg",g1,Q[97]||(Q[97]=[l('',1)]))),Q[98]||(Q[98]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),Q[122]||(Q[122]=T(" as a ")),t("mjx-container",H1,[(e(),a("svg",x1,Q[99]||(Q[99]=[l('',1)]))),Q[100]||(Q[100]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),Q[123]||(Q[123]=T("-module. The natural order ")),t("mjx-container",w1,[(e(),a("svg",u1,Q[101]||(Q[101]=[l('',1)]))),Q[102]||(Q[102]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[124]||(Q[124]=T(" is called the ")),Q[125]||(Q[125]=t("em",null,"equation order",-1)),Q[126]||(Q[126]=T(" of ")),t("mjx-container",c1,[(e(),a("svg",f1,Q[103]||(Q[103]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[104]||(Q[104]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[127]||(Q[127]=T(". In Hecke orders of absolute number fields are constructed (implicitly) by specifying a ")),t("mjx-container",L1,[(e(),a("svg",y1,Q[105]||(Q[105]=[l('',1)]))),Q[106]||(Q[106]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),Q[128]||(Q[128]=T("-basis, which is referred to as the ")),Q[129]||(Q[129]=t("em",null,"basis",-1)),Q[130]||(Q[130]=T(" of ")),t("mjx-container",V1,[(e(),a("svg",M1,Q[107]||(Q[107]=[l('',1)]))),Q[108]||(Q[108]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[131]||(Q[131]=T(". If ")),t("mjx-container",k1,[(e(),a("svg",Z1,Q[109]||(Q[109]=[l('',1)]))),Q[110]||(Q[110]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),Q[132]||(Q[132]=T(" is the basis of ")),t("mjx-container",b1,[(e(),a("svg",v1,Q[111]||(Q[111]=[l('',1)]))),Q[112]||(Q[112]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[133]||(Q[133]=T(", then the matrix ")),t("mjx-container",D1,[(e(),a("svg",j1,Q[113]||(Q[113]=[l('',1)]))),Q[114]||(Q[114]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"B"),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},")")])],-1))]),Q[134]||(Q[134]=T(" with"))]),t("p",null,[Q[149]||(Q[149]=T("is called the ")),Q[150]||(Q[150]=t("em",null,"basis matrix",-1)),Q[151]||(Q[151]=T(" of ")),t("mjx-container",C1,[(e(),a("svg",O1,Q[135]||(Q[135]=[l('',1)]))),Q[136]||(Q[136]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[152]||(Q[152]=T(". We call ")),t("mjx-container",R1,[(e(),a("svg",A1,Q[137]||(Q[137]=[l('',1)]))),Q[138]||(Q[138]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP",movablelimits:"true"},"det"),t("mo",{stretchy:"false"},"("),t("mi",null,"B"),t("mo",{stretchy:"false"},")")])],-1))]),Q[153]||(Q[153]=T(" the ")),Q[154]||(Q[154]=t("em",null,"generalized index",-1)),Q[155]||(Q[155]=T(" of ")),t("mjx-container",B1,[(e(),a("svg",E1,Q[139]||(Q[139]=[l('',1)]))),Q[140]||(Q[140]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[156]||(Q[156]=T(". In case ")),t("mjx-container",z1,[(e(),a("svg",F1,Q[141]||(Q[141]=[l('',1)]))),Q[142]||(Q[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",null,"⊆"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[157]||(Q[157]=T(", the determinant ")),t("mjx-container",X1,[(e(),a("svg",S1,Q[143]||(Q[143]=[l('',1)]))),Q[144]||(Q[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP",movablelimits:"true"},"det"),t("mo",{stretchy:"false"},"("),t("mi",null,"B"),t("msup",null,[t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"−"),t("mn",null,"1")])])])],-1))]),Q[158]||(Q[158]=T(" is in fact equal to ")),t("mjx-container",J1,[(e(),a("svg",G1,Q[145]||(Q[145]=[l('',1)]))),Q[146]||(Q[146]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[159]||(Q[159]=T(" and is called the ")),Q[160]||(Q[160]=t("em",null,"index",-1)),Q[161]||(Q[161]=T(" of ")),t("mjx-container",q1,[(e(),a("svg",N1,Q[147]||(Q[147]=[l('',1)]))),Q[148]||(Q[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[162]||(Q[162]=T(". The matrix"))]),t("mjx-container",P1,[(e(),a("svg",K1,Q[163]||(Q[163]=[l('',1)]))),Q[164]||(Q[164]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mo",null,"⋱")]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mo",null,"⋱")]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")]),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mo",{stretchy:"false"},")"),t("mo",null,".")])],-1))]),t("p",null,[Q[167]||(Q[167]=T("is called the ")),Q[168]||(Q[168]=t("em",null,"Minkowski matrix",-1)),Q[169]||(Q[169]=T(" of ")),t("mjx-container",I1,[(e(),a("svg",$1,Q[165]||(Q[165]=[l('',1)]))),Q[166]||(Q[166]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[170]||(Q[170]=T("."))])])}const e3=s(o,[["render",U1]]);export{a3 as __pageData,e3 as default}; +import{_ as s,c as a,j as t,a as T,a5 as l,o as e}from"./chunks/framework.DbhH0_mT.js";const a3=JSON.parse('{"title":"Conventions","description":"","frontmatter":{},"headers":[],"relativePath":"manual/number_fields/conventions.md","filePath":"manual/number_fields/conventions.md","lastUpdated":null}'),o={name:"manual/number_fields/conventions.md"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.437ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.955ex",height:"2.011ex",role:"img",focusable:"false",viewBox:"0 -696 864 889","aria-hidden":"true"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},i={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"22.484ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 9938.1 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.151ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4044.6 1000","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.34ex",height:"2.497ex",role:"img",focusable:"false",viewBox:"0 -853.7 8106.3 1103.7","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.176ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -694 520 704","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.805ex",height:"2.084ex",role:"img",focusable:"false",viewBox:"0 -705 6985.8 921","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"39.764ex",height:"2.61ex",role:"img",focusable:"false",viewBox:"0 -903.7 17575.6 1153.7","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.848ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2142.7 1000","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.02ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 451 453","aria-hidden":"true"},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.518ex",height:"1.909ex",role:"img",focusable:"false",viewBox:"0 -686 4649.2 843.8","aria-hidden":"true"},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.966ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 3963.1 804","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.192ex",height:"1.529ex",role:"img",focusable:"false",viewBox:"0 -666 969 676","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.448ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -697 4618.2 854.8","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.138ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 4481.1 804","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.471ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.075ex",height:"2.188ex",role:"img",focusable:"false",viewBox:"0 -759 4011.2 967","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.579ex",height:"1.819ex",role:"img",focusable:"false",viewBox:"0 -666 7328 804","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.437ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.955ex",height:"2.011ex",role:"img",focusable:"false",viewBox:"0 -696 864 889","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.114ex"},xmlns:"http://www.w3.org/2000/svg",width:"95.609ex",height:"7.359ex",role:"img",focusable:"false",viewBox:"0 -1876.4 42259.2 3252.7","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.191ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4504.6 1000","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.296ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1899 1000","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},k1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.623ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5137.2 1000","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},D1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.38ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6798.1 1000","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},R1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.62ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2926 1000","aria-hidden":"true"},B1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},z1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.114ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4028.6 1000","aria-hidden":"true"},X1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.852ex",height:"2.452ex",role:"img",focusable:"false",viewBox:"0 -833.9 3912.7 1083.9","aria-hidden":"true"},J1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.241ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4084.6 1000","aria-hidden":"true"},q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},P1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},K1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-11.653ex"},xmlns:"http://www.w3.org/2000/svg",width:"99.393ex",height:"24.438ex",role:"img",focusable:"false",viewBox:"0 -5650.8 43931.9 10801.5","aria-hidden":"true"},I1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"};function U1(W1,Q,Y1,_1,t3,Q3){return e(),a("div",null,[Q[171]||(Q[171]=t("h1",{id:"conventions",tabindex:"-1"},[T("Conventions "),t("a",{class:"header-anchor",href:"#conventions","aria-label":'Permalink to "Conventions"'},"​")],-1)),t("p",null,[Q[8]||(Q[8]=T("By an absolute number field we mean finite extensions of ")),t("mjx-container",m,[(e(),a("svg",n,Q[0]||(Q[0]=[l('',1)]))),Q[1]||(Q[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),Q[9]||(Q[9]=T(", which is of type ")),Q[10]||(Q[10]=t("code",null,"AbsSimpleNumField",-1)),Q[11]||(Q[11]=T(" and whose elements are of type ")),Q[12]||(Q[12]=t("code",null,"AbsSimpleNumFieldElem",-1)),Q[13]||(Q[13]=T(". Such an absolute number field ")),t("mjx-container",d,[(e(),a("svg",r,Q[2]||(Q[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[3]||(Q[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[14]||(Q[14]=T(" is always given in the form ")),t("mjx-container",i,[(e(),a("svg",h,Q[4]||(Q[4]=[l('',1)]))),Q[5]||(Q[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"X"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),Q[15]||(Q[15]=T(", where ")),t("mjx-container",p,[(e(),a("svg",g,Q[6]||(Q[6]=[l('',1)]))),Q[7]||(Q[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"X"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[16]||(Q[16]=T(" is an irreducible polynomial. See ")),Q[17]||(Q[17]=t("a",{href:"/v0.34.8/manual/number_fields/intro#NumberFieldsLink"},"here",-1)),Q[18]||(Q[18]=T(" for more information on the different types of fields supported."))]),t("p",null,[Q[35]||(Q[35]=T("We call ")),t("mjx-container",H,[(e(),a("svg",x,Q[19]||(Q[19]=[l('',1)]))),Q[20]||(Q[20]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mn",null,"2")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")")])],-1))]),Q[36]||(Q[36]=T(", where ")),t("mjx-container",w,[(e(),a("svg",u,Q[21]||(Q[21]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[22]||(Q[22]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),Q[37]||(Q[37]=T(" is the degree ")),t("mjx-container",c,[(e(),a("svg",f,Q[23]||(Q[23]=[l('',1)]))),Q[24]||(Q[24]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),Q[38]||(Q[38]=T(" the ")),Q[39]||(Q[39]=t("em",null,"power basis",-1)),Q[40]||(Q[40]=T(" of ")),t("mjx-container",L,[(e(),a("svg",y,Q[25]||(Q[25]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[26]||(Q[26]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[41]||(Q[41]=T(". If ")),t("mjx-container",V,[(e(),a("svg",M,Q[27]||(Q[27]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D6FD",d:"M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[28]||(Q[28]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"β")])],-1))]),Q[42]||(Q[42]=T(" is any element of ")),t("mjx-container",k,[(e(),a("svg",Z,Q[29]||(Q[29]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[30]||(Q[30]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[43]||(Q[43]=T(", then the ")),Q[44]||(Q[44]=t("em",null,"representation matrix",-1)),Q[45]||(Q[45]=T(" of ")),t("mjx-container",b,[(e(),a("svg",v,Q[31]||(Q[31]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D6FD",d:"M29 -194Q23 -188 23 -186Q23 -183 102 134T186 465Q208 533 243 584T309 658Q365 705 429 705H431Q493 705 533 667T573 570Q573 465 469 396L482 383Q533 332 533 252Q533 139 448 65T257 -10Q227 -10 203 -2T165 17T143 40T131 59T126 65L62 -188Q60 -194 42 -194H29ZM353 431Q392 431 427 419L432 422Q436 426 439 429T449 439T461 453T472 471T484 495T493 524T501 560Q503 569 503 593Q503 611 502 616Q487 667 426 667Q384 667 347 643T286 582T247 514T224 455Q219 439 186 308T152 168Q151 163 151 147Q151 99 173 68Q204 26 260 26Q302 26 349 51T425 137Q441 171 449 214T457 279Q457 337 422 372Q380 358 347 358H337Q258 358 258 389Q258 396 261 403Q275 431 353 431Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[32]||(Q[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"β")])],-1))]),Q[46]||(Q[46]=T(" is the matrix representing ")),t("mjx-container",D,[(e(),a("svg",j,Q[33]||(Q[33]=[l('',1)]))),Q[34]||(Q[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mi",null,"K"),t("mo",null,","),t("mi",null,"γ"),t("mo",{stretchy:"false"},"↦"),t("mi",null,"β"),t("mi",null,"γ")])],-1))]),Q[47]||(Q[47]=T(" with respect to the power basis, that is,"))]),t("mjx-container",C,[(e(),a("svg",O,Q[48]||(Q[48]=[l('',1)]))),Q[49]||(Q[49]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mi",null,"β"),t("mo",null,"⋅"),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("msub",null,[t("mi",null,"M"),t("mi",null,"α")]),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,","),t("mi",null,"α"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msup",null,[t("mi",null,"α"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"−"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},")"),t("mo",null,".")])],-1))]),t("p",null,[Q[74]||(Q[74]=T("Let ")),t("mjx-container",R,[(e(),a("svg",A,Q[50]||(Q[50]=[l('',1)]))),Q[51]||(Q[51]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"r"),t("mo",null,","),t("mi",null,"s"),t("mo",{stretchy:"false"},")")])],-1))]),Q[75]||(Q[75]=T(" be the signature of ")),t("mjx-container",B,[(e(),a("svg",E,Q[52]||(Q[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[53]||(Q[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[76]||(Q[76]=T(", that is, ")),t("mjx-container",z,[(e(),a("svg",F,Q[54]||(Q[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[55]||(Q[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[77]||(Q[77]=T(" has ")),t("mjx-container",X,[(e(),a("svg",S,Q[56]||(Q[56]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45F",d:"M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[57]||(Q[57]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r")])],-1))]),Q[78]||(Q[78]=T(" real embeddings ")),t("mjx-container",J,[(e(),a("svg",G,Q[58]||(Q[58]=[l('',1)]))),Q[59]||(Q[59]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")])])],-1))]),Q[79]||(Q[79]=T(", ")),t("mjx-container",q,[(e(),a("svg",N,Q[60]||(Q[60]=[l('',1)]))),Q[61]||(Q[61]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r")])],-1))]),Q[80]||(Q[80]=T(", and ")),t("mjx-container",P,[(e(),a("svg",K,Q[62]||(Q[62]=[l('',1)]))),Q[63]||(Q[63]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"2"),t("mi",null,"s")])],-1))]),Q[81]||(Q[81]=T(" complex embeddings ")),t("mjx-container",I,[(e(),a("svg",$,Q[64]||(Q[64]=[l('',1)]))),Q[65]||(Q[65]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("mi",null,"K"),t("mo",{accent:"false",stretchy:"false"},"→"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"C")])])],-1))]),Q[82]||(Q[82]=T(", ")),t("mjx-container",U,[(e(),a("svg",W,Q[66]||(Q[66]=[l('',1)]))),Q[67]||(Q[67]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mn",null,"2"),t("mi",null,"s")])],-1))]),Q[83]||(Q[83]=T(". In Hecke the complex embeddings are always ordered such that ")),t("mjx-container",Y,[(e(),a("svg",_,Q[68]||(Q[68]=[l('',1)]))),Q[69]||(Q[69]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mi",null,"i")]),t("mo",null,"="),t("mover",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{accent:"true"},"―")])])],-1))]),Q[84]||(Q[84]=T(" for ")),t("mjx-container",t1,[(e(),a("svg",Q1,Q[70]||(Q[70]=[l('',1)]))),Q[71]||(Q[71]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),Q[85]||(Q[85]=T(". The ")),t("mjx-container",T1,[(e(),a("svg",a1,Q[72]||(Q[72]=[l('',1)]))),Q[73]||(Q[73]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),Q[86]||(Q[86]=T("-linear function"))]),t("mjx-container",e1,[(e(),a("svg",l1,Q[87]||(Q[87]=[l('',1)]))),Q[88]||(Q[88]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mtable",{displaystyle:"true",columnspacing:"1em",rowspacing:"3pt"},[t("mtr",null,[t("mtd",null,[t("mi",null,"K"),t("mo",{stretchy:"false"},"⟶"),t("msup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d")])])])]),t("mtr",null,[t("mtd",null,[t("mi",null,"α"),t("mo",{stretchy:"false"},"⟼"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.623em",maxsize:"1.623em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mo",null,","),t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mrow",{"data-mjx-texclass":"OPEN"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},"(")]),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.2em",maxsize:"1.2em"},")")]),t("mrow",{"data-mjx-texclass":"CLOSE"},[t("mo",{minsize:"1.623em",maxsize:"1.623em"},")")])])])])])],-1))]),Q[172]||(Q[172]=t("p",null,[T("is called the "),t("em",null,"Minkowski map"),T(" (or "),t("em",null,"Minkowski embedding"),T(").")],-1)),t("p",null,[Q[115]||(Q[115]=T("If ")),t("mjx-container",s1,[(e(),a("svg",o1,Q[89]||(Q[89]=[l('',1)]))),Q[90]||(Q[90]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")")])],-1))]),Q[116]||(Q[116]=T(" is an absolute number field, then an ")),Q[117]||(Q[117]=t("em",null,"order",-1)),Q[118]||(Q[118]=T()),t("mjx-container",m1,[(e(),a("svg",n1,Q[91]||(Q[91]=[l('',1)]))),Q[92]||(Q[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[119]||(Q[119]=T(" of ")),t("mjx-container",d1,[(e(),a("svg",r1,Q[93]||(Q[93]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[94]||(Q[94]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[120]||(Q[120]=T(" is a subring of the ring of integers ")),t("mjx-container",i1,[(e(),a("svg",h1,Q[95]||(Q[95]=[l('',1)]))),Q[96]||(Q[96]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),Q[121]||(Q[121]=T(", which is free of rank ")),t("mjx-container",p1,[(e(),a("svg",g1,Q[97]||(Q[97]=[l('',1)]))),Q[98]||(Q[98]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),Q[122]||(Q[122]=T(" as a ")),t("mjx-container",H1,[(e(),a("svg",x1,Q[99]||(Q[99]=[l('',1)]))),Q[100]||(Q[100]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),Q[123]||(Q[123]=T("-module. The natural order ")),t("mjx-container",w1,[(e(),a("svg",u1,Q[101]||(Q[101]=[l('',1)]))),Q[102]||(Q[102]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[124]||(Q[124]=T(" is called the ")),Q[125]||(Q[125]=t("em",null,"equation order",-1)),Q[126]||(Q[126]=T(" of ")),t("mjx-container",c1,[(e(),a("svg",f1,Q[103]||(Q[103]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),Q[104]||(Q[104]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),Q[127]||(Q[127]=T(". In Hecke orders of absolute number fields are constructed (implicitly) by specifying a ")),t("mjx-container",L1,[(e(),a("svg",y1,Q[105]||(Q[105]=[l('',1)]))),Q[106]||(Q[106]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),Q[128]||(Q[128]=T("-basis, which is referred to as the ")),Q[129]||(Q[129]=t("em",null,"basis",-1)),Q[130]||(Q[130]=T(" of ")),t("mjx-container",V1,[(e(),a("svg",M1,Q[107]||(Q[107]=[l('',1)]))),Q[108]||(Q[108]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[131]||(Q[131]=T(". If ")),t("mjx-container",k1,[(e(),a("svg",Z1,Q[109]||(Q[109]=[l('',1)]))),Q[110]||(Q[110]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),Q[132]||(Q[132]=T(" is the basis of ")),t("mjx-container",b1,[(e(),a("svg",v1,Q[111]||(Q[111]=[l('',1)]))),Q[112]||(Q[112]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[133]||(Q[133]=T(", then the matrix ")),t("mjx-container",D1,[(e(),a("svg",j1,Q[113]||(Q[113]=[l('',1)]))),Q[114]||(Q[114]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"B"),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},")")])],-1))]),Q[134]||(Q[134]=T(" with"))]),t("p",null,[Q[149]||(Q[149]=T("is called the ")),Q[150]||(Q[150]=t("em",null,"basis matrix",-1)),Q[151]||(Q[151]=T(" of ")),t("mjx-container",C1,[(e(),a("svg",O1,Q[135]||(Q[135]=[l('',1)]))),Q[136]||(Q[136]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[152]||(Q[152]=T(". We call ")),t("mjx-container",R1,[(e(),a("svg",A1,Q[137]||(Q[137]=[l('',1)]))),Q[138]||(Q[138]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP",movablelimits:"true"},"det"),t("mo",{stretchy:"false"},"("),t("mi",null,"B"),t("mo",{stretchy:"false"},")")])],-1))]),Q[153]||(Q[153]=T(" the ")),Q[154]||(Q[154]=t("em",null,"generalized index",-1)),Q[155]||(Q[155]=T(" of ")),t("mjx-container",B1,[(e(),a("svg",E1,Q[139]||(Q[139]=[l('',1)]))),Q[140]||(Q[140]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[156]||(Q[156]=T(". In case ")),t("mjx-container",z1,[(e(),a("svg",F1,Q[141]||(Q[141]=[l('',1)]))),Q[142]||(Q[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",null,"⊆"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[157]||(Q[157]=T(", the determinant ")),t("mjx-container",X1,[(e(),a("svg",S1,Q[143]||(Q[143]=[l('',1)]))),Q[144]||(Q[144]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP",movablelimits:"true"},"det"),t("mo",{stretchy:"false"},"("),t("mi",null,"B"),t("msup",null,[t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"−"),t("mn",null,"1")])])])],-1))]),Q[158]||(Q[158]=T(" is in fact equal to ")),t("mjx-container",J1,[(e(),a("svg",G1,Q[145]||(Q[145]=[l('',1)]))),Q[146]||(Q[146]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",{stretchy:"false"},"]")])],-1))]),Q[159]||(Q[159]=T(" and is called the ")),Q[160]||(Q[160]=t("em",null,"index",-1)),Q[161]||(Q[161]=T(" of ")),t("mjx-container",q1,[(e(),a("svg",N1,Q[147]||(Q[147]=[l('',1)]))),Q[148]||(Q[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[162]||(Q[162]=T(". The matrix"))]),t("mjx-container",P1,[(e(),a("svg",K1,Q[163]||(Q[163]=[l('',1)]))),Q[164]||(Q[164]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mo",null,"⋱")]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])]),t("mtd",null,[t("mo",null,"⋱")]),t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd")]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Re"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")]),t("mtd",null,[t("mo",null,"…")]),t("mtd",null,[t("msqrt",null,[t("mn",null,"2")]),t("mi",null,"Im"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")]),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mo",{stretchy:"false"},")"),t("mo",null,".")])],-1))]),t("p",null,[Q[167]||(Q[167]=T("is called the ")),Q[168]||(Q[168]=t("em",null,"Minkowski matrix",-1)),Q[169]||(Q[169]=T(" of ")),t("mjx-container",I1,[(e(),a("svg",$1,Q[165]||(Q[165]=[l('',1)]))),Q[166]||(Q[166]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),Q[170]||(Q[170]=T("."))])])}const e3=s(o,[["render",U1]]);export{a3 as __pageData,e3 as default}; diff --git a/v0.34.8/assets/manual_number_fields_elements.md.BTwKw5-v.js b/v0.34.8/assets/manual_number_fields_elements.md.BTwKw5-v.js index 0ef36772e5..c8f2b840ff 100644 --- a/v0.34.8/assets/manual_number_fields_elements.md.BTwKw5-v.js +++ b/v0.34.8/assets/manual_number_fields_elements.md.BTwKw5-v.js @@ -9,5 +9,5 @@ import{_ as Q,c as l,j as t,a as s,G as n,a5 as a,B as r,o as i}from"./chunks/fr (Relative number field of degree 3 over number field, b) julia> L([a, 1, 1//2]) -1//2*b^2 + b + a
`,1)),t("details",B,[t("summary",null,[e[50]||(e[50]=t("a",{id:"quadratic_defect-Tuple{NumFieldElem, Any}",href:"#quadratic_defect-Tuple{NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"quadratic_defect")],-1)),e[51]||(e[51]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[62]||(e[62]=a('
julia
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}
',1)),t("p",null,[e[58]||(e[58]=s("Returns the valuation of the quadratic defect of the element ")),t("mjx-container",A,[(i(),l("svg",S,e[52]||(e[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[53]||(e[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[59]||(e[59]=s(" at ")),t("mjx-container",N,[(i(),l("svg",G,e[54]||(e[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[55]||(e[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[60]||(e[60]=s(", which can either be prime object or an infinite place of the parent of ")),t("mjx-container",O,[(i(),l("svg",z,e[56]||(e[56]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[57]||(e[57]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[61]||(e[61]=s("."))]),e[63]||(e[63]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",J,[t("summary",null,[e[64]||(e[64]=t("a",{id:"hilbert_symbol-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldElem, Union{AbsNumFieldOrderIdeal, Hecke.RelNumFieldOrderIdeal}}",href:"#hilbert_symbol-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldElem, Union{AbsNumFieldOrderIdeal, Hecke.RelNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"hilbert_symbol")],-1)),e[65]||(e[65]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[70]||(e[70]=a('
julia
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int
',1)),t("p",null,[e[68]||(e[68]=s("Returns the local Hilbert symbol ")),t("mjx-container",R,[(i(),l("svg",K,e[66]||(e[66]=[a('',1)]))),e[67]||(e[67]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"a"),t("mo",null,","),t("mi",null,"b"),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"p")])])],-1))]),e[69]||(e[69]=s("."))]),e[71]||(e[71]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I,[t("summary",null,[e[72]||(e[72]=t("a",{id:"representation_matrix-Tuple{NumFieldElem}",href:"#representation_matrix-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"representation_matrix")],-1)),e[73]||(e[73]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[84]||(e[84]=a('
julia
representation_matrix(a::NumFieldElem) -> MatElem
',1)),t("p",null,[e[80]||(e[80]=s("Returns the representation matrix of ")),t("mjx-container",X,[(i(),l("svg",P,e[74]||(e[74]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[75]||(e[75]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[81]||(e[81]=s(", that is, the matrix representing multiplication with ")),t("mjx-container",q,[(i(),l("svg",U,e[76]||(e[76]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[77]||(e[77]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[82]||(e[82]=s(" with respect to the canonical basis of the parent of ")),t("mjx-container",$,[(i(),l("svg",W,e[78]||(e[78]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[79]||(e[79]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[83]||(e[83]=s("."))]),e[85]||(e[85]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Y,[t("summary",null,[e[86]||(e[86]=t("a",{id:"basis_matrix-Tuple{Vector{AbsSimpleNumFieldElem}}",href:"#basis_matrix-Tuple{Vector{AbsSimpleNumFieldElem}}"},[t("span",{class:"jlbinding"},"basis_matrix")],-1)),e[87]||(e[87]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[116]||(e[116]=a('
julia
basis_matrix(v::Vector{NumFieldElem}) -> Mat
',1)),t("p",null,[e[106]||(e[106]=s("Given a vector ")),t("mjx-container",_,[(i(),l("svg",t1,e[88]||(e[88]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D463",d:"M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z",style:{"stroke-width":"3"}})])])],-1)]))),e[89]||(e[89]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"v")])],-1))]),e[107]||(e[107]=s(" of ")),t("mjx-container",e1,[(i(),l("svg",s1,e[90]||(e[90]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[91]||(e[91]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[108]||(e[108]=s(" elements of a number field ")),t("mjx-container",l1,[(i(),l("svg",i1,e[92]||(e[92]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[93]||(e[93]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[109]||(e[109]=s(" of degree ")),t("mjx-container",a1,[(i(),l("svg",o1,e[94]||(e[94]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),e[95]||(e[95]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),e[110]||(e[110]=s(", this function returns an ")),t("mjx-container",n1,[(i(),l("svg",Q1,e[96]||(e[96]=[a('',1)]))),e[97]||(e[97]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n"),t("mo",null,"×"),t("mi",null,"d")])],-1))]),e[111]||(e[111]=s(" matrix with entries in the base field of ")),t("mjx-container",r1,[(i(),l("svg",T1,e[98]||(e[98]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[99]||(e[99]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[112]||(e[112]=s(", where row ")),t("mjx-container",d1,[(i(),l("svg",m1,e[100]||(e[100]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[101]||(e[101]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[113]||(e[113]=s(" contains the coefficients of ")),t("mjx-container",p1,[(i(),l("svg",h1,e[102]||(e[102]=[a('',1)]))),e[103]||(e[103]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"v"),t("mo",{stretchy:"false"},"["),t("mi",null,"i"),t("mo",{stretchy:"false"},"]")])],-1))]),e[114]||(e[114]=s(" with respect of the canonical basis of ")),t("mjx-container",g1,[(i(),l("svg",x1,e[104]||(e[104]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[105]||(e[105]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[115]||(e[115]=s("."))]),e[117]||(e[117]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",u1,[t("summary",null,[e[118]||(e[118]=t("a",{id:"coefficients-Tuple{SimpleNumFieldElem}",href:"#coefficients-Tuple{SimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"coefficients")],-1)),e[119]||(e[119]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[120]||(e[120]=a('
julia
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}

Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.

source

',3))]),t("details",k1,[t("summary",null,[e[121]||(e[121]=t("a",{id:"coordinates-Tuple{NumFieldElem}",href:"#coordinates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"coordinates")],-1)),e[122]||(e[122]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[136]||(e[136]=a('
julia
coordinates(x::NumFieldElem{T}) -> Vector{T}
',1)),t("p",null,[e[131]||(e[131]=s("Given an element ")),t("mjx-container",w1,[(i(),l("svg",c1,e[123]||(e[123]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[124]||(e[124]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[132]||(e[132]=s(" in a number field ")),t("mjx-container",y1,[(i(),l("svg",f1,e[125]||(e[125]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[126]||(e[126]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[133]||(e[133]=s(", this function returns the coordinates of ")),t("mjx-container",b1,[(i(),l("svg",v1,e[127]||(e[127]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[128]||(e[128]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[134]||(e[134]=s(" with respect to the basis of ")),t("mjx-container",H1,[(i(),l("svg",M1,e[129]||(e[129]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[130]||(e[130]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[135]||(e[135]=s(" (the output of the 'basis' function)."))]),e[137]||(e[137]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",E1,[t("summary",null,[e[138]||(e[138]=t("a",{id:"absolute_coordinates-Tuple{NumFieldElem}",href:"#absolute_coordinates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_coordinates")],-1)),e[139]||(e[139]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[155]||(e[155]=a('
julia
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}
',1)),t("p",null,[e[148]||(e[148]=s("Given an element ")),t("mjx-container",L1,[(i(),l("svg",j1,e[140]||(e[140]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[141]||(e[141]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[149]||(e[149]=s(" in a number field ")),t("mjx-container",C1,[(i(),l("svg",Z1,e[142]||(e[142]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[143]||(e[143]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[150]||(e[150]=s(", this function returns the coordinates of ")),t("mjx-container",F1,[(i(),l("svg",V1,e[144]||(e[144]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[145]||(e[145]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[151]||(e[151]=s(" with respect to the basis of ")),t("mjx-container",D1,[(i(),l("svg",B1,e[146]||(e[146]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[147]||(e[147]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[152]||(e[152]=s(" over the rationals (the output of the ")),e[153]||(e[153]=t("a",{href:"/Hecke.jl/v0.34.8/manual/number_fields/fields#absolute_basis-Tuple{NumField}"},[t("code",null,"absolute_basis")],-1)),e[154]||(e[154]=s(" function)."))]),e[156]||(e[156]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",A1,[t("summary",null,[e[157]||(e[157]=t("a",{id:"coeff-Tuple{SimpleNumFieldElem, Int64}",href:"#coeff-Tuple{SimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"coeff")],-1)),e[158]||(e[158]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[159]||(e[159]=a('
julia
coeff(a::SimpleNumFieldElem, i::Int) -> FieldElem

Given a number field element a of a simple number field extension L/K, this function returns the i-th coefficient of a, when expanded in the canonical power basis of L. The result is an element of K.

source

',3))]),t("details",S1,[t("summary",null,[e[160]||(e[160]=t("a",{id:"valuation-Tuple{NumFieldElem, Any}",href:"#valuation-Tuple{NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"valuation")],-1)),e[161]||(e[161]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[178]||(e[178]=a('
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
',1)),t("p",null,[e[172]||(e[172]=s("Computes the ")),t("mjx-container",N1,[(i(),l("svg",G1,e[162]||(e[162]=[a('',1)]))),e[163]||(e[163]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"p")])])],-1))]),e[173]||(e[173]=s("-adic valuation of ")),t("mjx-container",O1,[(i(),l("svg",z1,e[164]||(e[164]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[165]||(e[165]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[174]||(e[174]=s(", that is, the largest ")),t("mjx-container",J1,[(i(),l("svg",R1,e[166]||(e[166]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[167]||(e[167]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[175]||(e[175]=s(" such that ")),t("mjx-container",K1,[(i(),l("svg",I1,e[168]||(e[168]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[169]||(e[169]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[176]||(e[176]=s(" is contained in ")),t("mjx-container",X1,[(i(),l("svg",P1,e[170]||(e[170]=[a('',1)]))),e[171]||(e[171]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"p")]),t("mi",null,"i")])])],-1))]),e[177]||(e[177]=s("."))]),e[179]||(e[179]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q1,[t("summary",null,[e[180]||(e[180]=t("a",{id:"torsion_unit_order-Tuple{AbsSimpleNumFieldElem, Int64}",href:"#torsion_unit_order-Tuple{AbsSimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"torsion_unit_order")],-1)),e[181]||(e[181]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[202]||(e[202]=a('
julia
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)
',1)),t("p",null,[e[192]||(e[192]=s("Given a torsion unit ")),t("mjx-container",U1,[(i(),l("svg",$1,e[182]||(e[182]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[183]||(e[183]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[193]||(e[193]=s(" together with a multiple ")),t("mjx-container",W1,[(i(),l("svg",Y1,e[184]||(e[184]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[185]||(e[185]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[194]||(e[194]=s(" of its order, compute the order of ")),t("mjx-container",_1,[(i(),l("svg",t2,e[186]||(e[186]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[187]||(e[187]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[195]||(e[195]=s(", that is, the smallest ")),t("mjx-container",e2,[(i(),l("svg",s2,e[188]||(e[188]=[a('',1)]))),e[189]||(e[189]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"1")])])])],-1))]),e[196]||(e[196]=s(" such that ")),t("mjx-container",l2,[(i(),l("svg",i2,e[190]||(e[190]=[a('',1)]))),e[191]||(e[191]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"="),t("mn",null,"1")])],-1))]),e[197]||(e[197]=s("."))]),t("p",null,[e[200]||(e[200]=s("It is not checked whether ")),t("mjx-container",a2,[(i(),l("svg",o2,e[198]||(e[198]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[199]||(e[199]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[201]||(e[201]=s(" is a torsion unit."))]),e[203]||(e[203]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n2,[t("summary",null,[e[204]||(e[204]=t("a",{id:"tr-Tuple{NumFieldElem}",href:"#tr-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"tr")],-1)),e[205]||(e[205]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[216]||(e[216]=a('
julia
tr(a::NumFieldElem) -> NumFieldElem
',1)),t("p",null,[e[212]||(e[212]=s("Returns the trace of an element ")),t("mjx-container",Q2,[(i(),l("svg",r2,e[206]||(e[206]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[207]||(e[207]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[213]||(e[213]=s(" of a number field extension ")),t("mjx-container",T2,[(i(),l("svg",d2,e[208]||(e[208]=[a('',1)]))),e[209]||(e[209]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[214]||(e[214]=s(". This will be an element of ")),t("mjx-container",m2,[(i(),l("svg",p2,e[210]||(e[210]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[211]||(e[211]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[215]||(e[215]=s("."))]),e[217]||(e[217]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h2,[t("summary",null,[e[218]||(e[218]=t("a",{id:"absolute_tr-Tuple{NumFieldElem}",href:"#absolute_tr-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_tr")],-1)),e[219]||(e[219]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[227]||(e[227]=a('
julia
absolute_tr(a::NumFieldElem) -> QQFieldElem
',1)),t("p",null,[e[224]||(e[224]=s("Given a number field element ")),t("mjx-container",g2,[(i(),l("svg",x2,e[220]||(e[220]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[221]||(e[221]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[225]||(e[225]=s(", returns the absolute trace of ")),t("mjx-container",u2,[(i(),l("svg",k2,e[222]||(e[222]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[223]||(e[223]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[226]||(e[226]=s("."))]),e[228]||(e[228]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",w2,[t("summary",null,[e[229]||(e[229]=t("a",{id:"algebraic_split-Tuple{AbsSimpleNumFieldElem}",href:"#algebraic_split-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"algebraic_split")],-1)),e[230]||(e[230]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[231]||(e[231]=a('
julia
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElem

Writes the input as a quotient of two "small" algebraic integers.

source

',3))]),e[576]||(e[576]=t("h3",{id:"conjugates",tabindex:"-1"},[s("Conjugates "),t("a",{class:"header-anchor",href:"#conjugates","aria-label":'Permalink to "Conjugates"'},"​")],-1)),t("details",c2,[t("summary",null,[e[232]||(e[232]=t("a",{id:"conjugates-Tuple{NumFieldElem, AcbField}",href:"#conjugates-Tuple{NumFieldElem, AcbField}"},[t("span",{class:"jlbinding"},"conjugates")],-1)),e[233]||(e[233]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[261]||(e[261]=a('
julia
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[242]||(e[242]=s("Compute the conjugates of ")),t("mjx-container",y2,[(i(),l("svg",f2,e[234]||(e[234]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[235]||(e[235]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[243]||(e[243]=s(" as elements of type ")),e[244]||(e[244]=t("code",null,"AcbFieldElem",-1)),e[245]||(e[245]=s(". Recall that we order the complex conjugates ")),t("mjx-container",b2,[(i(),l("svg",v2,e[236]||(e[236]=[a('',1)]))),e[237]||(e[237]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[246]||(e[246]=s(" such that ")),t("mjx-container",H2,[(i(),l("svg",M2,e[238]||(e[238]=[a('',1)]))),e[239]||(e[239]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[247]||(e[247]=s(" for ")),t("mjx-container",E2,[(i(),l("svg",L2,e[240]||(e[240]=[a('',1)]))),e[241]||(e[241]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[248]||(e[248]=s("."))]),t("p",null,[e[251]||(e[251]=s("Let ")),e[252]||(e[252]=t("code",null,"p",-1)),e[253]||(e[253]=s(" be the precision of ")),e[254]||(e[254]=t("code",null,"C",-1)),e[255]||(e[255]=s(", then every entry ")),t("mjx-container",j2,[(i(),l("svg",C2,e[249]||(e[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[250]||(e[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[256]||(e[256]=s(" of the vector returned satisfies ")),e[257]||(e[257]=t("code",null,"radius(real(y)) < 2^-p",-1)),e[258]||(e[258]=s(" and ")),e[259]||(e[259]=t("code",null,"radius(imag(y)) < 2^-p",-1)),e[260]||(e[260]=s(" respectively."))]),e[262]||(e[262]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Z2,[t("summary",null,[e[263]||(e[263]=t("a",{id:"conjugates-Tuple{NumFieldElem}",href:"#conjugates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates")],-1)),e[264]||(e[264]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[288]||(e[288]=a('
julia
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[273]||(e[273]=s("Compute the conjugates of ")),t("mjx-container",F2,[(i(),l("svg",V2,e[265]||(e[265]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[266]||(e[266]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[274]||(e[274]=s(" as elements of type ")),e[275]||(e[275]=t("code",null,"AcbFieldElem",-1)),e[276]||(e[276]=s(". Recall that we order the complex conjugates ")),t("mjx-container",D2,[(i(),l("svg",B2,e[267]||(e[267]=[a('',1)]))),e[268]||(e[268]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[277]||(e[277]=s(" such that ")),t("mjx-container",A2,[(i(),l("svg",S2,e[269]||(e[269]=[a('',1)]))),e[270]||(e[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[278]||(e[278]=s(" for ")),t("mjx-container",N2,[(i(),l("svg",G2,e[271]||(e[271]=[a('',1)]))),e[272]||(e[272]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[279]||(e[279]=s("."))]),t("p",null,[e[282]||(e[282]=s("Every entry ")),t("mjx-container",O2,[(i(),l("svg",z2,e[280]||(e[280]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[281]||(e[281]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[283]||(e[283]=s(" of the vector returned satisfies ")),e[284]||(e[284]=t("code",null,"radius(real(y)) < 2^-abs_tol",-1)),e[285]||(e[285]=s(" and ")),e[286]||(e[286]=t("code",null,"radius(imag(y)) < 2^-abs_tol",-1)),e[287]||(e[287]=s(" respectively."))]),e[289]||(e[289]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",J2,[t("summary",null,[e[290]||(e[290]=t("a",{id:"conjugates_log-Tuple{AbsSimpleNumFieldElem, Int64}",href:"#conjugates_log-Tuple{AbsSimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"conjugates_log")],-1)),e[291]||(e[291]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[300]||(e[300]=a('
julia
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[294]||(e[294]=s("Returns the elements ")),t("mjx-container",R2,[(i(),l("svg",K2,e[292]||(e[292]=[a('',1)]))),e[293]||(e[293]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mn",null,"2"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mn",null,"2"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])],-1))]),e[295]||(e[295]=s(" as elements of type ")),e[296]||(e[296]=t("code",null,"ArbFieldElem",-1)),e[297]||(e[297]=s(" with radius less then ")),e[298]||(e[298]=t("code",null,"2^-abs_tol",-1)),e[299]||(e[299]=s("."))]),e[301]||(e[301]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I2,[t("summary",null,[e[302]||(e[302]=t("a",{id:"conjugates_real-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_real-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_real")],-1)),e[303]||(e[303]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[316]||(e[316]=a('
julia
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[306]||(e[306]=s("Compute the real conjugates of ")),t("mjx-container",X2,[(i(),l("svg",P2,e[304]||(e[304]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[305]||(e[305]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[307]||(e[307]=s(" as elements of type ")),e[308]||(e[308]=t("code",null,"ArbFieldElem",-1)),e[309]||(e[309]=s("."))]),t("p",null,[e[312]||(e[312]=s("Every entry ")),t("mjx-container",q2,[(i(),l("svg",U2,e[310]||(e[310]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[311]||(e[311]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[313]||(e[313]=s(" of the array returned satisfies ")),e[314]||(e[314]=t("code",null,"radius(y) < 2^-abs_tol",-1)),e[315]||(e[315]=s("."))]),e[317]||(e[317]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",$2,[t("summary",null,[e[318]||(e[318]=t("a",{id:"conjugates_complex-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_complex-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_complex")],-1)),e[319]||(e[319]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[343]||(e[343]=a('
julia
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[328]||(e[328]=s("Compute the complex conjugates of ")),t("mjx-container",W2,[(i(),l("svg",Y2,e[320]||(e[320]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[321]||(e[321]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[329]||(e[329]=s(" as elements of type ")),e[330]||(e[330]=t("code",null,"AcbFieldElem",-1)),e[331]||(e[331]=s(". Recall that we order the complex conjugates ")),t("mjx-container",_2,[(i(),l("svg",t4,e[322]||(e[322]=[a('',1)]))),e[323]||(e[323]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[332]||(e[332]=s(" such that ")),t("mjx-container",e4,[(i(),l("svg",s4,e[324]||(e[324]=[a('',1)]))),e[325]||(e[325]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[333]||(e[333]=s(" for ")),t("mjx-container",l4,[(i(),l("svg",i4,e[326]||(e[326]=[a('',1)]))),e[327]||(e[327]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[334]||(e[334]=s("."))]),t("p",null,[e[337]||(e[337]=s("Every entry ")),t("mjx-container",a4,[(i(),l("svg",o4,e[335]||(e[335]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[336]||(e[336]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[338]||(e[338]=s(" of the array returned satisfies ")),e[339]||(e[339]=t("code",null,"radius(real(y)) < 2^-abs_tol",-1)),e[340]||(e[340]=s(" and ")),e[341]||(e[341]=t("code",null,"radius(imag(y)) < 2^-abs_tol",-1)),e[342]||(e[342]=s("."))]),e[344]||(e[344]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n4,[t("summary",null,[e[345]||(e[345]=t("a",{id:"conjugates_arb_log_normalise-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_arb_log_normalise-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_arb_log_normalise")],-1)),e[346]||(e[346]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[351]||(e[351]=a(`
julia
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
+1//2*b^2 + b + a
`,1)),t("details",B,[t("summary",null,[e[50]||(e[50]=t("a",{id:"quadratic_defect-Tuple{NumFieldElem, Any}",href:"#quadratic_defect-Tuple{NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"quadratic_defect")],-1)),e[51]||(e[51]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[62]||(e[62]=a('
julia
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}
',1)),t("p",null,[e[58]||(e[58]=s("Returns the valuation of the quadratic defect of the element ")),t("mjx-container",A,[(i(),l("svg",S,e[52]||(e[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[53]||(e[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[59]||(e[59]=s(" at ")),t("mjx-container",N,[(i(),l("svg",G,e[54]||(e[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[55]||(e[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[60]||(e[60]=s(", which can either be prime object or an infinite place of the parent of ")),t("mjx-container",O,[(i(),l("svg",z,e[56]||(e[56]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[57]||(e[57]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[61]||(e[61]=s("."))]),e[63]||(e[63]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",J,[t("summary",null,[e[64]||(e[64]=t("a",{id:"hilbert_symbol-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldElem, Union{AbsNumFieldOrderIdeal, Hecke.RelNumFieldOrderIdeal}}",href:"#hilbert_symbol-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldElem, Union{AbsNumFieldOrderIdeal, Hecke.RelNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"hilbert_symbol")],-1)),e[65]||(e[65]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[70]||(e[70]=a('
julia
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int
',1)),t("p",null,[e[68]||(e[68]=s("Returns the local Hilbert symbol ")),t("mjx-container",R,[(i(),l("svg",K,e[66]||(e[66]=[a('',1)]))),e[67]||(e[67]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"a"),t("mo",null,","),t("mi",null,"b"),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"p")])])],-1))]),e[69]||(e[69]=s("."))]),e[71]||(e[71]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I,[t("summary",null,[e[72]||(e[72]=t("a",{id:"representation_matrix-Tuple{NumFieldElem}",href:"#representation_matrix-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"representation_matrix")],-1)),e[73]||(e[73]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[84]||(e[84]=a('
julia
representation_matrix(a::NumFieldElem) -> MatElem
',1)),t("p",null,[e[80]||(e[80]=s("Returns the representation matrix of ")),t("mjx-container",X,[(i(),l("svg",P,e[74]||(e[74]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[75]||(e[75]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[81]||(e[81]=s(", that is, the matrix representing multiplication with ")),t("mjx-container",q,[(i(),l("svg",U,e[76]||(e[76]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[77]||(e[77]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[82]||(e[82]=s(" with respect to the canonical basis of the parent of ")),t("mjx-container",$,[(i(),l("svg",W,e[78]||(e[78]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[79]||(e[79]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[83]||(e[83]=s("."))]),e[85]||(e[85]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Y,[t("summary",null,[e[86]||(e[86]=t("a",{id:"basis_matrix-Tuple{Vector{AbsSimpleNumFieldElem}}",href:"#basis_matrix-Tuple{Vector{AbsSimpleNumFieldElem}}"},[t("span",{class:"jlbinding"},"basis_matrix")],-1)),e[87]||(e[87]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[116]||(e[116]=a('
julia
basis_matrix(v::Vector{NumFieldElem}) -> Mat
',1)),t("p",null,[e[106]||(e[106]=s("Given a vector ")),t("mjx-container",_,[(i(),l("svg",t1,e[88]||(e[88]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D463",d:"M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z",style:{"stroke-width":"3"}})])])],-1)]))),e[89]||(e[89]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"v")])],-1))]),e[107]||(e[107]=s(" of ")),t("mjx-container",e1,[(i(),l("svg",s1,e[90]||(e[90]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[91]||(e[91]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[108]||(e[108]=s(" elements of a number field ")),t("mjx-container",l1,[(i(),l("svg",i1,e[92]||(e[92]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[93]||(e[93]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[109]||(e[109]=s(" of degree ")),t("mjx-container",a1,[(i(),l("svg",o1,e[94]||(e[94]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),e[95]||(e[95]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),e[110]||(e[110]=s(", this function returns an ")),t("mjx-container",n1,[(i(),l("svg",Q1,e[96]||(e[96]=[a('',1)]))),e[97]||(e[97]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n"),t("mo",null,"×"),t("mi",null,"d")])],-1))]),e[111]||(e[111]=s(" matrix with entries in the base field of ")),t("mjx-container",r1,[(i(),l("svg",T1,e[98]||(e[98]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[99]||(e[99]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[112]||(e[112]=s(", where row ")),t("mjx-container",d1,[(i(),l("svg",m1,e[100]||(e[100]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[101]||(e[101]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[113]||(e[113]=s(" contains the coefficients of ")),t("mjx-container",p1,[(i(),l("svg",h1,e[102]||(e[102]=[a('',1)]))),e[103]||(e[103]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"v"),t("mo",{stretchy:"false"},"["),t("mi",null,"i"),t("mo",{stretchy:"false"},"]")])],-1))]),e[114]||(e[114]=s(" with respect of the canonical basis of ")),t("mjx-container",g1,[(i(),l("svg",x1,e[104]||(e[104]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[105]||(e[105]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[115]||(e[115]=s("."))]),e[117]||(e[117]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",u1,[t("summary",null,[e[118]||(e[118]=t("a",{id:"coefficients-Tuple{SimpleNumFieldElem}",href:"#coefficients-Tuple{SimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"coefficients")],-1)),e[119]||(e[119]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[120]||(e[120]=a('
julia
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}

Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.

source

',3))]),t("details",k1,[t("summary",null,[e[121]||(e[121]=t("a",{id:"coordinates-Tuple{NumFieldElem}",href:"#coordinates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"coordinates")],-1)),e[122]||(e[122]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[136]||(e[136]=a('
julia
coordinates(x::NumFieldElem{T}) -> Vector{T}
',1)),t("p",null,[e[131]||(e[131]=s("Given an element ")),t("mjx-container",w1,[(i(),l("svg",c1,e[123]||(e[123]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[124]||(e[124]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[132]||(e[132]=s(" in a number field ")),t("mjx-container",y1,[(i(),l("svg",f1,e[125]||(e[125]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[126]||(e[126]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[133]||(e[133]=s(", this function returns the coordinates of ")),t("mjx-container",b1,[(i(),l("svg",v1,e[127]||(e[127]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[128]||(e[128]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[134]||(e[134]=s(" with respect to the basis of ")),t("mjx-container",H1,[(i(),l("svg",M1,e[129]||(e[129]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[130]||(e[130]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[135]||(e[135]=s(" (the output of the 'basis' function)."))]),e[137]||(e[137]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",E1,[t("summary",null,[e[138]||(e[138]=t("a",{id:"absolute_coordinates-Tuple{NumFieldElem}",href:"#absolute_coordinates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_coordinates")],-1)),e[139]||(e[139]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[155]||(e[155]=a('
julia
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}
',1)),t("p",null,[e[148]||(e[148]=s("Given an element ")),t("mjx-container",L1,[(i(),l("svg",j1,e[140]||(e[140]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[141]||(e[141]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[149]||(e[149]=s(" in a number field ")),t("mjx-container",C1,[(i(),l("svg",Z1,e[142]||(e[142]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[143]||(e[143]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[150]||(e[150]=s(", this function returns the coordinates of ")),t("mjx-container",F1,[(i(),l("svg",V1,e[144]||(e[144]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[145]||(e[145]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[151]||(e[151]=s(" with respect to the basis of ")),t("mjx-container",D1,[(i(),l("svg",B1,e[146]||(e[146]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[147]||(e[147]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[152]||(e[152]=s(" over the rationals (the output of the ")),e[153]||(e[153]=t("a",{href:"/v0.34.8/manual/number_fields/fields#absolute_basis-Tuple{NumField}"},[t("code",null,"absolute_basis")],-1)),e[154]||(e[154]=s(" function)."))]),e[156]||(e[156]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",A1,[t("summary",null,[e[157]||(e[157]=t("a",{id:"coeff-Tuple{SimpleNumFieldElem, Int64}",href:"#coeff-Tuple{SimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"coeff")],-1)),e[158]||(e[158]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[159]||(e[159]=a('
julia
coeff(a::SimpleNumFieldElem, i::Int) -> FieldElem

Given a number field element a of a simple number field extension L/K, this function returns the i-th coefficient of a, when expanded in the canonical power basis of L. The result is an element of K.

source

',3))]),t("details",S1,[t("summary",null,[e[160]||(e[160]=t("a",{id:"valuation-Tuple{NumFieldElem, Any}",href:"#valuation-Tuple{NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"valuation")],-1)),e[161]||(e[161]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[178]||(e[178]=a('
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
',1)),t("p",null,[e[172]||(e[172]=s("Computes the ")),t("mjx-container",N1,[(i(),l("svg",G1,e[162]||(e[162]=[a('',1)]))),e[163]||(e[163]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"p")])])],-1))]),e[173]||(e[173]=s("-adic valuation of ")),t("mjx-container",O1,[(i(),l("svg",z1,e[164]||(e[164]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[165]||(e[165]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[174]||(e[174]=s(", that is, the largest ")),t("mjx-container",J1,[(i(),l("svg",R1,e[166]||(e[166]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[167]||(e[167]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[175]||(e[175]=s(" such that ")),t("mjx-container",K1,[(i(),l("svg",I1,e[168]||(e[168]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[169]||(e[169]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[176]||(e[176]=s(" is contained in ")),t("mjx-container",X1,[(i(),l("svg",P1,e[170]||(e[170]=[a('',1)]))),e[171]||(e[171]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"p")]),t("mi",null,"i")])])],-1))]),e[177]||(e[177]=s("."))]),e[179]||(e[179]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q1,[t("summary",null,[e[180]||(e[180]=t("a",{id:"torsion_unit_order-Tuple{AbsSimpleNumFieldElem, Int64}",href:"#torsion_unit_order-Tuple{AbsSimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"torsion_unit_order")],-1)),e[181]||(e[181]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[202]||(e[202]=a('
julia
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)
',1)),t("p",null,[e[192]||(e[192]=s("Given a torsion unit ")),t("mjx-container",U1,[(i(),l("svg",$1,e[182]||(e[182]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[183]||(e[183]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[193]||(e[193]=s(" together with a multiple ")),t("mjx-container",W1,[(i(),l("svg",Y1,e[184]||(e[184]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[185]||(e[185]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[194]||(e[194]=s(" of its order, compute the order of ")),t("mjx-container",_1,[(i(),l("svg",t2,e[186]||(e[186]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[187]||(e[187]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[195]||(e[195]=s(", that is, the smallest ")),t("mjx-container",e2,[(i(),l("svg",s2,e[188]||(e[188]=[a('',1)]))),e[189]||(e[189]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"1")])])])],-1))]),e[196]||(e[196]=s(" such that ")),t("mjx-container",l2,[(i(),l("svg",i2,e[190]||(e[190]=[a('',1)]))),e[191]||(e[191]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"="),t("mn",null,"1")])],-1))]),e[197]||(e[197]=s("."))]),t("p",null,[e[200]||(e[200]=s("It is not checked whether ")),t("mjx-container",a2,[(i(),l("svg",o2,e[198]||(e[198]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[199]||(e[199]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[201]||(e[201]=s(" is a torsion unit."))]),e[203]||(e[203]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n2,[t("summary",null,[e[204]||(e[204]=t("a",{id:"tr-Tuple{NumFieldElem}",href:"#tr-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"tr")],-1)),e[205]||(e[205]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[216]||(e[216]=a('
julia
tr(a::NumFieldElem) -> NumFieldElem
',1)),t("p",null,[e[212]||(e[212]=s("Returns the trace of an element ")),t("mjx-container",Q2,[(i(),l("svg",r2,e[206]||(e[206]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[207]||(e[207]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[213]||(e[213]=s(" of a number field extension ")),t("mjx-container",T2,[(i(),l("svg",d2,e[208]||(e[208]=[a('',1)]))),e[209]||(e[209]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[214]||(e[214]=s(". This will be an element of ")),t("mjx-container",m2,[(i(),l("svg",p2,e[210]||(e[210]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[211]||(e[211]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[215]||(e[215]=s("."))]),e[217]||(e[217]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h2,[t("summary",null,[e[218]||(e[218]=t("a",{id:"absolute_tr-Tuple{NumFieldElem}",href:"#absolute_tr-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_tr")],-1)),e[219]||(e[219]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[227]||(e[227]=a('
julia
absolute_tr(a::NumFieldElem) -> QQFieldElem
',1)),t("p",null,[e[224]||(e[224]=s("Given a number field element ")),t("mjx-container",g2,[(i(),l("svg",x2,e[220]||(e[220]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[221]||(e[221]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[225]||(e[225]=s(", returns the absolute trace of ")),t("mjx-container",u2,[(i(),l("svg",k2,e[222]||(e[222]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[223]||(e[223]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[226]||(e[226]=s("."))]),e[228]||(e[228]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",w2,[t("summary",null,[e[229]||(e[229]=t("a",{id:"algebraic_split-Tuple{AbsSimpleNumFieldElem}",href:"#algebraic_split-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"algebraic_split")],-1)),e[230]||(e[230]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[231]||(e[231]=a('
julia
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElem

Writes the input as a quotient of two "small" algebraic integers.

source

',3))]),e[576]||(e[576]=t("h3",{id:"conjugates",tabindex:"-1"},[s("Conjugates "),t("a",{class:"header-anchor",href:"#conjugates","aria-label":'Permalink to "Conjugates"'},"​")],-1)),t("details",c2,[t("summary",null,[e[232]||(e[232]=t("a",{id:"conjugates-Tuple{NumFieldElem, AcbField}",href:"#conjugates-Tuple{NumFieldElem, AcbField}"},[t("span",{class:"jlbinding"},"conjugates")],-1)),e[233]||(e[233]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[261]||(e[261]=a('
julia
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[242]||(e[242]=s("Compute the conjugates of ")),t("mjx-container",y2,[(i(),l("svg",f2,e[234]||(e[234]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[235]||(e[235]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[243]||(e[243]=s(" as elements of type ")),e[244]||(e[244]=t("code",null,"AcbFieldElem",-1)),e[245]||(e[245]=s(". Recall that we order the complex conjugates ")),t("mjx-container",b2,[(i(),l("svg",v2,e[236]||(e[236]=[a('',1)]))),e[237]||(e[237]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[246]||(e[246]=s(" such that ")),t("mjx-container",H2,[(i(),l("svg",M2,e[238]||(e[238]=[a('',1)]))),e[239]||(e[239]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[247]||(e[247]=s(" for ")),t("mjx-container",E2,[(i(),l("svg",L2,e[240]||(e[240]=[a('',1)]))),e[241]||(e[241]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[248]||(e[248]=s("."))]),t("p",null,[e[251]||(e[251]=s("Let ")),e[252]||(e[252]=t("code",null,"p",-1)),e[253]||(e[253]=s(" be the precision of ")),e[254]||(e[254]=t("code",null,"C",-1)),e[255]||(e[255]=s(", then every entry ")),t("mjx-container",j2,[(i(),l("svg",C2,e[249]||(e[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[250]||(e[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[256]||(e[256]=s(" of the vector returned satisfies ")),e[257]||(e[257]=t("code",null,"radius(real(y)) < 2^-p",-1)),e[258]||(e[258]=s(" and ")),e[259]||(e[259]=t("code",null,"radius(imag(y)) < 2^-p",-1)),e[260]||(e[260]=s(" respectively."))]),e[262]||(e[262]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Z2,[t("summary",null,[e[263]||(e[263]=t("a",{id:"conjugates-Tuple{NumFieldElem}",href:"#conjugates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates")],-1)),e[264]||(e[264]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[288]||(e[288]=a('
julia
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[273]||(e[273]=s("Compute the conjugates of ")),t("mjx-container",F2,[(i(),l("svg",V2,e[265]||(e[265]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[266]||(e[266]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[274]||(e[274]=s(" as elements of type ")),e[275]||(e[275]=t("code",null,"AcbFieldElem",-1)),e[276]||(e[276]=s(". Recall that we order the complex conjugates ")),t("mjx-container",D2,[(i(),l("svg",B2,e[267]||(e[267]=[a('',1)]))),e[268]||(e[268]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[277]||(e[277]=s(" such that ")),t("mjx-container",A2,[(i(),l("svg",S2,e[269]||(e[269]=[a('',1)]))),e[270]||(e[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[278]||(e[278]=s(" for ")),t("mjx-container",N2,[(i(),l("svg",G2,e[271]||(e[271]=[a('',1)]))),e[272]||(e[272]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[279]||(e[279]=s("."))]),t("p",null,[e[282]||(e[282]=s("Every entry ")),t("mjx-container",O2,[(i(),l("svg",z2,e[280]||(e[280]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[281]||(e[281]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[283]||(e[283]=s(" of the vector returned satisfies ")),e[284]||(e[284]=t("code",null,"radius(real(y)) < 2^-abs_tol",-1)),e[285]||(e[285]=s(" and ")),e[286]||(e[286]=t("code",null,"radius(imag(y)) < 2^-abs_tol",-1)),e[287]||(e[287]=s(" respectively."))]),e[289]||(e[289]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",J2,[t("summary",null,[e[290]||(e[290]=t("a",{id:"conjugates_log-Tuple{AbsSimpleNumFieldElem, Int64}",href:"#conjugates_log-Tuple{AbsSimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"conjugates_log")],-1)),e[291]||(e[291]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[300]||(e[300]=a('
julia
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[294]||(e[294]=s("Returns the elements ")),t("mjx-container",R2,[(i(),l("svg",K2,e[292]||(e[292]=[a('',1)]))),e[293]||(e[293]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mn",null,"2"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mn",null,"2"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])],-1))]),e[295]||(e[295]=s(" as elements of type ")),e[296]||(e[296]=t("code",null,"ArbFieldElem",-1)),e[297]||(e[297]=s(" with radius less then ")),e[298]||(e[298]=t("code",null,"2^-abs_tol",-1)),e[299]||(e[299]=s("."))]),e[301]||(e[301]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I2,[t("summary",null,[e[302]||(e[302]=t("a",{id:"conjugates_real-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_real-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_real")],-1)),e[303]||(e[303]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[316]||(e[316]=a('
julia
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[306]||(e[306]=s("Compute the real conjugates of ")),t("mjx-container",X2,[(i(),l("svg",P2,e[304]||(e[304]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[305]||(e[305]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[307]||(e[307]=s(" as elements of type ")),e[308]||(e[308]=t("code",null,"ArbFieldElem",-1)),e[309]||(e[309]=s("."))]),t("p",null,[e[312]||(e[312]=s("Every entry ")),t("mjx-container",q2,[(i(),l("svg",U2,e[310]||(e[310]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[311]||(e[311]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[313]||(e[313]=s(" of the array returned satisfies ")),e[314]||(e[314]=t("code",null,"radius(y) < 2^-abs_tol",-1)),e[315]||(e[315]=s("."))]),e[317]||(e[317]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",$2,[t("summary",null,[e[318]||(e[318]=t("a",{id:"conjugates_complex-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_complex-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_complex")],-1)),e[319]||(e[319]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[343]||(e[343]=a('
julia
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[328]||(e[328]=s("Compute the complex conjugates of ")),t("mjx-container",W2,[(i(),l("svg",Y2,e[320]||(e[320]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[321]||(e[321]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[329]||(e[329]=s(" as elements of type ")),e[330]||(e[330]=t("code",null,"AcbFieldElem",-1)),e[331]||(e[331]=s(". Recall that we order the complex conjugates ")),t("mjx-container",_2,[(i(),l("svg",t4,e[322]||(e[322]=[a('',1)]))),e[323]||(e[323]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[332]||(e[332]=s(" such that ")),t("mjx-container",e4,[(i(),l("svg",s4,e[324]||(e[324]=[a('',1)]))),e[325]||(e[325]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[333]||(e[333]=s(" for ")),t("mjx-container",l4,[(i(),l("svg",i4,e[326]||(e[326]=[a('',1)]))),e[327]||(e[327]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[334]||(e[334]=s("."))]),t("p",null,[e[337]||(e[337]=s("Every entry ")),t("mjx-container",a4,[(i(),l("svg",o4,e[335]||(e[335]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[336]||(e[336]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[338]||(e[338]=s(" of the array returned satisfies ")),e[339]||(e[339]=t("code",null,"radius(real(y)) < 2^-abs_tol",-1)),e[340]||(e[340]=s(" and ")),e[341]||(e[341]=t("code",null,"radius(imag(y)) < 2^-abs_tol",-1)),e[342]||(e[342]=s("."))]),e[344]||(e[344]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n4,[t("summary",null,[e[345]||(e[345]=t("a",{id:"conjugates_arb_log_normalise-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_arb_log_normalise-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_arb_log_normalise")],-1)),e[346]||(e[346]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[351]||(e[351]=a(`
julia
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
 conjugates_arb_log_normalise(x::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, p::Int = 10)
`,1)),t("p",null,[e[349]||(e[349]=s('The "normalised" logarithms, i.e. the array ')),t("mjx-container",Q4,[(i(),l("svg",r4,e[347]||(e[347]=[a('',1)]))),e[348]||(e[348]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("msup",null,[t("mi",null,"x"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",{stretchy:"false"},"("),t("mi",null,"i"),t("mo",{stretchy:"false"},")")])]),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mo",null,"−"),t("mn",null,"1"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"n"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"N"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),e[350]||(e[350]=s(", so the (weighted) sum adds up to zero."))]),e[352]||(e[352]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",T4,[t("summary",null,[e[353]||(e[353]=t("a",{id:"minkowski_map-Tuple{AbsSimpleNumFieldElem}",href:"#minkowski_map-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"minkowski_map")],-1)),e[354]||(e[354]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[363]||(e[363]=a('
julia
minkowski_map(a::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[357]||(e[357]=s("Returns the image of ")),t("mjx-container",d4,[(i(),l("svg",m4,e[355]||(e[355]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[356]||(e[356]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[358]||(e[358]=s(" under the Minkowski embedding. Every entry of the array returned is of type ")),e[359]||(e[359]=t("code",null,"ArbFieldElem",-1)),e[360]||(e[360]=s(" with radius less then ")),e[361]||(e[361]=t("code",null,"2^(-abs_tol)",-1)),e[362]||(e[362]=s("."))]),e[364]||(e[364]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[577]||(e[577]=t("h3",{id:"predicates",tabindex:"-1"},[s("Predicates "),t("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),t("details",p4,[t("summary",null,[e[365]||(e[365]=t("a",{id:"is_integral-Tuple{NumFieldElem}",href:"#is_integral-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"is_integral")],-1)),e[366]||(e[366]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[374]||(e[374]=a('
julia
is_integral(a::NumFieldElem) -> Bool
',1)),t("p",null,[e[371]||(e[371]=s("Returns whether ")),t("mjx-container",h4,[(i(),l("svg",g4,e[367]||(e[367]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[368]||(e[368]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[372]||(e[372]=s(" is integral, that is, whether the minimal polynomial of ")),t("mjx-container",x4,[(i(),l("svg",u4,e[369]||(e[369]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[370]||(e[370]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[373]||(e[373]=s(" has integral coefficients."))]),e[375]||(e[375]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",k4,[t("summary",null,[e[376]||(e[376]=t("a",{id:"is_torsion_unit-Tuple{AbsSimpleNumFieldElem}",href:"#is_torsion_unit-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"is_torsion_unit")],-1)),e[377]||(e[377]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[399]||(e[399]=a('
julia
is_torsion_unit(x::AbsSimpleNumFieldElem, checkisunit::Bool = false) -> Bool
',1)),t("p",null,[e[384]||(e[384]=s("Returns whether ")),t("mjx-container",w4,[(i(),l("svg",c4,e[378]||(e[378]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[379]||(e[379]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[385]||(e[385]=s(" is a torsion unit, that is, whether there exists ")),t("mjx-container",y4,[(i(),l("svg",f4,e[380]||(e[380]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[381]||(e[381]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[386]||(e[386]=s(" such that ")),t("mjx-container",b4,[(i(),l("svg",v4,e[382]||(e[382]=[a('',1)]))),e[383]||(e[383]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"x"),t("mi",null,"n")]),t("mo",null,"="),t("mn",null,"1")])],-1))]),e[387]||(e[387]=s("."))]),t("p",null,[e[392]||(e[392]=s("If ")),e[393]||(e[393]=t("code",null,"checkisunit",-1)),e[394]||(e[394]=s(" is ")),e[395]||(e[395]=t("code",null,"true",-1)),e[396]||(e[396]=s(", it is first checked whether ")),t("mjx-container",H4,[(i(),l("svg",M4,e[388]||(e[388]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[389]||(e[389]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[397]||(e[397]=s(" is a unit of the maximal order of the number field ")),t("mjx-container",E4,[(i(),l("svg",L4,e[390]||(e[390]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[391]||(e[391]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[398]||(e[398]=s(" is lying in."))]),e[400]||(e[400]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",j4,[t("summary",null,[e[401]||(e[401]=t("a",{id:"is_local_norm-Tuple{NumField, NumFieldElem, Any}",href:"#is_local_norm-Tuple{NumField, NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"is_local_norm")],-1)),e[402]||(e[402]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[426]||(e[426]=a('
julia
is_local_norm(L::NumField, a::NumFieldElem, P)
',1)),t("p",null,[e[415]||(e[415]=s("Given a number field ")),t("mjx-container",C4,[(i(),l("svg",Z4,e[403]||(e[403]=[a('',1)]))),e[404]||(e[404]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[416]||(e[416]=s(", an element ")),t("mjx-container",F4,[(i(),l("svg",V4,e[405]||(e[405]=[a('',1)]))),e[406]||(e[406]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a"),t("mo",null,"∈"),t("mi",null,"K")])],-1))]),e[417]||(e[417]=s(" and a prime ideal ")),t("mjx-container",D4,[(i(),l("svg",B4,e[407]||(e[407]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[408]||(e[408]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[418]||(e[418]=s(" of ")),t("mjx-container",A4,[(i(),l("svg",S4,e[409]||(e[409]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[410]||(e[410]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[419]||(e[419]=s(", returns whether ")),t("mjx-container",N4,[(i(),l("svg",G4,e[411]||(e[411]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[412]||(e[412]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[420]||(e[420]=s(" is a local norm at ")),t("mjx-container",O4,[(i(),l("svg",z4,e[413]||(e[413]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[414]||(e[414]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[421]||(e[421]=s("."))]),t("p",null,[e[424]||(e[424]=s("The number field ")),t("mjx-container",J4,[(i(),l("svg",R4,e[422]||(e[422]=[a('',1)]))),e[423]||(e[423]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[425]||(e[425]=s(" must be a simple extension of degree 2."))]),e[427]||(e[427]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",K4,[t("summary",null,[e[428]||(e[428]=t("a",{id:"is_norm_divisible-Tuple{AbsSimpleNumFieldElem, ZZRingElem}",href:"#is_norm_divisible-Tuple{AbsSimpleNumFieldElem, ZZRingElem}"},[t("span",{class:"jlbinding"},"is_norm_divisible")],-1)),e[429]||(e[429]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[440]||(e[440]=a('
julia
is_norm_divisible(a::AbsSimpleNumFieldElem, n::ZZRingElem) -> Bool
',1)),t("p",null,[e[436]||(e[436]=s("Checks if the norm of ")),t("mjx-container",I4,[(i(),l("svg",X4,e[430]||(e[430]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[431]||(e[431]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[437]||(e[437]=s(" is divisible by ")),t("mjx-container",P4,[(i(),l("svg",q4,e[432]||(e[432]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[433]||(e[433]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[438]||(e[438]=s(", assuming that the norm of ")),t("mjx-container",U4,[(i(),l("svg",$4,e[434]||(e[434]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[435]||(e[435]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[439]||(e[439]=s(" is an integer."))]),e[441]||(e[441]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",W4,[t("summary",null,[e[442]||(e[442]=t("a",{id:"is_norm-Tuple{AbsSimpleNumField, ZZRingElem}",href:"#is_norm-Tuple{AbsSimpleNumField, ZZRingElem}"},[t("span",{class:"jlbinding"},"is_norm")],-1)),e[443]||(e[443]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[457]||(e[457]=a('
julia
is_norm(K::AbsSimpleNumField, a::ZZRingElem; extra::Vector{ZZRingElem}) -> Bool, AbsSimpleNumFieldElem
',1)),t("p",null,[e[452]||(e[452]=s("For a ZZRingElem ")),t("mjx-container",Y4,[(i(),l("svg",_4,e[444]||(e[444]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[445]||(e[445]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[453]||(e[453]=s(", try to find ")),t("mjx-container",t3,[(i(),l("svg",e3,e[446]||(e[446]=[a('',1)]))),e[447]||(e[447]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"T"),t("mo",null,"∈"),t("mi",null,"K")])],-1))]),e[454]||(e[454]=s(" s.th. ")),t("mjx-container",s3,[(i(),l("svg",l3,e[448]||(e[448]=[a('',1)]))),e[449]||(e[449]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N"),t("mo",{stretchy:"false"},"("),t("mi",null,"T"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"a")])],-1))]),e[455]||(e[455]=s(" holds. If successful, return true and ")),t("mjx-container",i3,[(i(),l("svg",a3,e[450]||(e[450]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D447",d:"M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z",style:{"stroke-width":"3"}})])])],-1)]))),e[451]||(e[451]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"T")])],-1))]),e[456]||(e[456]=s(", otherwise false and some element. In \\testtt{extra} one can pass in additional prime numbers that are allowed to occur in the solution. This will then be supplemented. The element will be returned in factored form."))]),e[458]||(e[458]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[578]||(e[578]=t("h3",{id:"invariants",tabindex:"-1"},[s("Invariants "),t("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),t("details",o3,[t("summary",null,[e[459]||(e[459]=t("a",{id:"norm-Tuple{NumFieldElem}",href:"#norm-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"norm")],-1)),e[460]||(e[460]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[471]||(e[471]=a('
julia
norm(a::NumFieldElem) -> NumFieldElem
',1)),t("p",null,[e[467]||(e[467]=s("Returns the norm of an element ")),t("mjx-container",n3,[(i(),l("svg",Q3,e[461]||(e[461]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[462]||(e[462]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[468]||(e[468]=s(" of a number field extension ")),t("mjx-container",r3,[(i(),l("svg",T3,e[463]||(e[463]=[a('',1)]))),e[464]||(e[464]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[469]||(e[469]=s(". This will be an element of ")),t("mjx-container",d3,[(i(),l("svg",m3,e[465]||(e[465]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[466]||(e[466]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[470]||(e[470]=s("."))]),e[472]||(e[472]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",p3,[t("summary",null,[e[473]||(e[473]=t("a",{id:"absolute_norm-Tuple{NumFieldElem}",href:"#absolute_norm-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_norm")],-1)),e[474]||(e[474]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[482]||(e[482]=a('
julia
absolute_norm(a::NumFieldElem) -> QQFieldElem
',1)),t("p",null,[e[479]||(e[479]=s("Given a number field element ")),t("mjx-container",h3,[(i(),l("svg",g3,e[475]||(e[475]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[476]||(e[476]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[480]||(e[480]=s(", returns the absolute norm of ")),t("mjx-container",x3,[(i(),l("svg",u3,e[477]||(e[477]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[478]||(e[478]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[481]||(e[481]=s("."))]),e[483]||(e[483]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",k3,[t("summary",null,[e[484]||(e[484]=t("a",{id:"minpoly-Tuple{NumFieldElem}",href:"#minpoly-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"minpoly")],-1)),e[485]||(e[485]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[499]||(e[499]=a('
julia
minpoly(a::NumFieldElem) -> PolyRingElem
',1)),t("p",null,[e[494]||(e[494]=s("Given a number field element ")),t("mjx-container",w3,[(i(),l("svg",c3,e[486]||(e[486]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[487]||(e[487]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[495]||(e[495]=s(" of a number field ")),t("mjx-container",y3,[(i(),l("svg",f3,e[488]||(e[488]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[489]||(e[489]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[496]||(e[496]=s(", this function returns the minimal polynomial of ")),t("mjx-container",b3,[(i(),l("svg",v3,e[490]||(e[490]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[491]||(e[491]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[497]||(e[497]=s(" over the base field of ")),t("mjx-container",H3,[(i(),l("svg",M3,e[492]||(e[492]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[493]||(e[493]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[498]||(e[498]=s("."))]),e[500]||(e[500]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",E3,[t("summary",null,[e[501]||(e[501]=t("a",{id:"absolute_minpoly-Tuple{NumFieldElem}",href:"#absolute_minpoly-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_minpoly")],-1)),e[502]||(e[502]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[516]||(e[516]=a('
julia
absolute_minpoly(a::NumFieldElem) -> PolyRingElem
',1)),t("p",null,[e[511]||(e[511]=s("Given a number field element ")),t("mjx-container",L3,[(i(),l("svg",j3,e[503]||(e[503]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[504]||(e[504]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[512]||(e[512]=s(" of a number field ")),t("mjx-container",C3,[(i(),l("svg",Z3,e[505]||(e[505]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[506]||(e[506]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[513]||(e[513]=s(", this function returns the minimal polynomial of ")),t("mjx-container",F3,[(i(),l("svg",V3,e[507]||(e[507]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[508]||(e[508]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[514]||(e[514]=s(" over the rationals ")),t("mjx-container",D3,[(i(),l("svg",B3,e[509]||(e[509]=[a('',1)]))),e[510]||(e[510]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),e[515]||(e[515]=s("."))]),e[517]||(e[517]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",A3,[t("summary",null,[e[518]||(e[518]=t("a",{id:"charpoly-Tuple{NumFieldElem}",href:"#charpoly-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"charpoly")],-1)),e[519]||(e[519]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[533]||(e[533]=a('
julia
charpoly(a::NumFieldElem) -> PolyRingElem
',1)),t("p",null,[e[528]||(e[528]=s("Given a number field element ")),t("mjx-container",S3,[(i(),l("svg",N3,e[520]||(e[520]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[521]||(e[521]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[529]||(e[529]=s(" of a number field ")),t("mjx-container",G3,[(i(),l("svg",O3,e[522]||(e[522]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[523]||(e[523]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[530]||(e[530]=s(", this function returns the characteristic polynomial of ")),t("mjx-container",z3,[(i(),l("svg",J3,e[524]||(e[524]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[525]||(e[525]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[531]||(e[531]=s(" over the base field of ")),t("mjx-container",R3,[(i(),l("svg",K3,e[526]||(e[526]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[527]||(e[527]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[532]||(e[532]=s("."))]),e[534]||(e[534]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I3,[t("summary",null,[e[535]||(e[535]=t("a",{id:"absolute_charpoly-Tuple{NumFieldElem}",href:"#absolute_charpoly-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_charpoly")],-1)),e[536]||(e[536]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[550]||(e[550]=a('
julia
absolute_charpoly(a::NumFieldElem) -> PolyRingElem
',1)),t("p",null,[e[545]||(e[545]=s("Given a number field element ")),t("mjx-container",X3,[(i(),l("svg",P3,e[537]||(e[537]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[538]||(e[538]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[546]||(e[546]=s(" of a number field ")),t("mjx-container",q3,[(i(),l("svg",U3,e[539]||(e[539]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[540]||(e[540]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[547]||(e[547]=s(", this function returns the characteristic polynomial of ")),t("mjx-container",$3,[(i(),l("svg",W3,e[541]||(e[541]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[542]||(e[542]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[548]||(e[548]=s(" over the rationals ")),t("mjx-container",Y3,[(i(),l("svg",_3,e[543]||(e[543]=[a('',1)]))),e[544]||(e[544]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),e[549]||(e[549]=s("."))]),e[551]||(e[551]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t6,[t("summary",null,[e[552]||(e[552]=t("a",{id:"norm-Tuple{NumFieldElem, NumField}",href:"#norm-Tuple{NumFieldElem, NumField}"},[t("span",{class:"jlbinding"},"norm")],-1)),e[553]||(e[553]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[570]||(e[570]=a('
julia
norm(a::NumFieldElem, k::NumField) -> NumFieldElem
',1)),t("p",null,[e[564]||(e[564]=s("Returns the norm of an element ")),t("mjx-container",e6,[(i(),l("svg",s6,e[554]||(e[554]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[555]||(e[555]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[565]||(e[565]=s(" of a number field ")),t("mjx-container",l6,[(i(),l("svg",i6,e[556]||(e[556]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[557]||(e[557]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[566]||(e[566]=s(" with respect to a subfield ")),t("mjx-container",a6,[(i(),l("svg",o6,e[558]||(e[558]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),e[559]||(e[559]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"k")])],-1))]),e[567]||(e[567]=s(" of ")),t("mjx-container",n6,[(i(),l("svg",Q6,e[560]||(e[560]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[561]||(e[561]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[568]||(e[568]=s(". This will be an element of ")),t("mjx-container",r6,[(i(),l("svg",T6,e[562]||(e[562]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),e[563]||(e[563]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"k")])],-1))]),e[569]||(e[569]=s("."))]),e[571]||(e[571]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const w6=Q(T,[["render",d6]]);export{k6 as __pageData,w6 as default}; diff --git a/v0.34.8/assets/manual_number_fields_elements.md.BTwKw5-v.lean.js b/v0.34.8/assets/manual_number_fields_elements.md.BTwKw5-v.lean.js index 0ef36772e5..c8f2b840ff 100644 --- a/v0.34.8/assets/manual_number_fields_elements.md.BTwKw5-v.lean.js +++ b/v0.34.8/assets/manual_number_fields_elements.md.BTwKw5-v.lean.js @@ -9,5 +9,5 @@ import{_ as Q,c as l,j as t,a as s,G as n,a5 as a,B as r,o as i}from"./chunks/fr (Relative number field of degree 3 over number field, b) julia> L([a, 1, 1//2]) -1//2*b^2 + b + a`,1)),t("details",B,[t("summary",null,[e[50]||(e[50]=t("a",{id:"quadratic_defect-Tuple{NumFieldElem, Any}",href:"#quadratic_defect-Tuple{NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"quadratic_defect")],-1)),e[51]||(e[51]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[62]||(e[62]=a('
julia
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}
',1)),t("p",null,[e[58]||(e[58]=s("Returns the valuation of the quadratic defect of the element ")),t("mjx-container",A,[(i(),l("svg",S,e[52]||(e[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[53]||(e[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[59]||(e[59]=s(" at ")),t("mjx-container",N,[(i(),l("svg",G,e[54]||(e[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[55]||(e[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[60]||(e[60]=s(", which can either be prime object or an infinite place of the parent of ")),t("mjx-container",O,[(i(),l("svg",z,e[56]||(e[56]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[57]||(e[57]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[61]||(e[61]=s("."))]),e[63]||(e[63]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",J,[t("summary",null,[e[64]||(e[64]=t("a",{id:"hilbert_symbol-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldElem, Union{AbsNumFieldOrderIdeal, Hecke.RelNumFieldOrderIdeal}}",href:"#hilbert_symbol-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldElem, Union{AbsNumFieldOrderIdeal, Hecke.RelNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"hilbert_symbol")],-1)),e[65]||(e[65]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[70]||(e[70]=a('
julia
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int
',1)),t("p",null,[e[68]||(e[68]=s("Returns the local Hilbert symbol ")),t("mjx-container",R,[(i(),l("svg",K,e[66]||(e[66]=[a('',1)]))),e[67]||(e[67]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"a"),t("mo",null,","),t("mi",null,"b"),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"p")])])],-1))]),e[69]||(e[69]=s("."))]),e[71]||(e[71]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I,[t("summary",null,[e[72]||(e[72]=t("a",{id:"representation_matrix-Tuple{NumFieldElem}",href:"#representation_matrix-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"representation_matrix")],-1)),e[73]||(e[73]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[84]||(e[84]=a('
julia
representation_matrix(a::NumFieldElem) -> MatElem
',1)),t("p",null,[e[80]||(e[80]=s("Returns the representation matrix of ")),t("mjx-container",X,[(i(),l("svg",P,e[74]||(e[74]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[75]||(e[75]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[81]||(e[81]=s(", that is, the matrix representing multiplication with ")),t("mjx-container",q,[(i(),l("svg",U,e[76]||(e[76]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[77]||(e[77]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[82]||(e[82]=s(" with respect to the canonical basis of the parent of ")),t("mjx-container",$,[(i(),l("svg",W,e[78]||(e[78]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[79]||(e[79]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[83]||(e[83]=s("."))]),e[85]||(e[85]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Y,[t("summary",null,[e[86]||(e[86]=t("a",{id:"basis_matrix-Tuple{Vector{AbsSimpleNumFieldElem}}",href:"#basis_matrix-Tuple{Vector{AbsSimpleNumFieldElem}}"},[t("span",{class:"jlbinding"},"basis_matrix")],-1)),e[87]||(e[87]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[116]||(e[116]=a('
julia
basis_matrix(v::Vector{NumFieldElem}) -> Mat
',1)),t("p",null,[e[106]||(e[106]=s("Given a vector ")),t("mjx-container",_,[(i(),l("svg",t1,e[88]||(e[88]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D463",d:"M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z",style:{"stroke-width":"3"}})])])],-1)]))),e[89]||(e[89]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"v")])],-1))]),e[107]||(e[107]=s(" of ")),t("mjx-container",e1,[(i(),l("svg",s1,e[90]||(e[90]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[91]||(e[91]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[108]||(e[108]=s(" elements of a number field ")),t("mjx-container",l1,[(i(),l("svg",i1,e[92]||(e[92]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[93]||(e[93]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[109]||(e[109]=s(" of degree ")),t("mjx-container",a1,[(i(),l("svg",o1,e[94]||(e[94]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),e[95]||(e[95]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),e[110]||(e[110]=s(", this function returns an ")),t("mjx-container",n1,[(i(),l("svg",Q1,e[96]||(e[96]=[a('',1)]))),e[97]||(e[97]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n"),t("mo",null,"×"),t("mi",null,"d")])],-1))]),e[111]||(e[111]=s(" matrix with entries in the base field of ")),t("mjx-container",r1,[(i(),l("svg",T1,e[98]||(e[98]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[99]||(e[99]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[112]||(e[112]=s(", where row ")),t("mjx-container",d1,[(i(),l("svg",m1,e[100]||(e[100]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[101]||(e[101]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[113]||(e[113]=s(" contains the coefficients of ")),t("mjx-container",p1,[(i(),l("svg",h1,e[102]||(e[102]=[a('',1)]))),e[103]||(e[103]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"v"),t("mo",{stretchy:"false"},"["),t("mi",null,"i"),t("mo",{stretchy:"false"},"]")])],-1))]),e[114]||(e[114]=s(" with respect of the canonical basis of ")),t("mjx-container",g1,[(i(),l("svg",x1,e[104]||(e[104]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[105]||(e[105]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[115]||(e[115]=s("."))]),e[117]||(e[117]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",u1,[t("summary",null,[e[118]||(e[118]=t("a",{id:"coefficients-Tuple{SimpleNumFieldElem}",href:"#coefficients-Tuple{SimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"coefficients")],-1)),e[119]||(e[119]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[120]||(e[120]=a('
julia
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}

Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.

source

',3))]),t("details",k1,[t("summary",null,[e[121]||(e[121]=t("a",{id:"coordinates-Tuple{NumFieldElem}",href:"#coordinates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"coordinates")],-1)),e[122]||(e[122]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[136]||(e[136]=a('
julia
coordinates(x::NumFieldElem{T}) -> Vector{T}
',1)),t("p",null,[e[131]||(e[131]=s("Given an element ")),t("mjx-container",w1,[(i(),l("svg",c1,e[123]||(e[123]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[124]||(e[124]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[132]||(e[132]=s(" in a number field ")),t("mjx-container",y1,[(i(),l("svg",f1,e[125]||(e[125]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[126]||(e[126]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[133]||(e[133]=s(", this function returns the coordinates of ")),t("mjx-container",b1,[(i(),l("svg",v1,e[127]||(e[127]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[128]||(e[128]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[134]||(e[134]=s(" with respect to the basis of ")),t("mjx-container",H1,[(i(),l("svg",M1,e[129]||(e[129]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[130]||(e[130]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[135]||(e[135]=s(" (the output of the 'basis' function)."))]),e[137]||(e[137]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",E1,[t("summary",null,[e[138]||(e[138]=t("a",{id:"absolute_coordinates-Tuple{NumFieldElem}",href:"#absolute_coordinates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_coordinates")],-1)),e[139]||(e[139]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[155]||(e[155]=a('
julia
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}
',1)),t("p",null,[e[148]||(e[148]=s("Given an element ")),t("mjx-container",L1,[(i(),l("svg",j1,e[140]||(e[140]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[141]||(e[141]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[149]||(e[149]=s(" in a number field ")),t("mjx-container",C1,[(i(),l("svg",Z1,e[142]||(e[142]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[143]||(e[143]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[150]||(e[150]=s(", this function returns the coordinates of ")),t("mjx-container",F1,[(i(),l("svg",V1,e[144]||(e[144]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[145]||(e[145]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[151]||(e[151]=s(" with respect to the basis of ")),t("mjx-container",D1,[(i(),l("svg",B1,e[146]||(e[146]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[147]||(e[147]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[152]||(e[152]=s(" over the rationals (the output of the ")),e[153]||(e[153]=t("a",{href:"/Hecke.jl/v0.34.8/manual/number_fields/fields#absolute_basis-Tuple{NumField}"},[t("code",null,"absolute_basis")],-1)),e[154]||(e[154]=s(" function)."))]),e[156]||(e[156]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",A1,[t("summary",null,[e[157]||(e[157]=t("a",{id:"coeff-Tuple{SimpleNumFieldElem, Int64}",href:"#coeff-Tuple{SimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"coeff")],-1)),e[158]||(e[158]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[159]||(e[159]=a('
julia
coeff(a::SimpleNumFieldElem, i::Int) -> FieldElem

Given a number field element a of a simple number field extension L/K, this function returns the i-th coefficient of a, when expanded in the canonical power basis of L. The result is an element of K.

source

',3))]),t("details",S1,[t("summary",null,[e[160]||(e[160]=t("a",{id:"valuation-Tuple{NumFieldElem, Any}",href:"#valuation-Tuple{NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"valuation")],-1)),e[161]||(e[161]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[178]||(e[178]=a('
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
',1)),t("p",null,[e[172]||(e[172]=s("Computes the ")),t("mjx-container",N1,[(i(),l("svg",G1,e[162]||(e[162]=[a('',1)]))),e[163]||(e[163]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"p")])])],-1))]),e[173]||(e[173]=s("-adic valuation of ")),t("mjx-container",O1,[(i(),l("svg",z1,e[164]||(e[164]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[165]||(e[165]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[174]||(e[174]=s(", that is, the largest ")),t("mjx-container",J1,[(i(),l("svg",R1,e[166]||(e[166]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[167]||(e[167]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[175]||(e[175]=s(" such that ")),t("mjx-container",K1,[(i(),l("svg",I1,e[168]||(e[168]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[169]||(e[169]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[176]||(e[176]=s(" is contained in ")),t("mjx-container",X1,[(i(),l("svg",P1,e[170]||(e[170]=[a('',1)]))),e[171]||(e[171]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"p")]),t("mi",null,"i")])])],-1))]),e[177]||(e[177]=s("."))]),e[179]||(e[179]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q1,[t("summary",null,[e[180]||(e[180]=t("a",{id:"torsion_unit_order-Tuple{AbsSimpleNumFieldElem, Int64}",href:"#torsion_unit_order-Tuple{AbsSimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"torsion_unit_order")],-1)),e[181]||(e[181]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[202]||(e[202]=a('
julia
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)
',1)),t("p",null,[e[192]||(e[192]=s("Given a torsion unit ")),t("mjx-container",U1,[(i(),l("svg",$1,e[182]||(e[182]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[183]||(e[183]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[193]||(e[193]=s(" together with a multiple ")),t("mjx-container",W1,[(i(),l("svg",Y1,e[184]||(e[184]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[185]||(e[185]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[194]||(e[194]=s(" of its order, compute the order of ")),t("mjx-container",_1,[(i(),l("svg",t2,e[186]||(e[186]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[187]||(e[187]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[195]||(e[195]=s(", that is, the smallest ")),t("mjx-container",e2,[(i(),l("svg",s2,e[188]||(e[188]=[a('',1)]))),e[189]||(e[189]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"1")])])])],-1))]),e[196]||(e[196]=s(" such that ")),t("mjx-container",l2,[(i(),l("svg",i2,e[190]||(e[190]=[a('',1)]))),e[191]||(e[191]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"="),t("mn",null,"1")])],-1))]),e[197]||(e[197]=s("."))]),t("p",null,[e[200]||(e[200]=s("It is not checked whether ")),t("mjx-container",a2,[(i(),l("svg",o2,e[198]||(e[198]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[199]||(e[199]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[201]||(e[201]=s(" is a torsion unit."))]),e[203]||(e[203]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n2,[t("summary",null,[e[204]||(e[204]=t("a",{id:"tr-Tuple{NumFieldElem}",href:"#tr-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"tr")],-1)),e[205]||(e[205]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[216]||(e[216]=a('
julia
tr(a::NumFieldElem) -> NumFieldElem
',1)),t("p",null,[e[212]||(e[212]=s("Returns the trace of an element ")),t("mjx-container",Q2,[(i(),l("svg",r2,e[206]||(e[206]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[207]||(e[207]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[213]||(e[213]=s(" of a number field extension ")),t("mjx-container",T2,[(i(),l("svg",d2,e[208]||(e[208]=[a('',1)]))),e[209]||(e[209]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[214]||(e[214]=s(". This will be an element of ")),t("mjx-container",m2,[(i(),l("svg",p2,e[210]||(e[210]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[211]||(e[211]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[215]||(e[215]=s("."))]),e[217]||(e[217]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h2,[t("summary",null,[e[218]||(e[218]=t("a",{id:"absolute_tr-Tuple{NumFieldElem}",href:"#absolute_tr-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_tr")],-1)),e[219]||(e[219]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[227]||(e[227]=a('
julia
absolute_tr(a::NumFieldElem) -> QQFieldElem
',1)),t("p",null,[e[224]||(e[224]=s("Given a number field element ")),t("mjx-container",g2,[(i(),l("svg",x2,e[220]||(e[220]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[221]||(e[221]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[225]||(e[225]=s(", returns the absolute trace of ")),t("mjx-container",u2,[(i(),l("svg",k2,e[222]||(e[222]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[223]||(e[223]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[226]||(e[226]=s("."))]),e[228]||(e[228]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",w2,[t("summary",null,[e[229]||(e[229]=t("a",{id:"algebraic_split-Tuple{AbsSimpleNumFieldElem}",href:"#algebraic_split-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"algebraic_split")],-1)),e[230]||(e[230]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[231]||(e[231]=a('
julia
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElem

Writes the input as a quotient of two "small" algebraic integers.

source

',3))]),e[576]||(e[576]=t("h3",{id:"conjugates",tabindex:"-1"},[s("Conjugates "),t("a",{class:"header-anchor",href:"#conjugates","aria-label":'Permalink to "Conjugates"'},"​")],-1)),t("details",c2,[t("summary",null,[e[232]||(e[232]=t("a",{id:"conjugates-Tuple{NumFieldElem, AcbField}",href:"#conjugates-Tuple{NumFieldElem, AcbField}"},[t("span",{class:"jlbinding"},"conjugates")],-1)),e[233]||(e[233]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[261]||(e[261]=a('
julia
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[242]||(e[242]=s("Compute the conjugates of ")),t("mjx-container",y2,[(i(),l("svg",f2,e[234]||(e[234]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[235]||(e[235]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[243]||(e[243]=s(" as elements of type ")),e[244]||(e[244]=t("code",null,"AcbFieldElem",-1)),e[245]||(e[245]=s(". Recall that we order the complex conjugates ")),t("mjx-container",b2,[(i(),l("svg",v2,e[236]||(e[236]=[a('',1)]))),e[237]||(e[237]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[246]||(e[246]=s(" such that ")),t("mjx-container",H2,[(i(),l("svg",M2,e[238]||(e[238]=[a('',1)]))),e[239]||(e[239]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[247]||(e[247]=s(" for ")),t("mjx-container",E2,[(i(),l("svg",L2,e[240]||(e[240]=[a('',1)]))),e[241]||(e[241]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[248]||(e[248]=s("."))]),t("p",null,[e[251]||(e[251]=s("Let ")),e[252]||(e[252]=t("code",null,"p",-1)),e[253]||(e[253]=s(" be the precision of ")),e[254]||(e[254]=t("code",null,"C",-1)),e[255]||(e[255]=s(", then every entry ")),t("mjx-container",j2,[(i(),l("svg",C2,e[249]||(e[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[250]||(e[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[256]||(e[256]=s(" of the vector returned satisfies ")),e[257]||(e[257]=t("code",null,"radius(real(y)) < 2^-p",-1)),e[258]||(e[258]=s(" and ")),e[259]||(e[259]=t("code",null,"radius(imag(y)) < 2^-p",-1)),e[260]||(e[260]=s(" respectively."))]),e[262]||(e[262]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Z2,[t("summary",null,[e[263]||(e[263]=t("a",{id:"conjugates-Tuple{NumFieldElem}",href:"#conjugates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates")],-1)),e[264]||(e[264]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[288]||(e[288]=a('
julia
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[273]||(e[273]=s("Compute the conjugates of ")),t("mjx-container",F2,[(i(),l("svg",V2,e[265]||(e[265]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[266]||(e[266]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[274]||(e[274]=s(" as elements of type ")),e[275]||(e[275]=t("code",null,"AcbFieldElem",-1)),e[276]||(e[276]=s(". Recall that we order the complex conjugates ")),t("mjx-container",D2,[(i(),l("svg",B2,e[267]||(e[267]=[a('',1)]))),e[268]||(e[268]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[277]||(e[277]=s(" such that ")),t("mjx-container",A2,[(i(),l("svg",S2,e[269]||(e[269]=[a('',1)]))),e[270]||(e[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[278]||(e[278]=s(" for ")),t("mjx-container",N2,[(i(),l("svg",G2,e[271]||(e[271]=[a('',1)]))),e[272]||(e[272]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[279]||(e[279]=s("."))]),t("p",null,[e[282]||(e[282]=s("Every entry ")),t("mjx-container",O2,[(i(),l("svg",z2,e[280]||(e[280]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[281]||(e[281]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[283]||(e[283]=s(" of the vector returned satisfies ")),e[284]||(e[284]=t("code",null,"radius(real(y)) < 2^-abs_tol",-1)),e[285]||(e[285]=s(" and ")),e[286]||(e[286]=t("code",null,"radius(imag(y)) < 2^-abs_tol",-1)),e[287]||(e[287]=s(" respectively."))]),e[289]||(e[289]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",J2,[t("summary",null,[e[290]||(e[290]=t("a",{id:"conjugates_log-Tuple{AbsSimpleNumFieldElem, Int64}",href:"#conjugates_log-Tuple{AbsSimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"conjugates_log")],-1)),e[291]||(e[291]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[300]||(e[300]=a('
julia
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[294]||(e[294]=s("Returns the elements ")),t("mjx-container",R2,[(i(),l("svg",K2,e[292]||(e[292]=[a('',1)]))),e[293]||(e[293]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mn",null,"2"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mn",null,"2"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])],-1))]),e[295]||(e[295]=s(" as elements of type ")),e[296]||(e[296]=t("code",null,"ArbFieldElem",-1)),e[297]||(e[297]=s(" with radius less then ")),e[298]||(e[298]=t("code",null,"2^-abs_tol",-1)),e[299]||(e[299]=s("."))]),e[301]||(e[301]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I2,[t("summary",null,[e[302]||(e[302]=t("a",{id:"conjugates_real-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_real-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_real")],-1)),e[303]||(e[303]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[316]||(e[316]=a('
julia
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[306]||(e[306]=s("Compute the real conjugates of ")),t("mjx-container",X2,[(i(),l("svg",P2,e[304]||(e[304]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[305]||(e[305]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[307]||(e[307]=s(" as elements of type ")),e[308]||(e[308]=t("code",null,"ArbFieldElem",-1)),e[309]||(e[309]=s("."))]),t("p",null,[e[312]||(e[312]=s("Every entry ")),t("mjx-container",q2,[(i(),l("svg",U2,e[310]||(e[310]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[311]||(e[311]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[313]||(e[313]=s(" of the array returned satisfies ")),e[314]||(e[314]=t("code",null,"radius(y) < 2^-abs_tol",-1)),e[315]||(e[315]=s("."))]),e[317]||(e[317]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",$2,[t("summary",null,[e[318]||(e[318]=t("a",{id:"conjugates_complex-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_complex-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_complex")],-1)),e[319]||(e[319]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[343]||(e[343]=a('
julia
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[328]||(e[328]=s("Compute the complex conjugates of ")),t("mjx-container",W2,[(i(),l("svg",Y2,e[320]||(e[320]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[321]||(e[321]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[329]||(e[329]=s(" as elements of type ")),e[330]||(e[330]=t("code",null,"AcbFieldElem",-1)),e[331]||(e[331]=s(". Recall that we order the complex conjugates ")),t("mjx-container",_2,[(i(),l("svg",t4,e[322]||(e[322]=[a('',1)]))),e[323]||(e[323]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[332]||(e[332]=s(" such that ")),t("mjx-container",e4,[(i(),l("svg",s4,e[324]||(e[324]=[a('',1)]))),e[325]||(e[325]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[333]||(e[333]=s(" for ")),t("mjx-container",l4,[(i(),l("svg",i4,e[326]||(e[326]=[a('',1)]))),e[327]||(e[327]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[334]||(e[334]=s("."))]),t("p",null,[e[337]||(e[337]=s("Every entry ")),t("mjx-container",a4,[(i(),l("svg",o4,e[335]||(e[335]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[336]||(e[336]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[338]||(e[338]=s(" of the array returned satisfies ")),e[339]||(e[339]=t("code",null,"radius(real(y)) < 2^-abs_tol",-1)),e[340]||(e[340]=s(" and ")),e[341]||(e[341]=t("code",null,"radius(imag(y)) < 2^-abs_tol",-1)),e[342]||(e[342]=s("."))]),e[344]||(e[344]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n4,[t("summary",null,[e[345]||(e[345]=t("a",{id:"conjugates_arb_log_normalise-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_arb_log_normalise-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_arb_log_normalise")],-1)),e[346]||(e[346]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[351]||(e[351]=a(`
julia
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
+1//2*b^2 + b + a
`,1)),t("details",B,[t("summary",null,[e[50]||(e[50]=t("a",{id:"quadratic_defect-Tuple{NumFieldElem, Any}",href:"#quadratic_defect-Tuple{NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"quadratic_defect")],-1)),e[51]||(e[51]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[62]||(e[62]=a('
julia
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}
',1)),t("p",null,[e[58]||(e[58]=s("Returns the valuation of the quadratic defect of the element ")),t("mjx-container",A,[(i(),l("svg",S,e[52]||(e[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[53]||(e[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[59]||(e[59]=s(" at ")),t("mjx-container",N,[(i(),l("svg",G,e[54]||(e[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[55]||(e[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[60]||(e[60]=s(", which can either be prime object or an infinite place of the parent of ")),t("mjx-container",O,[(i(),l("svg",z,e[56]||(e[56]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[57]||(e[57]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[61]||(e[61]=s("."))]),e[63]||(e[63]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",J,[t("summary",null,[e[64]||(e[64]=t("a",{id:"hilbert_symbol-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldElem, Union{AbsNumFieldOrderIdeal, Hecke.RelNumFieldOrderIdeal}}",href:"#hilbert_symbol-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldElem, Union{AbsNumFieldOrderIdeal, Hecke.RelNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"hilbert_symbol")],-1)),e[65]||(e[65]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[70]||(e[70]=a('
julia
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int
',1)),t("p",null,[e[68]||(e[68]=s("Returns the local Hilbert symbol ")),t("mjx-container",R,[(i(),l("svg",K,e[66]||(e[66]=[a('',1)]))),e[67]||(e[67]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"a"),t("mo",null,","),t("mi",null,"b"),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"p")])])],-1))]),e[69]||(e[69]=s("."))]),e[71]||(e[71]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I,[t("summary",null,[e[72]||(e[72]=t("a",{id:"representation_matrix-Tuple{NumFieldElem}",href:"#representation_matrix-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"representation_matrix")],-1)),e[73]||(e[73]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[84]||(e[84]=a('
julia
representation_matrix(a::NumFieldElem) -> MatElem
',1)),t("p",null,[e[80]||(e[80]=s("Returns the representation matrix of ")),t("mjx-container",X,[(i(),l("svg",P,e[74]||(e[74]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[75]||(e[75]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[81]||(e[81]=s(", that is, the matrix representing multiplication with ")),t("mjx-container",q,[(i(),l("svg",U,e[76]||(e[76]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[77]||(e[77]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[82]||(e[82]=s(" with respect to the canonical basis of the parent of ")),t("mjx-container",$,[(i(),l("svg",W,e[78]||(e[78]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[79]||(e[79]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[83]||(e[83]=s("."))]),e[85]||(e[85]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Y,[t("summary",null,[e[86]||(e[86]=t("a",{id:"basis_matrix-Tuple{Vector{AbsSimpleNumFieldElem}}",href:"#basis_matrix-Tuple{Vector{AbsSimpleNumFieldElem}}"},[t("span",{class:"jlbinding"},"basis_matrix")],-1)),e[87]||(e[87]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[116]||(e[116]=a('
julia
basis_matrix(v::Vector{NumFieldElem}) -> Mat
',1)),t("p",null,[e[106]||(e[106]=s("Given a vector ")),t("mjx-container",_,[(i(),l("svg",t1,e[88]||(e[88]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D463",d:"M173 380Q173 405 154 405Q130 405 104 376T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Q21 294 29 316T53 368T97 419T160 441Q202 441 225 417T249 361Q249 344 246 335Q246 329 231 291T200 202T182 113Q182 86 187 69Q200 26 250 26Q287 26 319 60T369 139T398 222T409 277Q409 300 401 317T383 343T365 361T357 383Q357 405 376 424T417 443Q436 443 451 425T467 367Q467 340 455 284T418 159T347 40T241 -11Q177 -11 139 22Q102 54 102 117Q102 148 110 181T151 298Q173 362 173 380Z",style:{"stroke-width":"3"}})])])],-1)]))),e[89]||(e[89]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"v")])],-1))]),e[107]||(e[107]=s(" of ")),t("mjx-container",e1,[(i(),l("svg",s1,e[90]||(e[90]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[91]||(e[91]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[108]||(e[108]=s(" elements of a number field ")),t("mjx-container",l1,[(i(),l("svg",i1,e[92]||(e[92]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[93]||(e[93]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[109]||(e[109]=s(" of degree ")),t("mjx-container",a1,[(i(),l("svg",o1,e[94]||(e[94]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),e[95]||(e[95]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),e[110]||(e[110]=s(", this function returns an ")),t("mjx-container",n1,[(i(),l("svg",Q1,e[96]||(e[96]=[a('',1)]))),e[97]||(e[97]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n"),t("mo",null,"×"),t("mi",null,"d")])],-1))]),e[111]||(e[111]=s(" matrix with entries in the base field of ")),t("mjx-container",r1,[(i(),l("svg",T1,e[98]||(e[98]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[99]||(e[99]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[112]||(e[112]=s(", where row ")),t("mjx-container",d1,[(i(),l("svg",m1,e[100]||(e[100]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[101]||(e[101]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[113]||(e[113]=s(" contains the coefficients of ")),t("mjx-container",p1,[(i(),l("svg",h1,e[102]||(e[102]=[a('',1)]))),e[103]||(e[103]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"v"),t("mo",{stretchy:"false"},"["),t("mi",null,"i"),t("mo",{stretchy:"false"},"]")])],-1))]),e[114]||(e[114]=s(" with respect of the canonical basis of ")),t("mjx-container",g1,[(i(),l("svg",x1,e[104]||(e[104]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[105]||(e[105]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[115]||(e[115]=s("."))]),e[117]||(e[117]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",u1,[t("summary",null,[e[118]||(e[118]=t("a",{id:"coefficients-Tuple{SimpleNumFieldElem}",href:"#coefficients-Tuple{SimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"coefficients")],-1)),e[119]||(e[119]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[120]||(e[120]=a('
julia
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}

Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.

source

',3))]),t("details",k1,[t("summary",null,[e[121]||(e[121]=t("a",{id:"coordinates-Tuple{NumFieldElem}",href:"#coordinates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"coordinates")],-1)),e[122]||(e[122]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[136]||(e[136]=a('
julia
coordinates(x::NumFieldElem{T}) -> Vector{T}
',1)),t("p",null,[e[131]||(e[131]=s("Given an element ")),t("mjx-container",w1,[(i(),l("svg",c1,e[123]||(e[123]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[124]||(e[124]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[132]||(e[132]=s(" in a number field ")),t("mjx-container",y1,[(i(),l("svg",f1,e[125]||(e[125]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[126]||(e[126]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[133]||(e[133]=s(", this function returns the coordinates of ")),t("mjx-container",b1,[(i(),l("svg",v1,e[127]||(e[127]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[128]||(e[128]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[134]||(e[134]=s(" with respect to the basis of ")),t("mjx-container",H1,[(i(),l("svg",M1,e[129]||(e[129]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[130]||(e[130]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[135]||(e[135]=s(" (the output of the 'basis' function)."))]),e[137]||(e[137]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",E1,[t("summary",null,[e[138]||(e[138]=t("a",{id:"absolute_coordinates-Tuple{NumFieldElem}",href:"#absolute_coordinates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_coordinates")],-1)),e[139]||(e[139]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[155]||(e[155]=a('
julia
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}
',1)),t("p",null,[e[148]||(e[148]=s("Given an element ")),t("mjx-container",L1,[(i(),l("svg",j1,e[140]||(e[140]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[141]||(e[141]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[149]||(e[149]=s(" in a number field ")),t("mjx-container",C1,[(i(),l("svg",Z1,e[142]||(e[142]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[143]||(e[143]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[150]||(e[150]=s(", this function returns the coordinates of ")),t("mjx-container",F1,[(i(),l("svg",V1,e[144]||(e[144]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[145]||(e[145]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[151]||(e[151]=s(" with respect to the basis of ")),t("mjx-container",D1,[(i(),l("svg",B1,e[146]||(e[146]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[147]||(e[147]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[152]||(e[152]=s(" over the rationals (the output of the ")),e[153]||(e[153]=t("a",{href:"/v0.34.8/manual/number_fields/fields#absolute_basis-Tuple{NumField}"},[t("code",null,"absolute_basis")],-1)),e[154]||(e[154]=s(" function)."))]),e[156]||(e[156]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",A1,[t("summary",null,[e[157]||(e[157]=t("a",{id:"coeff-Tuple{SimpleNumFieldElem, Int64}",href:"#coeff-Tuple{SimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"coeff")],-1)),e[158]||(e[158]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[159]||(e[159]=a('
julia
coeff(a::SimpleNumFieldElem, i::Int) -> FieldElem

Given a number field element a of a simple number field extension L/K, this function returns the i-th coefficient of a, when expanded in the canonical power basis of L. The result is an element of K.

source

',3))]),t("details",S1,[t("summary",null,[e[160]||(e[160]=t("a",{id:"valuation-Tuple{NumFieldElem, Any}",href:"#valuation-Tuple{NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"valuation")],-1)),e[161]||(e[161]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[178]||(e[178]=a('
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem
',1)),t("p",null,[e[172]||(e[172]=s("Computes the ")),t("mjx-container",N1,[(i(),l("svg",G1,e[162]||(e[162]=[a('',1)]))),e[163]||(e[163]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"p")])])],-1))]),e[173]||(e[173]=s("-adic valuation of ")),t("mjx-container",O1,[(i(),l("svg",z1,e[164]||(e[164]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[165]||(e[165]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[174]||(e[174]=s(", that is, the largest ")),t("mjx-container",J1,[(i(),l("svg",R1,e[166]||(e[166]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D456",d:"M184 600Q184 624 203 642T247 661Q265 661 277 649T290 619Q290 596 270 577T226 557Q211 557 198 567T184 600ZM21 287Q21 295 30 318T54 369T98 420T158 442Q197 442 223 419T250 357Q250 340 236 301T196 196T154 83Q149 61 149 51Q149 26 166 26Q175 26 185 29T208 43T235 78T260 137Q263 149 265 151T282 153Q302 153 302 143Q302 135 293 112T268 61T223 11T161 -11Q129 -11 102 10T74 74Q74 91 79 106T122 220Q160 321 166 341T173 380Q173 404 156 404H154Q124 404 99 371T61 287Q60 286 59 284T58 281T56 279T53 278T49 278T41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[167]||(e[167]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"i")])],-1))]),e[175]||(e[175]=s(" such that ")),t("mjx-container",K1,[(i(),l("svg",I1,e[168]||(e[168]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[169]||(e[169]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[176]||(e[176]=s(" is contained in ")),t("mjx-container",X1,[(i(),l("svg",P1,e[170]||(e[170]=[a('',1)]))),e[171]||(e[171]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"p")]),t("mi",null,"i")])])],-1))]),e[177]||(e[177]=s("."))]),e[179]||(e[179]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q1,[t("summary",null,[e[180]||(e[180]=t("a",{id:"torsion_unit_order-Tuple{AbsSimpleNumFieldElem, Int64}",href:"#torsion_unit_order-Tuple{AbsSimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"torsion_unit_order")],-1)),e[181]||(e[181]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[202]||(e[202]=a('
julia
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)
',1)),t("p",null,[e[192]||(e[192]=s("Given a torsion unit ")),t("mjx-container",U1,[(i(),l("svg",$1,e[182]||(e[182]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[183]||(e[183]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[193]||(e[193]=s(" together with a multiple ")),t("mjx-container",W1,[(i(),l("svg",Y1,e[184]||(e[184]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[185]||(e[185]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[194]||(e[194]=s(" of its order, compute the order of ")),t("mjx-container",_1,[(i(),l("svg",t2,e[186]||(e[186]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[187]||(e[187]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[195]||(e[195]=s(", that is, the smallest ")),t("mjx-container",e2,[(i(),l("svg",s2,e[188]||(e[188]=[a('',1)]))),e[189]||(e[189]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"1")])])])],-1))]),e[196]||(e[196]=s(" such that ")),t("mjx-container",l2,[(i(),l("svg",i2,e[190]||(e[190]=[a('',1)]))),e[191]||(e[191]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"="),t("mn",null,"1")])],-1))]),e[197]||(e[197]=s("."))]),t("p",null,[e[200]||(e[200]=s("It is not checked whether ")),t("mjx-container",a2,[(i(),l("svg",o2,e[198]||(e[198]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[199]||(e[199]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[201]||(e[201]=s(" is a torsion unit."))]),e[203]||(e[203]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n2,[t("summary",null,[e[204]||(e[204]=t("a",{id:"tr-Tuple{NumFieldElem}",href:"#tr-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"tr")],-1)),e[205]||(e[205]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[216]||(e[216]=a('
julia
tr(a::NumFieldElem) -> NumFieldElem
',1)),t("p",null,[e[212]||(e[212]=s("Returns the trace of an element ")),t("mjx-container",Q2,[(i(),l("svg",r2,e[206]||(e[206]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[207]||(e[207]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[213]||(e[213]=s(" of a number field extension ")),t("mjx-container",T2,[(i(),l("svg",d2,e[208]||(e[208]=[a('',1)]))),e[209]||(e[209]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[214]||(e[214]=s(". This will be an element of ")),t("mjx-container",m2,[(i(),l("svg",p2,e[210]||(e[210]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[211]||(e[211]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[215]||(e[215]=s("."))]),e[217]||(e[217]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h2,[t("summary",null,[e[218]||(e[218]=t("a",{id:"absolute_tr-Tuple{NumFieldElem}",href:"#absolute_tr-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_tr")],-1)),e[219]||(e[219]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[227]||(e[227]=a('
julia
absolute_tr(a::NumFieldElem) -> QQFieldElem
',1)),t("p",null,[e[224]||(e[224]=s("Given a number field element ")),t("mjx-container",g2,[(i(),l("svg",x2,e[220]||(e[220]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[221]||(e[221]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[225]||(e[225]=s(", returns the absolute trace of ")),t("mjx-container",u2,[(i(),l("svg",k2,e[222]||(e[222]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[223]||(e[223]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[226]||(e[226]=s("."))]),e[228]||(e[228]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",w2,[t("summary",null,[e[229]||(e[229]=t("a",{id:"algebraic_split-Tuple{AbsSimpleNumFieldElem}",href:"#algebraic_split-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"algebraic_split")],-1)),e[230]||(e[230]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[231]||(e[231]=a('
julia
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElem

Writes the input as a quotient of two "small" algebraic integers.

source

',3))]),e[576]||(e[576]=t("h3",{id:"conjugates",tabindex:"-1"},[s("Conjugates "),t("a",{class:"header-anchor",href:"#conjugates","aria-label":'Permalink to "Conjugates"'},"​")],-1)),t("details",c2,[t("summary",null,[e[232]||(e[232]=t("a",{id:"conjugates-Tuple{NumFieldElem, AcbField}",href:"#conjugates-Tuple{NumFieldElem, AcbField}"},[t("span",{class:"jlbinding"},"conjugates")],-1)),e[233]||(e[233]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[261]||(e[261]=a('
julia
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[242]||(e[242]=s("Compute the conjugates of ")),t("mjx-container",y2,[(i(),l("svg",f2,e[234]||(e[234]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[235]||(e[235]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[243]||(e[243]=s(" as elements of type ")),e[244]||(e[244]=t("code",null,"AcbFieldElem",-1)),e[245]||(e[245]=s(". Recall that we order the complex conjugates ")),t("mjx-container",b2,[(i(),l("svg",v2,e[236]||(e[236]=[a('',1)]))),e[237]||(e[237]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[246]||(e[246]=s(" such that ")),t("mjx-container",H2,[(i(),l("svg",M2,e[238]||(e[238]=[a('',1)]))),e[239]||(e[239]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[247]||(e[247]=s(" for ")),t("mjx-container",E2,[(i(),l("svg",L2,e[240]||(e[240]=[a('',1)]))),e[241]||(e[241]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[248]||(e[248]=s("."))]),t("p",null,[e[251]||(e[251]=s("Let ")),e[252]||(e[252]=t("code",null,"p",-1)),e[253]||(e[253]=s(" be the precision of ")),e[254]||(e[254]=t("code",null,"C",-1)),e[255]||(e[255]=s(", then every entry ")),t("mjx-container",j2,[(i(),l("svg",C2,e[249]||(e[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[250]||(e[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[256]||(e[256]=s(" of the vector returned satisfies ")),e[257]||(e[257]=t("code",null,"radius(real(y)) < 2^-p",-1)),e[258]||(e[258]=s(" and ")),e[259]||(e[259]=t("code",null,"radius(imag(y)) < 2^-p",-1)),e[260]||(e[260]=s(" respectively."))]),e[262]||(e[262]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Z2,[t("summary",null,[e[263]||(e[263]=t("a",{id:"conjugates-Tuple{NumFieldElem}",href:"#conjugates-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates")],-1)),e[264]||(e[264]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[288]||(e[288]=a('
julia
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[273]||(e[273]=s("Compute the conjugates of ")),t("mjx-container",F2,[(i(),l("svg",V2,e[265]||(e[265]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[266]||(e[266]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[274]||(e[274]=s(" as elements of type ")),e[275]||(e[275]=t("code",null,"AcbFieldElem",-1)),e[276]||(e[276]=s(". Recall that we order the complex conjugates ")),t("mjx-container",D2,[(i(),l("svg",B2,e[267]||(e[267]=[a('',1)]))),e[268]||(e[268]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[277]||(e[277]=s(" such that ")),t("mjx-container",A2,[(i(),l("svg",S2,e[269]||(e[269]=[a('',1)]))),e[270]||(e[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[278]||(e[278]=s(" for ")),t("mjx-container",N2,[(i(),l("svg",G2,e[271]||(e[271]=[a('',1)]))),e[272]||(e[272]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[279]||(e[279]=s("."))]),t("p",null,[e[282]||(e[282]=s("Every entry ")),t("mjx-container",O2,[(i(),l("svg",z2,e[280]||(e[280]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[281]||(e[281]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[283]||(e[283]=s(" of the vector returned satisfies ")),e[284]||(e[284]=t("code",null,"radius(real(y)) < 2^-abs_tol",-1)),e[285]||(e[285]=s(" and ")),e[286]||(e[286]=t("code",null,"radius(imag(y)) < 2^-abs_tol",-1)),e[287]||(e[287]=s(" respectively."))]),e[289]||(e[289]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",J2,[t("summary",null,[e[290]||(e[290]=t("a",{id:"conjugates_log-Tuple{AbsSimpleNumFieldElem, Int64}",href:"#conjugates_log-Tuple{AbsSimpleNumFieldElem, Int64}"},[t("span",{class:"jlbinding"},"conjugates_log")],-1)),e[291]||(e[291]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[300]||(e[300]=a('
julia
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[294]||(e[294]=s("Returns the elements ")),t("mjx-container",R2,[(i(),l("svg",K2,e[292]||(e[292]=[a('',1)]))),e[293]||(e[293]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mn",null,"1")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mi",null,"r")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mn",null,"2"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("mn",null,"2"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mo",{"data-mjx-texclass":"OPEN",fence:"false",stretchy:"false"},"|"),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"CLOSE",fence:"false",stretchy:"false"},"|"),t("mo",{stretchy:"false"},")"),t("mo",{stretchy:"false"},")")])],-1))]),e[295]||(e[295]=s(" as elements of type ")),e[296]||(e[296]=t("code",null,"ArbFieldElem",-1)),e[297]||(e[297]=s(" with radius less then ")),e[298]||(e[298]=t("code",null,"2^-abs_tol",-1)),e[299]||(e[299]=s("."))]),e[301]||(e[301]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I2,[t("summary",null,[e[302]||(e[302]=t("a",{id:"conjugates_real-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_real-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_real")],-1)),e[303]||(e[303]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[316]||(e[316]=a('
julia
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[306]||(e[306]=s("Compute the real conjugates of ")),t("mjx-container",X2,[(i(),l("svg",P2,e[304]||(e[304]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[305]||(e[305]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[307]||(e[307]=s(" as elements of type ")),e[308]||(e[308]=t("code",null,"ArbFieldElem",-1)),e[309]||(e[309]=s("."))]),t("p",null,[e[312]||(e[312]=s("Every entry ")),t("mjx-container",q2,[(i(),l("svg",U2,e[310]||(e[310]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[311]||(e[311]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[313]||(e[313]=s(" of the array returned satisfies ")),e[314]||(e[314]=t("code",null,"radius(y) < 2^-abs_tol",-1)),e[315]||(e[315]=s("."))]),e[317]||(e[317]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",$2,[t("summary",null,[e[318]||(e[318]=t("a",{id:"conjugates_complex-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_complex-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_complex")],-1)),e[319]||(e[319]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[343]||(e[343]=a('
julia
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}
',1)),t("p",null,[e[328]||(e[328]=s("Compute the complex conjugates of ")),t("mjx-container",W2,[(i(),l("svg",Y2,e[320]||(e[320]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[321]||(e[321]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[329]||(e[329]=s(" as elements of type ")),e[330]||(e[330]=t("code",null,"AcbFieldElem",-1)),e[331]||(e[331]=s(". Recall that we order the complex conjugates ")),t("mjx-container",_2,[(i(),l("svg",t4,e[322]||(e[322]=[a('',1)]))),e[323]||(e[323]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,","),t("mo",null,"."),t("mo",null,"."),t("mo",null,"."),t("mo",null,","),t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"2"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[332]||(e[332]=s(" such that ")),t("mjx-container",e4,[(i(),l("svg",s4,e[324]||(e[324]=[a('',1)]))),e[325]||(e[325]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mover",null,[t("mrow",null,[t("msub",null,[t("mi",null,"σ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mi",null,"s")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")]),t("mo",{accent:"true"},"―")])])],-1))]),e[333]||(e[333]=s(" for ")),t("mjx-container",l4,[(i(),l("svg",i4,e[326]||(e[326]=[a('',1)]))),e[327]||(e[327]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"r"),t("mo",null,"+"),t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,"≤"),t("mi",null,"r"),t("mo",null,"+"),t("mi",null,"s")])],-1))]),e[334]||(e[334]=s("."))]),t("p",null,[e[337]||(e[337]=s("Every entry ")),t("mjx-container",a4,[(i(),l("svg",o4,e[335]||(e[335]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D466",d:"M21 287Q21 301 36 335T84 406T158 442Q199 442 224 419T250 355Q248 336 247 334Q247 331 231 288T198 191T182 105Q182 62 196 45T238 27Q261 27 281 38T312 61T339 94Q339 95 344 114T358 173T377 247Q415 397 419 404Q432 431 462 431Q475 431 483 424T494 412T496 403Q496 390 447 193T391 -23Q363 -106 294 -155T156 -205Q111 -205 77 -183T43 -117Q43 -95 50 -80T69 -58T89 -48T106 -45Q150 -45 150 -87Q150 -107 138 -122T115 -142T102 -147L99 -148Q101 -153 118 -160T152 -167H160Q177 -167 186 -165Q219 -156 247 -127T290 -65T313 -9T321 21L315 17Q309 13 296 6T270 -6Q250 -11 231 -11Q185 -11 150 11T104 82Q103 89 103 113Q103 170 138 262T173 379Q173 380 173 381Q173 390 173 393T169 400T158 404H154Q131 404 112 385T82 344T65 302T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[336]||(e[336]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"y")])],-1))]),e[338]||(e[338]=s(" of the array returned satisfies ")),e[339]||(e[339]=t("code",null,"radius(real(y)) < 2^-abs_tol",-1)),e[340]||(e[340]=s(" and ")),e[341]||(e[341]=t("code",null,"radius(imag(y)) < 2^-abs_tol",-1)),e[342]||(e[342]=s("."))]),e[344]||(e[344]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n4,[t("summary",null,[e[345]||(e[345]=t("a",{id:"conjugates_arb_log_normalise-Tuple{AbsSimpleNumFieldElem}",href:"#conjugates_arb_log_normalise-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"conjugates_arb_log_normalise")],-1)),e[346]||(e[346]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[351]||(e[351]=a(`
julia
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
 conjugates_arb_log_normalise(x::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, p::Int = 10)
`,1)),t("p",null,[e[349]||(e[349]=s('The "normalised" logarithms, i.e. the array ')),t("mjx-container",Q4,[(i(),l("svg",r4,e[347]||(e[347]=[a('',1)]))),e[348]||(e[348]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"c"),t("mi",null,"i")]),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("msup",null,[t("mi",null,"x"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",{stretchy:"false"},"("),t("mi",null,"i"),t("mo",{stretchy:"false"},")")])]),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mo",null,"−"),t("mn",null,"1"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"n"),t("mi",null,"log"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"N"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),e[350]||(e[350]=s(", so the (weighted) sum adds up to zero."))]),e[352]||(e[352]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",T4,[t("summary",null,[e[353]||(e[353]=t("a",{id:"minkowski_map-Tuple{AbsSimpleNumFieldElem}",href:"#minkowski_map-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"minkowski_map")],-1)),e[354]||(e[354]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[363]||(e[363]=a('
julia
minkowski_map(a::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}
',1)),t("p",null,[e[357]||(e[357]=s("Returns the image of ")),t("mjx-container",d4,[(i(),l("svg",m4,e[355]||(e[355]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[356]||(e[356]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[358]||(e[358]=s(" under the Minkowski embedding. Every entry of the array returned is of type ")),e[359]||(e[359]=t("code",null,"ArbFieldElem",-1)),e[360]||(e[360]=s(" with radius less then ")),e[361]||(e[361]=t("code",null,"2^(-abs_tol)",-1)),e[362]||(e[362]=s("."))]),e[364]||(e[364]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[577]||(e[577]=t("h3",{id:"predicates",tabindex:"-1"},[s("Predicates "),t("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),t("details",p4,[t("summary",null,[e[365]||(e[365]=t("a",{id:"is_integral-Tuple{NumFieldElem}",href:"#is_integral-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"is_integral")],-1)),e[366]||(e[366]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[374]||(e[374]=a('
julia
is_integral(a::NumFieldElem) -> Bool
',1)),t("p",null,[e[371]||(e[371]=s("Returns whether ")),t("mjx-container",h4,[(i(),l("svg",g4,e[367]||(e[367]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[368]||(e[368]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[372]||(e[372]=s(" is integral, that is, whether the minimal polynomial of ")),t("mjx-container",x4,[(i(),l("svg",u4,e[369]||(e[369]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[370]||(e[370]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[373]||(e[373]=s(" has integral coefficients."))]),e[375]||(e[375]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",k4,[t("summary",null,[e[376]||(e[376]=t("a",{id:"is_torsion_unit-Tuple{AbsSimpleNumFieldElem}",href:"#is_torsion_unit-Tuple{AbsSimpleNumFieldElem}"},[t("span",{class:"jlbinding"},"is_torsion_unit")],-1)),e[377]||(e[377]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[399]||(e[399]=a('
julia
is_torsion_unit(x::AbsSimpleNumFieldElem, checkisunit::Bool = false) -> Bool
',1)),t("p",null,[e[384]||(e[384]=s("Returns whether ")),t("mjx-container",w4,[(i(),l("svg",c4,e[378]||(e[378]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[379]||(e[379]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[385]||(e[385]=s(" is a torsion unit, that is, whether there exists ")),t("mjx-container",y4,[(i(),l("svg",f4,e[380]||(e[380]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[381]||(e[381]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[386]||(e[386]=s(" such that ")),t("mjx-container",b4,[(i(),l("svg",v4,e[382]||(e[382]=[a('',1)]))),e[383]||(e[383]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mi",null,"x"),t("mi",null,"n")]),t("mo",null,"="),t("mn",null,"1")])],-1))]),e[387]||(e[387]=s("."))]),t("p",null,[e[392]||(e[392]=s("If ")),e[393]||(e[393]=t("code",null,"checkisunit",-1)),e[394]||(e[394]=s(" is ")),e[395]||(e[395]=t("code",null,"true",-1)),e[396]||(e[396]=s(", it is first checked whether ")),t("mjx-container",H4,[(i(),l("svg",M4,e[388]||(e[388]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[389]||(e[389]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[397]||(e[397]=s(" is a unit of the maximal order of the number field ")),t("mjx-container",E4,[(i(),l("svg",L4,e[390]||(e[390]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D465",d:"M52 289Q59 331 106 386T222 442Q257 442 286 424T329 379Q371 442 430 442Q467 442 494 420T522 361Q522 332 508 314T481 292T458 288Q439 288 427 299T415 328Q415 374 465 391Q454 404 425 404Q412 404 406 402Q368 386 350 336Q290 115 290 78Q290 50 306 38T341 26Q378 26 414 59T463 140Q466 150 469 151T485 153H489Q504 153 504 145Q504 144 502 134Q486 77 440 33T333 -11Q263 -11 227 52Q186 -10 133 -10H127Q78 -10 57 16T35 71Q35 103 54 123T99 143Q142 143 142 101Q142 81 130 66T107 46T94 41L91 40Q91 39 97 36T113 29T132 26Q168 26 194 71Q203 87 217 139T245 247T261 313Q266 340 266 352Q266 380 251 392T217 404Q177 404 142 372T93 290Q91 281 88 280T72 278H58Q52 284 52 289Z",style:{"stroke-width":"3"}})])])],-1)]))),e[391]||(e[391]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x")])],-1))]),e[398]||(e[398]=s(" is lying in."))]),e[400]||(e[400]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",j4,[t("summary",null,[e[401]||(e[401]=t("a",{id:"is_local_norm-Tuple{NumField, NumFieldElem, Any}",href:"#is_local_norm-Tuple{NumField, NumFieldElem, Any}"},[t("span",{class:"jlbinding"},"is_local_norm")],-1)),e[402]||(e[402]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[426]||(e[426]=a('
julia
is_local_norm(L::NumField, a::NumFieldElem, P)
',1)),t("p",null,[e[415]||(e[415]=s("Given a number field ")),t("mjx-container",C4,[(i(),l("svg",Z4,e[403]||(e[403]=[a('',1)]))),e[404]||(e[404]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[416]||(e[416]=s(", an element ")),t("mjx-container",F4,[(i(),l("svg",V4,e[405]||(e[405]=[a('',1)]))),e[406]||(e[406]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a"),t("mo",null,"∈"),t("mi",null,"K")])],-1))]),e[417]||(e[417]=s(" and a prime ideal ")),t("mjx-container",D4,[(i(),l("svg",B4,e[407]||(e[407]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[408]||(e[408]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[418]||(e[418]=s(" of ")),t("mjx-container",A4,[(i(),l("svg",S4,e[409]||(e[409]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[410]||(e[410]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[419]||(e[419]=s(", returns whether ")),t("mjx-container",N4,[(i(),l("svg",G4,e[411]||(e[411]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[412]||(e[412]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[420]||(e[420]=s(" is a local norm at ")),t("mjx-container",O4,[(i(),l("svg",z4,e[413]||(e[413]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[414]||(e[414]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[421]||(e[421]=s("."))]),t("p",null,[e[424]||(e[424]=s("The number field ")),t("mjx-container",J4,[(i(),l("svg",R4,e[422]||(e[422]=[a('',1)]))),e[423]||(e[423]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[425]||(e[425]=s(" must be a simple extension of degree 2."))]),e[427]||(e[427]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",K4,[t("summary",null,[e[428]||(e[428]=t("a",{id:"is_norm_divisible-Tuple{AbsSimpleNumFieldElem, ZZRingElem}",href:"#is_norm_divisible-Tuple{AbsSimpleNumFieldElem, ZZRingElem}"},[t("span",{class:"jlbinding"},"is_norm_divisible")],-1)),e[429]||(e[429]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[440]||(e[440]=a('
julia
is_norm_divisible(a::AbsSimpleNumFieldElem, n::ZZRingElem) -> Bool
',1)),t("p",null,[e[436]||(e[436]=s("Checks if the norm of ")),t("mjx-container",I4,[(i(),l("svg",X4,e[430]||(e[430]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[431]||(e[431]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[437]||(e[437]=s(" is divisible by ")),t("mjx-container",P4,[(i(),l("svg",q4,e[432]||(e[432]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45B",d:"M21 287Q22 293 24 303T36 341T56 388T89 425T135 442Q171 442 195 424T225 390T231 369Q231 367 232 367L243 378Q304 442 382 442Q436 442 469 415T503 336T465 179T427 52Q427 26 444 26Q450 26 453 27Q482 32 505 65T540 145Q542 153 560 153Q580 153 580 145Q580 144 576 130Q568 101 554 73T508 17T439 -10Q392 -10 371 17T350 73Q350 92 386 193T423 345Q423 404 379 404H374Q288 404 229 303L222 291L189 157Q156 26 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 112 180T152 343Q153 348 153 366Q153 405 129 405Q91 405 66 305Q60 285 60 284Q58 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),e[433]||(e[433]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"n")])],-1))]),e[438]||(e[438]=s(", assuming that the norm of ")),t("mjx-container",U4,[(i(),l("svg",$4,e[434]||(e[434]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[435]||(e[435]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[439]||(e[439]=s(" is an integer."))]),e[441]||(e[441]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",W4,[t("summary",null,[e[442]||(e[442]=t("a",{id:"is_norm-Tuple{AbsSimpleNumField, ZZRingElem}",href:"#is_norm-Tuple{AbsSimpleNumField, ZZRingElem}"},[t("span",{class:"jlbinding"},"is_norm")],-1)),e[443]||(e[443]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[457]||(e[457]=a('
julia
is_norm(K::AbsSimpleNumField, a::ZZRingElem; extra::Vector{ZZRingElem}) -> Bool, AbsSimpleNumFieldElem
',1)),t("p",null,[e[452]||(e[452]=s("For a ZZRingElem ")),t("mjx-container",Y4,[(i(),l("svg",_4,e[444]||(e[444]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[445]||(e[445]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[453]||(e[453]=s(", try to find ")),t("mjx-container",t3,[(i(),l("svg",e3,e[446]||(e[446]=[a('',1)]))),e[447]||(e[447]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"T"),t("mo",null,"∈"),t("mi",null,"K")])],-1))]),e[454]||(e[454]=s(" s.th. ")),t("mjx-container",s3,[(i(),l("svg",l3,e[448]||(e[448]=[a('',1)]))),e[449]||(e[449]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N"),t("mo",{stretchy:"false"},"("),t("mi",null,"T"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"a")])],-1))]),e[455]||(e[455]=s(" holds. If successful, return true and ")),t("mjx-container",i3,[(i(),l("svg",a3,e[450]||(e[450]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D447",d:"M40 437Q21 437 21 445Q21 450 37 501T71 602L88 651Q93 669 101 677H569H659Q691 677 697 676T704 667Q704 661 687 553T668 444Q668 437 649 437Q640 437 637 437T631 442L629 445Q629 451 635 490T641 551Q641 586 628 604T573 629Q568 630 515 631Q469 631 457 630T439 622Q438 621 368 343T298 60Q298 48 386 46Q418 46 427 45T436 36Q436 31 433 22Q429 4 424 1L422 0Q419 0 415 0Q410 0 363 1T228 2Q99 2 64 0H49Q43 6 43 9T45 27Q49 40 55 46H83H94Q174 46 189 55Q190 56 191 56Q196 59 201 76T241 233Q258 301 269 344Q339 619 339 625Q339 630 310 630H279Q212 630 191 624Q146 614 121 583T67 467Q60 445 57 441T43 437H40Z",style:{"stroke-width":"3"}})])])],-1)]))),e[451]||(e[451]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"T")])],-1))]),e[456]||(e[456]=s(", otherwise false and some element. In \\testtt{extra} one can pass in additional prime numbers that are allowed to occur in the solution. This will then be supplemented. The element will be returned in factored form."))]),e[458]||(e[458]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[578]||(e[578]=t("h3",{id:"invariants",tabindex:"-1"},[s("Invariants "),t("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),t("details",o3,[t("summary",null,[e[459]||(e[459]=t("a",{id:"norm-Tuple{NumFieldElem}",href:"#norm-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"norm")],-1)),e[460]||(e[460]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[471]||(e[471]=a('
julia
norm(a::NumFieldElem) -> NumFieldElem
',1)),t("p",null,[e[467]||(e[467]=s("Returns the norm of an element ")),t("mjx-container",n3,[(i(),l("svg",Q3,e[461]||(e[461]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[462]||(e[462]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[468]||(e[468]=s(" of a number field extension ")),t("mjx-container",r3,[(i(),l("svg",T3,e[463]||(e[463]=[a('',1)]))),e[464]||(e[464]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[469]||(e[469]=s(". This will be an element of ")),t("mjx-container",d3,[(i(),l("svg",m3,e[465]||(e[465]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[466]||(e[466]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[470]||(e[470]=s("."))]),e[472]||(e[472]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",p3,[t("summary",null,[e[473]||(e[473]=t("a",{id:"absolute_norm-Tuple{NumFieldElem}",href:"#absolute_norm-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_norm")],-1)),e[474]||(e[474]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[482]||(e[482]=a('
julia
absolute_norm(a::NumFieldElem) -> QQFieldElem
',1)),t("p",null,[e[479]||(e[479]=s("Given a number field element ")),t("mjx-container",h3,[(i(),l("svg",g3,e[475]||(e[475]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[476]||(e[476]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[480]||(e[480]=s(", returns the absolute norm of ")),t("mjx-container",x3,[(i(),l("svg",u3,e[477]||(e[477]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[478]||(e[478]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[481]||(e[481]=s("."))]),e[483]||(e[483]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",k3,[t("summary",null,[e[484]||(e[484]=t("a",{id:"minpoly-Tuple{NumFieldElem}",href:"#minpoly-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"minpoly")],-1)),e[485]||(e[485]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[499]||(e[499]=a('
julia
minpoly(a::NumFieldElem) -> PolyRingElem
',1)),t("p",null,[e[494]||(e[494]=s("Given a number field element ")),t("mjx-container",w3,[(i(),l("svg",c3,e[486]||(e[486]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[487]||(e[487]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[495]||(e[495]=s(" of a number field ")),t("mjx-container",y3,[(i(),l("svg",f3,e[488]||(e[488]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[489]||(e[489]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[496]||(e[496]=s(", this function returns the minimal polynomial of ")),t("mjx-container",b3,[(i(),l("svg",v3,e[490]||(e[490]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[491]||(e[491]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[497]||(e[497]=s(" over the base field of ")),t("mjx-container",H3,[(i(),l("svg",M3,e[492]||(e[492]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[493]||(e[493]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[498]||(e[498]=s("."))]),e[500]||(e[500]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",E3,[t("summary",null,[e[501]||(e[501]=t("a",{id:"absolute_minpoly-Tuple{NumFieldElem}",href:"#absolute_minpoly-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_minpoly")],-1)),e[502]||(e[502]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[516]||(e[516]=a('
julia
absolute_minpoly(a::NumFieldElem) -> PolyRingElem
',1)),t("p",null,[e[511]||(e[511]=s("Given a number field element ")),t("mjx-container",L3,[(i(),l("svg",j3,e[503]||(e[503]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[504]||(e[504]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[512]||(e[512]=s(" of a number field ")),t("mjx-container",C3,[(i(),l("svg",Z3,e[505]||(e[505]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[506]||(e[506]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[513]||(e[513]=s(", this function returns the minimal polynomial of ")),t("mjx-container",F3,[(i(),l("svg",V3,e[507]||(e[507]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[508]||(e[508]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[514]||(e[514]=s(" over the rationals ")),t("mjx-container",D3,[(i(),l("svg",B3,e[509]||(e[509]=[a('',1)]))),e[510]||(e[510]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),e[515]||(e[515]=s("."))]),e[517]||(e[517]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",A3,[t("summary",null,[e[518]||(e[518]=t("a",{id:"charpoly-Tuple{NumFieldElem}",href:"#charpoly-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"charpoly")],-1)),e[519]||(e[519]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[533]||(e[533]=a('
julia
charpoly(a::NumFieldElem) -> PolyRingElem
',1)),t("p",null,[e[528]||(e[528]=s("Given a number field element ")),t("mjx-container",S3,[(i(),l("svg",N3,e[520]||(e[520]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[521]||(e[521]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[529]||(e[529]=s(" of a number field ")),t("mjx-container",G3,[(i(),l("svg",O3,e[522]||(e[522]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[523]||(e[523]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[530]||(e[530]=s(", this function returns the characteristic polynomial of ")),t("mjx-container",z3,[(i(),l("svg",J3,e[524]||(e[524]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[525]||(e[525]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[531]||(e[531]=s(" over the base field of ")),t("mjx-container",R3,[(i(),l("svg",K3,e[526]||(e[526]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[527]||(e[527]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[532]||(e[532]=s("."))]),e[534]||(e[534]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I3,[t("summary",null,[e[535]||(e[535]=t("a",{id:"absolute_charpoly-Tuple{NumFieldElem}",href:"#absolute_charpoly-Tuple{NumFieldElem}"},[t("span",{class:"jlbinding"},"absolute_charpoly")],-1)),e[536]||(e[536]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[550]||(e[550]=a('
julia
absolute_charpoly(a::NumFieldElem) -> PolyRingElem
',1)),t("p",null,[e[545]||(e[545]=s("Given a number field element ")),t("mjx-container",X3,[(i(),l("svg",P3,e[537]||(e[537]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[538]||(e[538]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[546]||(e[546]=s(" of a number field ")),t("mjx-container",q3,[(i(),l("svg",U3,e[539]||(e[539]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[540]||(e[540]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[547]||(e[547]=s(", this function returns the characteristic polynomial of ")),t("mjx-container",$3,[(i(),l("svg",W3,e[541]||(e[541]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[542]||(e[542]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[548]||(e[548]=s(" over the rationals ")),t("mjx-container",Y3,[(i(),l("svg",_3,e[543]||(e[543]=[a('',1)]))),e[544]||(e[544]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])],-1))]),e[549]||(e[549]=s("."))]),e[551]||(e[551]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t6,[t("summary",null,[e[552]||(e[552]=t("a",{id:"norm-Tuple{NumFieldElem, NumField}",href:"#norm-Tuple{NumFieldElem, NumField}"},[t("span",{class:"jlbinding"},"norm")],-1)),e[553]||(e[553]=s()),n(o,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[570]||(e[570]=a('
julia
norm(a::NumFieldElem, k::NumField) -> NumFieldElem
',1)),t("p",null,[e[564]||(e[564]=s("Returns the norm of an element ")),t("mjx-container",e6,[(i(),l("svg",s6,e[554]||(e[554]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[555]||(e[555]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[565]||(e[565]=s(" of a number field ")),t("mjx-container",l6,[(i(),l("svg",i6,e[556]||(e[556]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[557]||(e[557]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[566]||(e[566]=s(" with respect to a subfield ")),t("mjx-container",a6,[(i(),l("svg",o6,e[558]||(e[558]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),e[559]||(e[559]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"k")])],-1))]),e[567]||(e[567]=s(" of ")),t("mjx-container",n6,[(i(),l("svg",Q6,e[560]||(e[560]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[561]||(e[561]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[568]||(e[568]=s(". This will be an element of ")),t("mjx-container",r6,[(i(),l("svg",T6,e[562]||(e[562]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),e[563]||(e[563]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"k")])],-1))]),e[569]||(e[569]=s("."))]),e[571]||(e[571]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const w6=Q(T,[["render",d6]]);export{k6 as __pageData,w6 as default}; diff --git a/v0.34.8/assets/manual_orders_introduction.md.BTbzdtxm.js b/v0.34.8/assets/manual_orders_introduction.md.BTbzdtxm.js index c28d8279d6..b3f7b1b12b 100644 --- a/v0.34.8/assets/manual_orders_introduction.md.BTbzdtxm.js +++ b/v0.34.8/assets/manual_orders_introduction.md.BTbzdtxm.js @@ -1,4 +1,4 @@ -import{_ as Q,c as a,a5 as l,j as t,a as s,o as i}from"./chunks/framework.DbhH0_mT.js";const X1=JSON.parse('{"title":"Introduction","description":"","frontmatter":{},"headers":[],"relativePath":"manual/orders/introduction.md","filePath":"manual/orders/introduction.md","lastUpdated":null}'),n={name:"manual/orders/introduction.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.623ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5137.2 1000","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.704ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5173.2 1000","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.38ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6798.1 1000","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.355ex"},xmlns:"http://www.w3.org/2000/svg",width:"17.924ex",height:"9.842ex",role:"img",focusable:"false",viewBox:"0 -2425 7922.6 4350","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.851ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 9658.1 1000","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.153ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3603.6 1000","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.592ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6891.6 1000","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.683ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2070 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},o1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},h1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},f1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.784ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2998.6 1000","aria-hidden":"true"},v1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.899ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3049.5 840.8","aria-hidden":"true"},M1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.454ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 2852.5 840.8","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.871ex",height:"1.42ex",role:"img",focusable:"false",viewBox:"0 -470 827 627.8","aria-hidden":"true"},F1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.714ex",height:"1.952ex",role:"img",focusable:"false",viewBox:"0 -705 2967.5 862.8","aria-hidden":"true"};function O1(A1,e,R1,S1,G1,J1){return i(),a("div",null,[e[139]||(e[139]=l('

Introduction

This chapter deals with number fields and orders there of. We follow the common terminology and conventions as e.g. used in [2], [1], [3] or [4].

',2)),t("p",null,[e[16]||(e[16]=s("If ")),t("mjx-container",o,[(i(),a("svg",r,e[0]||(e[0]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[1]||(e[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[17]||(e[17]=s(" is a number field, then an ")),e[18]||(e[18]=t("em",null,"order",-1)),e[19]||(e[19]=s()),t("mjx-container",T,[(i(),a("svg",d,e[2]||(e[2]=[l('',1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[20]||(e[20]=s(" of ")),t("mjx-container",m,[(i(),a("svg",p,e[4]||(e[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[21]||(e[21]=s(" is a subring of the ring of integers ")),t("mjx-container",h,[(i(),a("svg",g,e[6]||(e[6]=[l('',1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[22]||(e[22]=s(" of ")),t("mjx-container",x,[(i(),a("svg",k,e[8]||(e[8]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[9]||(e[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[23]||(e[23]=s(", which is free of rank ")),t("mjx-container",w,[(i(),a("svg",u,e[10]||(e[10]=[l('',1)]))),e[11]||(e[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[24]||(e[24]=s(" as a ")),t("mjx-container",c,[(i(),a("svg",y,e[12]||(e[12]=[l('',1)]))),e[13]||(e[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[25]||(e[25]=s("-module. Depending on whether ")),t("mjx-container",f,[(i(),a("svg",b,e[14]||(e[14]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[15]||(e[15]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[26]||(e[26]=s(" is an absolute field or relative field, orders are treated differently. As far as possible, the interaction and the interface for orders of absolute number fields and of relative number fields is the same."))]),e[140]||(e[140]=t("h2",{id:"Orders-of-absolute-number-fields",tabindex:"-1"},[s("Orders of absolute number fields "),t("a",{class:"header-anchor",href:"#Orders-of-absolute-number-fields","aria-label":'Permalink to "Orders of absolute number fields {#Orders-of-absolute-number-fields}"'},"​")],-1)),t("p",null,[e[45]||(e[45]=s("Assume that ")),t("mjx-container",v,[(i(),a("svg",L,e[27]||(e[27]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[28]||(e[28]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[46]||(e[46]=s(" is defined as an absolute field. An order ")),t("mjx-container",H,[(i(),a("svg",E,e[29]||(e[29]=[l('',1)]))),e[30]||(e[30]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[47]||(e[47]=s(" of such a field are constructed (implicitly) by specifying a ")),t("mjx-container",M,[(i(),a("svg",j,e[31]||(e[31]=[l('',1)]))),e[32]||(e[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[48]||(e[48]=s("-basis, which is referred to as the ")),e[49]||(e[49]=t("em",null,"basis",-1)),e[50]||(e[50]=s(" of ")),t("mjx-container",C,[(i(),a("svg",Z,e[33]||(e[33]=[l('',1)]))),e[34]||(e[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[51]||(e[51]=s(". If ")),t("mjx-container",V,[(i(),a("svg",D,e[35]||(e[35]=[l('',1)]))),e[36]||(e[36]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),e[52]||(e[52]=s(" is the basis of ")),t("mjx-container",F,[(i(),a("svg",B,e[37]||(e[37]=[l('',1)]))),e[38]||(e[38]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[53]||(e[53]=s(" and ")),t("mjx-container",O,[(i(),a("svg",A,e[39]||(e[39]=[l('',1)]))),e[40]||(e[40]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"α"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"α"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),e[54]||(e[54]=s(" the basis of ")),t("mjx-container",R,[(i(),a("svg",S,e[41]||(e[41]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[42]||(e[42]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[55]||(e[55]=s(", then the matrix ")),t("mjx-container",G,[(i(),a("svg",J,e[43]||(e[43]=[l('',1)]))),e[44]||(e[44]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"B"),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},")")])],-1))]),e[56]||(e[56]=s(" with"))]),t("mjx-container",z,[(i(),a("svg",X,e[57]||(e[57]=[l('',1)]))),e[58]||(e[58]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")])])]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")])])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")]),t("mo",null,"="),t("mi",null,"B"),t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"α"),t("mn",null,"1")])])]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"α"),t("mi",null,"d")])])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1))]),t("p",null,[e[69]||(e[69]=s("is the ")),e[70]||(e[70]=t("em",null,"basis matrix",-1)),e[71]||(e[71]=s(" of ")),t("mjx-container",K,[(i(),a("svg",N,e[59]||(e[59]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[60]||(e[60]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[72]||(e[72]=s(". If ")),t("mjx-container",I,[(i(),a("svg",q,e[61]||(e[61]=[l('',1)]))),e[62]||(e[62]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),e[73]||(e[73]=s(" is simple with ")),t("mjx-container",P,[(i(),a("svg",$,e[63]||(e[63]=[l('',1)]))),e[64]||(e[64]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]")])],-1))]),e[74]||(e[74]=s(", then natural order ")),t("mjx-container",U,[(i(),a("svg",W,e[65]||(e[65]=[l('',1)]))),e[66]||(e[66]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),e[75]||(e[75]=s(" is called the ")),e[76]||(e[76]=t("em",null,"equation order",-1)),e[77]||(e[77]=s(" of ")),t("mjx-container",Y,[(i(),a("svg",_,e[67]||(e[67]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[68]||(e[68]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[78]||(e[78]=s("."))]),e[141]||(e[141]=t("h2",{id:"Orders-of-relative-number-fields",tabindex:"-1"},[s("Orders of relative number fields "),t("a",{class:"header-anchor",href:"#Orders-of-relative-number-fields","aria-label":'Permalink to "Orders of relative number fields {#Orders-of-relative-number-fields}"'},"​")],-1)),t("p",null,[e[99]||(e[99]=s("Orders in non-absolute number fields, that is, relative extensions, are represented differently. Let ")),t("mjx-container",t1,[(i(),a("svg",e1,e[79]||(e[79]=[l('',1)]))),e[80]||(e[80]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[100]||(e[100]=s(" be a finite extension of number fields, then currently we require any order in ")),t("mjx-container",s1,[(i(),a("svg",a1,e[81]||(e[81]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[82]||(e[82]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[101]||(e[101]=s(" to contain ")),t("mjx-container",i1,[(i(),a("svg",l1,e[83]||(e[83]=[l('',1)]))),e[84]||(e[84]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[102]||(e[102]=s(", the ring of integers of ")),t("mjx-container",Q1,[(i(),a("svg",n1,e[85]||(e[85]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[86]||(e[86]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[103]||(e[103]=s(". In this case, an order ")),t("mjx-container",o1,[(i(),a("svg",r1,e[87]||(e[87]=[l('',1)]))),e[88]||(e[88]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[104]||(e[104]=s(" in ")),t("mjx-container",T1,[(i(),a("svg",d1,e[89]||(e[89]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[90]||(e[90]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[105]||(e[105]=s(" is a finitly generated torsion-free module over the Dedekind domain ")),t("mjx-container",m1,[(i(),a("svg",p1,e[91]||(e[91]=[l('',1)]))),e[92]||(e[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[106]||(e[106]=s(". As a ring, the order ")),t("mjx-container",h1,[(i(),a("svg",g1,e[93]||(e[93]=[l('',1)]))),e[94]||(e[94]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[107]||(e[107]=s(" is unitary and has ")),t("mjx-container",x1,[(i(),a("svg",k1,e[95]||(e[95]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[96]||(e[96]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[108]||(e[108]=s(" as a fraction field. Due to ")),t("mjx-container",w1,[(i(),a("svg",u1,e[97]||(e[97]=[l('',1)]))),e[98]||(e[98]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[109]||(e[109]=s(" in general not being a principal ideal domain, the module structure is more complicated and requires so called pseudo-matrices. See ")),e[110]||(e[110]=t("a",{href:"/Hecke.jl/v0.34.8/manual/misc/pmat#PMatLink"},"here",-1)),e[111]||(e[111]=s(" for details on pseudo-matrices, or [")),e[112]||(e[112]=t("a",{href:"/Hecke.jl/v0.34.8/references#Coh00"},"1",-1)),e[113]||(e[113]=s("], Chapter 1 for an introduction."))]),t("p",null,[e[130]||(e[130]=s("In short, ")),t("mjx-container",c1,[(i(),a("svg",y1,e[114]||(e[114]=[l('',1)]))),e[115]||(e[115]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[131]||(e[131]=s(" is represented as ")),t("mjx-container",f1,[(i(),a("svg",b1,e[116]||(e[116]=[l('',1)]))),e[117]||(e[117]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[132]||(e[132]=s(" with fractional ")),t("mjx-container",v1,[(i(),a("svg",L1,e[118]||(e[118]=[l('',1)]))),e[119]||(e[119]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[133]||(e[133]=s(" ideals ")),t("mjx-container",H1,[(i(),a("svg",E1,e[120]||(e[120]=[l('',1)]))),e[121]||(e[121]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")]),t("mo",null,"⊂"),t("mi",null,"K")])],-1))]),e[134]||(e[134]=s(" and ")),t("mjx-container",M1,[(i(),a("svg",j1,e[122]||(e[122]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[123]||(e[123]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[135]||(e[135]=s("-linear independent elements ")),t("mjx-container",C1,[(i(),a("svg",Z1,e[124]||(e[124]=[l('',1)]))),e[125]||(e[125]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mi",null,"L")])],-1))]),e[136]||(e[136]=s(". In general it is impossible to have both ")),t("mjx-container",V1,[(i(),a("svg",D1,e[126]||(e[126]=[l('',1)]))),e[127]||(e[127]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")])])],-1))]),e[137]||(e[137]=s(" integral and ")),t("mjx-container",F1,[(i(),a("svg",B1,e[128]||(e[128]=[l('',1)]))),e[129]||(e[129]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[138]||(e[138]=s(", thus coefficients will not be integral and/or generators not in the structure."))]),e[142]||(e[142]=l(`

Examples

Usually, to create an order, one starts with a field (or a polynomial):

julia

+import{_ as Q,c as a,a5 as l,j as t,a as s,o as i}from"./chunks/framework.DbhH0_mT.js";const X1=JSON.parse('{"title":"Introduction","description":"","frontmatter":{},"headers":[],"relativePath":"manual/orders/introduction.md","filePath":"manual/orders/introduction.md","lastUpdated":null}'),n={name:"manual/orders/introduction.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.623ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5137.2 1000","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.704ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5173.2 1000","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.38ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6798.1 1000","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.355ex"},xmlns:"http://www.w3.org/2000/svg",width:"17.924ex",height:"9.842ex",role:"img",focusable:"false",viewBox:"0 -2425 7922.6 4350","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.851ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 9658.1 1000","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.153ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3603.6 1000","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.592ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6891.6 1000","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.683ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2070 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},o1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},h1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},f1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.784ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2998.6 1000","aria-hidden":"true"},v1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.899ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3049.5 840.8","aria-hidden":"true"},M1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.454ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 2852.5 840.8","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.871ex",height:"1.42ex",role:"img",focusable:"false",viewBox:"0 -470 827 627.8","aria-hidden":"true"},F1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.714ex",height:"1.952ex",role:"img",focusable:"false",viewBox:"0 -705 2967.5 862.8","aria-hidden":"true"};function O1(A1,e,R1,S1,G1,J1){return i(),a("div",null,[e[139]||(e[139]=l('

Introduction

This chapter deals with number fields and orders there of. We follow the common terminology and conventions as e.g. used in [2], [1], [3] or [4].

',2)),t("p",null,[e[16]||(e[16]=s("If ")),t("mjx-container",o,[(i(),a("svg",r,e[0]||(e[0]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[1]||(e[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[17]||(e[17]=s(" is a number field, then an ")),e[18]||(e[18]=t("em",null,"order",-1)),e[19]||(e[19]=s()),t("mjx-container",T,[(i(),a("svg",d,e[2]||(e[2]=[l('',1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[20]||(e[20]=s(" of ")),t("mjx-container",m,[(i(),a("svg",p,e[4]||(e[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[21]||(e[21]=s(" is a subring of the ring of integers ")),t("mjx-container",h,[(i(),a("svg",g,e[6]||(e[6]=[l('',1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[22]||(e[22]=s(" of ")),t("mjx-container",x,[(i(),a("svg",k,e[8]||(e[8]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[9]||(e[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[23]||(e[23]=s(", which is free of rank ")),t("mjx-container",w,[(i(),a("svg",u,e[10]||(e[10]=[l('',1)]))),e[11]||(e[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[24]||(e[24]=s(" as a ")),t("mjx-container",c,[(i(),a("svg",y,e[12]||(e[12]=[l('',1)]))),e[13]||(e[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[25]||(e[25]=s("-module. Depending on whether ")),t("mjx-container",f,[(i(),a("svg",b,e[14]||(e[14]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[15]||(e[15]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[26]||(e[26]=s(" is an absolute field or relative field, orders are treated differently. As far as possible, the interaction and the interface for orders of absolute number fields and of relative number fields is the same."))]),e[140]||(e[140]=t("h2",{id:"Orders-of-absolute-number-fields",tabindex:"-1"},[s("Orders of absolute number fields "),t("a",{class:"header-anchor",href:"#Orders-of-absolute-number-fields","aria-label":'Permalink to "Orders of absolute number fields {#Orders-of-absolute-number-fields}"'},"​")],-1)),t("p",null,[e[45]||(e[45]=s("Assume that ")),t("mjx-container",v,[(i(),a("svg",L,e[27]||(e[27]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[28]||(e[28]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[46]||(e[46]=s(" is defined as an absolute field. An order ")),t("mjx-container",H,[(i(),a("svg",E,e[29]||(e[29]=[l('',1)]))),e[30]||(e[30]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[47]||(e[47]=s(" of such a field are constructed (implicitly) by specifying a ")),t("mjx-container",M,[(i(),a("svg",j,e[31]||(e[31]=[l('',1)]))),e[32]||(e[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[48]||(e[48]=s("-basis, which is referred to as the ")),e[49]||(e[49]=t("em",null,"basis",-1)),e[50]||(e[50]=s(" of ")),t("mjx-container",C,[(i(),a("svg",Z,e[33]||(e[33]=[l('',1)]))),e[34]||(e[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[51]||(e[51]=s(". If ")),t("mjx-container",V,[(i(),a("svg",D,e[35]||(e[35]=[l('',1)]))),e[36]||(e[36]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),e[52]||(e[52]=s(" is the basis of ")),t("mjx-container",F,[(i(),a("svg",B,e[37]||(e[37]=[l('',1)]))),e[38]||(e[38]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[53]||(e[53]=s(" and ")),t("mjx-container",O,[(i(),a("svg",A,e[39]||(e[39]=[l('',1)]))),e[40]||(e[40]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"α"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"α"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),e[54]||(e[54]=s(" the basis of ")),t("mjx-container",R,[(i(),a("svg",S,e[41]||(e[41]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[42]||(e[42]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[55]||(e[55]=s(", then the matrix ")),t("mjx-container",G,[(i(),a("svg",J,e[43]||(e[43]=[l('',1)]))),e[44]||(e[44]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"B"),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},")")])],-1))]),e[56]||(e[56]=s(" with"))]),t("mjx-container",z,[(i(),a("svg",X,e[57]||(e[57]=[l('',1)]))),e[58]||(e[58]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")])])]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")])])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")]),t("mo",null,"="),t("mi",null,"B"),t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"α"),t("mn",null,"1")])])]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"α"),t("mi",null,"d")])])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1))]),t("p",null,[e[69]||(e[69]=s("is the ")),e[70]||(e[70]=t("em",null,"basis matrix",-1)),e[71]||(e[71]=s(" of ")),t("mjx-container",K,[(i(),a("svg",N,e[59]||(e[59]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[60]||(e[60]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[72]||(e[72]=s(". If ")),t("mjx-container",I,[(i(),a("svg",q,e[61]||(e[61]=[l('',1)]))),e[62]||(e[62]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),e[73]||(e[73]=s(" is simple with ")),t("mjx-container",P,[(i(),a("svg",$,e[63]||(e[63]=[l('',1)]))),e[64]||(e[64]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]")])],-1))]),e[74]||(e[74]=s(", then natural order ")),t("mjx-container",U,[(i(),a("svg",W,e[65]||(e[65]=[l('',1)]))),e[66]||(e[66]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),e[75]||(e[75]=s(" is called the ")),e[76]||(e[76]=t("em",null,"equation order",-1)),e[77]||(e[77]=s(" of ")),t("mjx-container",Y,[(i(),a("svg",_,e[67]||(e[67]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[68]||(e[68]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[78]||(e[78]=s("."))]),e[141]||(e[141]=t("h2",{id:"Orders-of-relative-number-fields",tabindex:"-1"},[s("Orders of relative number fields "),t("a",{class:"header-anchor",href:"#Orders-of-relative-number-fields","aria-label":'Permalink to "Orders of relative number fields {#Orders-of-relative-number-fields}"'},"​")],-1)),t("p",null,[e[99]||(e[99]=s("Orders in non-absolute number fields, that is, relative extensions, are represented differently. Let ")),t("mjx-container",t1,[(i(),a("svg",e1,e[79]||(e[79]=[l('',1)]))),e[80]||(e[80]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[100]||(e[100]=s(" be a finite extension of number fields, then currently we require any order in ")),t("mjx-container",s1,[(i(),a("svg",a1,e[81]||(e[81]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[82]||(e[82]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[101]||(e[101]=s(" to contain ")),t("mjx-container",i1,[(i(),a("svg",l1,e[83]||(e[83]=[l('',1)]))),e[84]||(e[84]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[102]||(e[102]=s(", the ring of integers of ")),t("mjx-container",Q1,[(i(),a("svg",n1,e[85]||(e[85]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[86]||(e[86]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[103]||(e[103]=s(". In this case, an order ")),t("mjx-container",o1,[(i(),a("svg",r1,e[87]||(e[87]=[l('',1)]))),e[88]||(e[88]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[104]||(e[104]=s(" in ")),t("mjx-container",T1,[(i(),a("svg",d1,e[89]||(e[89]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[90]||(e[90]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[105]||(e[105]=s(" is a finitly generated torsion-free module over the Dedekind domain ")),t("mjx-container",m1,[(i(),a("svg",p1,e[91]||(e[91]=[l('',1)]))),e[92]||(e[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[106]||(e[106]=s(". As a ring, the order ")),t("mjx-container",h1,[(i(),a("svg",g1,e[93]||(e[93]=[l('',1)]))),e[94]||(e[94]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[107]||(e[107]=s(" is unitary and has ")),t("mjx-container",x1,[(i(),a("svg",k1,e[95]||(e[95]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[96]||(e[96]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[108]||(e[108]=s(" as a fraction field. Due to ")),t("mjx-container",w1,[(i(),a("svg",u1,e[97]||(e[97]=[l('',1)]))),e[98]||(e[98]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[109]||(e[109]=s(" in general not being a principal ideal domain, the module structure is more complicated and requires so called pseudo-matrices. See ")),e[110]||(e[110]=t("a",{href:"/v0.34.8/manual/misc/pmat#PMatLink"},"here",-1)),e[111]||(e[111]=s(" for details on pseudo-matrices, or [")),e[112]||(e[112]=t("a",{href:"/v0.34.8/references#Coh00"},"1",-1)),e[113]||(e[113]=s("], Chapter 1 for an introduction."))]),t("p",null,[e[130]||(e[130]=s("In short, ")),t("mjx-container",c1,[(i(),a("svg",y1,e[114]||(e[114]=[l('',1)]))),e[115]||(e[115]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[131]||(e[131]=s(" is represented as ")),t("mjx-container",f1,[(i(),a("svg",b1,e[116]||(e[116]=[l('',1)]))),e[117]||(e[117]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[132]||(e[132]=s(" with fractional ")),t("mjx-container",v1,[(i(),a("svg",L1,e[118]||(e[118]=[l('',1)]))),e[119]||(e[119]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[133]||(e[133]=s(" ideals ")),t("mjx-container",H1,[(i(),a("svg",E1,e[120]||(e[120]=[l('',1)]))),e[121]||(e[121]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")]),t("mo",null,"⊂"),t("mi",null,"K")])],-1))]),e[134]||(e[134]=s(" and ")),t("mjx-container",M1,[(i(),a("svg",j1,e[122]||(e[122]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[123]||(e[123]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[135]||(e[135]=s("-linear independent elements ")),t("mjx-container",C1,[(i(),a("svg",Z1,e[124]||(e[124]=[l('',1)]))),e[125]||(e[125]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mi",null,"L")])],-1))]),e[136]||(e[136]=s(". In general it is impossible to have both ")),t("mjx-container",V1,[(i(),a("svg",D1,e[126]||(e[126]=[l('',1)]))),e[127]||(e[127]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")])])],-1))]),e[137]||(e[137]=s(" integral and ")),t("mjx-container",F1,[(i(),a("svg",B1,e[128]||(e[128]=[l('',1)]))),e[129]||(e[129]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[138]||(e[138]=s(", thus coefficients will not be integral and/or generators not in the structure."))]),e[142]||(e[142]=l(`

Examples

Usually, to create an order, one starts with a field (or a polynomial):

julia

 julia> Qx, x = polynomial_ring(QQ, "x");
 
 julia> K, a = number_field(x^2 - 10, "a");
diff --git a/v0.34.8/assets/manual_orders_introduction.md.BTbzdtxm.lean.js b/v0.34.8/assets/manual_orders_introduction.md.BTbzdtxm.lean.js
index c28d8279d6..b3f7b1b12b 100644
--- a/v0.34.8/assets/manual_orders_introduction.md.BTbzdtxm.lean.js
+++ b/v0.34.8/assets/manual_orders_introduction.md.BTbzdtxm.lean.js
@@ -1,4 +1,4 @@
-import{_ as Q,c as a,a5 as l,j as t,a as s,o as i}from"./chunks/framework.DbhH0_mT.js";const X1=JSON.parse('{"title":"Introduction","description":"","frontmatter":{},"headers":[],"relativePath":"manual/orders/introduction.md","filePath":"manual/orders/introduction.md","lastUpdated":null}'),n={name:"manual/orders/introduction.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.623ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5137.2 1000","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.704ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5173.2 1000","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.38ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6798.1 1000","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.355ex"},xmlns:"http://www.w3.org/2000/svg",width:"17.924ex",height:"9.842ex",role:"img",focusable:"false",viewBox:"0 -2425 7922.6 4350","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.851ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 9658.1 1000","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.153ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3603.6 1000","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.592ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6891.6 1000","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.683ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2070 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},o1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},h1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},f1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.784ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2998.6 1000","aria-hidden":"true"},v1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.899ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3049.5 840.8","aria-hidden":"true"},M1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.454ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 2852.5 840.8","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.871ex",height:"1.42ex",role:"img",focusable:"false",viewBox:"0 -470 827 627.8","aria-hidden":"true"},F1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.714ex",height:"1.952ex",role:"img",focusable:"false",viewBox:"0 -705 2967.5 862.8","aria-hidden":"true"};function O1(A1,e,R1,S1,G1,J1){return i(),a("div",null,[e[139]||(e[139]=l('

Introduction

This chapter deals with number fields and orders there of. We follow the common terminology and conventions as e.g. used in [2], [1], [3] or [4].

',2)),t("p",null,[e[16]||(e[16]=s("If ")),t("mjx-container",o,[(i(),a("svg",r,e[0]||(e[0]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[1]||(e[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[17]||(e[17]=s(" is a number field, then an ")),e[18]||(e[18]=t("em",null,"order",-1)),e[19]||(e[19]=s()),t("mjx-container",T,[(i(),a("svg",d,e[2]||(e[2]=[l('',1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[20]||(e[20]=s(" of ")),t("mjx-container",m,[(i(),a("svg",p,e[4]||(e[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[21]||(e[21]=s(" is a subring of the ring of integers ")),t("mjx-container",h,[(i(),a("svg",g,e[6]||(e[6]=[l('',1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[22]||(e[22]=s(" of ")),t("mjx-container",x,[(i(),a("svg",k,e[8]||(e[8]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[9]||(e[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[23]||(e[23]=s(", which is free of rank ")),t("mjx-container",w,[(i(),a("svg",u,e[10]||(e[10]=[l('',1)]))),e[11]||(e[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[24]||(e[24]=s(" as a ")),t("mjx-container",c,[(i(),a("svg",y,e[12]||(e[12]=[l('',1)]))),e[13]||(e[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[25]||(e[25]=s("-module. Depending on whether ")),t("mjx-container",f,[(i(),a("svg",b,e[14]||(e[14]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[15]||(e[15]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[26]||(e[26]=s(" is an absolute field or relative field, orders are treated differently. As far as possible, the interaction and the interface for orders of absolute number fields and of relative number fields is the same."))]),e[140]||(e[140]=t("h2",{id:"Orders-of-absolute-number-fields",tabindex:"-1"},[s("Orders of absolute number fields "),t("a",{class:"header-anchor",href:"#Orders-of-absolute-number-fields","aria-label":'Permalink to "Orders of absolute number fields {#Orders-of-absolute-number-fields}"'},"​")],-1)),t("p",null,[e[45]||(e[45]=s("Assume that ")),t("mjx-container",v,[(i(),a("svg",L,e[27]||(e[27]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[28]||(e[28]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[46]||(e[46]=s(" is defined as an absolute field. An order ")),t("mjx-container",H,[(i(),a("svg",E,e[29]||(e[29]=[l('',1)]))),e[30]||(e[30]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[47]||(e[47]=s(" of such a field are constructed (implicitly) by specifying a ")),t("mjx-container",M,[(i(),a("svg",j,e[31]||(e[31]=[l('',1)]))),e[32]||(e[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[48]||(e[48]=s("-basis, which is referred to as the ")),e[49]||(e[49]=t("em",null,"basis",-1)),e[50]||(e[50]=s(" of ")),t("mjx-container",C,[(i(),a("svg",Z,e[33]||(e[33]=[l('',1)]))),e[34]||(e[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[51]||(e[51]=s(". If ")),t("mjx-container",V,[(i(),a("svg",D,e[35]||(e[35]=[l('',1)]))),e[36]||(e[36]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),e[52]||(e[52]=s(" is the basis of ")),t("mjx-container",F,[(i(),a("svg",B,e[37]||(e[37]=[l('',1)]))),e[38]||(e[38]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[53]||(e[53]=s(" and ")),t("mjx-container",O,[(i(),a("svg",A,e[39]||(e[39]=[l('',1)]))),e[40]||(e[40]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"α"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"α"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),e[54]||(e[54]=s(" the basis of ")),t("mjx-container",R,[(i(),a("svg",S,e[41]||(e[41]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[42]||(e[42]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[55]||(e[55]=s(", then the matrix ")),t("mjx-container",G,[(i(),a("svg",J,e[43]||(e[43]=[l('',1)]))),e[44]||(e[44]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"B"),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},")")])],-1))]),e[56]||(e[56]=s(" with"))]),t("mjx-container",z,[(i(),a("svg",X,e[57]||(e[57]=[l('',1)]))),e[58]||(e[58]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")])])]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")])])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")]),t("mo",null,"="),t("mi",null,"B"),t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"α"),t("mn",null,"1")])])]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"α"),t("mi",null,"d")])])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1))]),t("p",null,[e[69]||(e[69]=s("is the ")),e[70]||(e[70]=t("em",null,"basis matrix",-1)),e[71]||(e[71]=s(" of ")),t("mjx-container",K,[(i(),a("svg",N,e[59]||(e[59]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[60]||(e[60]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[72]||(e[72]=s(". If ")),t("mjx-container",I,[(i(),a("svg",q,e[61]||(e[61]=[l('',1)]))),e[62]||(e[62]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),e[73]||(e[73]=s(" is simple with ")),t("mjx-container",P,[(i(),a("svg",$,e[63]||(e[63]=[l('',1)]))),e[64]||(e[64]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]")])],-1))]),e[74]||(e[74]=s(", then natural order ")),t("mjx-container",U,[(i(),a("svg",W,e[65]||(e[65]=[l('',1)]))),e[66]||(e[66]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),e[75]||(e[75]=s(" is called the ")),e[76]||(e[76]=t("em",null,"equation order",-1)),e[77]||(e[77]=s(" of ")),t("mjx-container",Y,[(i(),a("svg",_,e[67]||(e[67]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[68]||(e[68]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[78]||(e[78]=s("."))]),e[141]||(e[141]=t("h2",{id:"Orders-of-relative-number-fields",tabindex:"-1"},[s("Orders of relative number fields "),t("a",{class:"header-anchor",href:"#Orders-of-relative-number-fields","aria-label":'Permalink to "Orders of relative number fields {#Orders-of-relative-number-fields}"'},"​")],-1)),t("p",null,[e[99]||(e[99]=s("Orders in non-absolute number fields, that is, relative extensions, are represented differently. Let ")),t("mjx-container",t1,[(i(),a("svg",e1,e[79]||(e[79]=[l('',1)]))),e[80]||(e[80]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[100]||(e[100]=s(" be a finite extension of number fields, then currently we require any order in ")),t("mjx-container",s1,[(i(),a("svg",a1,e[81]||(e[81]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[82]||(e[82]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[101]||(e[101]=s(" to contain ")),t("mjx-container",i1,[(i(),a("svg",l1,e[83]||(e[83]=[l('',1)]))),e[84]||(e[84]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[102]||(e[102]=s(", the ring of integers of ")),t("mjx-container",Q1,[(i(),a("svg",n1,e[85]||(e[85]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[86]||(e[86]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[103]||(e[103]=s(". In this case, an order ")),t("mjx-container",o1,[(i(),a("svg",r1,e[87]||(e[87]=[l('',1)]))),e[88]||(e[88]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[104]||(e[104]=s(" in ")),t("mjx-container",T1,[(i(),a("svg",d1,e[89]||(e[89]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[90]||(e[90]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[105]||(e[105]=s(" is a finitly generated torsion-free module over the Dedekind domain ")),t("mjx-container",m1,[(i(),a("svg",p1,e[91]||(e[91]=[l('',1)]))),e[92]||(e[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[106]||(e[106]=s(". As a ring, the order ")),t("mjx-container",h1,[(i(),a("svg",g1,e[93]||(e[93]=[l('',1)]))),e[94]||(e[94]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[107]||(e[107]=s(" is unitary and has ")),t("mjx-container",x1,[(i(),a("svg",k1,e[95]||(e[95]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[96]||(e[96]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[108]||(e[108]=s(" as a fraction field. Due to ")),t("mjx-container",w1,[(i(),a("svg",u1,e[97]||(e[97]=[l('',1)]))),e[98]||(e[98]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[109]||(e[109]=s(" in general not being a principal ideal domain, the module structure is more complicated and requires so called pseudo-matrices. See ")),e[110]||(e[110]=t("a",{href:"/Hecke.jl/v0.34.8/manual/misc/pmat#PMatLink"},"here",-1)),e[111]||(e[111]=s(" for details on pseudo-matrices, or [")),e[112]||(e[112]=t("a",{href:"/Hecke.jl/v0.34.8/references#Coh00"},"1",-1)),e[113]||(e[113]=s("], Chapter 1 for an introduction."))]),t("p",null,[e[130]||(e[130]=s("In short, ")),t("mjx-container",c1,[(i(),a("svg",y1,e[114]||(e[114]=[l('',1)]))),e[115]||(e[115]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[131]||(e[131]=s(" is represented as ")),t("mjx-container",f1,[(i(),a("svg",b1,e[116]||(e[116]=[l('',1)]))),e[117]||(e[117]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[132]||(e[132]=s(" with fractional ")),t("mjx-container",v1,[(i(),a("svg",L1,e[118]||(e[118]=[l('',1)]))),e[119]||(e[119]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[133]||(e[133]=s(" ideals ")),t("mjx-container",H1,[(i(),a("svg",E1,e[120]||(e[120]=[l('',1)]))),e[121]||(e[121]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")]),t("mo",null,"⊂"),t("mi",null,"K")])],-1))]),e[134]||(e[134]=s(" and ")),t("mjx-container",M1,[(i(),a("svg",j1,e[122]||(e[122]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[123]||(e[123]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[135]||(e[135]=s("-linear independent elements ")),t("mjx-container",C1,[(i(),a("svg",Z1,e[124]||(e[124]=[l('',1)]))),e[125]||(e[125]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mi",null,"L")])],-1))]),e[136]||(e[136]=s(". In general it is impossible to have both ")),t("mjx-container",V1,[(i(),a("svg",D1,e[126]||(e[126]=[l('',1)]))),e[127]||(e[127]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")])])],-1))]),e[137]||(e[137]=s(" integral and ")),t("mjx-container",F1,[(i(),a("svg",B1,e[128]||(e[128]=[l('',1)]))),e[129]||(e[129]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[138]||(e[138]=s(", thus coefficients will not be integral and/or generators not in the structure."))]),e[142]||(e[142]=l(`

Examples

Usually, to create an order, one starts with a field (or a polynomial):

julia

+import{_ as Q,c as a,a5 as l,j as t,a as s,o as i}from"./chunks/framework.DbhH0_mT.js";const X1=JSON.parse('{"title":"Introduction","description":"","frontmatter":{},"headers":[],"relativePath":"manual/orders/introduction.md","filePath":"manual/orders/introduction.md","lastUpdated":null}'),n={name:"manual/orders/introduction.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.11ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3142.6 1000","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.623ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5137.2 1000","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.704ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5173.2 1000","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.38ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6798.1 1000","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},X={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.355ex"},xmlns:"http://www.w3.org/2000/svg",width:"17.924ex",height:"9.842ex",role:"img",focusable:"false",viewBox:"0 -2425 7922.6 4350","aria-hidden":"true"},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.851ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 9658.1 1000","aria-hidden":"true"},P={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.153ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3603.6 1000","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"15.592ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6891.6 1000","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.683ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2070 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},o1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},h1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.801ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 796 727","aria-hidden":"true"},f1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.784ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2998.6 1000","aria-hidden":"true"},v1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.411ex",height:"1.934ex",role:"img",focusable:"false",viewBox:"0 -705 1507.6 855","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.899ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3049.5 840.8","aria-hidden":"true"},M1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.011ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 889 683","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.454ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 2852.5 840.8","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.871ex",height:"1.42ex",role:"img",focusable:"false",viewBox:"0 -470 827 627.8","aria-hidden":"true"},F1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.714ex",height:"1.952ex",role:"img",focusable:"false",viewBox:"0 -705 2967.5 862.8","aria-hidden":"true"};function O1(A1,e,R1,S1,G1,J1){return i(),a("div",null,[e[139]||(e[139]=l('

Introduction

This chapter deals with number fields and orders there of. We follow the common terminology and conventions as e.g. used in [2], [1], [3] or [4].

',2)),t("p",null,[e[16]||(e[16]=s("If ")),t("mjx-container",o,[(i(),a("svg",r,e[0]||(e[0]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[1]||(e[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[17]||(e[17]=s(" is a number field, then an ")),e[18]||(e[18]=t("em",null,"order",-1)),e[19]||(e[19]=s()),t("mjx-container",T,[(i(),a("svg",d,e[2]||(e[2]=[l('',1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[20]||(e[20]=s(" of ")),t("mjx-container",m,[(i(),a("svg",p,e[4]||(e[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[21]||(e[21]=s(" is a subring of the ring of integers ")),t("mjx-container",h,[(i(),a("svg",g,e[6]||(e[6]=[l('',1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[22]||(e[22]=s(" of ")),t("mjx-container",x,[(i(),a("svg",k,e[8]||(e[8]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[9]||(e[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[23]||(e[23]=s(", which is free of rank ")),t("mjx-container",w,[(i(),a("svg",u,e[10]||(e[10]=[l('',1)]))),e[11]||(e[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mi",null,"K"),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[24]||(e[24]=s(" as a ")),t("mjx-container",c,[(i(),a("svg",y,e[12]||(e[12]=[l('',1)]))),e[13]||(e[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[25]||(e[25]=s("-module. Depending on whether ")),t("mjx-container",f,[(i(),a("svg",b,e[14]||(e[14]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[15]||(e[15]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[26]||(e[26]=s(" is an absolute field or relative field, orders are treated differently. As far as possible, the interaction and the interface for orders of absolute number fields and of relative number fields is the same."))]),e[140]||(e[140]=t("h2",{id:"Orders-of-absolute-number-fields",tabindex:"-1"},[s("Orders of absolute number fields "),t("a",{class:"header-anchor",href:"#Orders-of-absolute-number-fields","aria-label":'Permalink to "Orders of absolute number fields {#Orders-of-absolute-number-fields}"'},"​")],-1)),t("p",null,[e[45]||(e[45]=s("Assume that ")),t("mjx-container",v,[(i(),a("svg",L,e[27]||(e[27]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[28]||(e[28]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[46]||(e[46]=s(" is defined as an absolute field. An order ")),t("mjx-container",H,[(i(),a("svg",E,e[29]||(e[29]=[l('',1)]))),e[30]||(e[30]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[47]||(e[47]=s(" of such a field are constructed (implicitly) by specifying a ")),t("mjx-container",M,[(i(),a("svg",j,e[31]||(e[31]=[l('',1)]))),e[32]||(e[32]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[48]||(e[48]=s("-basis, which is referred to as the ")),e[49]||(e[49]=t("em",null,"basis",-1)),e[50]||(e[50]=s(" of ")),t("mjx-container",C,[(i(),a("svg",Z,e[33]||(e[33]=[l('',1)]))),e[34]||(e[34]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[51]||(e[51]=s(". If ")),t("mjx-container",V,[(i(),a("svg",D,e[35]||(e[35]=[l('',1)]))),e[36]||(e[36]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),e[52]||(e[52]=s(" is the basis of ")),t("mjx-container",F,[(i(),a("svg",B,e[37]||(e[37]=[l('',1)]))),e[38]||(e[38]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[53]||(e[53]=s(" and ")),t("mjx-container",O,[(i(),a("svg",A,e[39]||(e[39]=[l('',1)]))),e[40]||(e[40]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"α"),t("mn",null,"1")]),t("mo",null,","),t("mo",null,"…"),t("mo",null,","),t("msub",null,[t("mi",null,"α"),t("mi",null,"d")]),t("mo",{stretchy:"false"},")")])],-1))]),e[54]||(e[54]=s(" the basis of ")),t("mjx-container",R,[(i(),a("svg",S,e[41]||(e[41]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[42]||(e[42]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[55]||(e[55]=s(", then the matrix ")),t("mjx-container",G,[(i(),a("svg",J,e[43]||(e[43]=[l('',1)]))),e[44]||(e[44]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"B"),t("mo",null,"∈"),t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},")")])],-1))]),e[56]||(e[56]=s(" with"))]),t("mjx-container",z,[(i(),a("svg",X,e[57]||(e[57]=[l('',1)]))),e[58]||(e[58]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"ω"),t("mn",null,"1")])])]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"ω"),t("mi",null,"d")])])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")]),t("mo",null,"="),t("mi",null,"B"),t("mrow",{"data-mjx-texclass":"INNER"},[t("mo",{"data-mjx-texclass":"OPEN"},"("),t("mtable",{columnspacing:"1em",rowspacing:"4pt"},[t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"α"),t("mn",null,"1")])])]),t("mtr",null,[t("mtd",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"⋮")])])]),t("mtr",null,[t("mtd",null,[t("msub",null,[t("mi",null,"α"),t("mi",null,"d")])])])]),t("mo",{"data-mjx-texclass":"CLOSE"},")")])])],-1))]),t("p",null,[e[69]||(e[69]=s("is the ")),e[70]||(e[70]=t("em",null,"basis matrix",-1)),e[71]||(e[71]=s(" of ")),t("mjx-container",K,[(i(),a("svg",N,e[59]||(e[59]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[60]||(e[60]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[72]||(e[72]=s(". If ")),t("mjx-container",I,[(i(),a("svg",q,e[61]||(e[61]=[l('',1)]))),e[62]||(e[62]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"("),t("mi",null,"α"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),e[73]||(e[73]=s(" is simple with ")),t("mjx-container",P,[(i(),a("svg",$,e[63]||(e[63]=[l('',1)]))),e[64]||(e[64]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"f"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]")])],-1))]),e[74]||(e[74]=s(", then natural order ")),t("mjx-container",U,[(i(),a("svg",W,e[65]||(e[65]=[l('',1)]))),e[66]||(e[66]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]"),t("mo",null,"="),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"x"),t("mo",{stretchy:"false"},"]"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mo",{stretchy:"false"},"("),t("mi",null,"f"),t("mo",{stretchy:"false"},")")])],-1))]),e[75]||(e[75]=s(" is called the ")),e[76]||(e[76]=t("em",null,"equation order",-1)),e[77]||(e[77]=s(" of ")),t("mjx-container",Y,[(i(),a("svg",_,e[67]||(e[67]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[68]||(e[68]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[78]||(e[78]=s("."))]),e[141]||(e[141]=t("h2",{id:"Orders-of-relative-number-fields",tabindex:"-1"},[s("Orders of relative number fields "),t("a",{class:"header-anchor",href:"#Orders-of-relative-number-fields","aria-label":'Permalink to "Orders of relative number fields {#Orders-of-relative-number-fields}"'},"​")],-1)),t("p",null,[e[99]||(e[99]=s("Orders in non-absolute number fields, that is, relative extensions, are represented differently. Let ")),t("mjx-container",t1,[(i(),a("svg",e1,e[79]||(e[79]=[l('',1)]))),e[80]||(e[80]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mi",null,"K")])],-1))]),e[100]||(e[100]=s(" be a finite extension of number fields, then currently we require any order in ")),t("mjx-container",s1,[(i(),a("svg",a1,e[81]||(e[81]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[82]||(e[82]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[101]||(e[101]=s(" to contain ")),t("mjx-container",i1,[(i(),a("svg",l1,e[83]||(e[83]=[l('',1)]))),e[84]||(e[84]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[102]||(e[102]=s(", the ring of integers of ")),t("mjx-container",Q1,[(i(),a("svg",n1,e[85]||(e[85]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[86]||(e[86]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[103]||(e[103]=s(". In this case, an order ")),t("mjx-container",o1,[(i(),a("svg",r1,e[87]||(e[87]=[l('',1)]))),e[88]||(e[88]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[104]||(e[104]=s(" in ")),t("mjx-container",T1,[(i(),a("svg",d1,e[89]||(e[89]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[90]||(e[90]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[105]||(e[105]=s(" is a finitly generated torsion-free module over the Dedekind domain ")),t("mjx-container",m1,[(i(),a("svg",p1,e[91]||(e[91]=[l('',1)]))),e[92]||(e[92]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[106]||(e[106]=s(". As a ring, the order ")),t("mjx-container",h1,[(i(),a("svg",g1,e[93]||(e[93]=[l('',1)]))),e[94]||(e[94]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[107]||(e[107]=s(" is unitary and has ")),t("mjx-container",x1,[(i(),a("svg",k1,e[95]||(e[95]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),e[96]||(e[96]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"L")])],-1))]),e[108]||(e[108]=s(" as a fraction field. Due to ")),t("mjx-container",w1,[(i(),a("svg",u1,e[97]||(e[97]=[l('',1)]))),e[98]||(e[98]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[109]||(e[109]=s(" in general not being a principal ideal domain, the module structure is more complicated and requires so called pseudo-matrices. See ")),e[110]||(e[110]=t("a",{href:"/v0.34.8/manual/misc/pmat#PMatLink"},"here",-1)),e[111]||(e[111]=s(" for details on pseudo-matrices, or [")),e[112]||(e[112]=t("a",{href:"/v0.34.8/references#Coh00"},"1",-1)),e[113]||(e[113]=s("], Chapter 1 for an introduction."))]),t("p",null,[e[130]||(e[130]=s("In short, ")),t("mjx-container",c1,[(i(),a("svg",y1,e[114]||(e[114]=[l('',1)]))),e[115]||(e[115]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[131]||(e[131]=s(" is represented as ")),t("mjx-container",f1,[(i(),a("svg",b1,e[116]||(e[116]=[l('',1)]))),e[117]||(e[117]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")])])],-1))]),e[132]||(e[132]=s(" with fractional ")),t("mjx-container",v1,[(i(),a("svg",L1,e[118]||(e[118]=[l('',1)]))),e[119]||(e[119]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")])])],-1))]),e[133]||(e[133]=s(" ideals ")),t("mjx-container",H1,[(i(),a("svg",E1,e[120]||(e[120]=[l('',1)]))),e[121]||(e[121]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")]),t("mo",null,"⊂"),t("mi",null,"K")])],-1))]),e[134]||(e[134]=s(" and ")),t("mjx-container",M1,[(i(),a("svg",j1,e[122]||(e[122]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[123]||(e[123]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[135]||(e[135]=s("-linear independent elements ")),t("mjx-container",C1,[(i(),a("svg",Z1,e[124]||(e[124]=[l('',1)]))),e[125]||(e[125]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mi",null,"L")])],-1))]),e[136]||(e[136]=s(". In general it is impossible to have both ")),t("mjx-container",V1,[(i(),a("svg",D1,e[126]||(e[126]=[l('',1)]))),e[127]||(e[127]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"a")]),t("mi",null,"i")])])],-1))]),e[137]||(e[137]=s(" integral and ")),t("mjx-container",F1,[(i(),a("svg",B1,e[128]||(e[128]=[l('',1)]))),e[129]||(e[129]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[138]||(e[138]=s(", thus coefficients will not be integral and/or generators not in the structure."))]),e[142]||(e[142]=l(`

Examples

Usually, to create an order, one starts with a field (or a polynomial):

julia

 julia> Qx, x = polynomial_ring(QQ, "x");
 
 julia> K, a = number_field(x^2 - 10, "a");
diff --git a/v0.34.8/assets/manual_orders_orders.md.Bk8W8VLT.js b/v0.34.8/assets/manual_orders_orders.md.Bk8W8VLT.js
index cff9d10581..2edd1383af 100644
--- a/v0.34.8/assets/manual_orders_orders.md.Bk8W8VLT.js
+++ b/v0.34.8/assets/manual_orders_orders.md.Bk8W8VLT.js
@@ -13,4 +13,4 @@ import{_ as r,c as i,j as t,a as s,a5 as a,G as o,B as d,o as l}from"./chunks/fr
 with Z-basis AbsSimpleNumFieldOrderElem[1, a]
`,2)),t("details",w1,[t("summary",null,[e[145]||(e[145]=t("a",{id:"parent-Tuple{AbsSimpleNumFieldOrder}",href:"#parent-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"parent")],-1)),e[146]||(e[146]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[151]||(e[151]=a('
julia
parent(O::AbsNumFieldOrder) -> AbsNumFieldOrderSet
',1)),t("p",null,[e[149]||(e[149]=s("Returns the parent of ")),t("mjx-container",c1,[(l(),i("svg",b1,e[147]||(e[147]=[a('',1)]))),e[148]||(e[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[150]||(e[150]=s(", that is, the set of orders of the ambient number field."))]),e[152]||(e[152]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",y1,[t("summary",null,[e[153]||(e[153]=t("a",{id:"signature-Tuple{AbsSimpleNumFieldOrder}",href:"#signature-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"signature")],-1)),e[154]||(e[154]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[159]||(e[159]=a('
julia
signature(O::NumFieldOrder) -> Tuple{Int, Int}
',1)),t("p",null,[e[157]||(e[157]=s("Returns the signature of the ambient number field of ")),t("mjx-container",f1,[(l(),i("svg",v1,e[155]||(e[155]=[a('',1)]))),e[156]||(e[156]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[158]||(e[158]=s("."))]),e[160]||(e[160]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",E1,[t("summary",null,[e[161]||(e[161]=t("a",{id:"nf-Tuple{AbsSimpleNumFieldOrder}",href:"#nf-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"nf")],-1)),e[162]||(e[162]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[167]||(e[167]=a('
julia
nf(O::NumFieldOrder) -> NumField
',1)),t("p",null,[e[165]||(e[165]=s("Returns the ambient number field of ")),t("mjx-container",H1,[(l(),i("svg",M1,e[163]||(e[163]=[a('',1)]))),e[164]||(e[164]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[166]||(e[166]=s("."))]),e[168]||(e[168]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",j1,[t("summary",null,[e[169]||(e[169]=t("a",{id:"basis-Tuple{AbsSimpleNumFieldOrder}",href:"#basis-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis")],-1)),e[170]||(e[170]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[185]||(e[185]=a('
julia
basis(O::AbsNumFieldOrder) -> Vector{AbsNumFieldOrderElem}
',1)),t("p",null,[e[175]||(e[175]=s("Returns the ")),t("mjx-container",F1,[(l(),i("svg",L1,e[171]||(e[171]=[a('',1)]))),e[172]||(e[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[176]||(e[176]=s("-basis of ")),t("mjx-container",C1,[(l(),i("svg",O1,e[173]||(e[173]=[a('',1)]))),e[174]||(e[174]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[177]||(e[177]=s("."))]),e[186]||(e[186]=a('

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}
',2)),t("p",null,[e[182]||(e[182]=s("Returns the ")),t("mjx-container",A1,[(l(),i("svg",D1,e[178]||(e[178]=[a('',1)]))),e[179]||(e[179]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[183]||(e[183]=s("-basis of ")),t("mjx-container",Z1,[(l(),i("svg",V1,e[180]||(e[180]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),e[181]||(e[181]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"I")])],-1))]),e[184]||(e[184]=s("."))]),e[187]||(e[187]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",B1,[t("summary",null,[e[188]||(e[188]=t("a",{id:"lll_basis-Tuple{AbsSimpleNumFieldOrder}",href:"#lll_basis-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"lll_basis")],-1)),e[189]||(e[189]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[194]||(e[194]=a('
julia
lll_basis(M::NumFieldOrder) -> Vector{NumFieldElem}
',1)),t("p",null,[e[192]||(e[192]=s("A basis for ")),t("mjx-container",S1,[(l(),i("svg",R1,e[190]||(e[190]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[191]||(e[191]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[193]||(e[193]=s(" that is reduced using the LLL algorithm for the Minkowski metric."))]),e[195]||(e[195]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",N1,[t("summary",null,[e[196]||(e[196]=t("a",{id:"basis-Tuple{AbsSimpleNumFieldOrder, AbsSimpleNumField}",href:"#basis-Tuple{AbsSimpleNumFieldOrder, AbsSimpleNumField}"},[t("span",{class:"jlbinding"},"basis")],-1)),e[197]||(e[197]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[205]||(e[205]=a('
julia
basis(O::AbsSimpleNumFieldOrder, K::AbsSimpleNumField) -> Vector{AbsSimpleNumFieldElem}
',1)),t("p",null,[e[202]||(e[202]=s("Returns the ")),t("mjx-container",G1,[(l(),i("svg",z1,e[198]||(e[198]=[a('',1)]))),e[199]||(e[199]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[203]||(e[203]=s("-basis elements of ")),t("mjx-container",J1,[(l(),i("svg",X1,e[200]||(e[200]=[a('',1)]))),e[201]||(e[201]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[204]||(e[204]=s(" as elements of the ambient number field."))]),e[206]||(e[206]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I1,[t("summary",null,[e[207]||(e[207]=t("a",{id:"pseudo_basis-Tuple{Hecke.RelNumFieldOrder}",href:"#pseudo_basis-Tuple{Hecke.RelNumFieldOrder}"},[t("span",{class:"jlbinding"},"pseudo_basis")],-1)),e[208]||(e[208]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[213]||(e[213]=a('
julia
  pseudo_basis(O::RelNumFieldOrder{T, S}) -> Vector{Tuple{NumFieldElem{T}, S}}
',1)),t("p",null,[e[211]||(e[211]=s("Returns the pseudo-basis of ")),t("mjx-container",q1,[(l(),i("svg",K1,e[209]||(e[209]=[a('',1)]))),e[210]||(e[210]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[212]||(e[212]=s("."))]),e[214]||(e[214]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",P1,[t("summary",null,[e[215]||(e[215]=t("a",{id:"basis_pmatrix-Tuple{Hecke.RelNumFieldOrder}",href:"#basis_pmatrix-Tuple{Hecke.RelNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis_pmatrix")],-1)),e[216]||(e[216]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[221]||(e[221]=a('
julia
  basis_pmatrix(O::RelNumFieldOrder) -> PMat
',1)),t("p",null,[e[219]||(e[219]=s("Returns the basis pseudo-matrix of ")),t("mjx-container",U1,[(l(),i("svg",$1,e[217]||(e[217]=[a('',1)]))),e[218]||(e[218]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[220]||(e[220]=s(" with respect to the power basis of the ambient number field."))]),e[222]||(e[222]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",W1,[t("summary",null,[e[223]||(e[223]=t("a",{id:"basis_nf-Tuple{Hecke.RelNumFieldOrder}",href:"#basis_nf-Tuple{Hecke.RelNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis_nf")],-1)),e[224]||(e[224]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[229]||(e[229]=a('
julia
  basis_nf(O::RelNumFieldOrder) -> Vector{NumFieldElem}
',1)),t("p",null,[e[227]||(e[227]=s("Returns the elements of the pseudo-basis of ")),t("mjx-container",Y1,[(l(),i("svg",_1,e[225]||(e[225]=[a('',1)]))),e[226]||(e[226]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[228]||(e[228]=s(" as elements of the ambient number field."))]),e[230]||(e[230]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t3,[t("summary",null,[e[231]||(e[231]=t("a",{id:"inv_coeff_ideals-Tuple{Hecke.RelNumFieldOrder}",href:"#inv_coeff_ideals-Tuple{Hecke.RelNumFieldOrder}"},[t("span",{class:"jlbinding"},"inv_coeff_ideals")],-1)),e[232]||(e[232]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[237]||(e[237]=a('
julia
  inv_coeff_ideals(O::RelNumFieldOrder{T, S}) -> Vector{S}
',1)),t("p",null,[e[235]||(e[235]=s("Returns the inverses of the coefficient ideals of the pseudo basis of ")),t("mjx-container",e3,[(l(),i("svg",s3,e[233]||(e[233]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),e[234]||(e[234]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"O")])],-1))]),e[236]||(e[236]=s("."))]),e[238]||(e[238]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",i3,[t("summary",null,[e[239]||(e[239]=t("a",{id:"basis_matrix-Tuple{AbsNumFieldOrder}",href:"#basis_matrix-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis_matrix")],-1)),e[240]||(e[240]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[245]||(e[245]=a('
julia
basis_matrix(O::AbsNumFieldOrder) -> QQMatrix
',1)),t("p",null,[e[243]||(e[243]=s("Returns the basis matrix of ")),t("mjx-container",l3,[(l(),i("svg",a3,e[241]||(e[241]=[a('',1)]))),e[242]||(e[242]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[244]||(e[244]=s(" with respect to the basis of the ambient number field."))]),e[246]||(e[246]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n3,[t("summary",null,[e[247]||(e[247]=t("a",{id:"basis_mat_inv-Tuple{AbsSimpleNumFieldOrder}",href:"#basis_mat_inv-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis_mat_inv")],-1)),e[248]||(e[248]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[253]||(e[253]=a('
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat
',1)),t("p",null,[e[251]||(e[251]=s("Return the inverse of the basis matrix of ")),t("mjx-container",o3,[(l(),i("svg",r3,e[249]||(e[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),e[250]||(e[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),e[252]||(e[252]=s("."))]),e[254]||(e[254]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",d3,[t("summary",null,[e[255]||(e[255]=t("a",{id:"gen_index-Tuple{AbsSimpleNumFieldOrder}",href:"#gen_index-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"gen_index")],-1)),e[256]||(e[256]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[261]||(e[261]=a('
julia
gen_index(O::AbsSimpleNumFieldOrder) -> QQFieldElem
',1)),t("p",null,[e[259]||(e[259]=s("Returns the generalized index of ")),t("mjx-container",Q3,[(l(),i("svg",p3,e[257]||(e[257]=[a('',1)]))),e[258]||(e[258]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[260]||(e[260]=s(" with respect to the equation order of the ambient number field."))]),e[262]||(e[262]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",m3,[t("summary",null,[e[263]||(e[263]=t("a",{id:"is_index_divisor-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}",href:"#is_index_divisor-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}"},[t("span",{class:"jlbinding"},"is_index_divisor")],-1)),e[264]||(e[264]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[275]||(e[275]=a(`
julia
is_index_divisor(O::AbsSimpleNumFieldOrder, d::ZZRingElem) -> Bool
 is_index_divisor(O::AbsSimpleNumFieldOrder, d::Int) -> Bool
`,1)),t("p",null,[e[271]||(e[271]=s("Returns whether ")),t("mjx-container",T3,[(l(),i("svg",h3,e[265]||(e[265]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),e[266]||(e[266]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),e[272]||(e[272]=s(" is a divisor of the index of ")),t("mjx-container",g3,[(l(),i("svg",u3,e[267]||(e[267]=[a('',1)]))),e[268]||(e[268]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[273]||(e[273]=s(". It is assumed that ")),t("mjx-container",x3,[(l(),i("svg",k3,e[269]||(e[269]=[a('',1)]))),e[270]||(e[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[274]||(e[274]=s(" contains the equation order of the ambient number field."))]),e[276]||(e[276]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",w3,[t("summary",null,[e[277]||(e[277]=t("a",{id:"minkowski_matrix-Tuple{AbsSimpleNumFieldOrder, Int64}",href:"#minkowski_matrix-Tuple{AbsSimpleNumFieldOrder, Int64}"},[t("span",{class:"jlbinding"},"minkowski_matrix")],-1)),e[278]||(e[278]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[296]||(e[296]=a('
julia
minkowski_matrix(O::AbsNumFieldOrder, abs_tol::Int = 64) -> ArbMatrix
',1)),t("p",null,[e[287]||(e[287]=s("Returns the Minkowski matrix of ")),t("mjx-container",c3,[(l(),i("svg",b3,e[279]||(e[279]=[a('',1)]))),e[280]||(e[280]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[288]||(e[288]=s(". Thus if ")),t("mjx-container",y3,[(l(),i("svg",f3,e[281]||(e[281]=[a('',1)]))),e[282]||(e[282]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[289]||(e[289]=s(" has degree ")),t("mjx-container",v3,[(l(),i("svg",E3,e[283]||(e[283]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),e[284]||(e[284]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),e[290]||(e[290]=s(", then the result is a matrix in ")),t("mjx-container",H3,[(l(),i("svg",M3,e[285]||(e[285]=[a('',1)]))),e[286]||(e[286]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mo",{stretchy:"false"},")")])],-1))]),e[291]||(e[291]=s(". The entries of the matrix are real balls of type ")),e[292]||(e[292]=t("code",null,"ArbFieldElem",-1)),e[293]||(e[293]=s(" with radius less then ")),e[294]||(e[294]=t("code",null,"2^-abs_tol",-1)),e[295]||(e[295]=s("."))]),e[297]||(e[297]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",j3,[t("summary",null,[e[298]||(e[298]=t("a",{id:"in-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrder}",href:"#in-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"in")],-1)),e[299]||(e[299]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[307]||(e[307]=a('
julia
in(a::NumFieldElem, O::NumFieldOrder) -> Bool
',1)),t("p",null,[e[304]||(e[304]=s("Checks whether ")),t("mjx-container",F3,[(l(),i("svg",L3,e[300]||(e[300]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[301]||(e[301]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[305]||(e[305]=s(" lies in ")),t("mjx-container",C3,[(l(),i("svg",O3,e[302]||(e[302]=[a('',1)]))),e[303]||(e[303]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[306]||(e[306]=s("."))]),e[308]||(e[308]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",A3,[t("summary",null,[e[309]||(e[309]=t("a",{id:"norm_change_const-Tuple{AbsSimpleNumFieldOrder}",href:"#norm_change_const-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"norm_change_const")],-1)),e[310]||(e[310]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[333]||(e[333]=a('
julia
norm_change_const(O::AbsSimpleNumFieldOrder) -> (Float64, Float64)
',1)),t("p",null,[e[325]||(e[325]=s("Returns ")),t("mjx-container",D3,[(l(),i("svg",Z3,e[311]||(e[311]=[a('',1)]))),e[312]||(e[312]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"c"),t("mn",null,"1")]),t("mo",null,","),t("msub",null,[t("mi",null,"c"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",null,"∈"),t("msubsup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,">"),t("mn",null,"0")]),t("mn",null,"2")])])],-1))]),e[326]||(e[326]=s(" such that for all ")),t("mjx-container",V3,[(l(),i("svg",B3,e[313]||(e[313]=[a('',1)]))),e[314]||(e[314]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",null,"="),t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"="),t("mn",null,"1")]),t("mi",null,"d")]),t("msub",null,[t("mi",null,"x"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[327]||(e[327]=s(" we have ")),t("mjx-container",S3,[(l(),i("svg",R3,e[315]||(e[315]=[a('',1)]))),e[316]||(e[316]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"T"),t("mn",null,"2")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"≤"),t("msub",null,[t("mi",null,"c"),t("mn",null,"1")]),t("mo",null,"⋅"),t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mi",null,"i"),t("mi",null,"d")]),t("msubsup",null,[t("mi",null,"x"),t("mi",null,"i"),t("mn",null,"2")])])],-1))]),e[328]||(e[328]=s(" and ")),t("mjx-container",N3,[(l(),i("svg",G3,e[317]||(e[317]=[a('',1)]))),e[318]||(e[318]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mi",null,"i"),t("mi",null,"d")]),t("msubsup",null,[t("mi",null,"x"),t("mi",null,"i"),t("mn",null,"2")]),t("mo",null,"≤"),t("msub",null,[t("mi",null,"c"),t("mn",null,"2")]),t("mo",null,"⋅"),t("msub",null,[t("mi",null,"T"),t("mn",null,"2")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[329]||(e[329]=s(", where ")),t("mjx-container",z3,[(l(),i("svg",J3,e[319]||(e[319]=[a('',1)]))),e[320]||(e[320]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"i")])])],-1))]),e[330]||(e[330]=s(" is the ")),t("mjx-container",X3,[(l(),i("svg",I3,e[321]||(e[321]=[a('',1)]))),e[322]||(e[322]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[331]||(e[331]=s("-basis of ")),t("mjx-container",q3,[(l(),i("svg",K3,e[323]||(e[323]=[a('',1)]))),e[324]||(e[324]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[332]||(e[332]=s("."))]),e[334]||(e[334]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",P3,[t("summary",null,[e[335]||(e[335]=t("a",{id:"trace_matrix-Tuple{AbsSimpleNumFieldOrder}",href:"#trace_matrix-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"trace_matrix")],-1)),e[336]||(e[336]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[344]||(e[344]=a('
julia
trace_matrix(O::AbsNumFieldOrder) -> ZZMatrix
',1)),t("p",null,[e[341]||(e[341]=s("Returns the trace matrix of ")),t("mjx-container",U3,[(l(),i("svg",$3,e[337]||(e[337]=[a('',1)]))),e[338]||(e[338]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[342]||(e[342]=s(", that is, the matrix ")),t("mjx-container",W3,[(l(),i("svg",Y3,e[339]||(e[339]=[a('',1)]))),e[340]||(e[340]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"tr"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"K"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"b"),t("mi",null,"i")]),t("mo",null,"⋅"),t("msub",null,[t("mi",null,"b"),t("mi",null,"j")]),t("mo",{stretchy:"false"},")"),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,","),t("mi",null,"j"),t("mo",null,"≤"),t("mi",null,"d")])])])],-1))]),e[343]||(e[343]=s("."))]),e[345]||(e[345]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_3,[t("summary",null,[e[346]||(e[346]=t("a",{id:"+-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}",href:"#+-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"+")],-1)),e[347]||(e[347]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[370]||(e[370]=a('
julia
+(R::AbsSimpleNumFieldOrder, S::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrder
',1)),t("p",null,[e[362]||(e[362]=s("Given two orders ")),t("mjx-container",t4,[(l(),i("svg",e4,e[348]||(e[348]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[349]||(e[349]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[363]||(e[363]=s(", ")),t("mjx-container",s4,[(l(),i("svg",i4,e[350]||(e[350]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[351]||(e[351]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[364]||(e[364]=s(" of ")),t("mjx-container",l4,[(l(),i("svg",a4,e[352]||(e[352]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[353]||(e[353]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[365]||(e[365]=s(", this function returns the smallest order containing both ")),t("mjx-container",n4,[(l(),i("svg",o4,e[354]||(e[354]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[355]||(e[355]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[366]||(e[366]=s(" and ")),t("mjx-container",r4,[(l(),i("svg",d4,e[356]||(e[356]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[357]||(e[357]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[367]||(e[367]=s(". It is assumed that ")),t("mjx-container",Q4,[(l(),i("svg",p4,e[358]||(e[358]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[359]||(e[359]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[368]||(e[368]=s(", ")),t("mjx-container",m4,[(l(),i("svg",T4,e[360]||(e[360]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[361]||(e[361]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[369]||(e[369]=s(" contain the ambient equation order and have coprime index."))]),e[371]||(e[371]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h4,[t("summary",null,[e[372]||(e[372]=t("a",{id:"poverorder-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}",href:"#poverorder-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}"},[t("span",{class:"jlbinding"},"poverorder")],-1)),e[373]||(e[373]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[396]||(e[396]=a(`
julia
poverorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
 poverorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder
`,1)),t("p",null,[e[388]||(e[388]=s("This function tries to find an order that is locally larger than ")),t("mjx-container",g4,[(l(),i("svg",u4,e[374]||(e[374]=[a('',1)]))),e[375]||(e[375]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[389]||(e[389]=s(" at the prime ")),t("mjx-container",x4,[(l(),i("svg",k4,e[376]||(e[376]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[377]||(e[377]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[390]||(e[390]=s(": If ")),t("mjx-container",w4,[(l(),i("svg",c4,e[378]||(e[378]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[379]||(e[379]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[391]||(e[391]=s(" divides the index ")),t("mjx-container",b4,[(l(),i("svg",y4,e[380]||(e[380]=[a('',1)]))),e[381]||(e[381]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[392]||(e[392]=s(", this function will return an order ")),t("mjx-container",f4,[(l(),i("svg",v4,e[382]||(e[382]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[383]||(e[383]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[393]||(e[393]=s(" such that ")),t("mjx-container",E4,[(l(),i("svg",H4,e[384]||(e[384]=[a('',1)]))),e[385]||(e[385]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"v"),t("mi",null,"p")]),t("mo",{stretchy:"false"},"("),t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mi",null,"R"),t("mo",{stretchy:"false"},"]"),t("mo",{stretchy:"false"},")"),t("mo",null,"<"),t("msub",null,[t("mi",null,"v"),t("mi",null,"p")]),t("mo",{stretchy:"false"},"("),t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{stretchy:"false"},"]"),t("mo",{stretchy:"false"},")")])],-1))]),e[394]||(e[394]=s(". Otherwise ")),t("mjx-container",M4,[(l(),i("svg",j4,e[386]||(e[386]=[a('',1)]))),e[387]||(e[387]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[395]||(e[395]=s(" is returned."))]),e[397]||(e[397]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",F4,[t("summary",null,[e[398]||(e[398]=t("a",{id:"poverorders-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}",href:"#poverorders-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}"},[t("span",{class:"jlbinding"},"poverorders")],-1)),e[399]||(e[399]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[400]||(e[400]=a('
julia
poverorders(O, p) -> Vector{Ord}

Returns all p-overorders of O, that is all overorders M, such that the index of O in M is a p-power.

source

',3))]),t("details",L4,[t("summary",null,[e[401]||(e[401]=t("a",{id:"pmaximal_overorder-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}",href:"#pmaximal_overorder-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}"},[t("span",{class:"jlbinding"},"pmaximal_overorder")],-1)),e[402]||(e[402]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[419]||(e[419]=a(`
julia
pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
-pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder
`,1)),t("p",null,[e[413]||(e[413]=s("This function finds a ")),t("mjx-container",C4,[(l(),i("svg",O4,e[403]||(e[403]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[404]||(e[404]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[414]||(e[414]=s("-maximal order ")),t("mjx-container",A4,[(l(),i("svg",D4,e[405]||(e[405]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[406]||(e[406]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[415]||(e[415]=s(" containing ")),t("mjx-container",Z4,[(l(),i("svg",V4,e[407]||(e[407]=[a('',1)]))),e[408]||(e[408]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[416]||(e[416]=s(". That is, the index ")),t("mjx-container",B4,[(l(),i("svg",S4,e[409]||(e[409]=[a('',1)]))),e[410]||(e[410]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mi",null,"R"),t("mo",{stretchy:"false"},"]")])],-1))]),e[417]||(e[417]=s(" is not divisible by ")),t("mjx-container",R4,[(l(),i("svg",N4,e[411]||(e[411]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[412]||(e[412]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[418]||(e[418]=s("."))]),e[420]||(e[420]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",G4,[t("summary",null,[e[421]||(e[421]=t("a",{id:"pradical-Tuple{AbsNumFieldOrder, Union{Integer, ZZRingElem}}",href:"#pradical-Tuple{AbsNumFieldOrder, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"pradical")],-1)),e[422]||(e[422]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[442]||(e[442]=a('
julia
pradical(O::AbsSimpleNumFieldOrder, p::{ZZRingElem|Integer}) -> AbsNumFieldOrderIdeal
',1)),t("p",null,[e[435]||(e[435]=s("Given a prime number ")),t("mjx-container",z4,[(l(),i("svg",J4,e[423]||(e[423]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[424]||(e[424]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[436]||(e[436]=s(", this function returns the ")),t("mjx-container",X4,[(l(),i("svg",I4,e[425]||(e[425]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[426]||(e[426]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[437]||(e[437]=s("-radical ")),t("mjx-container",q4,[(l(),i("svg",K4,e[427]||(e[427]=[a('',1)]))),e[428]||(e[428]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msqrt",null,[t("mi",null,"p"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])])],-1))]),e[438]||(e[438]=s(" of ")),t("mjx-container",P4,[(l(),i("svg",U4,e[429]||(e[429]=[a('',1)]))),e[430]||(e[430]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[439]||(e[439]=s(", which is just ")),t("mjx-container",$4,[(l(),i("svg",W4,e[431]||(e[431]=[a('',1)]))),e[432]||(e[432]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"x"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,"∣"),t("mi",{mathvariant:"normal"},"∃"),t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"0")])]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"∈"),t("mi",null,"p"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),e[440]||(e[440]=s(". It is not checked that ")),t("mjx-container",Y4,[(l(),i("svg",_4,e[433]||(e[433]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[434]||(e[434]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[441]||(e[441]=s(" is prime."))]),e[443]||(e[443]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t2,[t("summary",null,[e[444]||(e[444]=t("a",{id:"pradical-Tuple{Hecke.RelNumFieldOrder, Union{Hecke.RelNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}}",href:"#pradical-Tuple{Hecke.RelNumFieldOrder, Union{Hecke.RelNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pradical")],-1)),e[445]||(e[445]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[465]||(e[465]=a('
julia
  pradical(O::RelNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> RelNumFieldOrderIdeal
',1)),t("p",null,[e[458]||(e[458]=s("Given a prime ideal ")),t("mjx-container",e2,[(l(),i("svg",s2,e[446]||(e[446]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[447]||(e[447]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[459]||(e[459]=s(", this function returns the ")),t("mjx-container",i2,[(l(),i("svg",l2,e[448]||(e[448]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[449]||(e[449]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[460]||(e[460]=s("-radical ")),t("mjx-container",a2,[(l(),i("svg",n2,e[450]||(e[450]=[a('',1)]))),e[451]||(e[451]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msqrt",null,[t("mi",null,"P"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])])],-1))]),e[461]||(e[461]=s(" of ")),t("mjx-container",o2,[(l(),i("svg",r2,e[452]||(e[452]=[a('',1)]))),e[453]||(e[453]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[462]||(e[462]=s(", which is just ")),t("mjx-container",d2,[(l(),i("svg",Q2,e[454]||(e[454]=[a('',1)]))),e[455]||(e[455]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"x"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,"∣"),t("mi",{mathvariant:"normal"},"∃"),t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"0")])]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"∈"),t("mi",null,"P"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),e[463]||(e[463]=s(". It is not checked that ")),t("mjx-container",p2,[(l(),i("svg",m2,e[456]||(e[456]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[457]||(e[457]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[464]||(e[464]=s(" is prime."))]),e[466]||(e[466]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",T2,[t("summary",null,[e[467]||(e[467]=t("a",{id:"ring_of_multipliers-Tuple{AbsNumFieldOrderIdeal}",href:"#ring_of_multipliers-Tuple{AbsNumFieldOrderIdeal}"},[t("span",{class:"jlbinding"},"ring_of_multipliers")],-1)),e[468]||(e[468]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[479]||(e[479]=a('
julia
ring_of_multipliers(I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrder
',1)),t("p",null,[e[475]||(e[475]=s("Computes the order ")),t("mjx-container",h2,[(l(),i("svg",g2,e[469]||(e[469]=[a('',1)]))),e[470]||(e[470]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"I"),t("mo",null,":"),t("mi",null,"I"),t("mo",{stretchy:"false"},")")])],-1))]),e[476]||(e[476]=s(", which is the set of all ")),t("mjx-container",u2,[(l(),i("svg",x2,e[471]||(e[471]=[a('',1)]))),e[472]||(e[472]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"K")])],-1))]),e[477]||(e[477]=s(" with ")),t("mjx-container",k2,[(l(),i("svg",w2,e[473]||(e[473]=[a('',1)]))),e[474]||(e[474]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mi",null,"I"),t("mo",null,"⊆"),t("mi",null,"I")])],-1))]),e[478]||(e[478]=s("."))]),e[480]||(e[480]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[606]||(e[606]=t("h2",{id:"invariants",tabindex:"-1"},[s("Invariants "),t("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),t("details",c2,[t("summary",null,[e[481]||(e[481]=t("a",{id:"discriminant-Tuple{AbsNumFieldOrder}",href:"#discriminant-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"discriminant")],-1)),e[482]||(e[482]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[487]||(e[487]=a('
julia
discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[485]||(e[485]=s("Returns the discriminant of ")),t("mjx-container",b2,[(l(),i("svg",y2,e[483]||(e[483]=[a('',1)]))),e[484]||(e[484]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[486]||(e[486]=s("."))]),e[488]||(e[488]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",f2,[t("summary",null,[e[489]||(e[489]=t("a",{id:"reduced_discriminant-Tuple{AbsSimpleNumFieldOrder}",href:"#reduced_discriminant-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"reduced_discriminant")],-1)),e[490]||(e[490]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[495]||(e[495]=a('
julia
reduced_discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[493]||(e[493]=s("Returns the reduced discriminant, that is, the largest elementary divisor of the trace matrix of ")),t("mjx-container",v2,[(l(),i("svg",E2,e[491]||(e[491]=[a('',1)]))),e[492]||(e[492]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[494]||(e[494]=s("."))]),e[496]||(e[496]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",H2,[t("summary",null,[e[497]||(e[497]=t("a",{id:"degree-Tuple{AbsSimpleNumFieldOrder}",href:"#degree-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"degree")],-1)),e[498]||(e[498]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[503]||(e[503]=a('
julia
degree(O::NumFieldOrder) -> Int
',1)),t("p",null,[e[501]||(e[501]=s("Returns the degree of ")),t("mjx-container",M2,[(l(),i("svg",j2,e[499]||(e[499]=[a('',1)]))),e[500]||(e[500]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[502]||(e[502]=s("."))]),e[504]||(e[504]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",F2,[t("summary",null,[e[505]||(e[505]=t("a",{id:"index-Tuple{AbsSimpleNumFieldOrder}",href:"#index-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"index")],-1)),e[506]||(e[506]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[517]||(e[517]=a('
julia
index(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[513]||(e[513]=s("Assuming that the order ")),t("mjx-container",L2,[(l(),i("svg",C2,e[507]||(e[507]=[a('',1)]))),e[508]||(e[508]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[514]||(e[514]=s(" contains the equation order ")),t("mjx-container",O2,[(l(),i("svg",A2,e[509]||(e[509]=[a('',1)]))),e[510]||(e[510]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]")])],-1))]),e[515]||(e[515]=s(" of the ambient number field, this function returns the index ")),t("mjx-container",D2,[(l(),i("svg",Z2,e[511]||(e[511]=[a('',1)]))),e[512]||(e[512]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[516]||(e[516]=s("."))]),e[518]||(e[518]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",V2,[t("summary",null,[e[519]||(e[519]=t("a",{id:"different-Tuple{AbsSimpleNumFieldOrder}",href:"#different-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"different")],-1)),e[520]||(e[520]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[528]||(e[528]=a('
julia
different(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal
',1)),t("p",null,[e[525]||(e[525]=s("The different ideal of ")),t("mjx-container",B2,[(l(),i("svg",S2,e[521]||(e[521]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[522]||(e[522]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[526]||(e[526]=s(", that is, the ideal generated by all differents of elements in ")),t("mjx-container",R2,[(l(),i("svg",N2,e[523]||(e[523]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[524]||(e[524]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[527]||(e[527]=s(". For Gorenstein orders, this is also the inverse ideal of the co-different."))]),e[529]||(e[529]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",G2,[t("summary",null,[e[530]||(e[530]=t("a",{id:"codifferent-Tuple{AbsSimpleNumFieldOrder}",href:"#codifferent-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"codifferent")],-1)),e[531]||(e[531]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[539]||(e[539]=a('
julia
codifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
',1)),t("p",null,[e[536]||(e[536]=s("The codifferent ideal of ")),t("mjx-container",z2,[(l(),i("svg",J2,e[532]||(e[532]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[533]||(e[533]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[537]||(e[537]=s(", i.e. the trace-dual of ")),t("mjx-container",X2,[(l(),i("svg",I2,e[534]||(e[534]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[535]||(e[535]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[538]||(e[538]=s("."))]),e[540]||(e[540]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q2,[t("summary",null,[e[541]||(e[541]=t("a",{id:"is_gorenstein-Tuple{AbsSimpleNumFieldOrder}",href:"#is_gorenstein-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_gorenstein")],-1)),e[542]||(e[542]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[543]||(e[543]=a('
julia
is_gorenstein(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \\mathcal{O} is Gorenstein.

source

',3))]),t("details",K2,[t("summary",null,[e[544]||(e[544]=t("a",{id:"is_bass-Tuple{AbsSimpleNumFieldOrder}",href:"#is_bass-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_bass")],-1)),e[545]||(e[545]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[546]||(e[546]=a('
julia
is_bass(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \\mathcal{O} is Bass.

source

',3))]),t("details",P2,[t("summary",null,[e[547]||(e[547]=t("a",{id:"is_equation_order-Tuple{AbsSimpleNumFieldOrder}",href:"#is_equation_order-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_equation_order")],-1)),e[548]||(e[548]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[556]||(e[556]=a('
julia
is_equation_order(O::NumFieldOrder) -> Bool
',1)),t("p",null,[e[553]||(e[553]=s("Returns whether ")),t("mjx-container",U2,[(l(),i("svg",$2,e[549]||(e[549]=[a('',1)]))),e[550]||(e[550]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[554]||(e[554]=s(" is the equation order of the ambient number field ")),t("mjx-container",W2,[(l(),i("svg",Y2,e[551]||(e[551]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[552]||(e[552]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[555]||(e[555]=s("."))]),e[557]||(e[557]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_2,[t("summary",null,[e[558]||(e[558]=t("a",{id:"zeta_log_residue-Tuple{AbsSimpleNumFieldOrder, Float64}",href:"#zeta_log_residue-Tuple{AbsSimpleNumFieldOrder, Float64}"},[t("span",{class:"jlbinding"},"zeta_log_residue")],-1)),e[559]||(e[559]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[571]||(e[571]=a('
julia
zeta_log_residue(O::AbsSimpleNumFieldOrder, error::Float64) -> ArbFieldElem
',1)),t("p",null,[e[564]||(e[564]=s("Computes the residue of the zeta function of ")),t("mjx-container",tt,[(l(),i("svg",et,e[560]||(e[560]=[a('',1)]))),e[561]||(e[561]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[565]||(e[565]=s(" at ")),t("mjx-container",st,[(l(),i("svg",it,e[562]||(e[562]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mn"},[t("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),e[563]||(e[563]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1")])],-1))]),e[566]||(e[566]=s(". The output will be an element of type ")),e[567]||(e[567]=t("code",null,"ArbFieldElem",-1)),e[568]||(e[568]=s(" with radius less then ")),e[569]||(e[569]=t("code",null,"error",-1)),e[570]||(e[570]=s("."))]),e[572]||(e[572]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",lt,[t("summary",null,[e[573]||(e[573]=t("a",{id:"ramified_primes-Tuple{AbsSimpleNumFieldOrder}",href:"#ramified_primes-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"ramified_primes")],-1)),e[574]||(e[574]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[579]||(e[579]=a('
julia
ramified_primes(O::AbsNumFieldOrder) -> Vector{ZZRingElem}
',1)),t("p",null,[e[577]||(e[577]=s("Returns the list of prime numbers that divide ")),t("mjx-container",at,[(l(),i("svg",nt,e[575]||(e[575]=[a('',1)]))),e[576]||(e[576]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"disc"),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{stretchy:"false"},")")])],-1))]),e[578]||(e[578]=s("."))]),e[580]||(e[580]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[607]||(e[607]=a('

Arithmetic

Progress and intermediate results of the functions mentioned here can be obtained via verbose_level, supported are

  • ClassGroup

  • UnitGroup

All of the functions have a very similar interface: they return an abelian group and a map converting elements of the group into the objects required. The maps also allow a point-wise inverse to server as the discrete logarithm map. For more information on abelian groups, see here, for ideals, here.

For the processing of units, there are a couple of helper functions also available:

',6)),t("details",ot,[t("summary",null,[e[581]||(e[581]=t("a",{id:"is_independent",href:"#is_independent"},[t("span",{class:"jlbinding"},"is_independent")],-1)),e[582]||(e[582]=s()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[583]||(e[583]=a('
julia
is_independent{T}(x::Vector{T})

Given an array of non-zero units in a number field, returns whether they are multiplicatively independent.

source

',3))]),e[608]||(e[608]=t("h2",{id:"predicates",tabindex:"-1"},[s("Predicates "),t("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),t("details",rt,[t("summary",null,[e[584]||(e[584]=t("a",{id:"is_contained-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}",href:"#is_contained-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_contained")],-1)),e[585]||(e[585]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[593]||(e[593]=a('
julia
is_contained(R::AbsNumFieldOrder, S::AbsNumFieldOrder) -> Bool
',1)),t("p",null,[e[590]||(e[590]=s("Checks if ")),t("mjx-container",dt,[(l(),i("svg",Qt,e[586]||(e[586]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[587]||(e[587]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[591]||(e[591]=s(" is contained in ")),t("mjx-container",pt,[(l(),i("svg",mt,e[588]||(e[588]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[589]||(e[589]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[592]||(e[592]=s("."))]),e[594]||(e[594]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Tt,[t("summary",null,[e[595]||(e[595]=t("a",{id:"is_maximal-Tuple{AbsNumFieldOrder}",href:"#is_maximal-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_maximal")],-1)),e[596]||(e[596]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[601]||(e[601]=a('
julia
is_maximal(R::AbsNumFieldOrder) -> Bool
',1)),t("p",null,[e[599]||(e[599]=s("Tests if the order ")),t("mjx-container",ht,[(l(),i("svg",gt,e[597]||(e[597]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[598]||(e[598]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[600]||(e[600]=s(" is maximal. This might trigger the computation of the maximal order."))]),e[602]||(e[602]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const vt=r(Q,[["render",ut]]);export{ft as __pageData,vt as default}; +pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder
`,1)),t("p",null,[e[413]||(e[413]=s("This function finds a ")),t("mjx-container",C4,[(l(),i("svg",O4,e[403]||(e[403]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[404]||(e[404]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[414]||(e[414]=s("-maximal order ")),t("mjx-container",A4,[(l(),i("svg",D4,e[405]||(e[405]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[406]||(e[406]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[415]||(e[415]=s(" containing ")),t("mjx-container",Z4,[(l(),i("svg",V4,e[407]||(e[407]=[a('',1)]))),e[408]||(e[408]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[416]||(e[416]=s(". That is, the index ")),t("mjx-container",B4,[(l(),i("svg",S4,e[409]||(e[409]=[a('',1)]))),e[410]||(e[410]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mi",null,"R"),t("mo",{stretchy:"false"},"]")])],-1))]),e[417]||(e[417]=s(" is not divisible by ")),t("mjx-container",R4,[(l(),i("svg",N4,e[411]||(e[411]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[412]||(e[412]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[418]||(e[418]=s("."))]),e[420]||(e[420]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",G4,[t("summary",null,[e[421]||(e[421]=t("a",{id:"pradical-Tuple{AbsNumFieldOrder, Union{Integer, ZZRingElem}}",href:"#pradical-Tuple{AbsNumFieldOrder, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"pradical")],-1)),e[422]||(e[422]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[442]||(e[442]=a('
julia
pradical(O::AbsSimpleNumFieldOrder, p::{ZZRingElem|Integer}) -> AbsNumFieldOrderIdeal
',1)),t("p",null,[e[435]||(e[435]=s("Given a prime number ")),t("mjx-container",z4,[(l(),i("svg",J4,e[423]||(e[423]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[424]||(e[424]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[436]||(e[436]=s(", this function returns the ")),t("mjx-container",X4,[(l(),i("svg",I4,e[425]||(e[425]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[426]||(e[426]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[437]||(e[437]=s("-radical ")),t("mjx-container",q4,[(l(),i("svg",K4,e[427]||(e[427]=[a('',1)]))),e[428]||(e[428]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msqrt",null,[t("mi",null,"p"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])])],-1))]),e[438]||(e[438]=s(" of ")),t("mjx-container",P4,[(l(),i("svg",U4,e[429]||(e[429]=[a('',1)]))),e[430]||(e[430]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[439]||(e[439]=s(", which is just ")),t("mjx-container",$4,[(l(),i("svg",W4,e[431]||(e[431]=[a('',1)]))),e[432]||(e[432]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"x"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,"∣"),t("mi",{mathvariant:"normal"},"∃"),t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"0")])]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"∈"),t("mi",null,"p"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),e[440]||(e[440]=s(". It is not checked that ")),t("mjx-container",Y4,[(l(),i("svg",_4,e[433]||(e[433]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[434]||(e[434]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[441]||(e[441]=s(" is prime."))]),e[443]||(e[443]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t2,[t("summary",null,[e[444]||(e[444]=t("a",{id:"pradical-Tuple{Hecke.RelNumFieldOrder, Union{Hecke.RelNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}}",href:"#pradical-Tuple{Hecke.RelNumFieldOrder, Union{Hecke.RelNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pradical")],-1)),e[445]||(e[445]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[465]||(e[465]=a('
julia
  pradical(O::RelNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> RelNumFieldOrderIdeal
',1)),t("p",null,[e[458]||(e[458]=s("Given a prime ideal ")),t("mjx-container",e2,[(l(),i("svg",s2,e[446]||(e[446]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[447]||(e[447]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[459]||(e[459]=s(", this function returns the ")),t("mjx-container",i2,[(l(),i("svg",l2,e[448]||(e[448]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[449]||(e[449]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[460]||(e[460]=s("-radical ")),t("mjx-container",a2,[(l(),i("svg",n2,e[450]||(e[450]=[a('',1)]))),e[451]||(e[451]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msqrt",null,[t("mi",null,"P"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])])],-1))]),e[461]||(e[461]=s(" of ")),t("mjx-container",o2,[(l(),i("svg",r2,e[452]||(e[452]=[a('',1)]))),e[453]||(e[453]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[462]||(e[462]=s(", which is just ")),t("mjx-container",d2,[(l(),i("svg",Q2,e[454]||(e[454]=[a('',1)]))),e[455]||(e[455]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"x"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,"∣"),t("mi",{mathvariant:"normal"},"∃"),t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"0")])]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"∈"),t("mi",null,"P"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),e[463]||(e[463]=s(". It is not checked that ")),t("mjx-container",p2,[(l(),i("svg",m2,e[456]||(e[456]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[457]||(e[457]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[464]||(e[464]=s(" is prime."))]),e[466]||(e[466]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",T2,[t("summary",null,[e[467]||(e[467]=t("a",{id:"ring_of_multipliers-Tuple{AbsNumFieldOrderIdeal}",href:"#ring_of_multipliers-Tuple{AbsNumFieldOrderIdeal}"},[t("span",{class:"jlbinding"},"ring_of_multipliers")],-1)),e[468]||(e[468]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[479]||(e[479]=a('
julia
ring_of_multipliers(I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrder
',1)),t("p",null,[e[475]||(e[475]=s("Computes the order ")),t("mjx-container",h2,[(l(),i("svg",g2,e[469]||(e[469]=[a('',1)]))),e[470]||(e[470]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"I"),t("mo",null,":"),t("mi",null,"I"),t("mo",{stretchy:"false"},")")])],-1))]),e[476]||(e[476]=s(", which is the set of all ")),t("mjx-container",u2,[(l(),i("svg",x2,e[471]||(e[471]=[a('',1)]))),e[472]||(e[472]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"K")])],-1))]),e[477]||(e[477]=s(" with ")),t("mjx-container",k2,[(l(),i("svg",w2,e[473]||(e[473]=[a('',1)]))),e[474]||(e[474]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mi",null,"I"),t("mo",null,"⊆"),t("mi",null,"I")])],-1))]),e[478]||(e[478]=s("."))]),e[480]||(e[480]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[606]||(e[606]=t("h2",{id:"invariants",tabindex:"-1"},[s("Invariants "),t("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),t("details",c2,[t("summary",null,[e[481]||(e[481]=t("a",{id:"discriminant-Tuple{AbsNumFieldOrder}",href:"#discriminant-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"discriminant")],-1)),e[482]||(e[482]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[487]||(e[487]=a('
julia
discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[485]||(e[485]=s("Returns the discriminant of ")),t("mjx-container",b2,[(l(),i("svg",y2,e[483]||(e[483]=[a('',1)]))),e[484]||(e[484]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[486]||(e[486]=s("."))]),e[488]||(e[488]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",f2,[t("summary",null,[e[489]||(e[489]=t("a",{id:"reduced_discriminant-Tuple{AbsSimpleNumFieldOrder}",href:"#reduced_discriminant-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"reduced_discriminant")],-1)),e[490]||(e[490]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[495]||(e[495]=a('
julia
reduced_discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[493]||(e[493]=s("Returns the reduced discriminant, that is, the largest elementary divisor of the trace matrix of ")),t("mjx-container",v2,[(l(),i("svg",E2,e[491]||(e[491]=[a('',1)]))),e[492]||(e[492]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[494]||(e[494]=s("."))]),e[496]||(e[496]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",H2,[t("summary",null,[e[497]||(e[497]=t("a",{id:"degree-Tuple{AbsSimpleNumFieldOrder}",href:"#degree-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"degree")],-1)),e[498]||(e[498]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[503]||(e[503]=a('
julia
degree(O::NumFieldOrder) -> Int
',1)),t("p",null,[e[501]||(e[501]=s("Returns the degree of ")),t("mjx-container",M2,[(l(),i("svg",j2,e[499]||(e[499]=[a('',1)]))),e[500]||(e[500]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[502]||(e[502]=s("."))]),e[504]||(e[504]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",F2,[t("summary",null,[e[505]||(e[505]=t("a",{id:"index-Tuple{AbsSimpleNumFieldOrder}",href:"#index-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"index")],-1)),e[506]||(e[506]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[517]||(e[517]=a('
julia
index(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[513]||(e[513]=s("Assuming that the order ")),t("mjx-container",L2,[(l(),i("svg",C2,e[507]||(e[507]=[a('',1)]))),e[508]||(e[508]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[514]||(e[514]=s(" contains the equation order ")),t("mjx-container",O2,[(l(),i("svg",A2,e[509]||(e[509]=[a('',1)]))),e[510]||(e[510]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]")])],-1))]),e[515]||(e[515]=s(" of the ambient number field, this function returns the index ")),t("mjx-container",D2,[(l(),i("svg",Z2,e[511]||(e[511]=[a('',1)]))),e[512]||(e[512]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[516]||(e[516]=s("."))]),e[518]||(e[518]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",V2,[t("summary",null,[e[519]||(e[519]=t("a",{id:"different-Tuple{AbsSimpleNumFieldOrder}",href:"#different-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"different")],-1)),e[520]||(e[520]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[528]||(e[528]=a('
julia
different(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal
',1)),t("p",null,[e[525]||(e[525]=s("The different ideal of ")),t("mjx-container",B2,[(l(),i("svg",S2,e[521]||(e[521]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[522]||(e[522]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[526]||(e[526]=s(", that is, the ideal generated by all differents of elements in ")),t("mjx-container",R2,[(l(),i("svg",N2,e[523]||(e[523]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[524]||(e[524]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[527]||(e[527]=s(". For Gorenstein orders, this is also the inverse ideal of the co-different."))]),e[529]||(e[529]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",G2,[t("summary",null,[e[530]||(e[530]=t("a",{id:"codifferent-Tuple{AbsSimpleNumFieldOrder}",href:"#codifferent-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"codifferent")],-1)),e[531]||(e[531]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[539]||(e[539]=a('
julia
codifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
',1)),t("p",null,[e[536]||(e[536]=s("The codifferent ideal of ")),t("mjx-container",z2,[(l(),i("svg",J2,e[532]||(e[532]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[533]||(e[533]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[537]||(e[537]=s(", i.e. the trace-dual of ")),t("mjx-container",X2,[(l(),i("svg",I2,e[534]||(e[534]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[535]||(e[535]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[538]||(e[538]=s("."))]),e[540]||(e[540]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q2,[t("summary",null,[e[541]||(e[541]=t("a",{id:"is_gorenstein-Tuple{AbsSimpleNumFieldOrder}",href:"#is_gorenstein-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_gorenstein")],-1)),e[542]||(e[542]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[543]||(e[543]=a('
julia
is_gorenstein(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \\mathcal{O} is Gorenstein.

source

',3))]),t("details",K2,[t("summary",null,[e[544]||(e[544]=t("a",{id:"is_bass-Tuple{AbsSimpleNumFieldOrder}",href:"#is_bass-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_bass")],-1)),e[545]||(e[545]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[546]||(e[546]=a('
julia
is_bass(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \\mathcal{O} is Bass.

source

',3))]),t("details",P2,[t("summary",null,[e[547]||(e[547]=t("a",{id:"is_equation_order-Tuple{AbsSimpleNumFieldOrder}",href:"#is_equation_order-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_equation_order")],-1)),e[548]||(e[548]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[556]||(e[556]=a('
julia
is_equation_order(O::NumFieldOrder) -> Bool
',1)),t("p",null,[e[553]||(e[553]=s("Returns whether ")),t("mjx-container",U2,[(l(),i("svg",$2,e[549]||(e[549]=[a('',1)]))),e[550]||(e[550]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[554]||(e[554]=s(" is the equation order of the ambient number field ")),t("mjx-container",W2,[(l(),i("svg",Y2,e[551]||(e[551]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[552]||(e[552]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[555]||(e[555]=s("."))]),e[557]||(e[557]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_2,[t("summary",null,[e[558]||(e[558]=t("a",{id:"zeta_log_residue-Tuple{AbsSimpleNumFieldOrder, Float64}",href:"#zeta_log_residue-Tuple{AbsSimpleNumFieldOrder, Float64}"},[t("span",{class:"jlbinding"},"zeta_log_residue")],-1)),e[559]||(e[559]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[571]||(e[571]=a('
julia
zeta_log_residue(O::AbsSimpleNumFieldOrder, error::Float64) -> ArbFieldElem
',1)),t("p",null,[e[564]||(e[564]=s("Computes the residue of the zeta function of ")),t("mjx-container",tt,[(l(),i("svg",et,e[560]||(e[560]=[a('',1)]))),e[561]||(e[561]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[565]||(e[565]=s(" at ")),t("mjx-container",st,[(l(),i("svg",it,e[562]||(e[562]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mn"},[t("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),e[563]||(e[563]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1")])],-1))]),e[566]||(e[566]=s(". The output will be an element of type ")),e[567]||(e[567]=t("code",null,"ArbFieldElem",-1)),e[568]||(e[568]=s(" with radius less then ")),e[569]||(e[569]=t("code",null,"error",-1)),e[570]||(e[570]=s("."))]),e[572]||(e[572]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",lt,[t("summary",null,[e[573]||(e[573]=t("a",{id:"ramified_primes-Tuple{AbsSimpleNumFieldOrder}",href:"#ramified_primes-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"ramified_primes")],-1)),e[574]||(e[574]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[579]||(e[579]=a('
julia
ramified_primes(O::AbsNumFieldOrder) -> Vector{ZZRingElem}
',1)),t("p",null,[e[577]||(e[577]=s("Returns the list of prime numbers that divide ")),t("mjx-container",at,[(l(),i("svg",nt,e[575]||(e[575]=[a('',1)]))),e[576]||(e[576]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"disc"),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{stretchy:"false"},")")])],-1))]),e[578]||(e[578]=s("."))]),e[580]||(e[580]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[607]||(e[607]=a('

Arithmetic

Progress and intermediate results of the functions mentioned here can be obtained via verbose_level, supported are

  • ClassGroup

  • UnitGroup

All of the functions have a very similar interface: they return an abelian group and a map converting elements of the group into the objects required. The maps also allow a point-wise inverse to server as the discrete logarithm map. For more information on abelian groups, see here, for ideals, here.

For the processing of units, there are a couple of helper functions also available:

',6)),t("details",ot,[t("summary",null,[e[581]||(e[581]=t("a",{id:"is_independent",href:"#is_independent"},[t("span",{class:"jlbinding"},"is_independent")],-1)),e[582]||(e[582]=s()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[583]||(e[583]=a('
julia
is_independent{T}(x::Vector{T})

Given an array of non-zero units in a number field, returns whether they are multiplicatively independent.

source

',3))]),e[608]||(e[608]=t("h2",{id:"predicates",tabindex:"-1"},[s("Predicates "),t("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),t("details",rt,[t("summary",null,[e[584]||(e[584]=t("a",{id:"is_contained-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}",href:"#is_contained-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_contained")],-1)),e[585]||(e[585]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[593]||(e[593]=a('
julia
is_contained(R::AbsNumFieldOrder, S::AbsNumFieldOrder) -> Bool
',1)),t("p",null,[e[590]||(e[590]=s("Checks if ")),t("mjx-container",dt,[(l(),i("svg",Qt,e[586]||(e[586]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[587]||(e[587]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[591]||(e[591]=s(" is contained in ")),t("mjx-container",pt,[(l(),i("svg",mt,e[588]||(e[588]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[589]||(e[589]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[592]||(e[592]=s("."))]),e[594]||(e[594]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Tt,[t("summary",null,[e[595]||(e[595]=t("a",{id:"is_maximal-Tuple{AbsNumFieldOrder}",href:"#is_maximal-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_maximal")],-1)),e[596]||(e[596]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[601]||(e[601]=a('
julia
is_maximal(R::AbsNumFieldOrder) -> Bool
',1)),t("p",null,[e[599]||(e[599]=s("Tests if the order ")),t("mjx-container",ht,[(l(),i("svg",gt,e[597]||(e[597]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[598]||(e[598]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[600]||(e[600]=s(" is maximal. This might trigger the computation of the maximal order."))]),e[602]||(e[602]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const vt=r(Q,[["render",ut]]);export{ft as __pageData,vt as default}; diff --git a/v0.34.8/assets/manual_orders_orders.md.Bk8W8VLT.lean.js b/v0.34.8/assets/manual_orders_orders.md.Bk8W8VLT.lean.js index cff9d10581..2edd1383af 100644 --- a/v0.34.8/assets/manual_orders_orders.md.Bk8W8VLT.lean.js +++ b/v0.34.8/assets/manual_orders_orders.md.Bk8W8VLT.lean.js @@ -13,4 +13,4 @@ import{_ as r,c as i,j as t,a as s,a5 as a,G as o,B as d,o as l}from"./chunks/fr with Z-basis AbsSimpleNumFieldOrderElem[1, a]
`,2)),t("details",w1,[t("summary",null,[e[145]||(e[145]=t("a",{id:"parent-Tuple{AbsSimpleNumFieldOrder}",href:"#parent-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"parent")],-1)),e[146]||(e[146]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[151]||(e[151]=a('
julia
parent(O::AbsNumFieldOrder) -> AbsNumFieldOrderSet
',1)),t("p",null,[e[149]||(e[149]=s("Returns the parent of ")),t("mjx-container",c1,[(l(),i("svg",b1,e[147]||(e[147]=[a('',1)]))),e[148]||(e[148]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[150]||(e[150]=s(", that is, the set of orders of the ambient number field."))]),e[152]||(e[152]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",y1,[t("summary",null,[e[153]||(e[153]=t("a",{id:"signature-Tuple{AbsSimpleNumFieldOrder}",href:"#signature-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"signature")],-1)),e[154]||(e[154]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[159]||(e[159]=a('
julia
signature(O::NumFieldOrder) -> Tuple{Int, Int}
',1)),t("p",null,[e[157]||(e[157]=s("Returns the signature of the ambient number field of ")),t("mjx-container",f1,[(l(),i("svg",v1,e[155]||(e[155]=[a('',1)]))),e[156]||(e[156]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[158]||(e[158]=s("."))]),e[160]||(e[160]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",E1,[t("summary",null,[e[161]||(e[161]=t("a",{id:"nf-Tuple{AbsSimpleNumFieldOrder}",href:"#nf-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"nf")],-1)),e[162]||(e[162]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[167]||(e[167]=a('
julia
nf(O::NumFieldOrder) -> NumField
',1)),t("p",null,[e[165]||(e[165]=s("Returns the ambient number field of ")),t("mjx-container",H1,[(l(),i("svg",M1,e[163]||(e[163]=[a('',1)]))),e[164]||(e[164]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[166]||(e[166]=s("."))]),e[168]||(e[168]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",j1,[t("summary",null,[e[169]||(e[169]=t("a",{id:"basis-Tuple{AbsSimpleNumFieldOrder}",href:"#basis-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis")],-1)),e[170]||(e[170]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[185]||(e[185]=a('
julia
basis(O::AbsNumFieldOrder) -> Vector{AbsNumFieldOrderElem}
',1)),t("p",null,[e[175]||(e[175]=s("Returns the ")),t("mjx-container",F1,[(l(),i("svg",L1,e[171]||(e[171]=[a('',1)]))),e[172]||(e[172]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[176]||(e[176]=s("-basis of ")),t("mjx-container",C1,[(l(),i("svg",O1,e[173]||(e[173]=[a('',1)]))),e[174]||(e[174]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[177]||(e[177]=s("."))]),e[186]||(e[186]=a('

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}
',2)),t("p",null,[e[182]||(e[182]=s("Returns the ")),t("mjx-container",A1,[(l(),i("svg",D1,e[178]||(e[178]=[a('',1)]))),e[179]||(e[179]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[183]||(e[183]=s("-basis of ")),t("mjx-container",Z1,[(l(),i("svg",V1,e[180]||(e[180]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43C",d:"M43 1Q26 1 26 10Q26 12 29 24Q34 43 39 45Q42 46 54 46H60Q120 46 136 53Q137 53 138 54Q143 56 149 77T198 273Q210 318 216 344Q286 624 286 626Q284 630 284 631Q274 637 213 637H193Q184 643 189 662Q193 677 195 680T209 683H213Q285 681 359 681Q481 681 487 683H497Q504 676 504 672T501 655T494 639Q491 637 471 637Q440 637 407 634Q393 631 388 623Q381 609 337 432Q326 385 315 341Q245 65 245 59Q245 52 255 50T307 46H339Q345 38 345 37T342 19Q338 6 332 0H316Q279 2 179 2Q143 2 113 2T65 2T43 1Z",style:{"stroke-width":"3"}})])])],-1)]))),e[181]||(e[181]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"I")])],-1))]),e[184]||(e[184]=s("."))]),e[187]||(e[187]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",B1,[t("summary",null,[e[188]||(e[188]=t("a",{id:"lll_basis-Tuple{AbsSimpleNumFieldOrder}",href:"#lll_basis-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"lll_basis")],-1)),e[189]||(e[189]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[194]||(e[194]=a('
julia
lll_basis(M::NumFieldOrder) -> Vector{NumFieldElem}
',1)),t("p",null,[e[192]||(e[192]=s("A basis for ")),t("mjx-container",S1,[(l(),i("svg",R1,e[190]||(e[190]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),e[191]||(e[191]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),e[193]||(e[193]=s(" that is reduced using the LLL algorithm for the Minkowski metric."))]),e[195]||(e[195]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",N1,[t("summary",null,[e[196]||(e[196]=t("a",{id:"basis-Tuple{AbsSimpleNumFieldOrder, AbsSimpleNumField}",href:"#basis-Tuple{AbsSimpleNumFieldOrder, AbsSimpleNumField}"},[t("span",{class:"jlbinding"},"basis")],-1)),e[197]||(e[197]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[205]||(e[205]=a('
julia
basis(O::AbsSimpleNumFieldOrder, K::AbsSimpleNumField) -> Vector{AbsSimpleNumFieldElem}
',1)),t("p",null,[e[202]||(e[202]=s("Returns the ")),t("mjx-container",G1,[(l(),i("svg",z1,e[198]||(e[198]=[a('',1)]))),e[199]||(e[199]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[203]||(e[203]=s("-basis elements of ")),t("mjx-container",J1,[(l(),i("svg",X1,e[200]||(e[200]=[a('',1)]))),e[201]||(e[201]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[204]||(e[204]=s(" as elements of the ambient number field."))]),e[206]||(e[206]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",I1,[t("summary",null,[e[207]||(e[207]=t("a",{id:"pseudo_basis-Tuple{Hecke.RelNumFieldOrder}",href:"#pseudo_basis-Tuple{Hecke.RelNumFieldOrder}"},[t("span",{class:"jlbinding"},"pseudo_basis")],-1)),e[208]||(e[208]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[213]||(e[213]=a('
julia
  pseudo_basis(O::RelNumFieldOrder{T, S}) -> Vector{Tuple{NumFieldElem{T}, S}}
',1)),t("p",null,[e[211]||(e[211]=s("Returns the pseudo-basis of ")),t("mjx-container",q1,[(l(),i("svg",K1,e[209]||(e[209]=[a('',1)]))),e[210]||(e[210]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[212]||(e[212]=s("."))]),e[214]||(e[214]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",P1,[t("summary",null,[e[215]||(e[215]=t("a",{id:"basis_pmatrix-Tuple{Hecke.RelNumFieldOrder}",href:"#basis_pmatrix-Tuple{Hecke.RelNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis_pmatrix")],-1)),e[216]||(e[216]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[221]||(e[221]=a('
julia
  basis_pmatrix(O::RelNumFieldOrder) -> PMat
',1)),t("p",null,[e[219]||(e[219]=s("Returns the basis pseudo-matrix of ")),t("mjx-container",U1,[(l(),i("svg",$1,e[217]||(e[217]=[a('',1)]))),e[218]||(e[218]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[220]||(e[220]=s(" with respect to the power basis of the ambient number field."))]),e[222]||(e[222]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",W1,[t("summary",null,[e[223]||(e[223]=t("a",{id:"basis_nf-Tuple{Hecke.RelNumFieldOrder}",href:"#basis_nf-Tuple{Hecke.RelNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis_nf")],-1)),e[224]||(e[224]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[229]||(e[229]=a('
julia
  basis_nf(O::RelNumFieldOrder) -> Vector{NumFieldElem}
',1)),t("p",null,[e[227]||(e[227]=s("Returns the elements of the pseudo-basis of ")),t("mjx-container",Y1,[(l(),i("svg",_1,e[225]||(e[225]=[a('',1)]))),e[226]||(e[226]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[228]||(e[228]=s(" as elements of the ambient number field."))]),e[230]||(e[230]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t3,[t("summary",null,[e[231]||(e[231]=t("a",{id:"inv_coeff_ideals-Tuple{Hecke.RelNumFieldOrder}",href:"#inv_coeff_ideals-Tuple{Hecke.RelNumFieldOrder}"},[t("span",{class:"jlbinding"},"inv_coeff_ideals")],-1)),e[232]||(e[232]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[237]||(e[237]=a('
julia
  inv_coeff_ideals(O::RelNumFieldOrder{T, S}) -> Vector{S}
',1)),t("p",null,[e[235]||(e[235]=s("Returns the inverses of the coefficient ideals of the pseudo basis of ")),t("mjx-container",e3,[(l(),i("svg",s3,e[233]||(e[233]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D442",d:"M740 435Q740 320 676 213T511 42T304 -22Q207 -22 138 35T51 201Q50 209 50 244Q50 346 98 438T227 601Q351 704 476 704Q514 704 524 703Q621 689 680 617T740 435ZM637 476Q637 565 591 615T476 665Q396 665 322 605Q242 542 200 428T157 216Q157 126 200 73T314 19Q404 19 485 98T608 313Q637 408 637 476Z",style:{"stroke-width":"3"}})])])],-1)]))),e[234]||(e[234]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"O")])],-1))]),e[236]||(e[236]=s("."))]),e[238]||(e[238]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",i3,[t("summary",null,[e[239]||(e[239]=t("a",{id:"basis_matrix-Tuple{AbsNumFieldOrder}",href:"#basis_matrix-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis_matrix")],-1)),e[240]||(e[240]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[245]||(e[245]=a('
julia
basis_matrix(O::AbsNumFieldOrder) -> QQMatrix
',1)),t("p",null,[e[243]||(e[243]=s("Returns the basis matrix of ")),t("mjx-container",l3,[(l(),i("svg",a3,e[241]||(e[241]=[a('',1)]))),e[242]||(e[242]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[244]||(e[244]=s(" with respect to the basis of the ambient number field."))]),e[246]||(e[246]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",n3,[t("summary",null,[e[247]||(e[247]=t("a",{id:"basis_mat_inv-Tuple{AbsSimpleNumFieldOrder}",href:"#basis_mat_inv-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"basis_mat_inv")],-1)),e[248]||(e[248]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[253]||(e[253]=a('
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat
',1)),t("p",null,[e[251]||(e[251]=s("Return the inverse of the basis matrix of ")),t("mjx-container",o3,[(l(),i("svg",r3,e[249]||(e[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D434",d:"M208 74Q208 50 254 46Q272 46 272 35Q272 34 270 22Q267 8 264 4T251 0Q249 0 239 0T205 1T141 2Q70 2 50 0H42Q35 7 35 11Q37 38 48 46H62Q132 49 164 96Q170 102 345 401T523 704Q530 716 547 716H555H572Q578 707 578 706L606 383Q634 60 636 57Q641 46 701 46Q726 46 726 36Q726 34 723 22Q720 7 718 4T704 0Q701 0 690 0T651 1T578 2Q484 2 455 0H443Q437 6 437 9T439 27Q443 40 445 43L449 46H469Q523 49 533 63L521 213H283L249 155Q208 86 208 74ZM516 260Q516 271 504 416T490 562L463 519Q447 492 400 412L310 260L413 259Q516 259 516 260Z",style:{"stroke-width":"3"}})])])],-1)]))),e[250]||(e[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"A")])],-1))]),e[252]||(e[252]=s("."))]),e[254]||(e[254]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",d3,[t("summary",null,[e[255]||(e[255]=t("a",{id:"gen_index-Tuple{AbsSimpleNumFieldOrder}",href:"#gen_index-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"gen_index")],-1)),e[256]||(e[256]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[261]||(e[261]=a('
julia
gen_index(O::AbsSimpleNumFieldOrder) -> QQFieldElem
',1)),t("p",null,[e[259]||(e[259]=s("Returns the generalized index of ")),t("mjx-container",Q3,[(l(),i("svg",p3,e[257]||(e[257]=[a('',1)]))),e[258]||(e[258]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[260]||(e[260]=s(" with respect to the equation order of the ambient number field."))]),e[262]||(e[262]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",m3,[t("summary",null,[e[263]||(e[263]=t("a",{id:"is_index_divisor-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}",href:"#is_index_divisor-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}"},[t("span",{class:"jlbinding"},"is_index_divisor")],-1)),e[264]||(e[264]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[275]||(e[275]=a(`
julia
is_index_divisor(O::AbsSimpleNumFieldOrder, d::ZZRingElem) -> Bool
 is_index_divisor(O::AbsSimpleNumFieldOrder, d::Int) -> Bool
`,1)),t("p",null,[e[271]||(e[271]=s("Returns whether ")),t("mjx-container",T3,[(l(),i("svg",h3,e[265]||(e[265]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),e[266]||(e[266]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),e[272]||(e[272]=s(" is a divisor of the index of ")),t("mjx-container",g3,[(l(),i("svg",u3,e[267]||(e[267]=[a('',1)]))),e[268]||(e[268]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[273]||(e[273]=s(". It is assumed that ")),t("mjx-container",x3,[(l(),i("svg",k3,e[269]||(e[269]=[a('',1)]))),e[270]||(e[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[274]||(e[274]=s(" contains the equation order of the ambient number field."))]),e[276]||(e[276]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",w3,[t("summary",null,[e[277]||(e[277]=t("a",{id:"minkowski_matrix-Tuple{AbsSimpleNumFieldOrder, Int64}",href:"#minkowski_matrix-Tuple{AbsSimpleNumFieldOrder, Int64}"},[t("span",{class:"jlbinding"},"minkowski_matrix")],-1)),e[278]||(e[278]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[296]||(e[296]=a('
julia
minkowski_matrix(O::AbsNumFieldOrder, abs_tol::Int = 64) -> ArbMatrix
',1)),t("p",null,[e[287]||(e[287]=s("Returns the Minkowski matrix of ")),t("mjx-container",c3,[(l(),i("svg",b3,e[279]||(e[279]=[a('',1)]))),e[280]||(e[280]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[288]||(e[288]=s(". Thus if ")),t("mjx-container",y3,[(l(),i("svg",f3,e[281]||(e[281]=[a('',1)]))),e[282]||(e[282]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[289]||(e[289]=s(" has degree ")),t("mjx-container",v3,[(l(),i("svg",E3,e[283]||(e[283]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D451",d:"M366 683Q367 683 438 688T511 694Q523 694 523 686Q523 679 450 384T375 83T374 68Q374 26 402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487H491Q506 153 506 145Q506 140 503 129Q490 79 473 48T445 8T417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157Q33 205 53 255T101 341Q148 398 195 420T280 442Q336 442 364 400Q369 394 369 396Q370 400 396 505T424 616Q424 629 417 632T378 637H357Q351 643 351 645T353 664Q358 683 366 683ZM352 326Q329 405 277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q233 26 290 98L298 109L352 326Z",style:{"stroke-width":"3"}})])])],-1)]))),e[284]||(e[284]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d")])],-1))]),e[290]||(e[290]=s(", then the result is a matrix in ")),t("mjx-container",H3,[(l(),i("svg",M3,e[285]||(e[285]=[a('',1)]))),e[286]||(e[286]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"Mat"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"d"),t("mo",null,"×"),t("mi",null,"d")])]),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mo",{stretchy:"false"},")")])],-1))]),e[291]||(e[291]=s(". The entries of the matrix are real balls of type ")),e[292]||(e[292]=t("code",null,"ArbFieldElem",-1)),e[293]||(e[293]=s(" with radius less then ")),e[294]||(e[294]=t("code",null,"2^-abs_tol",-1)),e[295]||(e[295]=s("."))]),e[297]||(e[297]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",j3,[t("summary",null,[e[298]||(e[298]=t("a",{id:"in-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrder}",href:"#in-Tuple{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"in")],-1)),e[299]||(e[299]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[307]||(e[307]=a('
julia
in(a::NumFieldElem, O::NumFieldOrder) -> Bool
',1)),t("p",null,[e[304]||(e[304]=s("Checks whether ")),t("mjx-container",F3,[(l(),i("svg",L3,e[300]||(e[300]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),e[301]||(e[301]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"a")])],-1))]),e[305]||(e[305]=s(" lies in ")),t("mjx-container",C3,[(l(),i("svg",O3,e[302]||(e[302]=[a('',1)]))),e[303]||(e[303]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[306]||(e[306]=s("."))]),e[308]||(e[308]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",A3,[t("summary",null,[e[309]||(e[309]=t("a",{id:"norm_change_const-Tuple{AbsSimpleNumFieldOrder}",href:"#norm_change_const-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"norm_change_const")],-1)),e[310]||(e[310]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[333]||(e[333]=a('
julia
norm_change_const(O::AbsSimpleNumFieldOrder) -> (Float64, Float64)
',1)),t("p",null,[e[325]||(e[325]=s("Returns ")),t("mjx-container",D3,[(l(),i("svg",Z3,e[311]||(e[311]=[a('',1)]))),e[312]||(e[312]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"c"),t("mn",null,"1")]),t("mo",null,","),t("msub",null,[t("mi",null,"c"),t("mn",null,"2")]),t("mo",{stretchy:"false"},")"),t("mo",null,"∈"),t("msubsup",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"R")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,">"),t("mn",null,"0")]),t("mn",null,"2")])])],-1))]),e[326]||(e[326]=s(" such that for all ")),t("mjx-container",V3,[(l(),i("svg",B3,e[313]||(e[313]=[a('',1)]))),e[314]||(e[314]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",null,"="),t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"="),t("mn",null,"1")]),t("mi",null,"d")]),t("msub",null,[t("mi",null,"x"),t("mi",null,"i")]),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[327]||(e[327]=s(" we have ")),t("mjx-container",S3,[(l(),i("svg",R3,e[315]||(e[315]=[a('',1)]))),e[316]||(e[316]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"T"),t("mn",null,"2")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"≤"),t("msub",null,[t("mi",null,"c"),t("mn",null,"1")]),t("mo",null,"⋅"),t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mi",null,"i"),t("mi",null,"d")]),t("msubsup",null,[t("mi",null,"x"),t("mi",null,"i"),t("mn",null,"2")])])],-1))]),e[328]||(e[328]=s(" and ")),t("mjx-container",N3,[(l(),i("svg",G3,e[317]||(e[317]=[a('',1)]))),e[318]||(e[318]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mi",null,"i"),t("mi",null,"d")]),t("msubsup",null,[t("mi",null,"x"),t("mi",null,"i"),t("mn",null,"2")]),t("mo",null,"≤"),t("msub",null,[t("mi",null,"c"),t("mn",null,"2")]),t("mo",null,"⋅"),t("msub",null,[t("mi",null,"T"),t("mn",null,"2")]),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[329]||(e[329]=s(", where ")),t("mjx-container",z3,[(l(),i("svg",J3,e[319]||(e[319]=[a('',1)]))),e[320]||(e[320]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"ω"),t("mi",null,"i")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"i")])])],-1))]),e[330]||(e[330]=s(" is the ")),t("mjx-container",X3,[(l(),i("svg",I3,e[321]||(e[321]=[a('',1)]))),e[322]||(e[322]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")])])],-1))]),e[331]||(e[331]=s("-basis of ")),t("mjx-container",q3,[(l(),i("svg",K3,e[323]||(e[323]=[a('',1)]))),e[324]||(e[324]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[332]||(e[332]=s("."))]),e[334]||(e[334]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",P3,[t("summary",null,[e[335]||(e[335]=t("a",{id:"trace_matrix-Tuple{AbsSimpleNumFieldOrder}",href:"#trace_matrix-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"trace_matrix")],-1)),e[336]||(e[336]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[344]||(e[344]=a('
julia
trace_matrix(O::AbsNumFieldOrder) -> ZZMatrix
',1)),t("p",null,[e[341]||(e[341]=s("Returns the trace matrix of ")),t("mjx-container",U3,[(l(),i("svg",$3,e[337]||(e[337]=[a('',1)]))),e[338]||(e[338]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[342]||(e[342]=s(", that is, the matrix ")),t("mjx-container",W3,[(l(),i("svg",Y3,e[339]||(e[339]=[a('',1)]))),e[340]||(e[340]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"tr"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"K"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Q")])])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"b"),t("mi",null,"i")]),t("mo",null,"⋅"),t("msub",null,[t("mi",null,"b"),t("mi",null,"j")]),t("mo",{stretchy:"false"},")"),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mn",null,"1"),t("mo",null,"≤"),t("mi",null,"i"),t("mo",null,","),t("mi",null,"j"),t("mo",null,"≤"),t("mi",null,"d")])])])],-1))]),e[343]||(e[343]=s("."))]),e[345]||(e[345]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_3,[t("summary",null,[e[346]||(e[346]=t("a",{id:"+-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}",href:"#+-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"+")],-1)),e[347]||(e[347]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[370]||(e[370]=a('
julia
+(R::AbsSimpleNumFieldOrder, S::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrder
',1)),t("p",null,[e[362]||(e[362]=s("Given two orders ")),t("mjx-container",t4,[(l(),i("svg",e4,e[348]||(e[348]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[349]||(e[349]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[363]||(e[363]=s(", ")),t("mjx-container",s4,[(l(),i("svg",i4,e[350]||(e[350]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[351]||(e[351]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[364]||(e[364]=s(" of ")),t("mjx-container",l4,[(l(),i("svg",a4,e[352]||(e[352]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[353]||(e[353]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[365]||(e[365]=s(", this function returns the smallest order containing both ")),t("mjx-container",n4,[(l(),i("svg",o4,e[354]||(e[354]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[355]||(e[355]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[366]||(e[366]=s(" and ")),t("mjx-container",r4,[(l(),i("svg",d4,e[356]||(e[356]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[357]||(e[357]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[367]||(e[367]=s(". It is assumed that ")),t("mjx-container",Q4,[(l(),i("svg",p4,e[358]||(e[358]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[359]||(e[359]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[368]||(e[368]=s(", ")),t("mjx-container",m4,[(l(),i("svg",T4,e[360]||(e[360]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[361]||(e[361]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[369]||(e[369]=s(" contain the ambient equation order and have coprime index."))]),e[371]||(e[371]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",h4,[t("summary",null,[e[372]||(e[372]=t("a",{id:"poverorder-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}",href:"#poverorder-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}"},[t("span",{class:"jlbinding"},"poverorder")],-1)),e[373]||(e[373]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[396]||(e[396]=a(`
julia
poverorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
 poverorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder
`,1)),t("p",null,[e[388]||(e[388]=s("This function tries to find an order that is locally larger than ")),t("mjx-container",g4,[(l(),i("svg",u4,e[374]||(e[374]=[a('',1)]))),e[375]||(e[375]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[389]||(e[389]=s(" at the prime ")),t("mjx-container",x4,[(l(),i("svg",k4,e[376]||(e[376]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[377]||(e[377]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[390]||(e[390]=s(": If ")),t("mjx-container",w4,[(l(),i("svg",c4,e[378]||(e[378]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[379]||(e[379]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[391]||(e[391]=s(" divides the index ")),t("mjx-container",b4,[(l(),i("svg",y4,e[380]||(e[380]=[a('',1)]))),e[381]||(e[381]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[392]||(e[392]=s(", this function will return an order ")),t("mjx-container",f4,[(l(),i("svg",v4,e[382]||(e[382]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[383]||(e[383]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[393]||(e[393]=s(" such that ")),t("mjx-container",E4,[(l(),i("svg",H4,e[384]||(e[384]=[a('',1)]))),e[385]||(e[385]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msub",null,[t("mi",null,"v"),t("mi",null,"p")]),t("mo",{stretchy:"false"},"("),t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mi",null,"R"),t("mo",{stretchy:"false"},"]"),t("mo",{stretchy:"false"},")"),t("mo",null,"<"),t("msub",null,[t("mi",null,"v"),t("mi",null,"p")]),t("mo",{stretchy:"false"},"("),t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{stretchy:"false"},"]"),t("mo",{stretchy:"false"},")")])],-1))]),e[394]||(e[394]=s(". Otherwise ")),t("mjx-container",M4,[(l(),i("svg",j4,e[386]||(e[386]=[a('',1)]))),e[387]||(e[387]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[395]||(e[395]=s(" is returned."))]),e[397]||(e[397]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",F4,[t("summary",null,[e[398]||(e[398]=t("a",{id:"poverorders-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}",href:"#poverorders-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}"},[t("span",{class:"jlbinding"},"poverorders")],-1)),e[399]||(e[399]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[400]||(e[400]=a('
julia
poverorders(O, p) -> Vector{Ord}

Returns all p-overorders of O, that is all overorders M, such that the index of O in M is a p-power.

source

',3))]),t("details",L4,[t("summary",null,[e[401]||(e[401]=t("a",{id:"pmaximal_overorder-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}",href:"#pmaximal_overorder-Tuple{AbsSimpleNumFieldOrder, ZZRingElem}"},[t("span",{class:"jlbinding"},"pmaximal_overorder")],-1)),e[402]||(e[402]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[419]||(e[419]=a(`
julia
pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
-pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder
`,1)),t("p",null,[e[413]||(e[413]=s("This function finds a ")),t("mjx-container",C4,[(l(),i("svg",O4,e[403]||(e[403]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[404]||(e[404]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[414]||(e[414]=s("-maximal order ")),t("mjx-container",A4,[(l(),i("svg",D4,e[405]||(e[405]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[406]||(e[406]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[415]||(e[415]=s(" containing ")),t("mjx-container",Z4,[(l(),i("svg",V4,e[407]||(e[407]=[a('',1)]))),e[408]||(e[408]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[416]||(e[416]=s(". That is, the index ")),t("mjx-container",B4,[(l(),i("svg",S4,e[409]||(e[409]=[a('',1)]))),e[410]||(e[410]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mi",null,"R"),t("mo",{stretchy:"false"},"]")])],-1))]),e[417]||(e[417]=s(" is not divisible by ")),t("mjx-container",R4,[(l(),i("svg",N4,e[411]||(e[411]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[412]||(e[412]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[418]||(e[418]=s("."))]),e[420]||(e[420]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",G4,[t("summary",null,[e[421]||(e[421]=t("a",{id:"pradical-Tuple{AbsNumFieldOrder, Union{Integer, ZZRingElem}}",href:"#pradical-Tuple{AbsNumFieldOrder, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"pradical")],-1)),e[422]||(e[422]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[442]||(e[442]=a('
julia
pradical(O::AbsSimpleNumFieldOrder, p::{ZZRingElem|Integer}) -> AbsNumFieldOrderIdeal
',1)),t("p",null,[e[435]||(e[435]=s("Given a prime number ")),t("mjx-container",z4,[(l(),i("svg",J4,e[423]||(e[423]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[424]||(e[424]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[436]||(e[436]=s(", this function returns the ")),t("mjx-container",X4,[(l(),i("svg",I4,e[425]||(e[425]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[426]||(e[426]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[437]||(e[437]=s("-radical ")),t("mjx-container",q4,[(l(),i("svg",K4,e[427]||(e[427]=[a('',1)]))),e[428]||(e[428]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msqrt",null,[t("mi",null,"p"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])])],-1))]),e[438]||(e[438]=s(" of ")),t("mjx-container",P4,[(l(),i("svg",U4,e[429]||(e[429]=[a('',1)]))),e[430]||(e[430]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[439]||(e[439]=s(", which is just ")),t("mjx-container",$4,[(l(),i("svg",W4,e[431]||(e[431]=[a('',1)]))),e[432]||(e[432]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"x"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,"∣"),t("mi",{mathvariant:"normal"},"∃"),t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"0")])]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"∈"),t("mi",null,"p"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),e[440]||(e[440]=s(". It is not checked that ")),t("mjx-container",Y4,[(l(),i("svg",_4,e[433]||(e[433]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[434]||(e[434]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[441]||(e[441]=s(" is prime."))]),e[443]||(e[443]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t2,[t("summary",null,[e[444]||(e[444]=t("a",{id:"pradical-Tuple{Hecke.RelNumFieldOrder, Union{Hecke.RelNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}}",href:"#pradical-Tuple{Hecke.RelNumFieldOrder, Union{Hecke.RelNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pradical")],-1)),e[445]||(e[445]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[465]||(e[465]=a('
julia
  pradical(O::RelNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> RelNumFieldOrderIdeal
',1)),t("p",null,[e[458]||(e[458]=s("Given a prime ideal ")),t("mjx-container",e2,[(l(),i("svg",s2,e[446]||(e[446]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[447]||(e[447]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[459]||(e[459]=s(", this function returns the ")),t("mjx-container",i2,[(l(),i("svg",l2,e[448]||(e[448]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[449]||(e[449]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[460]||(e[460]=s("-radical ")),t("mjx-container",a2,[(l(),i("svg",n2,e[450]||(e[450]=[a('',1)]))),e[451]||(e[451]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msqrt",null,[t("mi",null,"P"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])])],-1))]),e[461]||(e[461]=s(" of ")),t("mjx-container",o2,[(l(),i("svg",r2,e[452]||(e[452]=[a('',1)]))),e[453]||(e[453]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[462]||(e[462]=s(", which is just ")),t("mjx-container",d2,[(l(),i("svg",Q2,e[454]||(e[454]=[a('',1)]))),e[455]||(e[455]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"x"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,"∣"),t("mi",{mathvariant:"normal"},"∃"),t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"0")])]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"∈"),t("mi",null,"P"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),e[463]||(e[463]=s(". It is not checked that ")),t("mjx-container",p2,[(l(),i("svg",m2,e[456]||(e[456]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[457]||(e[457]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[464]||(e[464]=s(" is prime."))]),e[466]||(e[466]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",T2,[t("summary",null,[e[467]||(e[467]=t("a",{id:"ring_of_multipliers-Tuple{AbsNumFieldOrderIdeal}",href:"#ring_of_multipliers-Tuple{AbsNumFieldOrderIdeal}"},[t("span",{class:"jlbinding"},"ring_of_multipliers")],-1)),e[468]||(e[468]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[479]||(e[479]=a('
julia
ring_of_multipliers(I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrder
',1)),t("p",null,[e[475]||(e[475]=s("Computes the order ")),t("mjx-container",h2,[(l(),i("svg",g2,e[469]||(e[469]=[a('',1)]))),e[470]||(e[470]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"I"),t("mo",null,":"),t("mi",null,"I"),t("mo",{stretchy:"false"},")")])],-1))]),e[476]||(e[476]=s(", which is the set of all ")),t("mjx-container",u2,[(l(),i("svg",x2,e[471]||(e[471]=[a('',1)]))),e[472]||(e[472]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"K")])],-1))]),e[477]||(e[477]=s(" with ")),t("mjx-container",k2,[(l(),i("svg",w2,e[473]||(e[473]=[a('',1)]))),e[474]||(e[474]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mi",null,"I"),t("mo",null,"⊆"),t("mi",null,"I")])],-1))]),e[478]||(e[478]=s("."))]),e[480]||(e[480]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[606]||(e[606]=t("h2",{id:"invariants",tabindex:"-1"},[s("Invariants "),t("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),t("details",c2,[t("summary",null,[e[481]||(e[481]=t("a",{id:"discriminant-Tuple{AbsNumFieldOrder}",href:"#discriminant-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"discriminant")],-1)),e[482]||(e[482]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[487]||(e[487]=a('
julia
discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[485]||(e[485]=s("Returns the discriminant of ")),t("mjx-container",b2,[(l(),i("svg",y2,e[483]||(e[483]=[a('',1)]))),e[484]||(e[484]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[486]||(e[486]=s("."))]),e[488]||(e[488]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",f2,[t("summary",null,[e[489]||(e[489]=t("a",{id:"reduced_discriminant-Tuple{AbsSimpleNumFieldOrder}",href:"#reduced_discriminant-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"reduced_discriminant")],-1)),e[490]||(e[490]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[495]||(e[495]=a('
julia
reduced_discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[493]||(e[493]=s("Returns the reduced discriminant, that is, the largest elementary divisor of the trace matrix of ")),t("mjx-container",v2,[(l(),i("svg",E2,e[491]||(e[491]=[a('',1)]))),e[492]||(e[492]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[494]||(e[494]=s("."))]),e[496]||(e[496]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",H2,[t("summary",null,[e[497]||(e[497]=t("a",{id:"degree-Tuple{AbsSimpleNumFieldOrder}",href:"#degree-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"degree")],-1)),e[498]||(e[498]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[503]||(e[503]=a('
julia
degree(O::NumFieldOrder) -> Int
',1)),t("p",null,[e[501]||(e[501]=s("Returns the degree of ")),t("mjx-container",M2,[(l(),i("svg",j2,e[499]||(e[499]=[a('',1)]))),e[500]||(e[500]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[502]||(e[502]=s("."))]),e[504]||(e[504]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",F2,[t("summary",null,[e[505]||(e[505]=t("a",{id:"index-Tuple{AbsSimpleNumFieldOrder}",href:"#index-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"index")],-1)),e[506]||(e[506]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[517]||(e[517]=a('
julia
index(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[513]||(e[513]=s("Assuming that the order ")),t("mjx-container",L2,[(l(),i("svg",C2,e[507]||(e[507]=[a('',1)]))),e[508]||(e[508]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[514]||(e[514]=s(" contains the equation order ")),t("mjx-container",O2,[(l(),i("svg",A2,e[509]||(e[509]=[a('',1)]))),e[510]||(e[510]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]")])],-1))]),e[515]||(e[515]=s(" of the ambient number field, this function returns the index ")),t("mjx-container",D2,[(l(),i("svg",Z2,e[511]||(e[511]=[a('',1)]))),e[512]||(e[512]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[516]||(e[516]=s("."))]),e[518]||(e[518]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",V2,[t("summary",null,[e[519]||(e[519]=t("a",{id:"different-Tuple{AbsSimpleNumFieldOrder}",href:"#different-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"different")],-1)),e[520]||(e[520]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[528]||(e[528]=a('
julia
different(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal
',1)),t("p",null,[e[525]||(e[525]=s("The different ideal of ")),t("mjx-container",B2,[(l(),i("svg",S2,e[521]||(e[521]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[522]||(e[522]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[526]||(e[526]=s(", that is, the ideal generated by all differents of elements in ")),t("mjx-container",R2,[(l(),i("svg",N2,e[523]||(e[523]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[524]||(e[524]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[527]||(e[527]=s(". For Gorenstein orders, this is also the inverse ideal of the co-different."))]),e[529]||(e[529]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",G2,[t("summary",null,[e[530]||(e[530]=t("a",{id:"codifferent-Tuple{AbsSimpleNumFieldOrder}",href:"#codifferent-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"codifferent")],-1)),e[531]||(e[531]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[539]||(e[539]=a('
julia
codifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
',1)),t("p",null,[e[536]||(e[536]=s("The codifferent ideal of ")),t("mjx-container",z2,[(l(),i("svg",J2,e[532]||(e[532]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[533]||(e[533]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[537]||(e[537]=s(", i.e. the trace-dual of ")),t("mjx-container",X2,[(l(),i("svg",I2,e[534]||(e[534]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[535]||(e[535]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[538]||(e[538]=s("."))]),e[540]||(e[540]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q2,[t("summary",null,[e[541]||(e[541]=t("a",{id:"is_gorenstein-Tuple{AbsSimpleNumFieldOrder}",href:"#is_gorenstein-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_gorenstein")],-1)),e[542]||(e[542]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[543]||(e[543]=a('
julia
is_gorenstein(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \\mathcal{O} is Gorenstein.

source

',3))]),t("details",K2,[t("summary",null,[e[544]||(e[544]=t("a",{id:"is_bass-Tuple{AbsSimpleNumFieldOrder}",href:"#is_bass-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_bass")],-1)),e[545]||(e[545]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[546]||(e[546]=a('
julia
is_bass(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \\mathcal{O} is Bass.

source

',3))]),t("details",P2,[t("summary",null,[e[547]||(e[547]=t("a",{id:"is_equation_order-Tuple{AbsSimpleNumFieldOrder}",href:"#is_equation_order-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_equation_order")],-1)),e[548]||(e[548]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[556]||(e[556]=a('
julia
is_equation_order(O::NumFieldOrder) -> Bool
',1)),t("p",null,[e[553]||(e[553]=s("Returns whether ")),t("mjx-container",U2,[(l(),i("svg",$2,e[549]||(e[549]=[a('',1)]))),e[550]||(e[550]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[554]||(e[554]=s(" is the equation order of the ambient number field ")),t("mjx-container",W2,[(l(),i("svg",Y2,e[551]||(e[551]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[552]||(e[552]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[555]||(e[555]=s("."))]),e[557]||(e[557]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_2,[t("summary",null,[e[558]||(e[558]=t("a",{id:"zeta_log_residue-Tuple{AbsSimpleNumFieldOrder, Float64}",href:"#zeta_log_residue-Tuple{AbsSimpleNumFieldOrder, Float64}"},[t("span",{class:"jlbinding"},"zeta_log_residue")],-1)),e[559]||(e[559]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[571]||(e[571]=a('
julia
zeta_log_residue(O::AbsSimpleNumFieldOrder, error::Float64) -> ArbFieldElem
',1)),t("p",null,[e[564]||(e[564]=s("Computes the residue of the zeta function of ")),t("mjx-container",tt,[(l(),i("svg",et,e[560]||(e[560]=[a('',1)]))),e[561]||(e[561]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[565]||(e[565]=s(" at ")),t("mjx-container",st,[(l(),i("svg",it,e[562]||(e[562]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mn"},[t("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),e[563]||(e[563]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1")])],-1))]),e[566]||(e[566]=s(". The output will be an element of type ")),e[567]||(e[567]=t("code",null,"ArbFieldElem",-1)),e[568]||(e[568]=s(" with radius less then ")),e[569]||(e[569]=t("code",null,"error",-1)),e[570]||(e[570]=s("."))]),e[572]||(e[572]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",lt,[t("summary",null,[e[573]||(e[573]=t("a",{id:"ramified_primes-Tuple{AbsSimpleNumFieldOrder}",href:"#ramified_primes-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"ramified_primes")],-1)),e[574]||(e[574]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[579]||(e[579]=a('
julia
ramified_primes(O::AbsNumFieldOrder) -> Vector{ZZRingElem}
',1)),t("p",null,[e[577]||(e[577]=s("Returns the list of prime numbers that divide ")),t("mjx-container",at,[(l(),i("svg",nt,e[575]||(e[575]=[a('',1)]))),e[576]||(e[576]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"disc"),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{stretchy:"false"},")")])],-1))]),e[578]||(e[578]=s("."))]),e[580]||(e[580]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[607]||(e[607]=a('

Arithmetic

Progress and intermediate results of the functions mentioned here can be obtained via verbose_level, supported are

  • ClassGroup

  • UnitGroup

All of the functions have a very similar interface: they return an abelian group and a map converting elements of the group into the objects required. The maps also allow a point-wise inverse to server as the discrete logarithm map. For more information on abelian groups, see here, for ideals, here.

For the processing of units, there are a couple of helper functions also available:

',6)),t("details",ot,[t("summary",null,[e[581]||(e[581]=t("a",{id:"is_independent",href:"#is_independent"},[t("span",{class:"jlbinding"},"is_independent")],-1)),e[582]||(e[582]=s()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[583]||(e[583]=a('
julia
is_independent{T}(x::Vector{T})

Given an array of non-zero units in a number field, returns whether they are multiplicatively independent.

source

',3))]),e[608]||(e[608]=t("h2",{id:"predicates",tabindex:"-1"},[s("Predicates "),t("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),t("details",rt,[t("summary",null,[e[584]||(e[584]=t("a",{id:"is_contained-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}",href:"#is_contained-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_contained")],-1)),e[585]||(e[585]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[593]||(e[593]=a('
julia
is_contained(R::AbsNumFieldOrder, S::AbsNumFieldOrder) -> Bool
',1)),t("p",null,[e[590]||(e[590]=s("Checks if ")),t("mjx-container",dt,[(l(),i("svg",Qt,e[586]||(e[586]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[587]||(e[587]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[591]||(e[591]=s(" is contained in ")),t("mjx-container",pt,[(l(),i("svg",mt,e[588]||(e[588]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[589]||(e[589]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[592]||(e[592]=s("."))]),e[594]||(e[594]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Tt,[t("summary",null,[e[595]||(e[595]=t("a",{id:"is_maximal-Tuple{AbsNumFieldOrder}",href:"#is_maximal-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_maximal")],-1)),e[596]||(e[596]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[601]||(e[601]=a('
julia
is_maximal(R::AbsNumFieldOrder) -> Bool
',1)),t("p",null,[e[599]||(e[599]=s("Tests if the order ")),t("mjx-container",ht,[(l(),i("svg",gt,e[597]||(e[597]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[598]||(e[598]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[600]||(e[600]=s(" is maximal. This might trigger the computation of the maximal order."))]),e[602]||(e[602]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const vt=r(Q,[["render",ut]]);export{ft as __pageData,vt as default}; +pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder
`,1)),t("p",null,[e[413]||(e[413]=s("This function finds a ")),t("mjx-container",C4,[(l(),i("svg",O4,e[403]||(e[403]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[404]||(e[404]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[414]||(e[414]=s("-maximal order ")),t("mjx-container",A4,[(l(),i("svg",D4,e[405]||(e[405]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[406]||(e[406]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[415]||(e[415]=s(" containing ")),t("mjx-container",Z4,[(l(),i("svg",V4,e[407]||(e[407]=[a('',1)]))),e[408]||(e[408]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[416]||(e[416]=s(". That is, the index ")),t("mjx-container",B4,[(l(),i("svg",S4,e[409]||(e[409]=[a('',1)]))),e[410]||(e[410]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mi",null,"K")]),t("mo",null,":"),t("mi",null,"R"),t("mo",{stretchy:"false"},"]")])],-1))]),e[417]||(e[417]=s(" is not divisible by ")),t("mjx-container",R4,[(l(),i("svg",N4,e[411]||(e[411]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[412]||(e[412]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[418]||(e[418]=s("."))]),e[420]||(e[420]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",G4,[t("summary",null,[e[421]||(e[421]=t("a",{id:"pradical-Tuple{AbsNumFieldOrder, Union{Integer, ZZRingElem}}",href:"#pradical-Tuple{AbsNumFieldOrder, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"pradical")],-1)),e[422]||(e[422]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[442]||(e[442]=a('
julia
pradical(O::AbsSimpleNumFieldOrder, p::{ZZRingElem|Integer}) -> AbsNumFieldOrderIdeal
',1)),t("p",null,[e[435]||(e[435]=s("Given a prime number ")),t("mjx-container",z4,[(l(),i("svg",J4,e[423]||(e[423]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[424]||(e[424]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[436]||(e[436]=s(", this function returns the ")),t("mjx-container",X4,[(l(),i("svg",I4,e[425]||(e[425]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[426]||(e[426]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[437]||(e[437]=s("-radical ")),t("mjx-container",q4,[(l(),i("svg",K4,e[427]||(e[427]=[a('',1)]))),e[428]||(e[428]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msqrt",null,[t("mi",null,"p"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])])],-1))]),e[438]||(e[438]=s(" of ")),t("mjx-container",P4,[(l(),i("svg",U4,e[429]||(e[429]=[a('',1)]))),e[430]||(e[430]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[439]||(e[439]=s(", which is just ")),t("mjx-container",$4,[(l(),i("svg",W4,e[431]||(e[431]=[a('',1)]))),e[432]||(e[432]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"x"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,"∣"),t("mi",{mathvariant:"normal"},"∃"),t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"0")])]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"∈"),t("mi",null,"p"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),e[440]||(e[440]=s(". It is not checked that ")),t("mjx-container",Y4,[(l(),i("svg",_4,e[433]||(e[433]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),e[434]||(e[434]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),e[441]||(e[441]=s(" is prime."))]),e[443]||(e[443]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",t2,[t("summary",null,[e[444]||(e[444]=t("a",{id:"pradical-Tuple{Hecke.RelNumFieldOrder, Union{Hecke.RelNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}}",href:"#pradical-Tuple{Hecke.RelNumFieldOrder, Union{Hecke.RelNumFieldOrderIdeal, AbsSimpleNumFieldOrderIdeal}}"},[t("span",{class:"jlbinding"},"pradical")],-1)),e[445]||(e[445]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[465]||(e[465]=a('
julia
  pradical(O::RelNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> RelNumFieldOrderIdeal
',1)),t("p",null,[e[458]||(e[458]=s("Given a prime ideal ")),t("mjx-container",e2,[(l(),i("svg",s2,e[446]||(e[446]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[447]||(e[447]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[459]||(e[459]=s(", this function returns the ")),t("mjx-container",i2,[(l(),i("svg",l2,e[448]||(e[448]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[449]||(e[449]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[460]||(e[460]=s("-radical ")),t("mjx-container",a2,[(l(),i("svg",n2,e[450]||(e[450]=[a('',1)]))),e[451]||(e[451]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msqrt",null,[t("mi",null,"P"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])])],-1))]),e[461]||(e[461]=s(" of ")),t("mjx-container",o2,[(l(),i("svg",r2,e[452]||(e[452]=[a('',1)]))),e[453]||(e[453]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[462]||(e[462]=s(", which is just ")),t("mjx-container",d2,[(l(),i("svg",Q2,e[454]||(e[454]=[a('',1)]))),e[455]||(e[455]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"x"),t("mo",null,"∈"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,"∣"),t("mi",{mathvariant:"normal"},"∃"),t("mi",null,"k"),t("mo",null,"∈"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"≥"),t("mn",null,"0")])]),t("mo",{"data-mjx-texclass":"PUNCT"},":"),t("msup",null,[t("mi",null,"x"),t("mi",null,"k")]),t("mo",null,"∈"),t("mi",null,"P"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),e[463]||(e[463]=s(". It is not checked that ")),t("mjx-container",p2,[(l(),i("svg",m2,e[456]||(e[456]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D443",d:"M287 628Q287 635 230 637Q206 637 199 638T192 648Q192 649 194 659Q200 679 203 681T397 683Q587 682 600 680Q664 669 707 631T751 530Q751 453 685 389Q616 321 507 303Q500 302 402 301H307L277 182Q247 66 247 59Q247 55 248 54T255 50T272 48T305 46H336Q342 37 342 35Q342 19 335 5Q330 0 319 0Q316 0 282 1T182 2Q120 2 87 2T51 1Q33 1 33 11Q33 13 36 25Q40 41 44 43T67 46Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628ZM645 554Q645 567 643 575T634 597T609 619T560 635Q553 636 480 637Q463 637 445 637T416 636T404 636Q391 635 386 627Q384 621 367 550T332 412T314 344Q314 342 395 342H407H430Q542 342 590 392Q617 419 631 471T645 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[457]||(e[457]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"P")])],-1))]),e[464]||(e[464]=s(" is prime."))]),e[466]||(e[466]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",T2,[t("summary",null,[e[467]||(e[467]=t("a",{id:"ring_of_multipliers-Tuple{AbsNumFieldOrderIdeal}",href:"#ring_of_multipliers-Tuple{AbsNumFieldOrderIdeal}"},[t("span",{class:"jlbinding"},"ring_of_multipliers")],-1)),e[468]||(e[468]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[479]||(e[479]=a('
julia
ring_of_multipliers(I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrder
',1)),t("p",null,[e[475]||(e[475]=s("Computes the order ")),t("mjx-container",h2,[(l(),i("svg",g2,e[469]||(e[469]=[a('',1)]))),e[470]||(e[470]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"("),t("mi",null,"I"),t("mo",null,":"),t("mi",null,"I"),t("mo",{stretchy:"false"},")")])],-1))]),e[476]||(e[476]=s(", which is the set of all ")),t("mjx-container",u2,[(l(),i("svg",x2,e[471]||(e[471]=[a('',1)]))),e[472]||(e[472]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"K")])],-1))]),e[477]||(e[477]=s(" with ")),t("mjx-container",k2,[(l(),i("svg",w2,e[473]||(e[473]=[a('',1)]))),e[474]||(e[474]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mi",null,"I"),t("mo",null,"⊆"),t("mi",null,"I")])],-1))]),e[478]||(e[478]=s("."))]),e[480]||(e[480]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[606]||(e[606]=t("h2",{id:"invariants",tabindex:"-1"},[s("Invariants "),t("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),t("details",c2,[t("summary",null,[e[481]||(e[481]=t("a",{id:"discriminant-Tuple{AbsNumFieldOrder}",href:"#discriminant-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"discriminant")],-1)),e[482]||(e[482]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[487]||(e[487]=a('
julia
discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[485]||(e[485]=s("Returns the discriminant of ")),t("mjx-container",b2,[(l(),i("svg",y2,e[483]||(e[483]=[a('',1)]))),e[484]||(e[484]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[486]||(e[486]=s("."))]),e[488]||(e[488]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",f2,[t("summary",null,[e[489]||(e[489]=t("a",{id:"reduced_discriminant-Tuple{AbsSimpleNumFieldOrder}",href:"#reduced_discriminant-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"reduced_discriminant")],-1)),e[490]||(e[490]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[495]||(e[495]=a('
julia
reduced_discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[493]||(e[493]=s("Returns the reduced discriminant, that is, the largest elementary divisor of the trace matrix of ")),t("mjx-container",v2,[(l(),i("svg",E2,e[491]||(e[491]=[a('',1)]))),e[492]||(e[492]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[494]||(e[494]=s("."))]),e[496]||(e[496]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",H2,[t("summary",null,[e[497]||(e[497]=t("a",{id:"degree-Tuple{AbsSimpleNumFieldOrder}",href:"#degree-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"degree")],-1)),e[498]||(e[498]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[503]||(e[503]=a('
julia
degree(O::NumFieldOrder) -> Int
',1)),t("p",null,[e[501]||(e[501]=s("Returns the degree of ")),t("mjx-container",M2,[(l(),i("svg",j2,e[499]||(e[499]=[a('',1)]))),e[500]||(e[500]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[502]||(e[502]=s("."))]),e[504]||(e[504]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",F2,[t("summary",null,[e[505]||(e[505]=t("a",{id:"index-Tuple{AbsSimpleNumFieldOrder}",href:"#index-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"index")],-1)),e[506]||(e[506]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[517]||(e[517]=a('
julia
index(O::AbsSimpleNumFieldOrder) -> ZZRingElem
',1)),t("p",null,[e[513]||(e[513]=s("Assuming that the order ")),t("mjx-container",L2,[(l(),i("svg",C2,e[507]||(e[507]=[a('',1)]))),e[508]||(e[508]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[514]||(e[514]=s(" contains the equation order ")),t("mjx-container",O2,[(l(),i("svg",A2,e[509]||(e[509]=[a('',1)]))),e[510]||(e[510]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"["),t("mi",null,"α"),t("mo",{stretchy:"false"},"]")])],-1))]),e[515]||(e[515]=s(" of the ambient number field, this function returns the index ")),t("mjx-container",D2,[(l(),i("svg",Z2,e[511]||(e[511]=[a('',1)]))),e[512]||(e[512]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{stretchy:"false"},"["),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",null,":"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"bold"},"Z")]),t("mo",{stretchy:"false"},"]")])],-1))]),e[516]||(e[516]=s("."))]),e[518]||(e[518]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",V2,[t("summary",null,[e[519]||(e[519]=t("a",{id:"different-Tuple{AbsSimpleNumFieldOrder}",href:"#different-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"different")],-1)),e[520]||(e[520]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[528]||(e[528]=a('
julia
different(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal
',1)),t("p",null,[e[525]||(e[525]=s("The different ideal of ")),t("mjx-container",B2,[(l(),i("svg",S2,e[521]||(e[521]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[522]||(e[522]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[526]||(e[526]=s(", that is, the ideal generated by all differents of elements in ")),t("mjx-container",R2,[(l(),i("svg",N2,e[523]||(e[523]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[524]||(e[524]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[527]||(e[527]=s(". For Gorenstein orders, this is also the inverse ideal of the co-different."))]),e[529]||(e[529]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",G2,[t("summary",null,[e[530]||(e[530]=t("a",{id:"codifferent-Tuple{AbsSimpleNumFieldOrder}",href:"#codifferent-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"codifferent")],-1)),e[531]||(e[531]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[539]||(e[539]=a('
julia
codifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
',1)),t("p",null,[e[536]||(e[536]=s("The codifferent ideal of ")),t("mjx-container",z2,[(l(),i("svg",J2,e[532]||(e[532]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[533]||(e[533]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[537]||(e[537]=s(", i.e. the trace-dual of ")),t("mjx-container",X2,[(l(),i("svg",I2,e[534]||(e[534]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[535]||(e[535]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[538]||(e[538]=s("."))]),e[540]||(e[540]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",q2,[t("summary",null,[e[541]||(e[541]=t("a",{id:"is_gorenstein-Tuple{AbsSimpleNumFieldOrder}",href:"#is_gorenstein-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_gorenstein")],-1)),e[542]||(e[542]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[543]||(e[543]=a('
julia
is_gorenstein(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \\mathcal{O} is Gorenstein.

source

',3))]),t("details",K2,[t("summary",null,[e[544]||(e[544]=t("a",{id:"is_bass-Tuple{AbsSimpleNumFieldOrder}",href:"#is_bass-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_bass")],-1)),e[545]||(e[545]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[546]||(e[546]=a('
julia
is_bass(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \\mathcal{O} is Bass.

source

',3))]),t("details",P2,[t("summary",null,[e[547]||(e[547]=t("a",{id:"is_equation_order-Tuple{AbsSimpleNumFieldOrder}",href:"#is_equation_order-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_equation_order")],-1)),e[548]||(e[548]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[556]||(e[556]=a('
julia
is_equation_order(O::NumFieldOrder) -> Bool
',1)),t("p",null,[e[553]||(e[553]=s("Returns whether ")),t("mjx-container",U2,[(l(),i("svg",$2,e[549]||(e[549]=[a('',1)]))),e[550]||(e[550]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[554]||(e[554]=s(" is the equation order of the ambient number field ")),t("mjx-container",W2,[(l(),i("svg",Y2,e[551]||(e[551]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D43E",d:"M285 628Q285 635 228 637Q205 637 198 638T191 647Q191 649 193 661Q199 681 203 682Q205 683 214 683H219Q260 681 355 681Q389 681 418 681T463 682T483 682Q500 682 500 674Q500 669 497 660Q496 658 496 654T495 648T493 644T490 641T486 639T479 638T470 637T456 637Q416 636 405 634T387 623L306 305Q307 305 490 449T678 597Q692 611 692 620Q692 635 667 637Q651 637 651 648Q651 650 654 662T659 677Q662 682 676 682Q680 682 711 681T791 680Q814 680 839 681T869 682Q889 682 889 672Q889 650 881 642Q878 637 862 637Q787 632 726 586Q710 576 656 534T556 455L509 418L518 396Q527 374 546 329T581 244Q656 67 661 61Q663 59 666 57Q680 47 717 46H738Q744 38 744 37T741 19Q737 6 731 0H720Q680 3 625 3Q503 3 488 0H478Q472 6 472 9T474 27Q478 40 480 43T491 46H494Q544 46 544 71Q544 75 517 141T485 216L427 354L359 301L291 248L268 155Q245 63 245 58Q245 51 253 49T303 46H334Q340 37 340 35Q340 19 333 5Q328 0 317 0Q314 0 280 1T180 2Q118 2 85 2T49 1Q31 1 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Z",style:{"stroke-width":"3"}})])])],-1)]))),e[552]||(e[552]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"K")])],-1))]),e[555]||(e[555]=s("."))]),e[557]||(e[557]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",_2,[t("summary",null,[e[558]||(e[558]=t("a",{id:"zeta_log_residue-Tuple{AbsSimpleNumFieldOrder, Float64}",href:"#zeta_log_residue-Tuple{AbsSimpleNumFieldOrder, Float64}"},[t("span",{class:"jlbinding"},"zeta_log_residue")],-1)),e[559]||(e[559]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[571]||(e[571]=a('
julia
zeta_log_residue(O::AbsSimpleNumFieldOrder, error::Float64) -> ArbFieldElem
',1)),t("p",null,[e[564]||(e[564]=s("Computes the residue of the zeta function of ")),t("mjx-container",tt,[(l(),i("svg",et,e[560]||(e[560]=[a('',1)]))),e[561]||(e[561]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")])])],-1))]),e[565]||(e[565]=s(" at ")),t("mjx-container",st,[(l(),i("svg",it,e[562]||(e[562]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mn"},[t("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),e[563]||(e[563]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"1")])],-1))]),e[566]||(e[566]=s(". The output will be an element of type ")),e[567]||(e[567]=t("code",null,"ArbFieldElem",-1)),e[568]||(e[568]=s(" with radius less then ")),e[569]||(e[569]=t("code",null,"error",-1)),e[570]||(e[570]=s("."))]),e[572]||(e[572]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",lt,[t("summary",null,[e[573]||(e[573]=t("a",{id:"ramified_primes-Tuple{AbsSimpleNumFieldOrder}",href:"#ramified_primes-Tuple{AbsSimpleNumFieldOrder}"},[t("span",{class:"jlbinding"},"ramified_primes")],-1)),e[574]||(e[574]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[579]||(e[579]=a('
julia
ramified_primes(O::AbsNumFieldOrder) -> Vector{ZZRingElem}
',1)),t("p",null,[e[577]||(e[577]=s("Returns the list of prime numbers that divide ")),t("mjx-container",at,[(l(),i("svg",nt,e[575]||(e[575]=[a('',1)]))),e[576]||(e[576]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"disc"),t("mo",{stretchy:"false"},"("),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{"data-mjx-variant":"-tex-calligraphic",mathvariant:"script"},"O")]),t("mo",{stretchy:"false"},")")])],-1))]),e[578]||(e[578]=s("."))]),e[580]||(e[580]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),e[607]||(e[607]=a('

Arithmetic

Progress and intermediate results of the functions mentioned here can be obtained via verbose_level, supported are

  • ClassGroup

  • UnitGroup

All of the functions have a very similar interface: they return an abelian group and a map converting elements of the group into the objects required. The maps also allow a point-wise inverse to server as the discrete logarithm map. For more information on abelian groups, see here, for ideals, here.

For the processing of units, there are a couple of helper functions also available:

',6)),t("details",ot,[t("summary",null,[e[581]||(e[581]=t("a",{id:"is_independent",href:"#is_independent"},[t("span",{class:"jlbinding"},"is_independent")],-1)),e[582]||(e[582]=s()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[583]||(e[583]=a('
julia
is_independent{T}(x::Vector{T})

Given an array of non-zero units in a number field, returns whether they are multiplicatively independent.

source

',3))]),e[608]||(e[608]=t("h2",{id:"predicates",tabindex:"-1"},[s("Predicates "),t("a",{class:"header-anchor",href:"#predicates","aria-label":'Permalink to "Predicates"'},"​")],-1)),t("details",rt,[t("summary",null,[e[584]||(e[584]=t("a",{id:"is_contained-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}",href:"#is_contained-Tuple{AbsNumFieldOrder, AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_contained")],-1)),e[585]||(e[585]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[593]||(e[593]=a('
julia
is_contained(R::AbsNumFieldOrder, S::AbsNumFieldOrder) -> Bool
',1)),t("p",null,[e[590]||(e[590]=s("Checks if ")),t("mjx-container",dt,[(l(),i("svg",Qt,e[586]||(e[586]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[587]||(e[587]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[591]||(e[591]=s(" is contained in ")),t("mjx-container",pt,[(l(),i("svg",mt,e[588]||(e[588]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),e[589]||(e[589]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"S")])],-1))]),e[592]||(e[592]=s("."))]),e[594]||(e[594]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Tt,[t("summary",null,[e[595]||(e[595]=t("a",{id:"is_maximal-Tuple{AbsNumFieldOrder}",href:"#is_maximal-Tuple{AbsNumFieldOrder}"},[t("span",{class:"jlbinding"},"is_maximal")],-1)),e[596]||(e[596]=s()),o(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),e[601]||(e[601]=a('
julia
is_maximal(R::AbsNumFieldOrder) -> Bool
',1)),t("p",null,[e[599]||(e[599]=s("Tests if the order ")),t("mjx-container",ht,[(l(),i("svg",gt,e[597]||(e[597]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),e[598]||(e[598]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"R")])],-1))]),e[600]||(e[600]=s(" is maximal. This might trigger the computation of the maximal order."))]),e[602]||(e[602]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const vt=r(Q,[["render",ut]]);export{ft as __pageData,vt as default}; diff --git a/v0.34.8/assets/manual_quad_forms_Zgenera.md.nh5Loeez.js b/v0.34.8/assets/manual_quad_forms_Zgenera.md.nh5Loeez.js index b965456d1f..1af51cb5c0 100644 --- a/v0.34.8/assets/manual_quad_forms_Zgenera.md.nh5Loeez.js +++ b/v0.34.8/assets/manual_quad_forms_Zgenera.md.nh5Loeez.js @@ -1,4 +1,4 @@ -import{_ as r,c as n,j as t,a as e,a5 as i,G as l,B as p,o}from"./chunks/framework.DbhH0_mT.js";const h1=JSON.parse('{"title":"Genera of Integer Lattices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/quad_forms/Zgenera.md","filePath":"manual/quad_forms/Zgenera.md","lastUpdated":null}'),d={name:"manual/quad_forms/Zgenera.md"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.645ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 3379.1 970.2","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.276ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 3216.1 970.2","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.188ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.202ex",height:"1.733ex",role:"img",focusable:"false",viewBox:"0 -683 7161.4 766","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},j={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},C={class:"jldocstring custom-block",open:""},M={class:"jldocstring custom-block",open:""},H={class:"jldocstring custom-block",open:""},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},D={class:"jldocstring custom-block",open:""},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""},R={class:"jldocstring custom-block",open:""},O={class:"jldocstring custom-block",open:""},S={class:"jldocstring custom-block",open:""},I={class:"jldocstring custom-block",open:""},z={class:"jldocstring custom-block",open:""},J={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},U={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.817ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6549.2 1000","aria-hidden":"true"},$={class:"jldocstring custom-block",open:""},W={class:"jldocstring custom-block",open:""},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},_={class:"jldocstring custom-block",open:""},ss={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ts={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},es={class:"jldocstring custom-block",open:""},is={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},as={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ls={class:"jldocstring custom-block",open:""},ns={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},os={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},rs={class:"jldocstring custom-block",open:""},ps={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ds={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},hs={class:"jldocstring custom-block",open:""},Qs={class:"jldocstring custom-block",open:""},ms={class:"jldocstring custom-block",open:""},gs={class:"jldocstring custom-block",open:""},ks={class:"jldocstring custom-block",open:""},Ts={class:"jldocstring custom-block",open:""},us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ys={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.238ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.513ex",height:"3.195ex",role:"img",focusable:"false",viewBox:"0 -864.9 5088.8 1412","aria-hidden":"true"},cs={class:"jldocstring custom-block",open:""},bs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},fs={class:"jldocstring custom-block",open:""},Es={class:"jldocstring custom-block",open:""},vs={class:"jldocstring custom-block",open:""},ws={class:"jldocstring custom-block",open:""},Zs={class:"jldocstring custom-block",open:""},js={class:"jldocstring custom-block",open:""},Ls={class:"jldocstring custom-block",open:""},Cs={class:"jldocstring custom-block",open:""},Ms={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},Hs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.006ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.63ex",height:"5.155ex",role:"img",focusable:"false",viewBox:"0 -950 4698.6 2278.6","aria-hidden":"true"},Fs={class:"jldocstring custom-block",open:""},Gs={class:"jldocstring custom-block",open:""},Ds={class:"jldocstring custom-block",open:""},Bs={class:"jldocstring custom-block",open:""},As={class:"jldocstring custom-block",open:""},Vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},Os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ss={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},Is={class:"jldocstring custom-block",open:""},zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Js={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},Ps={class:"jldocstring custom-block",open:""},Us={class:"jldocstring custom-block",open:""},Xs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.817ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6549.2 1000","aria-hidden":"true"},Ns={class:"jldocstring custom-block",open:""},$s={class:"jldocstring custom-block",open:""},Ws={class:"jldocstring custom-block",open:""},Ks={class:"jldocstring custom-block",open:""},Ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},s1={class:"jldocstring custom-block",open:""},t1={class:"jldocstring custom-block",open:""},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},i1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.8ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.271ex",height:"2.679ex",role:"img",focusable:"false",viewBox:"0 -830.4 9401.7 1183.9","aria-hidden":"true"};function a1(l1,s,n1,o1,r1,p1){const a=p("Badge");return o(),n("div",null,[s[317]||(s[317]=t("h1",{id:"Genera-of-Integer-Lattices",tabindex:"-1"},[e("Genera of Integer Lattices "),t("a",{class:"header-anchor",href:"#Genera-of-Integer-Lattices","aria-label":'Permalink to "Genera of Integer Lattices {#Genera-of-Integer-Lattices}"'},"​")],-1)),t("p",null,[s[14]||(s[14]=e("Two ")),t("mjx-container",h,[(o(),n("svg",Q,s[0]||(s[0]=[i('',1)]))),s[1]||(s[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[15]||(s[15]=e("-lattices ")),t("mjx-container",m,[(o(),n("svg",g,s[2]||(s[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[3]||(s[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),s[16]||(s[16]=e(" and ")),t("mjx-container",k,[(o(),n("svg",T,s[4]||(s[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[5]||(s[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N")])],-1))]),s[17]||(s[17]=e(" are said to be in the same genus if their completions ")),t("mjx-container",u,[(o(),n("svg",y,s[6]||(s[6]=[i('',1)]))),s[7]||(s[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊗"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mi",null,"p")])])],-1))]),s[18]||(s[18]=e(" and ")),t("mjx-container",c,[(o(),n("svg",b,s[8]||(s[8]=[i('',1)]))),s[9]||(s[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N"),t("mo",null,"⊗"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mi",null,"p")])])],-1))]),s[19]||(s[19]=e(" are isometric for all prime numbers ")),t("mjx-container",x,[(o(),n("svg",f,s[10]||(s[10]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[11]||(s[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[20]||(s[20]=e(" as well as ")),t("mjx-container",E,[(o(),n("svg",v,s[12]||(s[12]=[i('',1)]))),s[13]||(s[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"R")]),t("mo",null,"≅"),t("mi",null,"N"),t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"R")])])],-1))]),s[21]||(s[21]=e("."))]),t("p",null,[s[24]||(s[24]=e("The genus of a ")),t("mjx-container",w,[(o(),n("svg",Z,s[22]||(s[22]=[i('',1)]))),s[23]||(s[23]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[25]||(s[25]=e("-lattice is encoded in its Conway-Sloane genus symbol. The genus symbol itself is a collection of its local genus symbols. See [")),s[26]||(s[26]=t("a",{href:"/Hecke.jl/v0.34.8/references#CS99"},"5",-1)),s[27]||(s[27]=e("] Chapter 15 for the definitions. Note that genera for non-integral lattices are supported."))]),t("p",null,[s[30]||(s[30]=e("The class ")),s[31]||(s[31]=t("code",null,"ZZGenus",-1)),s[32]||(s[32]=e(" supports genera of ")),t("mjx-container",j,[(o(),n("svg",L,s[28]||(s[28]=[i('',1)]))),s[29]||(s[29]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[33]||(s[33]=e("-lattices."))]),t("details",C,[t("summary",null,[s[34]||(s[34]=t("a",{id:"ZZGenus",href:"#ZZGenus"},[t("span",{class:"jlbinding"},"ZZGenus")],-1)),s[35]||(s[35]=e()),l(a,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[36]||(s[36]=i('
julia
ZZGenus

A collection of local genus symbols (at primes) and a signature pair. Together they represent the genus of a non-degenerate integer_lattice.

source

',3))]),s[318]||(s[318]=t("h2",{id:"Creation-of-Genera",tabindex:"-1"},[e("Creation of Genera "),t("a",{class:"header-anchor",href:"#Creation-of-Genera","aria-label":'Permalink to "Creation of Genera {#Creation-of-Genera}"'},"​")],-1)),s[319]||(s[319]=t("h3",{id:"From-an-integral-Lattice",tabindex:"-1"},[e("From an integral Lattice "),t("a",{class:"header-anchor",href:"#From-an-integral-Lattice","aria-label":'Permalink to "From an integral Lattice {#From-an-integral-Lattice}"'},"​")],-1)),t("details",M,[t("summary",null,[s[37]||(s[37]=t("a",{id:"genus-Tuple{ZZLat}",href:"#genus-Tuple{ZZLat}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[38]||(s[38]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[39]||(s[39]=i('
julia
genus(L::ZZLat) -> ZZGenus

Return the genus of the lattice L.

source

',3))]),s[320]||(s[320]=t("h3",{id:"From-a-gram-matrix",tabindex:"-1"},[e("From a gram matrix "),t("a",{class:"header-anchor",href:"#From-a-gram-matrix","aria-label":'Permalink to "From a gram matrix {#From-a-gram-matrix}"'},"​")],-1)),t("details",H,[t("summary",null,[s[40]||(s[40]=t("a",{id:"genus-Tuple{MatElem}",href:"#genus-Tuple{MatElem}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[41]||(s[41]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[48]||(s[48]=i('
julia
genus(A::MatElem) -> ZZGenus
',1)),t("p",null,[s[44]||(s[44]=e("Return the genus of a ")),t("mjx-container",F,[(o(),n("svg",G,s[42]||(s[42]=[i('',1)]))),s[43]||(s[43]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[45]||(s[45]=e("-lattice with gram matrix ")),s[46]||(s[46]=t("code",null,"A",-1)),s[47]||(s[47]=e("."))]),s[49]||(s[49]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[321]||(s[321]=t("h3",{id:"Enumeration-of-genus-symbols",tabindex:"-1"},[e("Enumeration of genus symbols "),t("a",{class:"header-anchor",href:"#Enumeration-of-genus-symbols","aria-label":'Permalink to "Enumeration of genus symbols {#Enumeration-of-genus-symbols}"'},"​")],-1)),t("details",D,[t("summary",null,[s[50]||(s[50]=t("a",{id:"integer_genera-Tuple{Tuple{Int64, Int64}, Union{Int64, ZZRingElem}}",href:"#integer_genera-Tuple{Tuple{Int64, Int64}, Union{Int64, ZZRingElem}}"},[t("span",{class:"jlbinding"},"integer_genera")],-1)),s[51]||(s[51]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[56]||(s[56]=i(`
julia
integer_genera(sig_pair::Vector{Int}, determinant::RationalUnion;
+import{_ as r,c as n,j as t,a as e,a5 as i,G as l,B as p,o}from"./chunks/framework.DbhH0_mT.js";const h1=JSON.parse('{"title":"Genera of Integer Lattices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/quad_forms/Zgenera.md","filePath":"manual/quad_forms/Zgenera.md","lastUpdated":null}'),d={name:"manual/quad_forms/Zgenera.md"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.645ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 3379.1 970.2","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.276ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 3216.1 970.2","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.188ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.202ex",height:"1.733ex",role:"img",focusable:"false",viewBox:"0 -683 7161.4 766","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},j={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},C={class:"jldocstring custom-block",open:""},M={class:"jldocstring custom-block",open:""},H={class:"jldocstring custom-block",open:""},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},D={class:"jldocstring custom-block",open:""},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""},R={class:"jldocstring custom-block",open:""},O={class:"jldocstring custom-block",open:""},S={class:"jldocstring custom-block",open:""},I={class:"jldocstring custom-block",open:""},z={class:"jldocstring custom-block",open:""},J={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},U={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.817ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6549.2 1000","aria-hidden":"true"},$={class:"jldocstring custom-block",open:""},W={class:"jldocstring custom-block",open:""},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},_={class:"jldocstring custom-block",open:""},ss={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ts={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},es={class:"jldocstring custom-block",open:""},is={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},as={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ls={class:"jldocstring custom-block",open:""},ns={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},os={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},rs={class:"jldocstring custom-block",open:""},ps={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ds={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},hs={class:"jldocstring custom-block",open:""},Qs={class:"jldocstring custom-block",open:""},ms={class:"jldocstring custom-block",open:""},gs={class:"jldocstring custom-block",open:""},ks={class:"jldocstring custom-block",open:""},Ts={class:"jldocstring custom-block",open:""},us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ys={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.238ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.513ex",height:"3.195ex",role:"img",focusable:"false",viewBox:"0 -864.9 5088.8 1412","aria-hidden":"true"},cs={class:"jldocstring custom-block",open:""},bs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},fs={class:"jldocstring custom-block",open:""},Es={class:"jldocstring custom-block",open:""},vs={class:"jldocstring custom-block",open:""},ws={class:"jldocstring custom-block",open:""},Zs={class:"jldocstring custom-block",open:""},js={class:"jldocstring custom-block",open:""},Ls={class:"jldocstring custom-block",open:""},Cs={class:"jldocstring custom-block",open:""},Ms={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},Hs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.006ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.63ex",height:"5.155ex",role:"img",focusable:"false",viewBox:"0 -950 4698.6 2278.6","aria-hidden":"true"},Fs={class:"jldocstring custom-block",open:""},Gs={class:"jldocstring custom-block",open:""},Ds={class:"jldocstring custom-block",open:""},Bs={class:"jldocstring custom-block",open:""},As={class:"jldocstring custom-block",open:""},Vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},Os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ss={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},Is={class:"jldocstring custom-block",open:""},zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Js={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},Ps={class:"jldocstring custom-block",open:""},Us={class:"jldocstring custom-block",open:""},Xs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.817ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6549.2 1000","aria-hidden":"true"},Ns={class:"jldocstring custom-block",open:""},$s={class:"jldocstring custom-block",open:""},Ws={class:"jldocstring custom-block",open:""},Ks={class:"jldocstring custom-block",open:""},Ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},s1={class:"jldocstring custom-block",open:""},t1={class:"jldocstring custom-block",open:""},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},i1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.8ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.271ex",height:"2.679ex",role:"img",focusable:"false",viewBox:"0 -830.4 9401.7 1183.9","aria-hidden":"true"};function a1(l1,s,n1,o1,r1,p1){const a=p("Badge");return o(),n("div",null,[s[317]||(s[317]=t("h1",{id:"Genera-of-Integer-Lattices",tabindex:"-1"},[e("Genera of Integer Lattices "),t("a",{class:"header-anchor",href:"#Genera-of-Integer-Lattices","aria-label":'Permalink to "Genera of Integer Lattices {#Genera-of-Integer-Lattices}"'},"​")],-1)),t("p",null,[s[14]||(s[14]=e("Two ")),t("mjx-container",h,[(o(),n("svg",Q,s[0]||(s[0]=[i('',1)]))),s[1]||(s[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[15]||(s[15]=e("-lattices ")),t("mjx-container",m,[(o(),n("svg",g,s[2]||(s[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[3]||(s[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),s[16]||(s[16]=e(" and ")),t("mjx-container",k,[(o(),n("svg",T,s[4]||(s[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[5]||(s[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N")])],-1))]),s[17]||(s[17]=e(" are said to be in the same genus if their completions ")),t("mjx-container",u,[(o(),n("svg",y,s[6]||(s[6]=[i('',1)]))),s[7]||(s[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊗"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mi",null,"p")])])],-1))]),s[18]||(s[18]=e(" and ")),t("mjx-container",c,[(o(),n("svg",b,s[8]||(s[8]=[i('',1)]))),s[9]||(s[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N"),t("mo",null,"⊗"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mi",null,"p")])])],-1))]),s[19]||(s[19]=e(" are isometric for all prime numbers ")),t("mjx-container",x,[(o(),n("svg",f,s[10]||(s[10]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[11]||(s[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[20]||(s[20]=e(" as well as ")),t("mjx-container",E,[(o(),n("svg",v,s[12]||(s[12]=[i('',1)]))),s[13]||(s[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"R")]),t("mo",null,"≅"),t("mi",null,"N"),t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"R")])])],-1))]),s[21]||(s[21]=e("."))]),t("p",null,[s[24]||(s[24]=e("The genus of a ")),t("mjx-container",w,[(o(),n("svg",Z,s[22]||(s[22]=[i('',1)]))),s[23]||(s[23]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[25]||(s[25]=e("-lattice is encoded in its Conway-Sloane genus symbol. The genus symbol itself is a collection of its local genus symbols. See [")),s[26]||(s[26]=t("a",{href:"/v0.34.8/references#CS99"},"5",-1)),s[27]||(s[27]=e("] Chapter 15 for the definitions. Note that genera for non-integral lattices are supported."))]),t("p",null,[s[30]||(s[30]=e("The class ")),s[31]||(s[31]=t("code",null,"ZZGenus",-1)),s[32]||(s[32]=e(" supports genera of ")),t("mjx-container",j,[(o(),n("svg",L,s[28]||(s[28]=[i('',1)]))),s[29]||(s[29]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[33]||(s[33]=e("-lattices."))]),t("details",C,[t("summary",null,[s[34]||(s[34]=t("a",{id:"ZZGenus",href:"#ZZGenus"},[t("span",{class:"jlbinding"},"ZZGenus")],-1)),s[35]||(s[35]=e()),l(a,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[36]||(s[36]=i('
julia
ZZGenus

A collection of local genus symbols (at primes) and a signature pair. Together they represent the genus of a non-degenerate integer_lattice.

source

',3))]),s[318]||(s[318]=t("h2",{id:"Creation-of-Genera",tabindex:"-1"},[e("Creation of Genera "),t("a",{class:"header-anchor",href:"#Creation-of-Genera","aria-label":'Permalink to "Creation of Genera {#Creation-of-Genera}"'},"​")],-1)),s[319]||(s[319]=t("h3",{id:"From-an-integral-Lattice",tabindex:"-1"},[e("From an integral Lattice "),t("a",{class:"header-anchor",href:"#From-an-integral-Lattice","aria-label":'Permalink to "From an integral Lattice {#From-an-integral-Lattice}"'},"​")],-1)),t("details",M,[t("summary",null,[s[37]||(s[37]=t("a",{id:"genus-Tuple{ZZLat}",href:"#genus-Tuple{ZZLat}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[38]||(s[38]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[39]||(s[39]=i('
julia
genus(L::ZZLat) -> ZZGenus

Return the genus of the lattice L.

source

',3))]),s[320]||(s[320]=t("h3",{id:"From-a-gram-matrix",tabindex:"-1"},[e("From a gram matrix "),t("a",{class:"header-anchor",href:"#From-a-gram-matrix","aria-label":'Permalink to "From a gram matrix {#From-a-gram-matrix}"'},"​")],-1)),t("details",H,[t("summary",null,[s[40]||(s[40]=t("a",{id:"genus-Tuple{MatElem}",href:"#genus-Tuple{MatElem}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[41]||(s[41]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[48]||(s[48]=i('
julia
genus(A::MatElem) -> ZZGenus
',1)),t("p",null,[s[44]||(s[44]=e("Return the genus of a ")),t("mjx-container",F,[(o(),n("svg",G,s[42]||(s[42]=[i('',1)]))),s[43]||(s[43]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[45]||(s[45]=e("-lattice with gram matrix ")),s[46]||(s[46]=t("code",null,"A",-1)),s[47]||(s[47]=e("."))]),s[49]||(s[49]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[321]||(s[321]=t("h3",{id:"Enumeration-of-genus-symbols",tabindex:"-1"},[e("Enumeration of genus symbols "),t("a",{class:"header-anchor",href:"#Enumeration-of-genus-symbols","aria-label":'Permalink to "Enumeration of genus symbols {#Enumeration-of-genus-symbols}"'},"​")],-1)),t("details",D,[t("summary",null,[s[50]||(s[50]=t("a",{id:"integer_genera-Tuple{Tuple{Int64, Int64}, Union{Int64, ZZRingElem}}",href:"#integer_genera-Tuple{Tuple{Int64, Int64}, Union{Int64, ZZRingElem}}"},[t("span",{class:"jlbinding"},"integer_genera")],-1)),s[51]||(s[51]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[56]||(s[56]=i(`
julia
integer_genera(sig_pair::Vector{Int}, determinant::RationalUnion;
        min_scale::RationalUnion = min(one(QQ), QQ(abs(determinant))),
        max_scale::RationalUnion = max(one(QQ), QQ(abs(determinant))),
-       even=false)                                         -> Vector{ZZGenus}
`,1)),t("p",null,[s[54]||(s[54]=e("Return a list of all genera with the given conditions. Genera of non-integral ")),t("mjx-container",B,[(o(),n("svg",A,s[52]||(s[52]=[i('',1)]))),s[53]||(s[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[55]||(s[55]=e("-lattices are also supported."))]),s[57]||(s[57]=i('

Arguments

  • sig_pair: a pair of non-negative integers giving the signature

  • determinant: a rational number; the sign is ignored

  • min_scale: a rational number; return only genera whose scale is an integer multiple of min_scale (default: min(one(QQ), QQ(abs(determinant))))

  • max_scale: a rational number; return only genera such that max_scale is an integer multiple of the scale (default: max(one(QQ), QQ(abs(determinant))))

  • even: boolean; if set to true, return only the even genera (default: false)

source

',3))]),s[322]||(s[322]=t("h3",{id:"From-other-genus-symbols",tabindex:"-1"},[e("From other genus symbols "),t("a",{class:"header-anchor",href:"#From-other-genus-symbols","aria-label":'Permalink to "From other genus symbols {#From-other-genus-symbols}"'},"​")],-1)),t("details",V,[t("summary",null,[s[58]||(s[58]=t("a",{id:"direct_sum-Tuple{ZZGenus, ZZGenus}",href:"#direct_sum-Tuple{ZZGenus, ZZGenus}"},[t("span",{class:"jlbinding"},"direct_sum")],-1)),s[59]||(s[59]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[60]||(s[60]=i('
julia
direct_sum(G1::ZZGenus, G2::ZZGenus) -> ZZGenus

Return the genus of the direct sum of G1 and G2.

The direct sum is defined via representatives.

source

',4))]),s[323]||(s[323]=t("h2",{id:"Attributes-of-the-genus",tabindex:"-1"},[e("Attributes of the genus "),t("a",{class:"header-anchor",href:"#Attributes-of-the-genus","aria-label":'Permalink to "Attributes of the genus {#Attributes-of-the-genus}"'},"​")],-1)),t("details",R,[t("summary",null,[s[61]||(s[61]=t("a",{id:"dim-Tuple{ZZGenus}",href:"#dim-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"dim")],-1)),s[62]||(s[62]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[63]||(s[63]=i('
julia
dim(G::ZZGenus) -> Int

Return the dimension of this genus.

source

',3))]),t("details",O,[t("summary",null,[s[64]||(s[64]=t("a",{id:"rank-Tuple{ZZGenus}",href:"#rank-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"rank")],-1)),s[65]||(s[65]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[66]||(s[66]=i('
julia
rank(G::ZZGenus) -> Int

Return the rank of a (representative of) the genus G.

source

',3))]),t("details",S,[t("summary",null,[s[67]||(s[67]=t("a",{id:"signature-Tuple{ZZGenus}",href:"#signature-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"signature")],-1)),s[68]||(s[68]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[69]||(s[69]=i('
julia
signature(G::ZZGenus) -> Int

Return the signature of this genus.

The signature is p - n where p is the number of positive eigenvalues and n the number of negative eigenvalues.

source

',4))]),t("details",I,[t("summary",null,[s[70]||(s[70]=t("a",{id:"det-Tuple{ZZGenus}",href:"#det-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"det")],-1)),s[71]||(s[71]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[72]||(s[72]=i('
julia
det(G::ZZGenus) -> QQFieldElem

Return the determinant of this genus.

source

',3))]),t("details",z,[t("summary",null,[s[73]||(s[73]=t("a",{id:"iseven-Tuple{ZZGenus}",href:"#iseven-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"iseven")],-1)),s[74]||(s[74]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[75]||(s[75]=i('
julia
iseven(G::ZZGenus) -> Bool

Return if this genus is even.

source

',3))]),t("details",J,[t("summary",null,[s[76]||(s[76]=t("a",{id:"is_definite-Tuple{ZZGenus}",href:"#is_definite-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_definite")],-1)),s[77]||(s[77]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[78]||(s[78]=i('
julia
is_definite(G::ZZGenus) -> Bool

Return if this genus is definite.

source

',3))]),t("details",P,[t("summary",null,[s[79]||(s[79]=t("a",{id:"level-Tuple{ZZGenus}",href:"#level-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"level")],-1)),s[80]||(s[80]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[81]||(s[81]=i('
julia
level(G::ZZGenus) -> QQFieldElem

Return the level of this genus.

This is the denominator of the inverse gram matrix of a representative.

source

',4))]),t("details",U,[t("summary",null,[s[82]||(s[82]=t("a",{id:"scale-Tuple{ZZGenus}",href:"#scale-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"scale")],-1)),s[83]||(s[83]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[84]||(s[84]=i('
julia
scale(G::ZZGenus) -> QQFieldElem

Return the scale of this genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

',4))]),t("details",X,[t("summary",null,[s[85]||(s[85]=t("a",{id:"norm-Tuple{ZZGenus}",href:"#norm-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"norm")],-1)),s[86]||(s[86]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[97]||(s[97]=i('
julia
norm(G::ZZGenus) -> QQFieldElem

Return the norm of this genus.

',2)),t("p",null,[s[89]||(s[89]=e("Let ")),s[90]||(s[90]=t("code",null,"L",-1)),s[91]||(s[91]=e(" be a lattice with bilinear form ")),s[92]||(s[92]=t("code",null,"b",-1)),s[93]||(s[93]=e(". The norm of ")),s[94]||(s[94]=t("code",null,"(L,b)",-1)),s[95]||(s[95]=e(" is defined as the ideal generated by ")),t("mjx-container",q,[(o(),n("svg",N,s[87]||(s[87]=[i('',1)]))),s[88]||(s[88]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"b"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"L"),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[96]||(s[96]=e("."))]),s[98]||(s[98]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",$,[t("summary",null,[s[99]||(s[99]=t("a",{id:"primes-Tuple{ZZGenus}",href:"#primes-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"primes")],-1)),s[100]||(s[100]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[101]||(s[101]=i('
julia
primes(G::ZZGenus) -> Vector{ZZRingElem}

Return the list of primes of the local symbols of G.

Note that 2 is always in the output since the 2-adic symbol of a ZZGenus is, by convention, always defined.

source

',4))]),t("details",W,[t("summary",null,[s[102]||(s[102]=t("a",{id:"is_integral-Tuple{ZZGenus}",href:"#is_integral-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_integral")],-1)),s[103]||(s[103]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[110]||(s[110]=i('
julia
is_integral(G::ZZGenus) -> Bool
',1)),t("p",null,[s[106]||(s[106]=e("Return whether ")),s[107]||(s[107]=t("code",null,"G",-1)),s[108]||(s[108]=e(" is a genus of integral ")),t("mjx-container",K,[(o(),n("svg",Y,s[104]||(s[104]=[i('',1)]))),s[105]||(s[105]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[109]||(s[109]=e("-lattices."))]),s[111]||(s[111]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[324]||(s[324]=i('

Discriminant group

discriminant_group(::ZZGenus)

Primary genera

',3)),t("details",_,[t("summary",null,[s[112]||(s[112]=t("a",{id:"is_primary_with_prime-Tuple{ZZGenus}",href:"#is_primary_with_prime-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),s[113]||(s[113]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[128]||(s[128]=i('
julia
is_primary_with_prime(G::ZZGenus) -> Bool, ZZRingElem
',1)),t("p",null,[s[116]||(s[116]=e("Given a genus of ")),t("mjx-container",ss,[(o(),n("svg",ts,s[114]||(s[114]=[i('',1)]))),s[115]||(s[115]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[117]||(s[117]=e("-lattices ")),s[118]||(s[118]=t("code",null,"G",-1)),s[119]||(s[119]=e(", return whether it is primary, that is whether the bilinear form is integral and the associated discriminant form (see ")),s[120]||(s[120]=t("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#discriminant_group-Tuple{ZZLat}"},[t("code",null,"discriminant_group")],-1)),s[121]||(s[121]=e(") is a ")),s[122]||(s[122]=t("code",null,"p",-1)),s[123]||(s[123]=e("-group for some prime number ")),s[124]||(s[124]=t("code",null,"p",-1)),s[125]||(s[125]=e(". In case it is, ")),s[126]||(s[126]=t("code",null,"p",-1)),s[127]||(s[127]=e(" is also returned as second output."))]),s[129]||(s[129]=t("p",null,[e("Note that for unimodular genera, this function returns "),t("code",null,"(true, 1)"),e(". If the genus is not primary, the second return value is "),t("code",null,"-1"),e(" by default.")],-1)),s[130]||(s[130]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",es,[t("summary",null,[s[131]||(s[131]=t("a",{id:"is_primary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"is_primary")],-1)),s[132]||(s[132]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[137]||(s[137]=i('
julia
is_primary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool
',1)),t("p",null,[s[135]||(s[135]=e("Given a genus of integral ")),t("mjx-container",is,[(o(),n("svg",as,s[133]||(s[133]=[i('',1)]))),s[134]||(s[134]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[136]||(s[136]=i('-lattices G and a prime number p, return whether G is p-primary, that is whether the associated discriminant form (see discriminant_group) is a p-group.',13))]),s[138]||(s[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",ls,[t("summary",null,[s[139]||(s[139]=t("a",{id:"is_elementary_with_prime-Tuple{ZZGenus}",href:"#is_elementary_with_prime-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),s[140]||(s[140]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[155]||(s[155]=i('
julia
is_elementary_with_prime(G::ZZGenus) -> Bool, ZZRingElem
',1)),t("p",null,[s[143]||(s[143]=e("Given a genus of ")),t("mjx-container",ns,[(o(),n("svg",os,s[141]||(s[141]=[i('',1)]))),s[142]||(s[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[144]||(s[144]=e("-lattices ")),s[145]||(s[145]=t("code",null,"G",-1)),s[146]||(s[146]=e(", return whether it is elementary, that is whether the bilinear form is inegtral and the associated discriminant form (see ")),s[147]||(s[147]=t("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#discriminant_group-Tuple{ZZLat}"},[t("code",null,"discriminant_group")],-1)),s[148]||(s[148]=e(") is an elementary ")),s[149]||(s[149]=t("code",null,"p",-1)),s[150]||(s[150]=e("-group for some prime number ")),s[151]||(s[151]=t("code",null,"p",-1)),s[152]||(s[152]=e(". In case it is, ")),s[153]||(s[153]=t("code",null,"p",-1)),s[154]||(s[154]=e(" is also returned as second output."))]),s[156]||(s[156]=t("p",null,[e("Note that for unimodular genera, this function returns "),t("code",null,"(true, 1)"),e(". If the genus is not elementary, the second return value is "),t("code",null,"-1"),e(" by default.")],-1)),s[157]||(s[157]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",rs,[t("summary",null,[s[158]||(s[158]=t("a",{id:"is_elementary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"is_elementary")],-1)),s[159]||(s[159]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[164]||(s[164]=i('
julia
is_elementary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool
',1)),t("p",null,[s[162]||(s[162]=e("Given a genus of integral ")),t("mjx-container",ps,[(o(),n("svg",ds,s[160]||(s[160]=[i('',1)]))),s[161]||(s[161]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[163]||(s[163]=i('-lattices G and a prime number p, return whether G is p-elementary, that is whether its associated discriminant form (see discriminant_group) is an elementary p-group.',13))]),s[165]||(s[165]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[325]||(s[325]=t("h3",{id:"local-Symbol",tabindex:"-1"},[e("local Symbol "),t("a",{class:"header-anchor",href:"#local-Symbol","aria-label":'Permalink to "local Symbol {#local-Symbol}"'},"​")],-1)),t("details",hs,[t("summary",null,[s[166]||(s[166]=t("a",{id:"local_symbol-Tuple{ZZGenus, Any}",href:"#local_symbol-Tuple{ZZGenus, Any}"},[t("span",{class:"jlbinding"},"local_symbol")],-1)),s[167]||(s[167]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[168]||(s[168]=i('
julia
local_symbol(G::ZZGenus, p) -> ZZLocalGenus

Return the local symbol at p.

source

',3))]),s[326]||(s[326]=t("h2",{id:"representative-s",tabindex:"-1"},[e("Representative(s) "),t("a",{class:"header-anchor",href:"#representative-s","aria-label":'Permalink to "Representative(s)"'},"​")],-1)),t("details",Qs,[t("summary",null,[s[169]||(s[169]=t("a",{id:"quadratic_space-Tuple{ZZGenus}",href:"#quadratic_space-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"quadratic_space")],-1)),s[170]||(s[170]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[171]||(s[171]=i('
julia
quadratic_space(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

',3))]),t("details",ms,[t("summary",null,[s[172]||(s[172]=t("a",{id:"rational_representative-Tuple{ZZGenus}",href:"#rational_representative-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"rational_representative")],-1)),s[173]||(s[173]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[174]||(s[174]=i('
julia
rational_representative(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

',3))]),t("details",gs,[t("summary",null,[s[175]||(s[175]=t("a",{id:"representative-Tuple{ZZGenus}",href:"#representative-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"representative")],-1)),s[176]||(s[176]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[177]||(s[177]=i('
julia
representative(G::ZZGenus) -> ZZLat

Compute a representative of this genus && cache it.

source

',3))]),t("details",ks,[t("summary",null,[s[178]||(s[178]=t("a",{id:"representatives-Tuple{ZZGenus}",href:"#representatives-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"representatives")],-1)),s[179]||(s[179]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[180]||(s[180]=i('
julia
representatives(G::ZZGenus) -> Vector{ZZLat}

Return a list of representatives of the isometry classes in this genus.

source

',3))]),t("details",Ts,[t("summary",null,[s[181]||(s[181]=t("a",{id:"mass-Tuple{ZZGenus}",href:"#mass-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"mass")],-1)),s[182]||(s[182]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[189]||(s[189]=i('
julia
mass(G::ZZGenus) -> QQFieldElem

Return the mass of this genus.

',2)),t("p",null,[s[185]||(s[185]=e("The genus must be definite. Let ")),s[186]||(s[186]=t("code",null,"L_1, ... L_n",-1)),s[187]||(s[187]=e(" be a complete list of representatives of the isometry classes in this genus. Its mass is defined as ")),t("mjx-container",us,[(o(),n("svg",ys,s[183]||(s[183]=[i('',1)]))),s[184]||(s[184]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"="),t("mn",null,"1")]),t("mi",null,"n")]),t("mfrac",null,[t("mn",null,"1"),t("mrow",null,[t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"O"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"L"),t("mi",null,"i")]),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])])])],-1))]),s[188]||(s[188]=e("."))]),s[190]||(s[190]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",cs,[t("summary",null,[s[191]||(s[191]=t("a",{id:"rescale-Tuple{ZZGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[t("span",{class:"jlbinding"},"rescale")],-1)),s[192]||(s[192]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[203]||(s[203]=i('
julia
rescale(G::ZZGenus, a::RationalUnion) -> ZZGenus
',1)),t("p",null,[s[195]||(s[195]=e("Given a genus symbol ")),s[196]||(s[196]=t("code",null,"G",-1)),s[197]||(s[197]=e(" of ")),t("mjx-container",bs,[(o(),n("svg",xs,s[193]||(s[193]=[i('',1)]))),s[194]||(s[194]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[198]||(s[198]=e("-lattices, return the genus symbol of any representative of ")),s[199]||(s[199]=t("code",null,"G",-1)),s[200]||(s[200]=e(" rescaled by ")),s[201]||(s[201]=t("code",null,"a",-1)),s[202]||(s[202]=e("."))]),s[204]||(s[204]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[327]||(s[327]=t("h2",{id:"Embeddings-and-Representations",tabindex:"-1"},[e("Embeddings and Representations "),t("a",{class:"header-anchor",href:"#Embeddings-and-Representations","aria-label":'Permalink to "Embeddings and Representations {#Embeddings-and-Representations}"'},"​")],-1)),t("details",fs,[t("summary",null,[s[205]||(s[205]=t("a",{id:"represents-Tuple{ZZGenus, ZZGenus}",href:"#represents-Tuple{ZZGenus, ZZGenus}"},[t("span",{class:"jlbinding"},"represents")],-1)),s[206]||(s[206]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[207]||(s[207]=i('
julia
represents(G1::ZZGenus, G2::ZZGenus) -> Bool

Return if G1 represents G2. That is if some element in the genus of G1 represents some element in the genus of G2.

source

',3))]),s[328]||(s[328]=t("h2",{id:"Local-genus-Symbols",tabindex:"-1"},[e("Local genus Symbols "),t("a",{class:"header-anchor",href:"#Local-genus-Symbols","aria-label":'Permalink to "Local genus Symbols {#Local-genus-Symbols}"'},"​")],-1)),t("details",Es,[t("summary",null,[s[208]||(s[208]=t("a",{id:"ZZLocalGenus",href:"#ZZLocalGenus"},[t("span",{class:"jlbinding"},"ZZLocalGenus")],-1)),s[209]||(s[209]=e()),l(a,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[210]||(s[210]=i('
julia
ZZLocalGenus

Local genus symbol over a p-adic ring.

The genus symbol of a component p^m A for odd prime = p is of the form (m,n,d), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) \\in \\{1,u\\} for a normalized quadratic non-residue u.

The genus symbol of a component 2^m A is of the form (m, n, s, d, o), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) in {1,3,5,7}

  • s = 0 (or 1) if even (or odd)

  • o = oddity of A (= 0 if s = 0) in Z/8Z = the trace of the diagonalization of A

The genus symbol is a list of such symbols (ordered by m) for each of the Jordan blocks A_1,...,A_t.

Reference: [5] Chapter 15, Section 7.

Arguments

  • prime: a prime number

  • symbol: the list of invariants for Jordan blocks A_t,...,A_t given as a list of lists of integers

source

',11))]),s[329]||(s[329]=t("h3",{id:"creation",tabindex:"-1"},[e("Creation "),t("a",{class:"header-anchor",href:"#creation","aria-label":'Permalink to "Creation"'},"​")],-1)),t("details",vs,[t("summary",null,[s[211]||(s[211]=t("a",{id:"genus-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#genus-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[212]||(s[212]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[213]||(s[213]=i('
julia
genus(L::ZZLat, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of L at the prime p.

source

',3))]),t("details",ws,[t("summary",null,[s[214]||(s[214]=t("a",{id:"genus-Tuple{QQMatrix, Union{Integer, ZZRingElem}}",href:"#genus-Tuple{QQMatrix, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[215]||(s[215]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[216]||(s[216]=i('
julia
genus(A::QQMatrix, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of a Z-lattice with gram matrix A at the prime p.

source

',3))]),s[330]||(s[330]=t("h3",{id:"attributes",tabindex:"-1"},[e("Attributes "),t("a",{class:"header-anchor",href:"#attributes","aria-label":'Permalink to "Attributes"'},"​")],-1)),t("details",Zs,[t("summary",null,[s[217]||(s[217]=t("a",{id:"prime-Tuple{ZZLocalGenus}",href:"#prime-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"prime")],-1)),s[218]||(s[218]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[219]||(s[219]=i('
julia
prime(S::ZZLocalGenus) -> ZZRingElem

Return the prime p of this p-adic genus.

source

',3))]),t("details",js,[t("summary",null,[s[220]||(s[220]=t("a",{id:"iseven-Tuple{ZZLocalGenus}",href:"#iseven-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"iseven")],-1)),s[221]||(s[221]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[222]||(s[222]=i('
julia
iseven(S::ZZLocalGenus) -> Bool

Return if the underlying p-adic lattice is even.

If p is odd, every lattice is even.

source

',4))]),t("details",Ls,[t("summary",null,[s[223]||(s[223]=t("a",{id:"symbol-Tuple{ZZLocalGenus, Int64}",href:"#symbol-Tuple{ZZLocalGenus, Int64}"},[t("span",{class:"jlbinding"},"symbol")],-1)),s[224]||(s[224]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[225]||(s[225]=i('
julia
symbol(S::ZZLocalGenus, scale::Int) -> Vector{Int}

Return the underlying lists of integers for the Jordan block of the given scale

source

',3))]),t("details",Cs,[t("summary",null,[s[226]||(s[226]=t("a",{id:"hasse_invariant-Tuple{ZZLocalGenus}",href:"#hasse_invariant-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"hasse_invariant")],-1)),s[227]||(s[227]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[230]||(s[230]=i('
julia
hasse_invariant(S::ZZLocalGenus) -> Int

Return the Hasse invariant of a representative. If the representative is diagonal (a_1, ... , a_n) Then the Hasse invariant is

',2)),t("mjx-container",Ms,[(o(),n("svg",Hs,s[228]||(s[228]=[i('',1)]))),s[229]||(s[229]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("munder",null,[t("mo",{"data-mjx-texclass":"OP"},"∏"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"<"),t("mi",null,"j")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"a"),t("mi",null,"i")]),t("mo",null,","),t("msub",null,[t("mi",null,"a"),t("mi",null,"j")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"p")])])],-1))]),s[231]||(s[231]=t("p",null,".",-1)),s[232]||(s[232]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Fs,[t("summary",null,[s[233]||(s[233]=t("a",{id:"det-Tuple{ZZLocalGenus}",href:"#det-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"det")],-1)),s[234]||(s[234]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[235]||(s[235]=i('
julia
det(S::ZZLocalGenus) -> QQFieldElem

Return an rational representing the determinant of this genus.

source

',3))]),t("details",Gs,[t("summary",null,[s[236]||(s[236]=t("a",{id:"dim-Tuple{ZZLocalGenus}",href:"#dim-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"dim")],-1)),s[237]||(s[237]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[238]||(s[238]=i('
julia
dim(S::ZZLocalGenus) -> Int

Return the dimension of this genus.

source

',3))]),t("details",Ds,[t("summary",null,[s[239]||(s[239]=t("a",{id:"rank-Tuple{ZZLocalGenus}",href:"#rank-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"rank")],-1)),s[240]||(s[240]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[241]||(s[241]=i('
julia
rank(S::ZZLocalGenus) -> Int

Return the rank of (a representative of) S.

source

',3))]),t("details",Bs,[t("summary",null,[s[242]||(s[242]=t("a",{id:"excess-Tuple{ZZLocalGenus}",href:"#excess-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"excess")],-1)),s[243]||(s[243]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[244]||(s[244]=i('
julia
excess(S::ZZLocalGenus) -> zzModRingElem

Return the p-excess of the quadratic form whose Hessian matrix is the symmetric matrix A.

When p = 2 the p-excess is called the oddity. The p-excess is always even && is divisible by 4 if p is congruent 1 mod 4.

Reference

[5] pp 370-371.

source

',6))]),t("details",As,[t("summary",null,[s[245]||(s[245]=t("a",{id:"signature-Tuple{ZZLocalGenus}",href:"#signature-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"signature")],-1)),s[246]||(s[246]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[254]||(s[254]=i('
julia
signature(S::ZZLocalGenus) -> zzModRingElem
',1)),t("p",null,[s[251]||(s[251]=e("Return the ")),t("mjx-container",Vs,[(o(),n("svg",Rs,s[247]||(s[247]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[248]||(s[248]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[252]||(s[252]=e("-signature of this ")),t("mjx-container",Os,[(o(),n("svg",Ss,s[249]||(s[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[250]||(s[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[253]||(s[253]=e("-adic form."))]),s[255]||(s[255]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Is,[t("summary",null,[s[256]||(s[256]=t("a",{id:"oddity-Tuple{ZZLocalGenus}",href:"#oddity-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"oddity")],-1)),s[257]||(s[257]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[262]||(s[262]=i('
julia
oddity(S::ZZLocalGenus) -> zzModRingElem
',1)),t("p",null,[s[260]||(s[260]=e("Return the oddity of this even form. The oddity is also called the ")),t("mjx-container",zs,[(o(),n("svg",Js,s[258]||(s[258]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mn"},[t("path",{"data-c":"32",d:"M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z",style:{"stroke-width":"3"}})])])],-1)]))),s[259]||(s[259]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"2")])],-1))]),s[261]||(s[261]=e("-signature"))]),s[263]||(s[263]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Ps,[t("summary",null,[s[264]||(s[264]=t("a",{id:"scale-Tuple{ZZLocalGenus}",href:"#scale-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"scale")],-1)),s[265]||(s[265]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[266]||(s[266]=i('
julia
scale(S::ZZLocalGenus) -> QQFieldElem

Return the scale of this local genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

',4))]),t("details",Us,[t("summary",null,[s[267]||(s[267]=t("a",{id:"norm-Tuple{ZZLocalGenus}",href:"#norm-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"norm")],-1)),s[268]||(s[268]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[279]||(s[279]=i('
julia
norm(S::ZZLocalGenus) -> QQFieldElem

Return the norm of this local genus.

',2)),t("p",null,[s[271]||(s[271]=e("Let ")),s[272]||(s[272]=t("code",null,"L",-1)),s[273]||(s[273]=e(" be a lattice with bilinear form ")),s[274]||(s[274]=t("code",null,"b",-1)),s[275]||(s[275]=e(". The norm of ")),s[276]||(s[276]=t("code",null,"(L,b)",-1)),s[277]||(s[277]=e(" is defined as the ideal generated by ")),t("mjx-container",Xs,[(o(),n("svg",qs,s[269]||(s[269]=[i('',1)]))),s[270]||(s[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"b"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"L"),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[278]||(s[278]=e("."))]),s[280]||(s[280]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Ns,[t("summary",null,[s[281]||(s[281]=t("a",{id:"level-Tuple{ZZLocalGenus}",href:"#level-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"level")],-1)),s[282]||(s[282]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[283]||(s[283]=i('
julia
level(S::ZZLocalGenus) -> QQFieldElem

Return the maximal scale of a jordan component.

source

',3))]),s[331]||(s[331]=t("h3",{id:"representative",tabindex:"-1"},[e("Representative "),t("a",{class:"header-anchor",href:"#representative","aria-label":'Permalink to "Representative"'},"​")],-1)),t("details",$s,[t("summary",null,[s[284]||(s[284]=t("a",{id:"representative-Tuple{ZZLocalGenus}",href:"#representative-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"representative")],-1)),s[285]||(s[285]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[286]||(s[286]=i('
julia
representative(S::ZZLocalGenus) -> ZZLat

Return an integer lattice which represents this local genus.

source

',3))]),t("details",Ws,[t("summary",null,[s[287]||(s[287]=t("a",{id:"gram_matrix-Tuple{ZZLocalGenus}",href:"#gram_matrix-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"gram_matrix")],-1)),s[288]||(s[288]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[289]||(s[289]=i('
julia
gram_matrix(S::ZZLocalGenus) -> MatElem

Return a gram matrix of some representative of this local genus.

source

',3))]),t("details",Ks,[t("summary",null,[s[290]||(s[290]=t("a",{id:"rescale-Tuple{ZZLocalGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZLocalGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[t("span",{class:"jlbinding"},"rescale")],-1)),s[291]||(s[291]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[302]||(s[302]=i('
julia
rescale(G::ZZLocalGenus, a::RationalUnion) -> ZZLocalGenus
',1)),t("p",null,[s[294]||(s[294]=e("Given a local genus symbol ")),s[295]||(s[295]=t("code",null,"G",-1)),s[296]||(s[296]=e(" of ")),t("mjx-container",Ys,[(o(),n("svg",_s,s[292]||(s[292]=[i('',1)]))),s[293]||(s[293]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[297]||(s[297]=e("-lattices, return the local genus symbol of any representative of ")),s[298]||(s[298]=t("code",null,"G",-1)),s[299]||(s[299]=e(" rescaled by ")),s[300]||(s[300]=t("code",null,"a",-1)),s[301]||(s[301]=e("."))]),s[303]||(s[303]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[332]||(s[332]=t("h3",{id:"Direct-sums",tabindex:"-1"},[e("Direct sums "),t("a",{class:"header-anchor",href:"#Direct-sums","aria-label":'Permalink to "Direct sums {#Direct-sums}"'},"​")],-1)),t("details",s1,[t("summary",null,[s[304]||(s[304]=t("a",{id:"direct_sum-Tuple{ZZLocalGenus, ZZLocalGenus}",href:"#direct_sum-Tuple{ZZLocalGenus, ZZLocalGenus}"},[t("span",{class:"jlbinding"},"direct_sum")],-1)),s[305]||(s[305]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[306]||(s[306]=i('
julia
direct_sum(S1::ZZLocalGenus, S2::ZZLocalGenus) -> ZZLocalGenus

Return the local genus of the direct sum of two representatives.

source

',3))]),s[333]||(s[333]=t("h3",{id:"embeddings-representations",tabindex:"-1"},[e("Embeddings/Representations "),t("a",{class:"header-anchor",href:"#embeddings-representations","aria-label":'Permalink to "Embeddings/Representations"'},"​")],-1)),t("details",t1,[t("summary",null,[s[307]||(s[307]=t("a",{id:"represents-Tuple{ZZLocalGenus, ZZLocalGenus}",href:"#represents-Tuple{ZZLocalGenus, ZZLocalGenus}"},[t("span",{class:"jlbinding"},"represents")],-1)),s[308]||(s[308]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[315]||(s[315]=i('
julia
represents(g1::ZZLocalGenus, g2::ZZLocalGenus) -> Bool

Return whether g1 represents g2.

',2)),t("p",null,[s[311]||(s[311]=e("Based on O'Meara Integral Representations of Quadratic Forms Over Local Fields Note that for ")),s[312]||(s[312]=t("code",null,"p == 2",-1)),s[313]||(s[313]=e(" there is a typo in O'Meara Theorem 3 (V). The correct statement is (V) ")),t("mjx-container",e1,[(o(),n("svg",i1,s[309]||(s[309]=[i('',1)]))),s[310]||(s[310]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mn",null,"2"),t("mi",null,"i")]),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,"+"),t("mn",null,"4"),t("mi",null,"ω"),t("mo",{stretchy:"false"},")"),t("mo",{accent:"false",stretchy:"false"},"→"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"L")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mn",null,"1")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"l")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",{stretchy:"false"},"["),t("mi",null,"i"),t("mo",{stretchy:"false"},"]")])])])],-1))]),s[314]||(s[314]=e("."))]),s[316]||(s[316]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const Q1=r(d,[["render",a1]]);export{h1 as __pageData,Q1 as default}; + even=false) -> Vector{ZZGenus}
`,1)),t("p",null,[s[54]||(s[54]=e("Return a list of all genera with the given conditions. Genera of non-integral ")),t("mjx-container",B,[(o(),n("svg",A,s[52]||(s[52]=[i('',1)]))),s[53]||(s[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[55]||(s[55]=e("-lattices are also supported."))]),s[57]||(s[57]=i('

Arguments

  • sig_pair: a pair of non-negative integers giving the signature

  • determinant: a rational number; the sign is ignored

  • min_scale: a rational number; return only genera whose scale is an integer multiple of min_scale (default: min(one(QQ), QQ(abs(determinant))))

  • max_scale: a rational number; return only genera such that max_scale is an integer multiple of the scale (default: max(one(QQ), QQ(abs(determinant))))

  • even: boolean; if set to true, return only the even genera (default: false)

source

',3))]),s[322]||(s[322]=t("h3",{id:"From-other-genus-symbols",tabindex:"-1"},[e("From other genus symbols "),t("a",{class:"header-anchor",href:"#From-other-genus-symbols","aria-label":'Permalink to "From other genus symbols {#From-other-genus-symbols}"'},"​")],-1)),t("details",V,[t("summary",null,[s[58]||(s[58]=t("a",{id:"direct_sum-Tuple{ZZGenus, ZZGenus}",href:"#direct_sum-Tuple{ZZGenus, ZZGenus}"},[t("span",{class:"jlbinding"},"direct_sum")],-1)),s[59]||(s[59]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[60]||(s[60]=i('
julia
direct_sum(G1::ZZGenus, G2::ZZGenus) -> ZZGenus

Return the genus of the direct sum of G1 and G2.

The direct sum is defined via representatives.

source

',4))]),s[323]||(s[323]=t("h2",{id:"Attributes-of-the-genus",tabindex:"-1"},[e("Attributes of the genus "),t("a",{class:"header-anchor",href:"#Attributes-of-the-genus","aria-label":'Permalink to "Attributes of the genus {#Attributes-of-the-genus}"'},"​")],-1)),t("details",R,[t("summary",null,[s[61]||(s[61]=t("a",{id:"dim-Tuple{ZZGenus}",href:"#dim-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"dim")],-1)),s[62]||(s[62]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[63]||(s[63]=i('
julia
dim(G::ZZGenus) -> Int

Return the dimension of this genus.

source

',3))]),t("details",O,[t("summary",null,[s[64]||(s[64]=t("a",{id:"rank-Tuple{ZZGenus}",href:"#rank-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"rank")],-1)),s[65]||(s[65]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[66]||(s[66]=i('
julia
rank(G::ZZGenus) -> Int

Return the rank of a (representative of) the genus G.

source

',3))]),t("details",S,[t("summary",null,[s[67]||(s[67]=t("a",{id:"signature-Tuple{ZZGenus}",href:"#signature-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"signature")],-1)),s[68]||(s[68]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[69]||(s[69]=i('
julia
signature(G::ZZGenus) -> Int

Return the signature of this genus.

The signature is p - n where p is the number of positive eigenvalues and n the number of negative eigenvalues.

source

',4))]),t("details",I,[t("summary",null,[s[70]||(s[70]=t("a",{id:"det-Tuple{ZZGenus}",href:"#det-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"det")],-1)),s[71]||(s[71]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[72]||(s[72]=i('
julia
det(G::ZZGenus) -> QQFieldElem

Return the determinant of this genus.

source

',3))]),t("details",z,[t("summary",null,[s[73]||(s[73]=t("a",{id:"iseven-Tuple{ZZGenus}",href:"#iseven-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"iseven")],-1)),s[74]||(s[74]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[75]||(s[75]=i('
julia
iseven(G::ZZGenus) -> Bool

Return if this genus is even.

source

',3))]),t("details",J,[t("summary",null,[s[76]||(s[76]=t("a",{id:"is_definite-Tuple{ZZGenus}",href:"#is_definite-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_definite")],-1)),s[77]||(s[77]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[78]||(s[78]=i('
julia
is_definite(G::ZZGenus) -> Bool

Return if this genus is definite.

source

',3))]),t("details",P,[t("summary",null,[s[79]||(s[79]=t("a",{id:"level-Tuple{ZZGenus}",href:"#level-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"level")],-1)),s[80]||(s[80]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[81]||(s[81]=i('
julia
level(G::ZZGenus) -> QQFieldElem

Return the level of this genus.

This is the denominator of the inverse gram matrix of a representative.

source

',4))]),t("details",U,[t("summary",null,[s[82]||(s[82]=t("a",{id:"scale-Tuple{ZZGenus}",href:"#scale-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"scale")],-1)),s[83]||(s[83]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[84]||(s[84]=i('
julia
scale(G::ZZGenus) -> QQFieldElem

Return the scale of this genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

',4))]),t("details",X,[t("summary",null,[s[85]||(s[85]=t("a",{id:"norm-Tuple{ZZGenus}",href:"#norm-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"norm")],-1)),s[86]||(s[86]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[97]||(s[97]=i('
julia
norm(G::ZZGenus) -> QQFieldElem

Return the norm of this genus.

',2)),t("p",null,[s[89]||(s[89]=e("Let ")),s[90]||(s[90]=t("code",null,"L",-1)),s[91]||(s[91]=e(" be a lattice with bilinear form ")),s[92]||(s[92]=t("code",null,"b",-1)),s[93]||(s[93]=e(". The norm of ")),s[94]||(s[94]=t("code",null,"(L,b)",-1)),s[95]||(s[95]=e(" is defined as the ideal generated by ")),t("mjx-container",q,[(o(),n("svg",N,s[87]||(s[87]=[i('',1)]))),s[88]||(s[88]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"b"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"L"),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[96]||(s[96]=e("."))]),s[98]||(s[98]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",$,[t("summary",null,[s[99]||(s[99]=t("a",{id:"primes-Tuple{ZZGenus}",href:"#primes-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"primes")],-1)),s[100]||(s[100]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[101]||(s[101]=i('
julia
primes(G::ZZGenus) -> Vector{ZZRingElem}

Return the list of primes of the local symbols of G.

Note that 2 is always in the output since the 2-adic symbol of a ZZGenus is, by convention, always defined.

source

',4))]),t("details",W,[t("summary",null,[s[102]||(s[102]=t("a",{id:"is_integral-Tuple{ZZGenus}",href:"#is_integral-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_integral")],-1)),s[103]||(s[103]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[110]||(s[110]=i('
julia
is_integral(G::ZZGenus) -> Bool
',1)),t("p",null,[s[106]||(s[106]=e("Return whether ")),s[107]||(s[107]=t("code",null,"G",-1)),s[108]||(s[108]=e(" is a genus of integral ")),t("mjx-container",K,[(o(),n("svg",Y,s[104]||(s[104]=[i('',1)]))),s[105]||(s[105]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[109]||(s[109]=e("-lattices."))]),s[111]||(s[111]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[324]||(s[324]=i('

Discriminant group

discriminant_group(::ZZGenus)

Primary genera

',3)),t("details",_,[t("summary",null,[s[112]||(s[112]=t("a",{id:"is_primary_with_prime-Tuple{ZZGenus}",href:"#is_primary_with_prime-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),s[113]||(s[113]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[128]||(s[128]=i('
julia
is_primary_with_prime(G::ZZGenus) -> Bool, ZZRingElem
',1)),t("p",null,[s[116]||(s[116]=e("Given a genus of ")),t("mjx-container",ss,[(o(),n("svg",ts,s[114]||(s[114]=[i('',1)]))),s[115]||(s[115]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[117]||(s[117]=e("-lattices ")),s[118]||(s[118]=t("code",null,"G",-1)),s[119]||(s[119]=e(", return whether it is primary, that is whether the bilinear form is integral and the associated discriminant form (see ")),s[120]||(s[120]=t("a",{href:"/v0.34.8/manual/quad_forms/discriminant_group#discriminant_group-Tuple{ZZLat}"},[t("code",null,"discriminant_group")],-1)),s[121]||(s[121]=e(") is a ")),s[122]||(s[122]=t("code",null,"p",-1)),s[123]||(s[123]=e("-group for some prime number ")),s[124]||(s[124]=t("code",null,"p",-1)),s[125]||(s[125]=e(". In case it is, ")),s[126]||(s[126]=t("code",null,"p",-1)),s[127]||(s[127]=e(" is also returned as second output."))]),s[129]||(s[129]=t("p",null,[e("Note that for unimodular genera, this function returns "),t("code",null,"(true, 1)"),e(". If the genus is not primary, the second return value is "),t("code",null,"-1"),e(" by default.")],-1)),s[130]||(s[130]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",es,[t("summary",null,[s[131]||(s[131]=t("a",{id:"is_primary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"is_primary")],-1)),s[132]||(s[132]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[137]||(s[137]=i('
julia
is_primary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool
',1)),t("p",null,[s[135]||(s[135]=e("Given a genus of integral ")),t("mjx-container",is,[(o(),n("svg",as,s[133]||(s[133]=[i('',1)]))),s[134]||(s[134]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[136]||(s[136]=i('-lattices G and a prime number p, return whether G is p-primary, that is whether the associated discriminant form (see discriminant_group) is a p-group.',13))]),s[138]||(s[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",ls,[t("summary",null,[s[139]||(s[139]=t("a",{id:"is_elementary_with_prime-Tuple{ZZGenus}",href:"#is_elementary_with_prime-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),s[140]||(s[140]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[155]||(s[155]=i('
julia
is_elementary_with_prime(G::ZZGenus) -> Bool, ZZRingElem
',1)),t("p",null,[s[143]||(s[143]=e("Given a genus of ")),t("mjx-container",ns,[(o(),n("svg",os,s[141]||(s[141]=[i('',1)]))),s[142]||(s[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[144]||(s[144]=e("-lattices ")),s[145]||(s[145]=t("code",null,"G",-1)),s[146]||(s[146]=e(", return whether it is elementary, that is whether the bilinear form is inegtral and the associated discriminant form (see ")),s[147]||(s[147]=t("a",{href:"/v0.34.8/manual/quad_forms/discriminant_group#discriminant_group-Tuple{ZZLat}"},[t("code",null,"discriminant_group")],-1)),s[148]||(s[148]=e(") is an elementary ")),s[149]||(s[149]=t("code",null,"p",-1)),s[150]||(s[150]=e("-group for some prime number ")),s[151]||(s[151]=t("code",null,"p",-1)),s[152]||(s[152]=e(". In case it is, ")),s[153]||(s[153]=t("code",null,"p",-1)),s[154]||(s[154]=e(" is also returned as second output."))]),s[156]||(s[156]=t("p",null,[e("Note that for unimodular genera, this function returns "),t("code",null,"(true, 1)"),e(". If the genus is not elementary, the second return value is "),t("code",null,"-1"),e(" by default.")],-1)),s[157]||(s[157]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",rs,[t("summary",null,[s[158]||(s[158]=t("a",{id:"is_elementary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"is_elementary")],-1)),s[159]||(s[159]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[164]||(s[164]=i('
julia
is_elementary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool
',1)),t("p",null,[s[162]||(s[162]=e("Given a genus of integral ")),t("mjx-container",ps,[(o(),n("svg",ds,s[160]||(s[160]=[i('',1)]))),s[161]||(s[161]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[163]||(s[163]=i('-lattices G and a prime number p, return whether G is p-elementary, that is whether its associated discriminant form (see discriminant_group) is an elementary p-group.',13))]),s[165]||(s[165]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[325]||(s[325]=t("h3",{id:"local-Symbol",tabindex:"-1"},[e("local Symbol "),t("a",{class:"header-anchor",href:"#local-Symbol","aria-label":'Permalink to "local Symbol {#local-Symbol}"'},"​")],-1)),t("details",hs,[t("summary",null,[s[166]||(s[166]=t("a",{id:"local_symbol-Tuple{ZZGenus, Any}",href:"#local_symbol-Tuple{ZZGenus, Any}"},[t("span",{class:"jlbinding"},"local_symbol")],-1)),s[167]||(s[167]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[168]||(s[168]=i('
julia
local_symbol(G::ZZGenus, p) -> ZZLocalGenus

Return the local symbol at p.

source

',3))]),s[326]||(s[326]=t("h2",{id:"representative-s",tabindex:"-1"},[e("Representative(s) "),t("a",{class:"header-anchor",href:"#representative-s","aria-label":'Permalink to "Representative(s)"'},"​")],-1)),t("details",Qs,[t("summary",null,[s[169]||(s[169]=t("a",{id:"quadratic_space-Tuple{ZZGenus}",href:"#quadratic_space-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"quadratic_space")],-1)),s[170]||(s[170]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[171]||(s[171]=i('
julia
quadratic_space(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

',3))]),t("details",ms,[t("summary",null,[s[172]||(s[172]=t("a",{id:"rational_representative-Tuple{ZZGenus}",href:"#rational_representative-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"rational_representative")],-1)),s[173]||(s[173]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[174]||(s[174]=i('
julia
rational_representative(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

',3))]),t("details",gs,[t("summary",null,[s[175]||(s[175]=t("a",{id:"representative-Tuple{ZZGenus}",href:"#representative-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"representative")],-1)),s[176]||(s[176]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[177]||(s[177]=i('
julia
representative(G::ZZGenus) -> ZZLat

Compute a representative of this genus && cache it.

source

',3))]),t("details",ks,[t("summary",null,[s[178]||(s[178]=t("a",{id:"representatives-Tuple{ZZGenus}",href:"#representatives-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"representatives")],-1)),s[179]||(s[179]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[180]||(s[180]=i('
julia
representatives(G::ZZGenus) -> Vector{ZZLat}

Return a list of representatives of the isometry classes in this genus.

source

',3))]),t("details",Ts,[t("summary",null,[s[181]||(s[181]=t("a",{id:"mass-Tuple{ZZGenus}",href:"#mass-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"mass")],-1)),s[182]||(s[182]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[189]||(s[189]=i('
julia
mass(G::ZZGenus) -> QQFieldElem

Return the mass of this genus.

',2)),t("p",null,[s[185]||(s[185]=e("The genus must be definite. Let ")),s[186]||(s[186]=t("code",null,"L_1, ... L_n",-1)),s[187]||(s[187]=e(" be a complete list of representatives of the isometry classes in this genus. Its mass is defined as ")),t("mjx-container",us,[(o(),n("svg",ys,s[183]||(s[183]=[i('',1)]))),s[184]||(s[184]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"="),t("mn",null,"1")]),t("mi",null,"n")]),t("mfrac",null,[t("mn",null,"1"),t("mrow",null,[t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"O"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"L"),t("mi",null,"i")]),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])])])],-1))]),s[188]||(s[188]=e("."))]),s[190]||(s[190]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",cs,[t("summary",null,[s[191]||(s[191]=t("a",{id:"rescale-Tuple{ZZGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[t("span",{class:"jlbinding"},"rescale")],-1)),s[192]||(s[192]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[203]||(s[203]=i('
julia
rescale(G::ZZGenus, a::RationalUnion) -> ZZGenus
',1)),t("p",null,[s[195]||(s[195]=e("Given a genus symbol ")),s[196]||(s[196]=t("code",null,"G",-1)),s[197]||(s[197]=e(" of ")),t("mjx-container",bs,[(o(),n("svg",xs,s[193]||(s[193]=[i('',1)]))),s[194]||(s[194]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[198]||(s[198]=e("-lattices, return the genus symbol of any representative of ")),s[199]||(s[199]=t("code",null,"G",-1)),s[200]||(s[200]=e(" rescaled by ")),s[201]||(s[201]=t("code",null,"a",-1)),s[202]||(s[202]=e("."))]),s[204]||(s[204]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[327]||(s[327]=t("h2",{id:"Embeddings-and-Representations",tabindex:"-1"},[e("Embeddings and Representations "),t("a",{class:"header-anchor",href:"#Embeddings-and-Representations","aria-label":'Permalink to "Embeddings and Representations {#Embeddings-and-Representations}"'},"​")],-1)),t("details",fs,[t("summary",null,[s[205]||(s[205]=t("a",{id:"represents-Tuple{ZZGenus, ZZGenus}",href:"#represents-Tuple{ZZGenus, ZZGenus}"},[t("span",{class:"jlbinding"},"represents")],-1)),s[206]||(s[206]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[207]||(s[207]=i('
julia
represents(G1::ZZGenus, G2::ZZGenus) -> Bool

Return if G1 represents G2. That is if some element in the genus of G1 represents some element in the genus of G2.

source

',3))]),s[328]||(s[328]=t("h2",{id:"Local-genus-Symbols",tabindex:"-1"},[e("Local genus Symbols "),t("a",{class:"header-anchor",href:"#Local-genus-Symbols","aria-label":'Permalink to "Local genus Symbols {#Local-genus-Symbols}"'},"​")],-1)),t("details",Es,[t("summary",null,[s[208]||(s[208]=t("a",{id:"ZZLocalGenus",href:"#ZZLocalGenus"},[t("span",{class:"jlbinding"},"ZZLocalGenus")],-1)),s[209]||(s[209]=e()),l(a,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[210]||(s[210]=i('
julia
ZZLocalGenus

Local genus symbol over a p-adic ring.

The genus symbol of a component p^m A for odd prime = p is of the form (m,n,d), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) \\in \\{1,u\\} for a normalized quadratic non-residue u.

The genus symbol of a component 2^m A is of the form (m, n, s, d, o), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) in {1,3,5,7}

  • s = 0 (or 1) if even (or odd)

  • o = oddity of A (= 0 if s = 0) in Z/8Z = the trace of the diagonalization of A

The genus symbol is a list of such symbols (ordered by m) for each of the Jordan blocks A_1,...,A_t.

Reference: [5] Chapter 15, Section 7.

Arguments

  • prime: a prime number

  • symbol: the list of invariants for Jordan blocks A_t,...,A_t given as a list of lists of integers

source

',11))]),s[329]||(s[329]=t("h3",{id:"creation",tabindex:"-1"},[e("Creation "),t("a",{class:"header-anchor",href:"#creation","aria-label":'Permalink to "Creation"'},"​")],-1)),t("details",vs,[t("summary",null,[s[211]||(s[211]=t("a",{id:"genus-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#genus-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[212]||(s[212]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[213]||(s[213]=i('
julia
genus(L::ZZLat, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of L at the prime p.

source

',3))]),t("details",ws,[t("summary",null,[s[214]||(s[214]=t("a",{id:"genus-Tuple{QQMatrix, Union{Integer, ZZRingElem}}",href:"#genus-Tuple{QQMatrix, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[215]||(s[215]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[216]||(s[216]=i('
julia
genus(A::QQMatrix, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of a Z-lattice with gram matrix A at the prime p.

source

',3))]),s[330]||(s[330]=t("h3",{id:"attributes",tabindex:"-1"},[e("Attributes "),t("a",{class:"header-anchor",href:"#attributes","aria-label":'Permalink to "Attributes"'},"​")],-1)),t("details",Zs,[t("summary",null,[s[217]||(s[217]=t("a",{id:"prime-Tuple{ZZLocalGenus}",href:"#prime-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"prime")],-1)),s[218]||(s[218]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[219]||(s[219]=i('
julia
prime(S::ZZLocalGenus) -> ZZRingElem

Return the prime p of this p-adic genus.

source

',3))]),t("details",js,[t("summary",null,[s[220]||(s[220]=t("a",{id:"iseven-Tuple{ZZLocalGenus}",href:"#iseven-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"iseven")],-1)),s[221]||(s[221]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[222]||(s[222]=i('
julia
iseven(S::ZZLocalGenus) -> Bool

Return if the underlying p-adic lattice is even.

If p is odd, every lattice is even.

source

',4))]),t("details",Ls,[t("summary",null,[s[223]||(s[223]=t("a",{id:"symbol-Tuple{ZZLocalGenus, Int64}",href:"#symbol-Tuple{ZZLocalGenus, Int64}"},[t("span",{class:"jlbinding"},"symbol")],-1)),s[224]||(s[224]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[225]||(s[225]=i('
julia
symbol(S::ZZLocalGenus, scale::Int) -> Vector{Int}

Return the underlying lists of integers for the Jordan block of the given scale

source

',3))]),t("details",Cs,[t("summary",null,[s[226]||(s[226]=t("a",{id:"hasse_invariant-Tuple{ZZLocalGenus}",href:"#hasse_invariant-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"hasse_invariant")],-1)),s[227]||(s[227]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[230]||(s[230]=i('
julia
hasse_invariant(S::ZZLocalGenus) -> Int

Return the Hasse invariant of a representative. If the representative is diagonal (a_1, ... , a_n) Then the Hasse invariant is

',2)),t("mjx-container",Ms,[(o(),n("svg",Hs,s[228]||(s[228]=[i('',1)]))),s[229]||(s[229]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("munder",null,[t("mo",{"data-mjx-texclass":"OP"},"∏"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"<"),t("mi",null,"j")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"a"),t("mi",null,"i")]),t("mo",null,","),t("msub",null,[t("mi",null,"a"),t("mi",null,"j")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"p")])])],-1))]),s[231]||(s[231]=t("p",null,".",-1)),s[232]||(s[232]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Fs,[t("summary",null,[s[233]||(s[233]=t("a",{id:"det-Tuple{ZZLocalGenus}",href:"#det-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"det")],-1)),s[234]||(s[234]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[235]||(s[235]=i('
julia
det(S::ZZLocalGenus) -> QQFieldElem

Return an rational representing the determinant of this genus.

source

',3))]),t("details",Gs,[t("summary",null,[s[236]||(s[236]=t("a",{id:"dim-Tuple{ZZLocalGenus}",href:"#dim-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"dim")],-1)),s[237]||(s[237]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[238]||(s[238]=i('
julia
dim(S::ZZLocalGenus) -> Int

Return the dimension of this genus.

source

',3))]),t("details",Ds,[t("summary",null,[s[239]||(s[239]=t("a",{id:"rank-Tuple{ZZLocalGenus}",href:"#rank-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"rank")],-1)),s[240]||(s[240]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[241]||(s[241]=i('
julia
rank(S::ZZLocalGenus) -> Int

Return the rank of (a representative of) S.

source

',3))]),t("details",Bs,[t("summary",null,[s[242]||(s[242]=t("a",{id:"excess-Tuple{ZZLocalGenus}",href:"#excess-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"excess")],-1)),s[243]||(s[243]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[244]||(s[244]=i('
julia
excess(S::ZZLocalGenus) -> zzModRingElem

Return the p-excess of the quadratic form whose Hessian matrix is the symmetric matrix A.

When p = 2 the p-excess is called the oddity. The p-excess is always even && is divisible by 4 if p is congruent 1 mod 4.

Reference

[5] pp 370-371.

source

',6))]),t("details",As,[t("summary",null,[s[245]||(s[245]=t("a",{id:"signature-Tuple{ZZLocalGenus}",href:"#signature-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"signature")],-1)),s[246]||(s[246]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[254]||(s[254]=i('
julia
signature(S::ZZLocalGenus) -> zzModRingElem
',1)),t("p",null,[s[251]||(s[251]=e("Return the ")),t("mjx-container",Vs,[(o(),n("svg",Rs,s[247]||(s[247]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[248]||(s[248]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[252]||(s[252]=e("-signature of this ")),t("mjx-container",Os,[(o(),n("svg",Ss,s[249]||(s[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[250]||(s[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[253]||(s[253]=e("-adic form."))]),s[255]||(s[255]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Is,[t("summary",null,[s[256]||(s[256]=t("a",{id:"oddity-Tuple{ZZLocalGenus}",href:"#oddity-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"oddity")],-1)),s[257]||(s[257]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[262]||(s[262]=i('
julia
oddity(S::ZZLocalGenus) -> zzModRingElem
',1)),t("p",null,[s[260]||(s[260]=e("Return the oddity of this even form. The oddity is also called the ")),t("mjx-container",zs,[(o(),n("svg",Js,s[258]||(s[258]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mn"},[t("path",{"data-c":"32",d:"M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z",style:{"stroke-width":"3"}})])])],-1)]))),s[259]||(s[259]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"2")])],-1))]),s[261]||(s[261]=e("-signature"))]),s[263]||(s[263]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Ps,[t("summary",null,[s[264]||(s[264]=t("a",{id:"scale-Tuple{ZZLocalGenus}",href:"#scale-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"scale")],-1)),s[265]||(s[265]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[266]||(s[266]=i('
julia
scale(S::ZZLocalGenus) -> QQFieldElem

Return the scale of this local genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

',4))]),t("details",Us,[t("summary",null,[s[267]||(s[267]=t("a",{id:"norm-Tuple{ZZLocalGenus}",href:"#norm-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"norm")],-1)),s[268]||(s[268]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[279]||(s[279]=i('
julia
norm(S::ZZLocalGenus) -> QQFieldElem

Return the norm of this local genus.

',2)),t("p",null,[s[271]||(s[271]=e("Let ")),s[272]||(s[272]=t("code",null,"L",-1)),s[273]||(s[273]=e(" be a lattice with bilinear form ")),s[274]||(s[274]=t("code",null,"b",-1)),s[275]||(s[275]=e(". The norm of ")),s[276]||(s[276]=t("code",null,"(L,b)",-1)),s[277]||(s[277]=e(" is defined as the ideal generated by ")),t("mjx-container",Xs,[(o(),n("svg",qs,s[269]||(s[269]=[i('',1)]))),s[270]||(s[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"b"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"L"),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[278]||(s[278]=e("."))]),s[280]||(s[280]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Ns,[t("summary",null,[s[281]||(s[281]=t("a",{id:"level-Tuple{ZZLocalGenus}",href:"#level-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"level")],-1)),s[282]||(s[282]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[283]||(s[283]=i('
julia
level(S::ZZLocalGenus) -> QQFieldElem

Return the maximal scale of a jordan component.

source

',3))]),s[331]||(s[331]=t("h3",{id:"representative",tabindex:"-1"},[e("Representative "),t("a",{class:"header-anchor",href:"#representative","aria-label":'Permalink to "Representative"'},"​")],-1)),t("details",$s,[t("summary",null,[s[284]||(s[284]=t("a",{id:"representative-Tuple{ZZLocalGenus}",href:"#representative-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"representative")],-1)),s[285]||(s[285]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[286]||(s[286]=i('
julia
representative(S::ZZLocalGenus) -> ZZLat

Return an integer lattice which represents this local genus.

source

',3))]),t("details",Ws,[t("summary",null,[s[287]||(s[287]=t("a",{id:"gram_matrix-Tuple{ZZLocalGenus}",href:"#gram_matrix-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"gram_matrix")],-1)),s[288]||(s[288]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[289]||(s[289]=i('
julia
gram_matrix(S::ZZLocalGenus) -> MatElem

Return a gram matrix of some representative of this local genus.

source

',3))]),t("details",Ks,[t("summary",null,[s[290]||(s[290]=t("a",{id:"rescale-Tuple{ZZLocalGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZLocalGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[t("span",{class:"jlbinding"},"rescale")],-1)),s[291]||(s[291]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[302]||(s[302]=i('
julia
rescale(G::ZZLocalGenus, a::RationalUnion) -> ZZLocalGenus
',1)),t("p",null,[s[294]||(s[294]=e("Given a local genus symbol ")),s[295]||(s[295]=t("code",null,"G",-1)),s[296]||(s[296]=e(" of ")),t("mjx-container",Ys,[(o(),n("svg",_s,s[292]||(s[292]=[i('',1)]))),s[293]||(s[293]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[297]||(s[297]=e("-lattices, return the local genus symbol of any representative of ")),s[298]||(s[298]=t("code",null,"G",-1)),s[299]||(s[299]=e(" rescaled by ")),s[300]||(s[300]=t("code",null,"a",-1)),s[301]||(s[301]=e("."))]),s[303]||(s[303]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[332]||(s[332]=t("h3",{id:"Direct-sums",tabindex:"-1"},[e("Direct sums "),t("a",{class:"header-anchor",href:"#Direct-sums","aria-label":'Permalink to "Direct sums {#Direct-sums}"'},"​")],-1)),t("details",s1,[t("summary",null,[s[304]||(s[304]=t("a",{id:"direct_sum-Tuple{ZZLocalGenus, ZZLocalGenus}",href:"#direct_sum-Tuple{ZZLocalGenus, ZZLocalGenus}"},[t("span",{class:"jlbinding"},"direct_sum")],-1)),s[305]||(s[305]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[306]||(s[306]=i('
julia
direct_sum(S1::ZZLocalGenus, S2::ZZLocalGenus) -> ZZLocalGenus

Return the local genus of the direct sum of two representatives.

source

',3))]),s[333]||(s[333]=t("h3",{id:"embeddings-representations",tabindex:"-1"},[e("Embeddings/Representations "),t("a",{class:"header-anchor",href:"#embeddings-representations","aria-label":'Permalink to "Embeddings/Representations"'},"​")],-1)),t("details",t1,[t("summary",null,[s[307]||(s[307]=t("a",{id:"represents-Tuple{ZZLocalGenus, ZZLocalGenus}",href:"#represents-Tuple{ZZLocalGenus, ZZLocalGenus}"},[t("span",{class:"jlbinding"},"represents")],-1)),s[308]||(s[308]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[315]||(s[315]=i('
julia
represents(g1::ZZLocalGenus, g2::ZZLocalGenus) -> Bool

Return whether g1 represents g2.

',2)),t("p",null,[s[311]||(s[311]=e("Based on O'Meara Integral Representations of Quadratic Forms Over Local Fields Note that for ")),s[312]||(s[312]=t("code",null,"p == 2",-1)),s[313]||(s[313]=e(" there is a typo in O'Meara Theorem 3 (V). The correct statement is (V) ")),t("mjx-container",e1,[(o(),n("svg",i1,s[309]||(s[309]=[i('',1)]))),s[310]||(s[310]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mn",null,"2"),t("mi",null,"i")]),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,"+"),t("mn",null,"4"),t("mi",null,"ω"),t("mo",{stretchy:"false"},")"),t("mo",{accent:"false",stretchy:"false"},"→"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"L")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mn",null,"1")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"l")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",{stretchy:"false"},"["),t("mi",null,"i"),t("mo",{stretchy:"false"},"]")])])])],-1))]),s[314]||(s[314]=e("."))]),s[316]||(s[316]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const Q1=r(d,[["render",a1]]);export{h1 as __pageData,Q1 as default}; diff --git a/v0.34.8/assets/manual_quad_forms_Zgenera.md.nh5Loeez.lean.js b/v0.34.8/assets/manual_quad_forms_Zgenera.md.nh5Loeez.lean.js index b965456d1f..1af51cb5c0 100644 --- a/v0.34.8/assets/manual_quad_forms_Zgenera.md.nh5Loeez.lean.js +++ b/v0.34.8/assets/manual_quad_forms_Zgenera.md.nh5Loeez.lean.js @@ -1,4 +1,4 @@ -import{_ as r,c as n,j as t,a as e,a5 as i,G as l,B as p,o}from"./chunks/framework.DbhH0_mT.js";const h1=JSON.parse('{"title":"Genera of Integer Lattices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/quad_forms/Zgenera.md","filePath":"manual/quad_forms/Zgenera.md","lastUpdated":null}'),d={name:"manual/quad_forms/Zgenera.md"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.645ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 3379.1 970.2","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.276ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 3216.1 970.2","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.188ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.202ex",height:"1.733ex",role:"img",focusable:"false",viewBox:"0 -683 7161.4 766","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},j={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},C={class:"jldocstring custom-block",open:""},M={class:"jldocstring custom-block",open:""},H={class:"jldocstring custom-block",open:""},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},D={class:"jldocstring custom-block",open:""},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""},R={class:"jldocstring custom-block",open:""},O={class:"jldocstring custom-block",open:""},S={class:"jldocstring custom-block",open:""},I={class:"jldocstring custom-block",open:""},z={class:"jldocstring custom-block",open:""},J={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},U={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.817ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6549.2 1000","aria-hidden":"true"},$={class:"jldocstring custom-block",open:""},W={class:"jldocstring custom-block",open:""},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},_={class:"jldocstring custom-block",open:""},ss={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ts={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},es={class:"jldocstring custom-block",open:""},is={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},as={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ls={class:"jldocstring custom-block",open:""},ns={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},os={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},rs={class:"jldocstring custom-block",open:""},ps={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ds={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},hs={class:"jldocstring custom-block",open:""},Qs={class:"jldocstring custom-block",open:""},ms={class:"jldocstring custom-block",open:""},gs={class:"jldocstring custom-block",open:""},ks={class:"jldocstring custom-block",open:""},Ts={class:"jldocstring custom-block",open:""},us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ys={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.238ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.513ex",height:"3.195ex",role:"img",focusable:"false",viewBox:"0 -864.9 5088.8 1412","aria-hidden":"true"},cs={class:"jldocstring custom-block",open:""},bs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},fs={class:"jldocstring custom-block",open:""},Es={class:"jldocstring custom-block",open:""},vs={class:"jldocstring custom-block",open:""},ws={class:"jldocstring custom-block",open:""},Zs={class:"jldocstring custom-block",open:""},js={class:"jldocstring custom-block",open:""},Ls={class:"jldocstring custom-block",open:""},Cs={class:"jldocstring custom-block",open:""},Ms={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},Hs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.006ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.63ex",height:"5.155ex",role:"img",focusable:"false",viewBox:"0 -950 4698.6 2278.6","aria-hidden":"true"},Fs={class:"jldocstring custom-block",open:""},Gs={class:"jldocstring custom-block",open:""},Ds={class:"jldocstring custom-block",open:""},Bs={class:"jldocstring custom-block",open:""},As={class:"jldocstring custom-block",open:""},Vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},Os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ss={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},Is={class:"jldocstring custom-block",open:""},zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Js={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},Ps={class:"jldocstring custom-block",open:""},Us={class:"jldocstring custom-block",open:""},Xs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.817ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6549.2 1000","aria-hidden":"true"},Ns={class:"jldocstring custom-block",open:""},$s={class:"jldocstring custom-block",open:""},Ws={class:"jldocstring custom-block",open:""},Ks={class:"jldocstring custom-block",open:""},Ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},s1={class:"jldocstring custom-block",open:""},t1={class:"jldocstring custom-block",open:""},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},i1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.8ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.271ex",height:"2.679ex",role:"img",focusable:"false",viewBox:"0 -830.4 9401.7 1183.9","aria-hidden":"true"};function a1(l1,s,n1,o1,r1,p1){const a=p("Badge");return o(),n("div",null,[s[317]||(s[317]=t("h1",{id:"Genera-of-Integer-Lattices",tabindex:"-1"},[e("Genera of Integer Lattices "),t("a",{class:"header-anchor",href:"#Genera-of-Integer-Lattices","aria-label":'Permalink to "Genera of Integer Lattices {#Genera-of-Integer-Lattices}"'},"​")],-1)),t("p",null,[s[14]||(s[14]=e("Two ")),t("mjx-container",h,[(o(),n("svg",Q,s[0]||(s[0]=[i('',1)]))),s[1]||(s[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[15]||(s[15]=e("-lattices ")),t("mjx-container",m,[(o(),n("svg",g,s[2]||(s[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[3]||(s[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),s[16]||(s[16]=e(" and ")),t("mjx-container",k,[(o(),n("svg",T,s[4]||(s[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[5]||(s[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N")])],-1))]),s[17]||(s[17]=e(" are said to be in the same genus if their completions ")),t("mjx-container",u,[(o(),n("svg",y,s[6]||(s[6]=[i('',1)]))),s[7]||(s[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊗"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mi",null,"p")])])],-1))]),s[18]||(s[18]=e(" and ")),t("mjx-container",c,[(o(),n("svg",b,s[8]||(s[8]=[i('',1)]))),s[9]||(s[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N"),t("mo",null,"⊗"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mi",null,"p")])])],-1))]),s[19]||(s[19]=e(" are isometric for all prime numbers ")),t("mjx-container",x,[(o(),n("svg",f,s[10]||(s[10]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[11]||(s[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[20]||(s[20]=e(" as well as ")),t("mjx-container",E,[(o(),n("svg",v,s[12]||(s[12]=[i('',1)]))),s[13]||(s[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"R")]),t("mo",null,"≅"),t("mi",null,"N"),t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"R")])])],-1))]),s[21]||(s[21]=e("."))]),t("p",null,[s[24]||(s[24]=e("The genus of a ")),t("mjx-container",w,[(o(),n("svg",Z,s[22]||(s[22]=[i('',1)]))),s[23]||(s[23]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[25]||(s[25]=e("-lattice is encoded in its Conway-Sloane genus symbol. The genus symbol itself is a collection of its local genus symbols. See [")),s[26]||(s[26]=t("a",{href:"/Hecke.jl/v0.34.8/references#CS99"},"5",-1)),s[27]||(s[27]=e("] Chapter 15 for the definitions. Note that genera for non-integral lattices are supported."))]),t("p",null,[s[30]||(s[30]=e("The class ")),s[31]||(s[31]=t("code",null,"ZZGenus",-1)),s[32]||(s[32]=e(" supports genera of ")),t("mjx-container",j,[(o(),n("svg",L,s[28]||(s[28]=[i('',1)]))),s[29]||(s[29]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[33]||(s[33]=e("-lattices."))]),t("details",C,[t("summary",null,[s[34]||(s[34]=t("a",{id:"ZZGenus",href:"#ZZGenus"},[t("span",{class:"jlbinding"},"ZZGenus")],-1)),s[35]||(s[35]=e()),l(a,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[36]||(s[36]=i('
julia
ZZGenus

A collection of local genus symbols (at primes) and a signature pair. Together they represent the genus of a non-degenerate integer_lattice.

source

',3))]),s[318]||(s[318]=t("h2",{id:"Creation-of-Genera",tabindex:"-1"},[e("Creation of Genera "),t("a",{class:"header-anchor",href:"#Creation-of-Genera","aria-label":'Permalink to "Creation of Genera {#Creation-of-Genera}"'},"​")],-1)),s[319]||(s[319]=t("h3",{id:"From-an-integral-Lattice",tabindex:"-1"},[e("From an integral Lattice "),t("a",{class:"header-anchor",href:"#From-an-integral-Lattice","aria-label":'Permalink to "From an integral Lattice {#From-an-integral-Lattice}"'},"​")],-1)),t("details",M,[t("summary",null,[s[37]||(s[37]=t("a",{id:"genus-Tuple{ZZLat}",href:"#genus-Tuple{ZZLat}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[38]||(s[38]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[39]||(s[39]=i('
julia
genus(L::ZZLat) -> ZZGenus

Return the genus of the lattice L.

source

',3))]),s[320]||(s[320]=t("h3",{id:"From-a-gram-matrix",tabindex:"-1"},[e("From a gram matrix "),t("a",{class:"header-anchor",href:"#From-a-gram-matrix","aria-label":'Permalink to "From a gram matrix {#From-a-gram-matrix}"'},"​")],-1)),t("details",H,[t("summary",null,[s[40]||(s[40]=t("a",{id:"genus-Tuple{MatElem}",href:"#genus-Tuple{MatElem}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[41]||(s[41]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[48]||(s[48]=i('
julia
genus(A::MatElem) -> ZZGenus
',1)),t("p",null,[s[44]||(s[44]=e("Return the genus of a ")),t("mjx-container",F,[(o(),n("svg",G,s[42]||(s[42]=[i('',1)]))),s[43]||(s[43]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[45]||(s[45]=e("-lattice with gram matrix ")),s[46]||(s[46]=t("code",null,"A",-1)),s[47]||(s[47]=e("."))]),s[49]||(s[49]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[321]||(s[321]=t("h3",{id:"Enumeration-of-genus-symbols",tabindex:"-1"},[e("Enumeration of genus symbols "),t("a",{class:"header-anchor",href:"#Enumeration-of-genus-symbols","aria-label":'Permalink to "Enumeration of genus symbols {#Enumeration-of-genus-symbols}"'},"​")],-1)),t("details",D,[t("summary",null,[s[50]||(s[50]=t("a",{id:"integer_genera-Tuple{Tuple{Int64, Int64}, Union{Int64, ZZRingElem}}",href:"#integer_genera-Tuple{Tuple{Int64, Int64}, Union{Int64, ZZRingElem}}"},[t("span",{class:"jlbinding"},"integer_genera")],-1)),s[51]||(s[51]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[56]||(s[56]=i(`
julia
integer_genera(sig_pair::Vector{Int}, determinant::RationalUnion;
+import{_ as r,c as n,j as t,a as e,a5 as i,G as l,B as p,o}from"./chunks/framework.DbhH0_mT.js";const h1=JSON.parse('{"title":"Genera of Integer Lattices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/quad_forms/Zgenera.md","filePath":"manual/quad_forms/Zgenera.md","lastUpdated":null}'),d={name:"manual/quad_forms/Zgenera.md"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.645ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 3379.1 970.2","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.276ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 3216.1 970.2","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.188ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.202ex",height:"1.733ex",role:"img",focusable:"false",viewBox:"0 -683 7161.4 766","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},j={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},C={class:"jldocstring custom-block",open:""},M={class:"jldocstring custom-block",open:""},H={class:"jldocstring custom-block",open:""},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},D={class:"jldocstring custom-block",open:""},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""},R={class:"jldocstring custom-block",open:""},O={class:"jldocstring custom-block",open:""},S={class:"jldocstring custom-block",open:""},I={class:"jldocstring custom-block",open:""},z={class:"jldocstring custom-block",open:""},J={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},U={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.817ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6549.2 1000","aria-hidden":"true"},$={class:"jldocstring custom-block",open:""},W={class:"jldocstring custom-block",open:""},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},_={class:"jldocstring custom-block",open:""},ss={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ts={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},es={class:"jldocstring custom-block",open:""},is={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},as={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ls={class:"jldocstring custom-block",open:""},ns={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},os={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},rs={class:"jldocstring custom-block",open:""},ps={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ds={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},hs={class:"jldocstring custom-block",open:""},Qs={class:"jldocstring custom-block",open:""},ms={class:"jldocstring custom-block",open:""},gs={class:"jldocstring custom-block",open:""},ks={class:"jldocstring custom-block",open:""},Ts={class:"jldocstring custom-block",open:""},us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ys={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.238ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.513ex",height:"3.195ex",role:"img",focusable:"false",viewBox:"0 -864.9 5088.8 1412","aria-hidden":"true"},cs={class:"jldocstring custom-block",open:""},bs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},fs={class:"jldocstring custom-block",open:""},Es={class:"jldocstring custom-block",open:""},vs={class:"jldocstring custom-block",open:""},ws={class:"jldocstring custom-block",open:""},Zs={class:"jldocstring custom-block",open:""},js={class:"jldocstring custom-block",open:""},Ls={class:"jldocstring custom-block",open:""},Cs={class:"jldocstring custom-block",open:""},Ms={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},Hs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-3.006ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.63ex",height:"5.155ex",role:"img",focusable:"false",viewBox:"0 -950 4698.6 2278.6","aria-hidden":"true"},Fs={class:"jldocstring custom-block",open:""},Gs={class:"jldocstring custom-block",open:""},Ds={class:"jldocstring custom-block",open:""},Bs={class:"jldocstring custom-block",open:""},As={class:"jldocstring custom-block",open:""},Vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},Os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ss={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},Is={class:"jldocstring custom-block",open:""},zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Js={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},Ps={class:"jldocstring custom-block",open:""},Us={class:"jldocstring custom-block",open:""},Xs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.817ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 6549.2 1000","aria-hidden":"true"},Ns={class:"jldocstring custom-block",open:""},$s={class:"jldocstring custom-block",open:""},Ws={class:"jldocstring custom-block",open:""},Ks={class:"jldocstring custom-block",open:""},Ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},s1={class:"jldocstring custom-block",open:""},t1={class:"jldocstring custom-block",open:""},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},i1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.8ex"},xmlns:"http://www.w3.org/2000/svg",width:"21.271ex",height:"2.679ex",role:"img",focusable:"false",viewBox:"0 -830.4 9401.7 1183.9","aria-hidden":"true"};function a1(l1,s,n1,o1,r1,p1){const a=p("Badge");return o(),n("div",null,[s[317]||(s[317]=t("h1",{id:"Genera-of-Integer-Lattices",tabindex:"-1"},[e("Genera of Integer Lattices "),t("a",{class:"header-anchor",href:"#Genera-of-Integer-Lattices","aria-label":'Permalink to "Genera of Integer Lattices {#Genera-of-Integer-Lattices}"'},"​")],-1)),t("p",null,[s[14]||(s[14]=e("Two ")),t("mjx-container",h,[(o(),n("svg",Q,s[0]||(s[0]=[i('',1)]))),s[1]||(s[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[15]||(s[15]=e("-lattices ")),t("mjx-container",m,[(o(),n("svg",g,s[2]||(s[2]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[3]||(s[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M")])],-1))]),s[16]||(s[16]=e(" and ")),t("mjx-container",k,[(o(),n("svg",T,s[4]||(s[4]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[5]||(s[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N")])],-1))]),s[17]||(s[17]=e(" are said to be in the same genus if their completions ")),t("mjx-container",u,[(o(),n("svg",y,s[6]||(s[6]=[i('',1)]))),s[7]||(s[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊗"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mi",null,"p")])])],-1))]),s[18]||(s[18]=e(" and ")),t("mjx-container",c,[(o(),n("svg",b,s[8]||(s[8]=[i('',1)]))),s[9]||(s[9]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"N"),t("mo",null,"⊗"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")]),t("mi",null,"p")])])],-1))]),s[19]||(s[19]=e(" are isometric for all prime numbers ")),t("mjx-container",x,[(o(),n("svg",f,s[10]||(s[10]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[11]||(s[11]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[20]||(s[20]=e(" as well as ")),t("mjx-container",E,[(o(),n("svg",v,s[12]||(s[12]=[i('',1)]))),s[13]||(s[13]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"M"),t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"R")]),t("mo",null,"≅"),t("mi",null,"N"),t("mo",null,"⊗"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"R")])])],-1))]),s[21]||(s[21]=e("."))]),t("p",null,[s[24]||(s[24]=e("The genus of a ")),t("mjx-container",w,[(o(),n("svg",Z,s[22]||(s[22]=[i('',1)]))),s[23]||(s[23]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[25]||(s[25]=e("-lattice is encoded in its Conway-Sloane genus symbol. The genus symbol itself is a collection of its local genus symbols. See [")),s[26]||(s[26]=t("a",{href:"/v0.34.8/references#CS99"},"5",-1)),s[27]||(s[27]=e("] Chapter 15 for the definitions. Note that genera for non-integral lattices are supported."))]),t("p",null,[s[30]||(s[30]=e("The class ")),s[31]||(s[31]=t("code",null,"ZZGenus",-1)),s[32]||(s[32]=e(" supports genera of ")),t("mjx-container",j,[(o(),n("svg",L,s[28]||(s[28]=[i('',1)]))),s[29]||(s[29]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[33]||(s[33]=e("-lattices."))]),t("details",C,[t("summary",null,[s[34]||(s[34]=t("a",{id:"ZZGenus",href:"#ZZGenus"},[t("span",{class:"jlbinding"},"ZZGenus")],-1)),s[35]||(s[35]=e()),l(a,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[36]||(s[36]=i('
julia
ZZGenus

A collection of local genus symbols (at primes) and a signature pair. Together they represent the genus of a non-degenerate integer_lattice.

source

',3))]),s[318]||(s[318]=t("h2",{id:"Creation-of-Genera",tabindex:"-1"},[e("Creation of Genera "),t("a",{class:"header-anchor",href:"#Creation-of-Genera","aria-label":'Permalink to "Creation of Genera {#Creation-of-Genera}"'},"​")],-1)),s[319]||(s[319]=t("h3",{id:"From-an-integral-Lattice",tabindex:"-1"},[e("From an integral Lattice "),t("a",{class:"header-anchor",href:"#From-an-integral-Lattice","aria-label":'Permalink to "From an integral Lattice {#From-an-integral-Lattice}"'},"​")],-1)),t("details",M,[t("summary",null,[s[37]||(s[37]=t("a",{id:"genus-Tuple{ZZLat}",href:"#genus-Tuple{ZZLat}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[38]||(s[38]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[39]||(s[39]=i('
julia
genus(L::ZZLat) -> ZZGenus

Return the genus of the lattice L.

source

',3))]),s[320]||(s[320]=t("h3",{id:"From-a-gram-matrix",tabindex:"-1"},[e("From a gram matrix "),t("a",{class:"header-anchor",href:"#From-a-gram-matrix","aria-label":'Permalink to "From a gram matrix {#From-a-gram-matrix}"'},"​")],-1)),t("details",H,[t("summary",null,[s[40]||(s[40]=t("a",{id:"genus-Tuple{MatElem}",href:"#genus-Tuple{MatElem}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[41]||(s[41]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[48]||(s[48]=i('
julia
genus(A::MatElem) -> ZZGenus
',1)),t("p",null,[s[44]||(s[44]=e("Return the genus of a ")),t("mjx-container",F,[(o(),n("svg",G,s[42]||(s[42]=[i('',1)]))),s[43]||(s[43]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[45]||(s[45]=e("-lattice with gram matrix ")),s[46]||(s[46]=t("code",null,"A",-1)),s[47]||(s[47]=e("."))]),s[49]||(s[49]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[321]||(s[321]=t("h3",{id:"Enumeration-of-genus-symbols",tabindex:"-1"},[e("Enumeration of genus symbols "),t("a",{class:"header-anchor",href:"#Enumeration-of-genus-symbols","aria-label":'Permalink to "Enumeration of genus symbols {#Enumeration-of-genus-symbols}"'},"​")],-1)),t("details",D,[t("summary",null,[s[50]||(s[50]=t("a",{id:"integer_genera-Tuple{Tuple{Int64, Int64}, Union{Int64, ZZRingElem}}",href:"#integer_genera-Tuple{Tuple{Int64, Int64}, Union{Int64, ZZRingElem}}"},[t("span",{class:"jlbinding"},"integer_genera")],-1)),s[51]||(s[51]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[56]||(s[56]=i(`
julia
integer_genera(sig_pair::Vector{Int}, determinant::RationalUnion;
        min_scale::RationalUnion = min(one(QQ), QQ(abs(determinant))),
        max_scale::RationalUnion = max(one(QQ), QQ(abs(determinant))),
-       even=false)                                         -> Vector{ZZGenus}
`,1)),t("p",null,[s[54]||(s[54]=e("Return a list of all genera with the given conditions. Genera of non-integral ")),t("mjx-container",B,[(o(),n("svg",A,s[52]||(s[52]=[i('',1)]))),s[53]||(s[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[55]||(s[55]=e("-lattices are also supported."))]),s[57]||(s[57]=i('

Arguments

  • sig_pair: a pair of non-negative integers giving the signature

  • determinant: a rational number; the sign is ignored

  • min_scale: a rational number; return only genera whose scale is an integer multiple of min_scale (default: min(one(QQ), QQ(abs(determinant))))

  • max_scale: a rational number; return only genera such that max_scale is an integer multiple of the scale (default: max(one(QQ), QQ(abs(determinant))))

  • even: boolean; if set to true, return only the even genera (default: false)

source

',3))]),s[322]||(s[322]=t("h3",{id:"From-other-genus-symbols",tabindex:"-1"},[e("From other genus symbols "),t("a",{class:"header-anchor",href:"#From-other-genus-symbols","aria-label":'Permalink to "From other genus symbols {#From-other-genus-symbols}"'},"​")],-1)),t("details",V,[t("summary",null,[s[58]||(s[58]=t("a",{id:"direct_sum-Tuple{ZZGenus, ZZGenus}",href:"#direct_sum-Tuple{ZZGenus, ZZGenus}"},[t("span",{class:"jlbinding"},"direct_sum")],-1)),s[59]||(s[59]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[60]||(s[60]=i('
julia
direct_sum(G1::ZZGenus, G2::ZZGenus) -> ZZGenus

Return the genus of the direct sum of G1 and G2.

The direct sum is defined via representatives.

source

',4))]),s[323]||(s[323]=t("h2",{id:"Attributes-of-the-genus",tabindex:"-1"},[e("Attributes of the genus "),t("a",{class:"header-anchor",href:"#Attributes-of-the-genus","aria-label":'Permalink to "Attributes of the genus {#Attributes-of-the-genus}"'},"​")],-1)),t("details",R,[t("summary",null,[s[61]||(s[61]=t("a",{id:"dim-Tuple{ZZGenus}",href:"#dim-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"dim")],-1)),s[62]||(s[62]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[63]||(s[63]=i('
julia
dim(G::ZZGenus) -> Int

Return the dimension of this genus.

source

',3))]),t("details",O,[t("summary",null,[s[64]||(s[64]=t("a",{id:"rank-Tuple{ZZGenus}",href:"#rank-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"rank")],-1)),s[65]||(s[65]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[66]||(s[66]=i('
julia
rank(G::ZZGenus) -> Int

Return the rank of a (representative of) the genus G.

source

',3))]),t("details",S,[t("summary",null,[s[67]||(s[67]=t("a",{id:"signature-Tuple{ZZGenus}",href:"#signature-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"signature")],-1)),s[68]||(s[68]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[69]||(s[69]=i('
julia
signature(G::ZZGenus) -> Int

Return the signature of this genus.

The signature is p - n where p is the number of positive eigenvalues and n the number of negative eigenvalues.

source

',4))]),t("details",I,[t("summary",null,[s[70]||(s[70]=t("a",{id:"det-Tuple{ZZGenus}",href:"#det-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"det")],-1)),s[71]||(s[71]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[72]||(s[72]=i('
julia
det(G::ZZGenus) -> QQFieldElem

Return the determinant of this genus.

source

',3))]),t("details",z,[t("summary",null,[s[73]||(s[73]=t("a",{id:"iseven-Tuple{ZZGenus}",href:"#iseven-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"iseven")],-1)),s[74]||(s[74]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[75]||(s[75]=i('
julia
iseven(G::ZZGenus) -> Bool

Return if this genus is even.

source

',3))]),t("details",J,[t("summary",null,[s[76]||(s[76]=t("a",{id:"is_definite-Tuple{ZZGenus}",href:"#is_definite-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_definite")],-1)),s[77]||(s[77]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[78]||(s[78]=i('
julia
is_definite(G::ZZGenus) -> Bool

Return if this genus is definite.

source

',3))]),t("details",P,[t("summary",null,[s[79]||(s[79]=t("a",{id:"level-Tuple{ZZGenus}",href:"#level-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"level")],-1)),s[80]||(s[80]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[81]||(s[81]=i('
julia
level(G::ZZGenus) -> QQFieldElem

Return the level of this genus.

This is the denominator of the inverse gram matrix of a representative.

source

',4))]),t("details",U,[t("summary",null,[s[82]||(s[82]=t("a",{id:"scale-Tuple{ZZGenus}",href:"#scale-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"scale")],-1)),s[83]||(s[83]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[84]||(s[84]=i('
julia
scale(G::ZZGenus) -> QQFieldElem

Return the scale of this genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

',4))]),t("details",X,[t("summary",null,[s[85]||(s[85]=t("a",{id:"norm-Tuple{ZZGenus}",href:"#norm-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"norm")],-1)),s[86]||(s[86]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[97]||(s[97]=i('
julia
norm(G::ZZGenus) -> QQFieldElem

Return the norm of this genus.

',2)),t("p",null,[s[89]||(s[89]=e("Let ")),s[90]||(s[90]=t("code",null,"L",-1)),s[91]||(s[91]=e(" be a lattice with bilinear form ")),s[92]||(s[92]=t("code",null,"b",-1)),s[93]||(s[93]=e(". The norm of ")),s[94]||(s[94]=t("code",null,"(L,b)",-1)),s[95]||(s[95]=e(" is defined as the ideal generated by ")),t("mjx-container",q,[(o(),n("svg",N,s[87]||(s[87]=[i('',1)]))),s[88]||(s[88]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"b"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"L"),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[96]||(s[96]=e("."))]),s[98]||(s[98]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",$,[t("summary",null,[s[99]||(s[99]=t("a",{id:"primes-Tuple{ZZGenus}",href:"#primes-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"primes")],-1)),s[100]||(s[100]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[101]||(s[101]=i('
julia
primes(G::ZZGenus) -> Vector{ZZRingElem}

Return the list of primes of the local symbols of G.

Note that 2 is always in the output since the 2-adic symbol of a ZZGenus is, by convention, always defined.

source

',4))]),t("details",W,[t("summary",null,[s[102]||(s[102]=t("a",{id:"is_integral-Tuple{ZZGenus}",href:"#is_integral-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_integral")],-1)),s[103]||(s[103]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[110]||(s[110]=i('
julia
is_integral(G::ZZGenus) -> Bool
',1)),t("p",null,[s[106]||(s[106]=e("Return whether ")),s[107]||(s[107]=t("code",null,"G",-1)),s[108]||(s[108]=e(" is a genus of integral ")),t("mjx-container",K,[(o(),n("svg",Y,s[104]||(s[104]=[i('',1)]))),s[105]||(s[105]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[109]||(s[109]=e("-lattices."))]),s[111]||(s[111]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[324]||(s[324]=i('

Discriminant group

discriminant_group(::ZZGenus)

Primary genera

',3)),t("details",_,[t("summary",null,[s[112]||(s[112]=t("a",{id:"is_primary_with_prime-Tuple{ZZGenus}",href:"#is_primary_with_prime-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),s[113]||(s[113]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[128]||(s[128]=i('
julia
is_primary_with_prime(G::ZZGenus) -> Bool, ZZRingElem
',1)),t("p",null,[s[116]||(s[116]=e("Given a genus of ")),t("mjx-container",ss,[(o(),n("svg",ts,s[114]||(s[114]=[i('',1)]))),s[115]||(s[115]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[117]||(s[117]=e("-lattices ")),s[118]||(s[118]=t("code",null,"G",-1)),s[119]||(s[119]=e(", return whether it is primary, that is whether the bilinear form is integral and the associated discriminant form (see ")),s[120]||(s[120]=t("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#discriminant_group-Tuple{ZZLat}"},[t("code",null,"discriminant_group")],-1)),s[121]||(s[121]=e(") is a ")),s[122]||(s[122]=t("code",null,"p",-1)),s[123]||(s[123]=e("-group for some prime number ")),s[124]||(s[124]=t("code",null,"p",-1)),s[125]||(s[125]=e(". In case it is, ")),s[126]||(s[126]=t("code",null,"p",-1)),s[127]||(s[127]=e(" is also returned as second output."))]),s[129]||(s[129]=t("p",null,[e("Note that for unimodular genera, this function returns "),t("code",null,"(true, 1)"),e(". If the genus is not primary, the second return value is "),t("code",null,"-1"),e(" by default.")],-1)),s[130]||(s[130]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",es,[t("summary",null,[s[131]||(s[131]=t("a",{id:"is_primary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"is_primary")],-1)),s[132]||(s[132]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[137]||(s[137]=i('
julia
is_primary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool
',1)),t("p",null,[s[135]||(s[135]=e("Given a genus of integral ")),t("mjx-container",is,[(o(),n("svg",as,s[133]||(s[133]=[i('',1)]))),s[134]||(s[134]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[136]||(s[136]=i('-lattices G and a prime number p, return whether G is p-primary, that is whether the associated discriminant form (see discriminant_group) is a p-group.',13))]),s[138]||(s[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",ls,[t("summary",null,[s[139]||(s[139]=t("a",{id:"is_elementary_with_prime-Tuple{ZZGenus}",href:"#is_elementary_with_prime-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),s[140]||(s[140]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[155]||(s[155]=i('
julia
is_elementary_with_prime(G::ZZGenus) -> Bool, ZZRingElem
',1)),t("p",null,[s[143]||(s[143]=e("Given a genus of ")),t("mjx-container",ns,[(o(),n("svg",os,s[141]||(s[141]=[i('',1)]))),s[142]||(s[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[144]||(s[144]=e("-lattices ")),s[145]||(s[145]=t("code",null,"G",-1)),s[146]||(s[146]=e(", return whether it is elementary, that is whether the bilinear form is inegtral and the associated discriminant form (see ")),s[147]||(s[147]=t("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/discriminant_group#discriminant_group-Tuple{ZZLat}"},[t("code",null,"discriminant_group")],-1)),s[148]||(s[148]=e(") is an elementary ")),s[149]||(s[149]=t("code",null,"p",-1)),s[150]||(s[150]=e("-group for some prime number ")),s[151]||(s[151]=t("code",null,"p",-1)),s[152]||(s[152]=e(". In case it is, ")),s[153]||(s[153]=t("code",null,"p",-1)),s[154]||(s[154]=e(" is also returned as second output."))]),s[156]||(s[156]=t("p",null,[e("Note that for unimodular genera, this function returns "),t("code",null,"(true, 1)"),e(". If the genus is not elementary, the second return value is "),t("code",null,"-1"),e(" by default.")],-1)),s[157]||(s[157]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",rs,[t("summary",null,[s[158]||(s[158]=t("a",{id:"is_elementary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"is_elementary")],-1)),s[159]||(s[159]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[164]||(s[164]=i('
julia
is_elementary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool
',1)),t("p",null,[s[162]||(s[162]=e("Given a genus of integral ")),t("mjx-container",ps,[(o(),n("svg",ds,s[160]||(s[160]=[i('',1)]))),s[161]||(s[161]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[163]||(s[163]=i('-lattices G and a prime number p, return whether G is p-elementary, that is whether its associated discriminant form (see discriminant_group) is an elementary p-group.',13))]),s[165]||(s[165]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[325]||(s[325]=t("h3",{id:"local-Symbol",tabindex:"-1"},[e("local Symbol "),t("a",{class:"header-anchor",href:"#local-Symbol","aria-label":'Permalink to "local Symbol {#local-Symbol}"'},"​")],-1)),t("details",hs,[t("summary",null,[s[166]||(s[166]=t("a",{id:"local_symbol-Tuple{ZZGenus, Any}",href:"#local_symbol-Tuple{ZZGenus, Any}"},[t("span",{class:"jlbinding"},"local_symbol")],-1)),s[167]||(s[167]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[168]||(s[168]=i('
julia
local_symbol(G::ZZGenus, p) -> ZZLocalGenus

Return the local symbol at p.

source

',3))]),s[326]||(s[326]=t("h2",{id:"representative-s",tabindex:"-1"},[e("Representative(s) "),t("a",{class:"header-anchor",href:"#representative-s","aria-label":'Permalink to "Representative(s)"'},"​")],-1)),t("details",Qs,[t("summary",null,[s[169]||(s[169]=t("a",{id:"quadratic_space-Tuple{ZZGenus}",href:"#quadratic_space-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"quadratic_space")],-1)),s[170]||(s[170]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[171]||(s[171]=i('
julia
quadratic_space(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

',3))]),t("details",ms,[t("summary",null,[s[172]||(s[172]=t("a",{id:"rational_representative-Tuple{ZZGenus}",href:"#rational_representative-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"rational_representative")],-1)),s[173]||(s[173]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[174]||(s[174]=i('
julia
rational_representative(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

',3))]),t("details",gs,[t("summary",null,[s[175]||(s[175]=t("a",{id:"representative-Tuple{ZZGenus}",href:"#representative-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"representative")],-1)),s[176]||(s[176]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[177]||(s[177]=i('
julia
representative(G::ZZGenus) -> ZZLat

Compute a representative of this genus && cache it.

source

',3))]),t("details",ks,[t("summary",null,[s[178]||(s[178]=t("a",{id:"representatives-Tuple{ZZGenus}",href:"#representatives-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"representatives")],-1)),s[179]||(s[179]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[180]||(s[180]=i('
julia
representatives(G::ZZGenus) -> Vector{ZZLat}

Return a list of representatives of the isometry classes in this genus.

source

',3))]),t("details",Ts,[t("summary",null,[s[181]||(s[181]=t("a",{id:"mass-Tuple{ZZGenus}",href:"#mass-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"mass")],-1)),s[182]||(s[182]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[189]||(s[189]=i('
julia
mass(G::ZZGenus) -> QQFieldElem

Return the mass of this genus.

',2)),t("p",null,[s[185]||(s[185]=e("The genus must be definite. Let ")),s[186]||(s[186]=t("code",null,"L_1, ... L_n",-1)),s[187]||(s[187]=e(" be a complete list of representatives of the isometry classes in this genus. Its mass is defined as ")),t("mjx-container",us,[(o(),n("svg",ys,s[183]||(s[183]=[i('',1)]))),s[184]||(s[184]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"="),t("mn",null,"1")]),t("mi",null,"n")]),t("mfrac",null,[t("mn",null,"1"),t("mrow",null,[t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"O"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"L"),t("mi",null,"i")]),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])])])],-1))]),s[188]||(s[188]=e("."))]),s[190]||(s[190]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",cs,[t("summary",null,[s[191]||(s[191]=t("a",{id:"rescale-Tuple{ZZGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[t("span",{class:"jlbinding"},"rescale")],-1)),s[192]||(s[192]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[203]||(s[203]=i('
julia
rescale(G::ZZGenus, a::RationalUnion) -> ZZGenus
',1)),t("p",null,[s[195]||(s[195]=e("Given a genus symbol ")),s[196]||(s[196]=t("code",null,"G",-1)),s[197]||(s[197]=e(" of ")),t("mjx-container",bs,[(o(),n("svg",xs,s[193]||(s[193]=[i('',1)]))),s[194]||(s[194]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[198]||(s[198]=e("-lattices, return the genus symbol of any representative of ")),s[199]||(s[199]=t("code",null,"G",-1)),s[200]||(s[200]=e(" rescaled by ")),s[201]||(s[201]=t("code",null,"a",-1)),s[202]||(s[202]=e("."))]),s[204]||(s[204]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[327]||(s[327]=t("h2",{id:"Embeddings-and-Representations",tabindex:"-1"},[e("Embeddings and Representations "),t("a",{class:"header-anchor",href:"#Embeddings-and-Representations","aria-label":'Permalink to "Embeddings and Representations {#Embeddings-and-Representations}"'},"​")],-1)),t("details",fs,[t("summary",null,[s[205]||(s[205]=t("a",{id:"represents-Tuple{ZZGenus, ZZGenus}",href:"#represents-Tuple{ZZGenus, ZZGenus}"},[t("span",{class:"jlbinding"},"represents")],-1)),s[206]||(s[206]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[207]||(s[207]=i('
julia
represents(G1::ZZGenus, G2::ZZGenus) -> Bool

Return if G1 represents G2. That is if some element in the genus of G1 represents some element in the genus of G2.

source

',3))]),s[328]||(s[328]=t("h2",{id:"Local-genus-Symbols",tabindex:"-1"},[e("Local genus Symbols "),t("a",{class:"header-anchor",href:"#Local-genus-Symbols","aria-label":'Permalink to "Local genus Symbols {#Local-genus-Symbols}"'},"​")],-1)),t("details",Es,[t("summary",null,[s[208]||(s[208]=t("a",{id:"ZZLocalGenus",href:"#ZZLocalGenus"},[t("span",{class:"jlbinding"},"ZZLocalGenus")],-1)),s[209]||(s[209]=e()),l(a,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[210]||(s[210]=i('
julia
ZZLocalGenus

Local genus symbol over a p-adic ring.

The genus symbol of a component p^m A for odd prime = p is of the form (m,n,d), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) \\in \\{1,u\\} for a normalized quadratic non-residue u.

The genus symbol of a component 2^m A is of the form (m, n, s, d, o), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) in {1,3,5,7}

  • s = 0 (or 1) if even (or odd)

  • o = oddity of A (= 0 if s = 0) in Z/8Z = the trace of the diagonalization of A

The genus symbol is a list of such symbols (ordered by m) for each of the Jordan blocks A_1,...,A_t.

Reference: [5] Chapter 15, Section 7.

Arguments

  • prime: a prime number

  • symbol: the list of invariants for Jordan blocks A_t,...,A_t given as a list of lists of integers

source

',11))]),s[329]||(s[329]=t("h3",{id:"creation",tabindex:"-1"},[e("Creation "),t("a",{class:"header-anchor",href:"#creation","aria-label":'Permalink to "Creation"'},"​")],-1)),t("details",vs,[t("summary",null,[s[211]||(s[211]=t("a",{id:"genus-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#genus-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[212]||(s[212]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[213]||(s[213]=i('
julia
genus(L::ZZLat, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of L at the prime p.

source

',3))]),t("details",ws,[t("summary",null,[s[214]||(s[214]=t("a",{id:"genus-Tuple{QQMatrix, Union{Integer, ZZRingElem}}",href:"#genus-Tuple{QQMatrix, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[215]||(s[215]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[216]||(s[216]=i('
julia
genus(A::QQMatrix, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of a Z-lattice with gram matrix A at the prime p.

source

',3))]),s[330]||(s[330]=t("h3",{id:"attributes",tabindex:"-1"},[e("Attributes "),t("a",{class:"header-anchor",href:"#attributes","aria-label":'Permalink to "Attributes"'},"​")],-1)),t("details",Zs,[t("summary",null,[s[217]||(s[217]=t("a",{id:"prime-Tuple{ZZLocalGenus}",href:"#prime-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"prime")],-1)),s[218]||(s[218]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[219]||(s[219]=i('
julia
prime(S::ZZLocalGenus) -> ZZRingElem

Return the prime p of this p-adic genus.

source

',3))]),t("details",js,[t("summary",null,[s[220]||(s[220]=t("a",{id:"iseven-Tuple{ZZLocalGenus}",href:"#iseven-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"iseven")],-1)),s[221]||(s[221]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[222]||(s[222]=i('
julia
iseven(S::ZZLocalGenus) -> Bool

Return if the underlying p-adic lattice is even.

If p is odd, every lattice is even.

source

',4))]),t("details",Ls,[t("summary",null,[s[223]||(s[223]=t("a",{id:"symbol-Tuple{ZZLocalGenus, Int64}",href:"#symbol-Tuple{ZZLocalGenus, Int64}"},[t("span",{class:"jlbinding"},"symbol")],-1)),s[224]||(s[224]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[225]||(s[225]=i('
julia
symbol(S::ZZLocalGenus, scale::Int) -> Vector{Int}

Return the underlying lists of integers for the Jordan block of the given scale

source

',3))]),t("details",Cs,[t("summary",null,[s[226]||(s[226]=t("a",{id:"hasse_invariant-Tuple{ZZLocalGenus}",href:"#hasse_invariant-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"hasse_invariant")],-1)),s[227]||(s[227]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[230]||(s[230]=i('
julia
hasse_invariant(S::ZZLocalGenus) -> Int

Return the Hasse invariant of a representative. If the representative is diagonal (a_1, ... , a_n) Then the Hasse invariant is

',2)),t("mjx-container",Ms,[(o(),n("svg",Hs,s[228]||(s[228]=[i('',1)]))),s[229]||(s[229]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("munder",null,[t("mo",{"data-mjx-texclass":"OP"},"∏"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"<"),t("mi",null,"j")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"a"),t("mi",null,"i")]),t("mo",null,","),t("msub",null,[t("mi",null,"a"),t("mi",null,"j")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"p")])])],-1))]),s[231]||(s[231]=t("p",null,".",-1)),s[232]||(s[232]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Fs,[t("summary",null,[s[233]||(s[233]=t("a",{id:"det-Tuple{ZZLocalGenus}",href:"#det-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"det")],-1)),s[234]||(s[234]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[235]||(s[235]=i('
julia
det(S::ZZLocalGenus) -> QQFieldElem

Return an rational representing the determinant of this genus.

source

',3))]),t("details",Gs,[t("summary",null,[s[236]||(s[236]=t("a",{id:"dim-Tuple{ZZLocalGenus}",href:"#dim-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"dim")],-1)),s[237]||(s[237]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[238]||(s[238]=i('
julia
dim(S::ZZLocalGenus) -> Int

Return the dimension of this genus.

source

',3))]),t("details",Ds,[t("summary",null,[s[239]||(s[239]=t("a",{id:"rank-Tuple{ZZLocalGenus}",href:"#rank-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"rank")],-1)),s[240]||(s[240]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[241]||(s[241]=i('
julia
rank(S::ZZLocalGenus) -> Int

Return the rank of (a representative of) S.

source

',3))]),t("details",Bs,[t("summary",null,[s[242]||(s[242]=t("a",{id:"excess-Tuple{ZZLocalGenus}",href:"#excess-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"excess")],-1)),s[243]||(s[243]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[244]||(s[244]=i('
julia
excess(S::ZZLocalGenus) -> zzModRingElem

Return the p-excess of the quadratic form whose Hessian matrix is the symmetric matrix A.

When p = 2 the p-excess is called the oddity. The p-excess is always even && is divisible by 4 if p is congruent 1 mod 4.

Reference

[5] pp 370-371.

source

',6))]),t("details",As,[t("summary",null,[s[245]||(s[245]=t("a",{id:"signature-Tuple{ZZLocalGenus}",href:"#signature-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"signature")],-1)),s[246]||(s[246]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[254]||(s[254]=i('
julia
signature(S::ZZLocalGenus) -> zzModRingElem
',1)),t("p",null,[s[251]||(s[251]=e("Return the ")),t("mjx-container",Vs,[(o(),n("svg",Rs,s[247]||(s[247]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[248]||(s[248]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[252]||(s[252]=e("-signature of this ")),t("mjx-container",Os,[(o(),n("svg",Ss,s[249]||(s[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[250]||(s[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[253]||(s[253]=e("-adic form."))]),s[255]||(s[255]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Is,[t("summary",null,[s[256]||(s[256]=t("a",{id:"oddity-Tuple{ZZLocalGenus}",href:"#oddity-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"oddity")],-1)),s[257]||(s[257]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[262]||(s[262]=i('
julia
oddity(S::ZZLocalGenus) -> zzModRingElem
',1)),t("p",null,[s[260]||(s[260]=e("Return the oddity of this even form. The oddity is also called the ")),t("mjx-container",zs,[(o(),n("svg",Js,s[258]||(s[258]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mn"},[t("path",{"data-c":"32",d:"M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z",style:{"stroke-width":"3"}})])])],-1)]))),s[259]||(s[259]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"2")])],-1))]),s[261]||(s[261]=e("-signature"))]),s[263]||(s[263]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Ps,[t("summary",null,[s[264]||(s[264]=t("a",{id:"scale-Tuple{ZZLocalGenus}",href:"#scale-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"scale")],-1)),s[265]||(s[265]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[266]||(s[266]=i('
julia
scale(S::ZZLocalGenus) -> QQFieldElem

Return the scale of this local genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

',4))]),t("details",Us,[t("summary",null,[s[267]||(s[267]=t("a",{id:"norm-Tuple{ZZLocalGenus}",href:"#norm-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"norm")],-1)),s[268]||(s[268]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[279]||(s[279]=i('
julia
norm(S::ZZLocalGenus) -> QQFieldElem

Return the norm of this local genus.

',2)),t("p",null,[s[271]||(s[271]=e("Let ")),s[272]||(s[272]=t("code",null,"L",-1)),s[273]||(s[273]=e(" be a lattice with bilinear form ")),s[274]||(s[274]=t("code",null,"b",-1)),s[275]||(s[275]=e(". The norm of ")),s[276]||(s[276]=t("code",null,"(L,b)",-1)),s[277]||(s[277]=e(" is defined as the ideal generated by ")),t("mjx-container",Xs,[(o(),n("svg",qs,s[269]||(s[269]=[i('',1)]))),s[270]||(s[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"b"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"L"),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[278]||(s[278]=e("."))]),s[280]||(s[280]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Ns,[t("summary",null,[s[281]||(s[281]=t("a",{id:"level-Tuple{ZZLocalGenus}",href:"#level-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"level")],-1)),s[282]||(s[282]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[283]||(s[283]=i('
julia
level(S::ZZLocalGenus) -> QQFieldElem

Return the maximal scale of a jordan component.

source

',3))]),s[331]||(s[331]=t("h3",{id:"representative",tabindex:"-1"},[e("Representative "),t("a",{class:"header-anchor",href:"#representative","aria-label":'Permalink to "Representative"'},"​")],-1)),t("details",$s,[t("summary",null,[s[284]||(s[284]=t("a",{id:"representative-Tuple{ZZLocalGenus}",href:"#representative-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"representative")],-1)),s[285]||(s[285]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[286]||(s[286]=i('
julia
representative(S::ZZLocalGenus) -> ZZLat

Return an integer lattice which represents this local genus.

source

',3))]),t("details",Ws,[t("summary",null,[s[287]||(s[287]=t("a",{id:"gram_matrix-Tuple{ZZLocalGenus}",href:"#gram_matrix-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"gram_matrix")],-1)),s[288]||(s[288]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[289]||(s[289]=i('
julia
gram_matrix(S::ZZLocalGenus) -> MatElem

Return a gram matrix of some representative of this local genus.

source

',3))]),t("details",Ks,[t("summary",null,[s[290]||(s[290]=t("a",{id:"rescale-Tuple{ZZLocalGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZLocalGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[t("span",{class:"jlbinding"},"rescale")],-1)),s[291]||(s[291]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[302]||(s[302]=i('
julia
rescale(G::ZZLocalGenus, a::RationalUnion) -> ZZLocalGenus
',1)),t("p",null,[s[294]||(s[294]=e("Given a local genus symbol ")),s[295]||(s[295]=t("code",null,"G",-1)),s[296]||(s[296]=e(" of ")),t("mjx-container",Ys,[(o(),n("svg",_s,s[292]||(s[292]=[i('',1)]))),s[293]||(s[293]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[297]||(s[297]=e("-lattices, return the local genus symbol of any representative of ")),s[298]||(s[298]=t("code",null,"G",-1)),s[299]||(s[299]=e(" rescaled by ")),s[300]||(s[300]=t("code",null,"a",-1)),s[301]||(s[301]=e("."))]),s[303]||(s[303]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[332]||(s[332]=t("h3",{id:"Direct-sums",tabindex:"-1"},[e("Direct sums "),t("a",{class:"header-anchor",href:"#Direct-sums","aria-label":'Permalink to "Direct sums {#Direct-sums}"'},"​")],-1)),t("details",s1,[t("summary",null,[s[304]||(s[304]=t("a",{id:"direct_sum-Tuple{ZZLocalGenus, ZZLocalGenus}",href:"#direct_sum-Tuple{ZZLocalGenus, ZZLocalGenus}"},[t("span",{class:"jlbinding"},"direct_sum")],-1)),s[305]||(s[305]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[306]||(s[306]=i('
julia
direct_sum(S1::ZZLocalGenus, S2::ZZLocalGenus) -> ZZLocalGenus

Return the local genus of the direct sum of two representatives.

source

',3))]),s[333]||(s[333]=t("h3",{id:"embeddings-representations",tabindex:"-1"},[e("Embeddings/Representations "),t("a",{class:"header-anchor",href:"#embeddings-representations","aria-label":'Permalink to "Embeddings/Representations"'},"​")],-1)),t("details",t1,[t("summary",null,[s[307]||(s[307]=t("a",{id:"represents-Tuple{ZZLocalGenus, ZZLocalGenus}",href:"#represents-Tuple{ZZLocalGenus, ZZLocalGenus}"},[t("span",{class:"jlbinding"},"represents")],-1)),s[308]||(s[308]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[315]||(s[315]=i('
julia
represents(g1::ZZLocalGenus, g2::ZZLocalGenus) -> Bool

Return whether g1 represents g2.

',2)),t("p",null,[s[311]||(s[311]=e("Based on O'Meara Integral Representations of Quadratic Forms Over Local Fields Note that for ")),s[312]||(s[312]=t("code",null,"p == 2",-1)),s[313]||(s[313]=e(" there is a typo in O'Meara Theorem 3 (V). The correct statement is (V) ")),t("mjx-container",e1,[(o(),n("svg",i1,s[309]||(s[309]=[i('',1)]))),s[310]||(s[310]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mn",null,"2"),t("mi",null,"i")]),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,"+"),t("mn",null,"4"),t("mi",null,"ω"),t("mo",{stretchy:"false"},")"),t("mo",{accent:"false",stretchy:"false"},"→"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"L")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mn",null,"1")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"l")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",{stretchy:"false"},"["),t("mi",null,"i"),t("mo",{stretchy:"false"},"]")])])])],-1))]),s[314]||(s[314]=e("."))]),s[316]||(s[316]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const Q1=r(d,[["render",a1]]);export{h1 as __pageData,Q1 as default}; + even=false) -> Vector{ZZGenus}
`,1)),t("p",null,[s[54]||(s[54]=e("Return a list of all genera with the given conditions. Genera of non-integral ")),t("mjx-container",B,[(o(),n("svg",A,s[52]||(s[52]=[i('',1)]))),s[53]||(s[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[55]||(s[55]=e("-lattices are also supported."))]),s[57]||(s[57]=i('

Arguments

  • sig_pair: a pair of non-negative integers giving the signature

  • determinant: a rational number; the sign is ignored

  • min_scale: a rational number; return only genera whose scale is an integer multiple of min_scale (default: min(one(QQ), QQ(abs(determinant))))

  • max_scale: a rational number; return only genera such that max_scale is an integer multiple of the scale (default: max(one(QQ), QQ(abs(determinant))))

  • even: boolean; if set to true, return only the even genera (default: false)

source

',3))]),s[322]||(s[322]=t("h3",{id:"From-other-genus-symbols",tabindex:"-1"},[e("From other genus symbols "),t("a",{class:"header-anchor",href:"#From-other-genus-symbols","aria-label":'Permalink to "From other genus symbols {#From-other-genus-symbols}"'},"​")],-1)),t("details",V,[t("summary",null,[s[58]||(s[58]=t("a",{id:"direct_sum-Tuple{ZZGenus, ZZGenus}",href:"#direct_sum-Tuple{ZZGenus, ZZGenus}"},[t("span",{class:"jlbinding"},"direct_sum")],-1)),s[59]||(s[59]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[60]||(s[60]=i('
julia
direct_sum(G1::ZZGenus, G2::ZZGenus) -> ZZGenus

Return the genus of the direct sum of G1 and G2.

The direct sum is defined via representatives.

source

',4))]),s[323]||(s[323]=t("h2",{id:"Attributes-of-the-genus",tabindex:"-1"},[e("Attributes of the genus "),t("a",{class:"header-anchor",href:"#Attributes-of-the-genus","aria-label":'Permalink to "Attributes of the genus {#Attributes-of-the-genus}"'},"​")],-1)),t("details",R,[t("summary",null,[s[61]||(s[61]=t("a",{id:"dim-Tuple{ZZGenus}",href:"#dim-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"dim")],-1)),s[62]||(s[62]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[63]||(s[63]=i('
julia
dim(G::ZZGenus) -> Int

Return the dimension of this genus.

source

',3))]),t("details",O,[t("summary",null,[s[64]||(s[64]=t("a",{id:"rank-Tuple{ZZGenus}",href:"#rank-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"rank")],-1)),s[65]||(s[65]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[66]||(s[66]=i('
julia
rank(G::ZZGenus) -> Int

Return the rank of a (representative of) the genus G.

source

',3))]),t("details",S,[t("summary",null,[s[67]||(s[67]=t("a",{id:"signature-Tuple{ZZGenus}",href:"#signature-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"signature")],-1)),s[68]||(s[68]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[69]||(s[69]=i('
julia
signature(G::ZZGenus) -> Int

Return the signature of this genus.

The signature is p - n where p is the number of positive eigenvalues and n the number of negative eigenvalues.

source

',4))]),t("details",I,[t("summary",null,[s[70]||(s[70]=t("a",{id:"det-Tuple{ZZGenus}",href:"#det-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"det")],-1)),s[71]||(s[71]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[72]||(s[72]=i('
julia
det(G::ZZGenus) -> QQFieldElem

Return the determinant of this genus.

source

',3))]),t("details",z,[t("summary",null,[s[73]||(s[73]=t("a",{id:"iseven-Tuple{ZZGenus}",href:"#iseven-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"iseven")],-1)),s[74]||(s[74]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[75]||(s[75]=i('
julia
iseven(G::ZZGenus) -> Bool

Return if this genus is even.

source

',3))]),t("details",J,[t("summary",null,[s[76]||(s[76]=t("a",{id:"is_definite-Tuple{ZZGenus}",href:"#is_definite-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_definite")],-1)),s[77]||(s[77]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[78]||(s[78]=i('
julia
is_definite(G::ZZGenus) -> Bool

Return if this genus is definite.

source

',3))]),t("details",P,[t("summary",null,[s[79]||(s[79]=t("a",{id:"level-Tuple{ZZGenus}",href:"#level-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"level")],-1)),s[80]||(s[80]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[81]||(s[81]=i('
julia
level(G::ZZGenus) -> QQFieldElem

Return the level of this genus.

This is the denominator of the inverse gram matrix of a representative.

source

',4))]),t("details",U,[t("summary",null,[s[82]||(s[82]=t("a",{id:"scale-Tuple{ZZGenus}",href:"#scale-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"scale")],-1)),s[83]||(s[83]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[84]||(s[84]=i('
julia
scale(G::ZZGenus) -> QQFieldElem

Return the scale of this genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

',4))]),t("details",X,[t("summary",null,[s[85]||(s[85]=t("a",{id:"norm-Tuple{ZZGenus}",href:"#norm-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"norm")],-1)),s[86]||(s[86]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[97]||(s[97]=i('
julia
norm(G::ZZGenus) -> QQFieldElem

Return the norm of this genus.

',2)),t("p",null,[s[89]||(s[89]=e("Let ")),s[90]||(s[90]=t("code",null,"L",-1)),s[91]||(s[91]=e(" be a lattice with bilinear form ")),s[92]||(s[92]=t("code",null,"b",-1)),s[93]||(s[93]=e(". The norm of ")),s[94]||(s[94]=t("code",null,"(L,b)",-1)),s[95]||(s[95]=e(" is defined as the ideal generated by ")),t("mjx-container",q,[(o(),n("svg",N,s[87]||(s[87]=[i('',1)]))),s[88]||(s[88]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"b"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"L"),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[96]||(s[96]=e("."))]),s[98]||(s[98]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",$,[t("summary",null,[s[99]||(s[99]=t("a",{id:"primes-Tuple{ZZGenus}",href:"#primes-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"primes")],-1)),s[100]||(s[100]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[101]||(s[101]=i('
julia
primes(G::ZZGenus) -> Vector{ZZRingElem}

Return the list of primes of the local symbols of G.

Note that 2 is always in the output since the 2-adic symbol of a ZZGenus is, by convention, always defined.

source

',4))]),t("details",W,[t("summary",null,[s[102]||(s[102]=t("a",{id:"is_integral-Tuple{ZZGenus}",href:"#is_integral-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_integral")],-1)),s[103]||(s[103]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[110]||(s[110]=i('
julia
is_integral(G::ZZGenus) -> Bool
',1)),t("p",null,[s[106]||(s[106]=e("Return whether ")),s[107]||(s[107]=t("code",null,"G",-1)),s[108]||(s[108]=e(" is a genus of integral ")),t("mjx-container",K,[(o(),n("svg",Y,s[104]||(s[104]=[i('',1)]))),s[105]||(s[105]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[109]||(s[109]=e("-lattices."))]),s[111]||(s[111]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[324]||(s[324]=i('

Discriminant group

discriminant_group(::ZZGenus)

Primary genera

',3)),t("details",_,[t("summary",null,[s[112]||(s[112]=t("a",{id:"is_primary_with_prime-Tuple{ZZGenus}",href:"#is_primary_with_prime-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),s[113]||(s[113]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[128]||(s[128]=i('
julia
is_primary_with_prime(G::ZZGenus) -> Bool, ZZRingElem
',1)),t("p",null,[s[116]||(s[116]=e("Given a genus of ")),t("mjx-container",ss,[(o(),n("svg",ts,s[114]||(s[114]=[i('',1)]))),s[115]||(s[115]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[117]||(s[117]=e("-lattices ")),s[118]||(s[118]=t("code",null,"G",-1)),s[119]||(s[119]=e(", return whether it is primary, that is whether the bilinear form is integral and the associated discriminant form (see ")),s[120]||(s[120]=t("a",{href:"/v0.34.8/manual/quad_forms/discriminant_group#discriminant_group-Tuple{ZZLat}"},[t("code",null,"discriminant_group")],-1)),s[121]||(s[121]=e(") is a ")),s[122]||(s[122]=t("code",null,"p",-1)),s[123]||(s[123]=e("-group for some prime number ")),s[124]||(s[124]=t("code",null,"p",-1)),s[125]||(s[125]=e(". In case it is, ")),s[126]||(s[126]=t("code",null,"p",-1)),s[127]||(s[127]=e(" is also returned as second output."))]),s[129]||(s[129]=t("p",null,[e("Note that for unimodular genera, this function returns "),t("code",null,"(true, 1)"),e(". If the genus is not primary, the second return value is "),t("code",null,"-1"),e(" by default.")],-1)),s[130]||(s[130]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",es,[t("summary",null,[s[131]||(s[131]=t("a",{id:"is_primary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"is_primary")],-1)),s[132]||(s[132]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[137]||(s[137]=i('
julia
is_primary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool
',1)),t("p",null,[s[135]||(s[135]=e("Given a genus of integral ")),t("mjx-container",is,[(o(),n("svg",as,s[133]||(s[133]=[i('',1)]))),s[134]||(s[134]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[136]||(s[136]=i('-lattices G and a prime number p, return whether G is p-primary, that is whether the associated discriminant form (see discriminant_group) is a p-group.',13))]),s[138]||(s[138]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",ls,[t("summary",null,[s[139]||(s[139]=t("a",{id:"is_elementary_with_prime-Tuple{ZZGenus}",href:"#is_elementary_with_prime-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),s[140]||(s[140]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[155]||(s[155]=i('
julia
is_elementary_with_prime(G::ZZGenus) -> Bool, ZZRingElem
',1)),t("p",null,[s[143]||(s[143]=e("Given a genus of ")),t("mjx-container",ns,[(o(),n("svg",os,s[141]||(s[141]=[i('',1)]))),s[142]||(s[142]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[144]||(s[144]=e("-lattices ")),s[145]||(s[145]=t("code",null,"G",-1)),s[146]||(s[146]=e(", return whether it is elementary, that is whether the bilinear form is inegtral and the associated discriminant form (see ")),s[147]||(s[147]=t("a",{href:"/v0.34.8/manual/quad_forms/discriminant_group#discriminant_group-Tuple{ZZLat}"},[t("code",null,"discriminant_group")],-1)),s[148]||(s[148]=e(") is an elementary ")),s[149]||(s[149]=t("code",null,"p",-1)),s[150]||(s[150]=e("-group for some prime number ")),s[151]||(s[151]=t("code",null,"p",-1)),s[152]||(s[152]=e(". In case it is, ")),s[153]||(s[153]=t("code",null,"p",-1)),s[154]||(s[154]=e(" is also returned as second output."))]),s[156]||(s[156]=t("p",null,[e("Note that for unimodular genera, this function returns "),t("code",null,"(true, 1)"),e(". If the genus is not elementary, the second return value is "),t("code",null,"-1"),e(" by default.")],-1)),s[157]||(s[157]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",rs,[t("summary",null,[s[158]||(s[158]=t("a",{id:"is_elementary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{ZZGenus, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"is_elementary")],-1)),s[159]||(s[159]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[164]||(s[164]=i('
julia
is_elementary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool
',1)),t("p",null,[s[162]||(s[162]=e("Given a genus of integral ")),t("mjx-container",ps,[(o(),n("svg",ds,s[160]||(s[160]=[i('',1)]))),s[161]||(s[161]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[163]||(s[163]=i('-lattices G and a prime number p, return whether G is p-elementary, that is whether its associated discriminant form (see discriminant_group) is an elementary p-group.',13))]),s[165]||(s[165]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[325]||(s[325]=t("h3",{id:"local-Symbol",tabindex:"-1"},[e("local Symbol "),t("a",{class:"header-anchor",href:"#local-Symbol","aria-label":'Permalink to "local Symbol {#local-Symbol}"'},"​")],-1)),t("details",hs,[t("summary",null,[s[166]||(s[166]=t("a",{id:"local_symbol-Tuple{ZZGenus, Any}",href:"#local_symbol-Tuple{ZZGenus, Any}"},[t("span",{class:"jlbinding"},"local_symbol")],-1)),s[167]||(s[167]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[168]||(s[168]=i('
julia
local_symbol(G::ZZGenus, p) -> ZZLocalGenus

Return the local symbol at p.

source

',3))]),s[326]||(s[326]=t("h2",{id:"representative-s",tabindex:"-1"},[e("Representative(s) "),t("a",{class:"header-anchor",href:"#representative-s","aria-label":'Permalink to "Representative(s)"'},"​")],-1)),t("details",Qs,[t("summary",null,[s[169]||(s[169]=t("a",{id:"quadratic_space-Tuple{ZZGenus}",href:"#quadratic_space-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"quadratic_space")],-1)),s[170]||(s[170]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[171]||(s[171]=i('
julia
quadratic_space(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

',3))]),t("details",ms,[t("summary",null,[s[172]||(s[172]=t("a",{id:"rational_representative-Tuple{ZZGenus}",href:"#rational_representative-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"rational_representative")],-1)),s[173]||(s[173]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[174]||(s[174]=i('
julia
rational_representative(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

',3))]),t("details",gs,[t("summary",null,[s[175]||(s[175]=t("a",{id:"representative-Tuple{ZZGenus}",href:"#representative-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"representative")],-1)),s[176]||(s[176]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[177]||(s[177]=i('
julia
representative(G::ZZGenus) -> ZZLat

Compute a representative of this genus && cache it.

source

',3))]),t("details",ks,[t("summary",null,[s[178]||(s[178]=t("a",{id:"representatives-Tuple{ZZGenus}",href:"#representatives-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"representatives")],-1)),s[179]||(s[179]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[180]||(s[180]=i('
julia
representatives(G::ZZGenus) -> Vector{ZZLat}

Return a list of representatives of the isometry classes in this genus.

source

',3))]),t("details",Ts,[t("summary",null,[s[181]||(s[181]=t("a",{id:"mass-Tuple{ZZGenus}",href:"#mass-Tuple{ZZGenus}"},[t("span",{class:"jlbinding"},"mass")],-1)),s[182]||(s[182]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[189]||(s[189]=i('
julia
mass(G::ZZGenus) -> QQFieldElem

Return the mass of this genus.

',2)),t("p",null,[s[185]||(s[185]=e("The genus must be definite. Let ")),s[186]||(s[186]=t("code",null,"L_1, ... L_n",-1)),s[187]||(s[187]=e(" be a complete list of representatives of the isometry classes in this genus. Its mass is defined as ")),t("mjx-container",us,[(o(),n("svg",ys,s[183]||(s[183]=[i('',1)]))),s[184]||(s[184]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("munderover",null,[t("mo",{"data-mjx-texclass":"OP"},"∑"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"="),t("mn",null,"1")]),t("mi",null,"n")]),t("mfrac",null,[t("mn",null,"1"),t("mrow",null,[t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"O"),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"L"),t("mi",null,"i")]),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])])])],-1))]),s[188]||(s[188]=e("."))]),s[190]||(s[190]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",cs,[t("summary",null,[s[191]||(s[191]=t("a",{id:"rescale-Tuple{ZZGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[t("span",{class:"jlbinding"},"rescale")],-1)),s[192]||(s[192]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[203]||(s[203]=i('
julia
rescale(G::ZZGenus, a::RationalUnion) -> ZZGenus
',1)),t("p",null,[s[195]||(s[195]=e("Given a genus symbol ")),s[196]||(s[196]=t("code",null,"G",-1)),s[197]||(s[197]=e(" of ")),t("mjx-container",bs,[(o(),n("svg",xs,s[193]||(s[193]=[i('',1)]))),s[194]||(s[194]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[198]||(s[198]=e("-lattices, return the genus symbol of any representative of ")),s[199]||(s[199]=t("code",null,"G",-1)),s[200]||(s[200]=e(" rescaled by ")),s[201]||(s[201]=t("code",null,"a",-1)),s[202]||(s[202]=e("."))]),s[204]||(s[204]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[327]||(s[327]=t("h2",{id:"Embeddings-and-Representations",tabindex:"-1"},[e("Embeddings and Representations "),t("a",{class:"header-anchor",href:"#Embeddings-and-Representations","aria-label":'Permalink to "Embeddings and Representations {#Embeddings-and-Representations}"'},"​")],-1)),t("details",fs,[t("summary",null,[s[205]||(s[205]=t("a",{id:"represents-Tuple{ZZGenus, ZZGenus}",href:"#represents-Tuple{ZZGenus, ZZGenus}"},[t("span",{class:"jlbinding"},"represents")],-1)),s[206]||(s[206]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[207]||(s[207]=i('
julia
represents(G1::ZZGenus, G2::ZZGenus) -> Bool

Return if G1 represents G2. That is if some element in the genus of G1 represents some element in the genus of G2.

source

',3))]),s[328]||(s[328]=t("h2",{id:"Local-genus-Symbols",tabindex:"-1"},[e("Local genus Symbols "),t("a",{class:"header-anchor",href:"#Local-genus-Symbols","aria-label":'Permalink to "Local genus Symbols {#Local-genus-Symbols}"'},"​")],-1)),t("details",Es,[t("summary",null,[s[208]||(s[208]=t("a",{id:"ZZLocalGenus",href:"#ZZLocalGenus"},[t("span",{class:"jlbinding"},"ZZLocalGenus")],-1)),s[209]||(s[209]=e()),l(a,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[210]||(s[210]=i('
julia
ZZLocalGenus

Local genus symbol over a p-adic ring.

The genus symbol of a component p^m A for odd prime = p is of the form (m,n,d), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) \\in \\{1,u\\} for a normalized quadratic non-residue u.

The genus symbol of a component 2^m A is of the form (m, n, s, d, o), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) in {1,3,5,7}

  • s = 0 (or 1) if even (or odd)

  • o = oddity of A (= 0 if s = 0) in Z/8Z = the trace of the diagonalization of A

The genus symbol is a list of such symbols (ordered by m) for each of the Jordan blocks A_1,...,A_t.

Reference: [5] Chapter 15, Section 7.

Arguments

  • prime: a prime number

  • symbol: the list of invariants for Jordan blocks A_t,...,A_t given as a list of lists of integers

source

',11))]),s[329]||(s[329]=t("h3",{id:"creation",tabindex:"-1"},[e("Creation "),t("a",{class:"header-anchor",href:"#creation","aria-label":'Permalink to "Creation"'},"​")],-1)),t("details",vs,[t("summary",null,[s[211]||(s[211]=t("a",{id:"genus-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#genus-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[212]||(s[212]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[213]||(s[213]=i('
julia
genus(L::ZZLat, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of L at the prime p.

source

',3))]),t("details",ws,[t("summary",null,[s[214]||(s[214]=t("a",{id:"genus-Tuple{QQMatrix, Union{Integer, ZZRingElem}}",href:"#genus-Tuple{QQMatrix, Union{Integer, ZZRingElem}}"},[t("span",{class:"jlbinding"},"genus")],-1)),s[215]||(s[215]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[216]||(s[216]=i('
julia
genus(A::QQMatrix, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of a Z-lattice with gram matrix A at the prime p.

source

',3))]),s[330]||(s[330]=t("h3",{id:"attributes",tabindex:"-1"},[e("Attributes "),t("a",{class:"header-anchor",href:"#attributes","aria-label":'Permalink to "Attributes"'},"​")],-1)),t("details",Zs,[t("summary",null,[s[217]||(s[217]=t("a",{id:"prime-Tuple{ZZLocalGenus}",href:"#prime-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"prime")],-1)),s[218]||(s[218]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[219]||(s[219]=i('
julia
prime(S::ZZLocalGenus) -> ZZRingElem

Return the prime p of this p-adic genus.

source

',3))]),t("details",js,[t("summary",null,[s[220]||(s[220]=t("a",{id:"iseven-Tuple{ZZLocalGenus}",href:"#iseven-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"iseven")],-1)),s[221]||(s[221]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[222]||(s[222]=i('
julia
iseven(S::ZZLocalGenus) -> Bool

Return if the underlying p-adic lattice is even.

If p is odd, every lattice is even.

source

',4))]),t("details",Ls,[t("summary",null,[s[223]||(s[223]=t("a",{id:"symbol-Tuple{ZZLocalGenus, Int64}",href:"#symbol-Tuple{ZZLocalGenus, Int64}"},[t("span",{class:"jlbinding"},"symbol")],-1)),s[224]||(s[224]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[225]||(s[225]=i('
julia
symbol(S::ZZLocalGenus, scale::Int) -> Vector{Int}

Return the underlying lists of integers for the Jordan block of the given scale

source

',3))]),t("details",Cs,[t("summary",null,[s[226]||(s[226]=t("a",{id:"hasse_invariant-Tuple{ZZLocalGenus}",href:"#hasse_invariant-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"hasse_invariant")],-1)),s[227]||(s[227]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[230]||(s[230]=i('
julia
hasse_invariant(S::ZZLocalGenus) -> Int

Return the Hasse invariant of a representative. If the representative is diagonal (a_1, ... , a_n) Then the Hasse invariant is

',2)),t("mjx-container",Ms,[(o(),n("svg",Hs,s[228]||(s[228]=[i('',1)]))),s[229]||(s[229]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("munder",null,[t("mo",{"data-mjx-texclass":"OP"},"∏"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"<"),t("mi",null,"j")])]),t("mo",{stretchy:"false"},"("),t("msub",null,[t("mi",null,"a"),t("mi",null,"i")]),t("mo",null,","),t("msub",null,[t("mi",null,"a"),t("mi",null,"j")]),t("msub",null,[t("mo",{stretchy:"false"},")"),t("mi",null,"p")])])],-1))]),s[231]||(s[231]=t("p",null,".",-1)),s[232]||(s[232]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Fs,[t("summary",null,[s[233]||(s[233]=t("a",{id:"det-Tuple{ZZLocalGenus}",href:"#det-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"det")],-1)),s[234]||(s[234]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[235]||(s[235]=i('
julia
det(S::ZZLocalGenus) -> QQFieldElem

Return an rational representing the determinant of this genus.

source

',3))]),t("details",Gs,[t("summary",null,[s[236]||(s[236]=t("a",{id:"dim-Tuple{ZZLocalGenus}",href:"#dim-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"dim")],-1)),s[237]||(s[237]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[238]||(s[238]=i('
julia
dim(S::ZZLocalGenus) -> Int

Return the dimension of this genus.

source

',3))]),t("details",Ds,[t("summary",null,[s[239]||(s[239]=t("a",{id:"rank-Tuple{ZZLocalGenus}",href:"#rank-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"rank")],-1)),s[240]||(s[240]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[241]||(s[241]=i('
julia
rank(S::ZZLocalGenus) -> Int

Return the rank of (a representative of) S.

source

',3))]),t("details",Bs,[t("summary",null,[s[242]||(s[242]=t("a",{id:"excess-Tuple{ZZLocalGenus}",href:"#excess-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"excess")],-1)),s[243]||(s[243]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[244]||(s[244]=i('
julia
excess(S::ZZLocalGenus) -> zzModRingElem

Return the p-excess of the quadratic form whose Hessian matrix is the symmetric matrix A.

When p = 2 the p-excess is called the oddity. The p-excess is always even && is divisible by 4 if p is congruent 1 mod 4.

Reference

[5] pp 370-371.

source

',6))]),t("details",As,[t("summary",null,[s[245]||(s[245]=t("a",{id:"signature-Tuple{ZZLocalGenus}",href:"#signature-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"signature")],-1)),s[246]||(s[246]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[254]||(s[254]=i('
julia
signature(S::ZZLocalGenus) -> zzModRingElem
',1)),t("p",null,[s[251]||(s[251]=e("Return the ")),t("mjx-container",Vs,[(o(),n("svg",Rs,s[247]||(s[247]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[248]||(s[248]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[252]||(s[252]=e("-signature of this ")),t("mjx-container",Os,[(o(),n("svg",Ss,s[249]||(s[249]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D45D",d:"M23 287Q24 290 25 295T30 317T40 348T55 381T75 411T101 433T134 442Q209 442 230 378L240 387Q302 442 358 442Q423 442 460 395T497 281Q497 173 421 82T249 -10Q227 -10 210 -4Q199 1 187 11T168 28L161 36Q160 35 139 -51T118 -138Q118 -144 126 -145T163 -148H188Q194 -155 194 -157T191 -175Q188 -187 185 -190T172 -194Q170 -194 161 -194T127 -193T65 -192Q-5 -192 -24 -194H-32Q-39 -187 -39 -183Q-37 -156 -26 -148H-6Q28 -147 33 -136Q36 -130 94 103T155 350Q156 355 156 364Q156 405 131 405Q109 405 94 377T71 316T59 280Q57 278 43 278H29Q23 284 23 287ZM178 102Q200 26 252 26Q282 26 310 49T356 107Q374 141 392 215T411 325V331Q411 405 350 405Q339 405 328 402T306 393T286 380T269 365T254 350T243 336T235 326L232 322Q232 321 229 308T218 264T204 212Q178 106 178 102Z",style:{"stroke-width":"3"}})])])],-1)]))),s[250]||(s[250]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"p")])],-1))]),s[253]||(s[253]=e("-adic form."))]),s[255]||(s[255]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Is,[t("summary",null,[s[256]||(s[256]=t("a",{id:"oddity-Tuple{ZZLocalGenus}",href:"#oddity-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"oddity")],-1)),s[257]||(s[257]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[262]||(s[262]=i('
julia
oddity(S::ZZLocalGenus) -> zzModRingElem
',1)),t("p",null,[s[260]||(s[260]=e("Return the oddity of this even form. The oddity is also called the ")),t("mjx-container",zs,[(o(),n("svg",Js,s[258]||(s[258]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mn"},[t("path",{"data-c":"32",d:"M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z",style:{"stroke-width":"3"}})])])],-1)]))),s[259]||(s[259]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mn",null,"2")])],-1))]),s[261]||(s[261]=e("-signature"))]),s[263]||(s[263]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Ps,[t("summary",null,[s[264]||(s[264]=t("a",{id:"scale-Tuple{ZZLocalGenus}",href:"#scale-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"scale")],-1)),s[265]||(s[265]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[266]||(s[266]=i('
julia
scale(S::ZZLocalGenus) -> QQFieldElem

Return the scale of this local genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

',4))]),t("details",Us,[t("summary",null,[s[267]||(s[267]=t("a",{id:"norm-Tuple{ZZLocalGenus}",href:"#norm-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"norm")],-1)),s[268]||(s[268]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[279]||(s[279]=i('
julia
norm(S::ZZLocalGenus) -> QQFieldElem

Return the norm of this local genus.

',2)),t("p",null,[s[271]||(s[271]=e("Let ")),s[272]||(s[272]=t("code",null,"L",-1)),s[273]||(s[273]=e(" be a lattice with bilinear form ")),s[274]||(s[274]=t("code",null,"b",-1)),s[275]||(s[275]=e(". The norm of ")),s[276]||(s[276]=t("code",null,"(L,b)",-1)),s[277]||(s[277]=e(" is defined as the ideal generated by ")),t("mjx-container",Xs,[(o(),n("svg",qs,s[269]||(s[269]=[i('',1)]))),s[270]||(s[270]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mo",{fence:"false",stretchy:"false"},"{"),t("mi",null,"b"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),t("mi",null,"x"),t("mo",null,"∈"),t("mi",null,"L"),t("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[278]||(s[278]=e("."))]),s[280]||(s[280]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),t("details",Ns,[t("summary",null,[s[281]||(s[281]=t("a",{id:"level-Tuple{ZZLocalGenus}",href:"#level-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"level")],-1)),s[282]||(s[282]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[283]||(s[283]=i('
julia
level(S::ZZLocalGenus) -> QQFieldElem

Return the maximal scale of a jordan component.

source

',3))]),s[331]||(s[331]=t("h3",{id:"representative",tabindex:"-1"},[e("Representative "),t("a",{class:"header-anchor",href:"#representative","aria-label":'Permalink to "Representative"'},"​")],-1)),t("details",$s,[t("summary",null,[s[284]||(s[284]=t("a",{id:"representative-Tuple{ZZLocalGenus}",href:"#representative-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"representative")],-1)),s[285]||(s[285]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[286]||(s[286]=i('
julia
representative(S::ZZLocalGenus) -> ZZLat

Return an integer lattice which represents this local genus.

source

',3))]),t("details",Ws,[t("summary",null,[s[287]||(s[287]=t("a",{id:"gram_matrix-Tuple{ZZLocalGenus}",href:"#gram_matrix-Tuple{ZZLocalGenus}"},[t("span",{class:"jlbinding"},"gram_matrix")],-1)),s[288]||(s[288]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[289]||(s[289]=i('
julia
gram_matrix(S::ZZLocalGenus) -> MatElem

Return a gram matrix of some representative of this local genus.

source

',3))]),t("details",Ks,[t("summary",null,[s[290]||(s[290]=t("a",{id:"rescale-Tuple{ZZLocalGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZLocalGenus, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[t("span",{class:"jlbinding"},"rescale")],-1)),s[291]||(s[291]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[302]||(s[302]=i('
julia
rescale(G::ZZLocalGenus, a::RationalUnion) -> ZZLocalGenus
',1)),t("p",null,[s[294]||(s[294]=e("Given a local genus symbol ")),s[295]||(s[295]=t("code",null,"G",-1)),s[296]||(s[296]=e(" of ")),t("mjx-container",Ys,[(o(),n("svg",_s,s[292]||(s[292]=[i('',1)]))),s[293]||(s[293]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[297]||(s[297]=e("-lattices, return the local genus symbol of any representative of ")),s[298]||(s[298]=t("code",null,"G",-1)),s[299]||(s[299]=e(" rescaled by ")),s[300]||(s[300]=t("code",null,"a",-1)),s[301]||(s[301]=e("."))]),s[303]||(s[303]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[332]||(s[332]=t("h3",{id:"Direct-sums",tabindex:"-1"},[e("Direct sums "),t("a",{class:"header-anchor",href:"#Direct-sums","aria-label":'Permalink to "Direct sums {#Direct-sums}"'},"​")],-1)),t("details",s1,[t("summary",null,[s[304]||(s[304]=t("a",{id:"direct_sum-Tuple{ZZLocalGenus, ZZLocalGenus}",href:"#direct_sum-Tuple{ZZLocalGenus, ZZLocalGenus}"},[t("span",{class:"jlbinding"},"direct_sum")],-1)),s[305]||(s[305]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[306]||(s[306]=i('
julia
direct_sum(S1::ZZLocalGenus, S2::ZZLocalGenus) -> ZZLocalGenus

Return the local genus of the direct sum of two representatives.

source

',3))]),s[333]||(s[333]=t("h3",{id:"embeddings-representations",tabindex:"-1"},[e("Embeddings/Representations "),t("a",{class:"header-anchor",href:"#embeddings-representations","aria-label":'Permalink to "Embeddings/Representations"'},"​")],-1)),t("details",t1,[t("summary",null,[s[307]||(s[307]=t("a",{id:"represents-Tuple{ZZLocalGenus, ZZLocalGenus}",href:"#represents-Tuple{ZZLocalGenus, ZZLocalGenus}"},[t("span",{class:"jlbinding"},"represents")],-1)),s[308]||(s[308]=e()),l(a,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[315]||(s[315]=i('
julia
represents(g1::ZZLocalGenus, g2::ZZLocalGenus) -> Bool

Return whether g1 represents g2.

',2)),t("p",null,[s[311]||(s[311]=e("Based on O'Meara Integral Representations of Quadratic Forms Over Local Fields Note that for ")),s[312]||(s[312]=t("code",null,"p == 2",-1)),s[313]||(s[313]=e(" there is a typo in O'Meara Theorem 3 (V). The correct statement is (V) ")),t("mjx-container",e1,[(o(),n("svg",i1,s[309]||(s[309]=[i('',1)]))),s[310]||(s[310]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("msup",null,[t("mn",null,"2"),t("mi",null,"i")]),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,"+"),t("mn",null,"4"),t("mi",null,"ω"),t("mo",{stretchy:"false"},")"),t("mo",{accent:"false",stretchy:"false"},"→"),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"L")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",null,"i"),t("mo",null,"+"),t("mn",null,"1")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",null,"/")]),t("msub",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mi",{mathvariant:"fraktur"},"l")]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mo",{stretchy:"false"},"["),t("mi",null,"i"),t("mo",{stretchy:"false"},"]")])])])],-1))]),s[314]||(s[314]=e("."))]),s[316]||(s[316]=t("p",null,[t("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))])])}const Q1=r(d,[["render",a1]]);export{h1 as __pageData,Q1 as default}; diff --git a/v0.34.8/assets/manual_quad_forms_discriminant_group.md.COmgBTDB.js b/v0.34.8/assets/manual_quad_forms_discriminant_group.md.COmgBTDB.js index 80d10ae754..f192c40a4f 100644 --- a/v0.34.8/assets/manual_quad_forms_discriminant_group.md.COmgBTDB.js +++ b/v0.34.8/assets/manual_quad_forms_discriminant_group.md.COmgBTDB.js @@ -35,7 +35,7 @@ import{_ as Q,c as l,j as s,a as t,a5 as a,G as h,B as p,o as e}from"./chunks/fr 1 3//2 1`,3)),s("p",null,[i[87]||(i[87]=t("N.B. Since there are no elements of ")),s("mjx-container",P,[(e(),l("svg",U,i[85]||(i[85]=[a('',1)]))),i[86]||(i[86]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),i[88]||(i[88]=t("-lattices, we think of elements of ")),i[89]||(i[89]=s("code",null,"M",-1)),i[90]||(i[90]=t(" as elements of the ambient vector space. Thus if ")),i[91]||(i[91]=s("code",null,"v::Vector",-1)),i[92]||(i[92]=t(" is such an element then the coordinates with respec to the basis of ")),i[93]||(i[93]=s("code",null,"M",-1)),i[94]||(i[94]=t(" are given by ")),i[95]||(i[95]=s("code",null,"solve(basis_matrix(M), v; side = :left)",-1)),i[96]||(i[96]=t("."))]),i[99]||(i[99]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[405]||(i[405]=s("p",null,[t("Most of the functionality mirrors that of "),s("code",null,"AbGrp"),t(" its elements and homomorphisms. Here we display the part that is specific to elements of torsion quadratic modules.")],-1)),i[406]||(i[406]=s("h3",{id:"attributes",tabindex:"-1"},[t("Attributes "),s("a",{class:"header-anchor",href:"#attributes","aria-label":'Permalink to "Attributes"'},"​")],-1)),s("details",$,[s("summary",null,[i[100]||(i[100]=s("a",{id:"abelian_group-Tuple{TorQuadModule}",href:"#abelian_group-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"abelian_group")],-1)),i[101]||(i[101]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[102]||(i[102]=a('
julia
abelian_group(T::TorQuadModule) -> FinGenAbGroup

Return the underlying abelian group of T.

source

',3))]),s("details",K,[s("summary",null,[i[103]||(i[103]=s("a",{id:"cover-Tuple{TorQuadModule}",href:"#cover-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"cover")],-1)),i[104]||(i[104]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[112]||(i[112]=a('
julia
cover(T::TorQuadModule) -> ZZLat
',1)),s("p",null,[i[109]||(i[109]=t("For ")),s("mjx-container",W,[(e(),l("svg",Y,i[105]||(i[105]=[a('',1)]))),i[106]||(i[106]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",null,"="),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N")])],-1))]),i[110]||(i[110]=t(" this returns ")),s("mjx-container",_,[(e(),l("svg",s1,i[107]||(i[107]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),i[108]||(i[108]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"M")])],-1))]),i[111]||(i[111]=t("."))]),i[113]||(i[113]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",i1,[s("summary",null,[i[114]||(i[114]=s("a",{id:"relations-Tuple{TorQuadModule}",href:"#relations-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"relations")],-1)),i[115]||(i[115]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[123]||(i[123]=a('
julia
relations(T::TorQuadModule) -> ZZLat
',1)),s("p",null,[i[120]||(i[120]=t("For ")),s("mjx-container",t1,[(e(),l("svg",a1,i[116]||(i[116]=[a('',1)]))),i[117]||(i[117]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",null,"="),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N")])],-1))]),i[121]||(i[121]=t(" this returns ")),s("mjx-container",l1,[(e(),l("svg",e1,i[118]||(i[118]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),i[119]||(i[119]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"N")])],-1))]),i[122]||(i[122]=t("."))]),i[124]||(i[124]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",n1,[s("summary",null,[i[125]||(i[125]=s("a",{id:"value_module-Tuple{TorQuadModule}",href:"#value_module-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"value_module")],-1)),i[126]||(i[126]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[127]||(i[127]=a('
julia
value_module(T::TorQuadModule) -> QmodnZ

Return the value module Q/nZ of the bilinear form of T.

source

',3))]),s("details",h1,[s("summary",null,[i[128]||(i[128]=s("a",{id:"value_module_quadratic_form-Tuple{TorQuadModule}",href:"#value_module_quadratic_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"value_module_quadratic_form")],-1)),i[129]||(i[129]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[130]||(i[130]=a('
julia
value_module_quadratic_form(T::TorQuadModule) -> QmodnZ

Return the value module Q/mZ of the quadratic form of T.

source

',3))]),s("details",Q1,[s("summary",null,[i[131]||(i[131]=s("a",{id:"gram_matrix_bilinear-Tuple{TorQuadModule}",href:"#gram_matrix_bilinear-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"gram_matrix_bilinear")],-1)),i[132]||(i[132]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[133]||(i[133]=a('
julia
gram_matrix_bilinear(T::TorQuadModule) -> QQMatrix

Return the gram matrix of the bilinear form of T.

source

',3))]),s("details",p1,[s("summary",null,[i[134]||(i[134]=s("a",{id:"gram_matrix_quadratic-Tuple{TorQuadModule}",href:"#gram_matrix_quadratic-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"gram_matrix_quadratic")],-1)),i[135]||(i[135]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[136]||(i[136]=a('
julia
gram_matrix_quadratic(T::TorQuadModule) -> QQMatrix

Return the 'gram matrix' of the quadratic form of T.

The off diagonal entries are given by the bilinear form whereas the diagonal entries are given by the quadratic form.

source

',4))]),s("details",r1,[s("summary",null,[i[137]||(i[137]=s("a",{id:"modulus_bilinear_form-Tuple{TorQuadModule}",href:"#modulus_bilinear_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"modulus_bilinear_form")],-1)),i[138]||(i[138]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[139]||(i[139]=a('
julia
modulus_bilinear_form(T::TorQuadModule) -> QQFieldElem

Return the modulus of the value module of the bilinear form ofT.

source

',3))]),s("details",d1,[s("summary",null,[i[140]||(i[140]=s("a",{id:"modulus_quadratic_form-Tuple{TorQuadModule}",href:"#modulus_quadratic_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"modulus_quadratic_form")],-1)),i[141]||(i[141]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[142]||(i[142]=a('
julia
modulus_quadratic_form(T::TorQuadModule) -> QQFieldElem

Return the modulus of the value module of the quadratic form of T.

source

',3))]),i[407]||(i[407]=s("h3",{id:"elements",tabindex:"-1"},[t("Elements "),s("a",{class:"header-anchor",href:"#elements","aria-label":'Permalink to "Elements"'},"​")],-1)),s("details",o1,[s("summary",null,[i[143]||(i[143]=s("a",{id:"quadratic_product-Tuple{TorQuadModuleElem}",href:"#quadratic_product-Tuple{TorQuadModuleElem}"},[s("span",{class:"jlbinding"},"quadratic_product")],-1)),i[144]||(i[144]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[152]||(i[152]=a('
julia
quadratic_product(a::TorQuadModuleElem) -> QmodnZElem

Return the quadratic product of a.

',2)),s("p",null,[i[149]||(i[149]=t("It is defined in terms of a representative: for ")),s("mjx-container",k1,[(e(),l("svg",T1,i[145]||(i[145]=[a('',1)]))),i[146]||(i[146]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"b"),s("mo",null,"+"),s("mi",null,"M"),s("mo",null,"∈"),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N"),s("mo",null,"="),s("mi",null,"T")])],-1))]),i[150]||(i[150]=t(", this returns ")),s("mjx-container",m1,[(e(),l("svg",g1,i[147]||(i[147]=[a('',1)]))),i[148]||(i[148]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"b"),s("mo",null,","),s("mi",null,"b"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mi",null,"n"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),i[151]||(i[151]=t("."))]),i[153]||(i[153]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",u1,[s("summary",null,[i[154]||(i[154]=s("a",{id:"inner_product-Tuple{TorQuadModuleElem, TorQuadModuleElem}",href:"#inner_product-Tuple{TorQuadModuleElem, TorQuadModuleElem}"},[s("span",{class:"jlbinding"},"inner_product")],-1)),i[155]||(i[155]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[156]||(i[156]=a('
julia
inner_product(a::TorQuadModuleElem, b::TorQuadModuleElem) -> QmodnZElem

Return the inner product of a and b.

source

',3))]),i[408]||(i[408]=s("h3",{id:"Lift-to-the-cover",tabindex:"-1"},[t("Lift to the cover "),s("a",{class:"header-anchor",href:"#Lift-to-the-cover","aria-label":'Permalink to "Lift to the cover {#Lift-to-the-cover}"'},"​")],-1)),s("details",y1,[s("summary",null,[i[157]||(i[157]=s("a",{id:"lift-Tuple{TorQuadModuleElem}",href:"#lift-Tuple{TorQuadModuleElem}"},[s("span",{class:"jlbinding"},"lift")],-1)),i[158]||(i[158]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[166]||(i[166]=a('
julia
lift(a::TorQuadModuleElem) -> Vector{QQFieldElem}

Lift a to the ambient space of cover(parent(a)).

',2)),s("p",null,[i[163]||(i[163]=t("For ")),s("mjx-container",E1,[(e(),l("svg",c1,i[159]||(i[159]=[a('',1)]))),i[160]||(i[160]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a"),s("mo",null,"+"),s("mi",null,"N"),s("mo",null,"∈"),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N")])],-1))]),i[164]||(i[164]=t(" this returns the representative ")),s("mjx-container",x1,[(e(),l("svg",F1,i[161]||(i[161]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),i[162]||(i[162]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),i[165]||(i[165]=t("."))]),i[167]||(i[167]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",w1,[s("summary",null,[i[168]||(i[168]=s("a",{id:"representative-Tuple{TorQuadModuleElem}",href:"#representative-Tuple{TorQuadModuleElem}"},[s("span",{class:"jlbinding"},"representative")],-1)),i[169]||(i[169]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[179]||(i[179]=a('
julia
representative(a::TorQuadModuleElem) -> Vector{QQFieldElem}
',1)),s("p",null,[i[174]||(i[174]=t("For ")),s("mjx-container",C1,[(e(),l("svg",f1,i[170]||(i[170]=[a('',1)]))),i[171]||(i[171]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a"),s("mo",null,"+"),s("mi",null,"N"),s("mo",null,"∈"),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N")])],-1))]),i[175]||(i[175]=t(" this returns the representative ")),s("mjx-container",H1,[(e(),l("svg",b1,i[172]||(i[172]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),i[173]||(i[173]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),i[176]||(i[176]=t(". An alias for ")),i[177]||(i[177]=s("code",null,"lift(a)",-1)),i[178]||(i[178]=t("."))]),i[180]||(i[180]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[409]||(i[409]=s("h3",{id:"Orthogonal-submodules",tabindex:"-1"},[t("Orthogonal submodules "),s("a",{class:"header-anchor",href:"#Orthogonal-submodules","aria-label":'Permalink to "Orthogonal submodules {#Orthogonal-submodules}"'},"​")],-1)),s("details",M1,[s("summary",null,[i[181]||(i[181]=s("a",{id:"orthogonal_submodule-Tuple{TorQuadModule, TorQuadModule}",href:"#orthogonal_submodule-Tuple{TorQuadModule, TorQuadModule}"},[s("span",{class:"jlbinding"},"orthogonal_submodule")],-1)),i[182]||(i[182]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[183]||(i[183]=a('
julia
orthogonal_submodule(T::TorQuadModule, S::TorQuadModule)-> TorQuadModule

Return the orthogonal submodule to the submodule S of T.

source

',3))]),i[410]||(i[410]=s("h3",{id:"isometry",tabindex:"-1"},[t("Isometry "),s("a",{class:"header-anchor",href:"#isometry","aria-label":'Permalink to "Isometry"'},"​")],-1)),s("details",L1,[s("summary",null,[i[184]||(i[184]=s("a",{id:"is_isometric_with_isometry-Tuple{TorQuadModule, TorQuadModule}",href:"#is_isometric_with_isometry-Tuple{TorQuadModule, TorQuadModule}"},[s("span",{class:"jlbinding"},"is_isometric_with_isometry")],-1)),i[185]||(i[185]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[194]||(i[194]=a(`
julia
is_isometric_with_isometry(T::TorQuadModule, U::TorQuadModule)
-                                               -> Bool, TorQuadModuleMap
`,1)),s("p",null,[i[188]||(i[188]=t("Return whether the torsion quadratic modules ")),i[189]||(i[189]=s("code",null,"T",-1)),i[190]||(i[190]=t(" and ")),i[191]||(i[191]=s("code",null,"U",-1)),i[192]||(i[192]=t(" are isometric. If yes, it also returns an isometry ")),s("mjx-container",v1,[(e(),l("svg",D1,i[186]||(i[186]=[a('',1)]))),i[187]||(i[187]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"U")])],-1))]),i[193]||(i[193]=t("."))]),i[195]||(i[195]=a(`

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[2//3 2//3    0    0    0;
+                                               -> Bool, TorQuadModuleMap
`,1)),s("p",null,[i[188]||(i[188]=t("Return whether the torsion quadratic modules ")),i[189]||(i[189]=s("code",null,"T",-1)),i[190]||(i[190]=t(" and ")),i[191]||(i[191]=s("code",null,"U",-1)),i[192]||(i[192]=t(" are isometric. If yes, it also returns an isometry ")),s("mjx-container",v1,[(e(),l("svg",D1,i[186]||(i[186]=[a('',1)]))),i[187]||(i[187]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"U")])],-1))]),i[193]||(i[193]=t("."))]),i[195]||(i[195]=a(`

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[2//3 2//3    0    0    0;
                                        2//3 2//3 2//3    0 2//3;
                                           0 2//3 2//3 2//3    0;
                                           0    0 2//3 2//3    0;
@@ -86,7 +86,7 @@ import{_ as Q,c as l,j as s,a as t,a5 as a,G as h,B as p,o as e}from"./chunks/fr
 
 julia> is_bijective(phi)
 true

source

`,5))]),s("details",B1,[s("summary",null,[i[196]||(i[196]=s("a",{id:"is_anti_isometric_with_anti_isometry-Tuple{TorQuadModule, TorQuadModule}",href:"#is_anti_isometric_with_anti_isometry-Tuple{TorQuadModule, TorQuadModule}"},[s("span",{class:"jlbinding"},"is_anti_isometric_with_anti_isometry")],-1)),i[197]||(i[197]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[206]||(i[206]=a(`
julia
is_anti_isometric_with_anti_isometry(T::TorQuadModule, U::TorQuadModule)
-                                                 -> Bool, TorQuadModuleMap
`,1)),s("p",null,[i[200]||(i[200]=t("Return whether there exists an anti-isometry between the torsion quadratic modules ")),i[201]||(i[201]=s("code",null,"T",-1)),i[202]||(i[202]=t(" and ")),i[203]||(i[203]=s("code",null,"U",-1)),i[204]||(i[204]=t(". If yes, it returns such an anti-isometry ")),s("mjx-container",j1,[(e(),l("svg",Z1,i[198]||(i[198]=[a('',1)]))),i[199]||(i[199]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"U")])],-1))]),i[205]||(i[205]=t("."))]),i[207]||(i[207]=a(`

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[4//5;])
+                                                 -> Bool, TorQuadModuleMap
`,1)),s("p",null,[i[200]||(i[200]=t("Return whether there exists an anti-isometry between the torsion quadratic modules ")),i[201]||(i[201]=s("code",null,"T",-1)),i[202]||(i[202]=t(" and ")),i[203]||(i[203]=s("code",null,"U",-1)),i[204]||(i[204]=t(". If yes, it returns such an anti-isometry ")),s("mjx-container",j1,[(e(),l("svg",Z1,i[198]||(i[198]=[a('',1)]))),i[199]||(i[199]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"U")])],-1))]),i[205]||(i[205]=t("."))]),i[207]||(i[207]=a(`

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[4//5;])
 Finite quadratic module
   over integer ring
 Abelian group: Z/5
@@ -146,7 +146,7 @@ import{_ as Q,c as l,j as s,a as t,a5 as a,G as h,B as p,o as e}from"./chunks/fr
 julia> a = gens(T)[1];
 
 julia> a*a == -phi(a)*phi(a)
-true

source

`,5))]),i[411]||(i[411]=s("h3",{id:"Primary-and-elementary-modules",tabindex:"-1"},[t("Primary and elementary modules "),s("a",{class:"header-anchor",href:"#Primary-and-elementary-modules","aria-label":'Permalink to "Primary and elementary modules {#Primary-and-elementary-modules}"'},"​")],-1)),s("details",A1,[s("summary",null,[i[208]||(i[208]=s("a",{id:"is_primary_with_prime-Tuple{TorQuadModule}",href:"#is_primary_with_prime-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),i[209]||(i[209]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[210]||(i[210]=a('
julia
is_primary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not primary, the second return value is -1 by default.

source

',4))]),s("details",V1,[s("summary",null,[i[211]||(i[211]=s("a",{id:"is_primary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_primary")],-1)),i[212]||(i[212]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[213]||(i[213]=a('
julia
is_primary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group.

source

',3))]),s("details",q1,[s("summary",null,[i[214]||(i[214]=s("a",{id:"is_elementary_with_prime-Tuple{TorQuadModule}",href:"#is_elementary_with_prime-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),i[215]||(i[215]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[216]||(i[216]=a('
julia
is_elementary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group, for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not elementary, the second return value is -1 by default.

source

',4))]),s("details",O1,[s("summary",null,[i[217]||(i[217]=s("a",{id:"is_elementary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_elementary")],-1)),i[218]||(i[218]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[219]||(i[219]=a('
julia
is_elementary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group.

source

',3))]),i[412]||(i[412]=s("h3",{id:"Smith-normal-form",tabindex:"-1"},[t("Smith normal form "),s("a",{class:"header-anchor",href:"#Smith-normal-form","aria-label":'Permalink to "Smith normal form {#Smith-normal-form}"'},"​")],-1)),s("details",R1,[s("summary",null,[i[220]||(i[220]=s("a",{id:"snf-Tuple{TorQuadModule}",href:"#snf-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"snf")],-1)),i[221]||(i[221]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[234]||(i[234]=a('
julia
snf(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap
',1)),s("p",null,[i[224]||(i[224]=t("Given a torsion quadratic module ")),i[225]||(i[225]=s("code",null,"T",-1)),i[226]||(i[226]=t(", return a torsion quadratic module ")),i[227]||(i[227]=s("code",null,"S",-1)),i[228]||(i[228]=t(", isometric to ")),i[229]||(i[229]=s("code",null,"T",-1)),i[230]||(i[230]=t(", such that the underlying abelian group of ")),i[231]||(i[231]=s("code",null,"S",-1)),i[232]||(i[232]=t(" is in canonical Smith normal form. It comes with an isometry ")),s("mjx-container",G1,[(e(),l("svg",S1,i[222]||(i[222]=[a('',1)]))),i[223]||(i[223]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",null,":"),s("mi",null,"S"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"T")])],-1))]),i[233]||(i[233]=t("."))]),i[235]||(i[235]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",z1,[s("summary",null,[i[236]||(i[236]=s("a",{id:"is_snf-Tuple{TorQuadModule}",href:"#is_snf-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_snf")],-1)),i[237]||(i[237]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[238]||(i[238]=a('
julia
is_snf(T::TorQuadModule) -> Bool

Given a torsion quadratic module T, return whether its underlying abelian group is in Smith normal form.

source

',3))]),i[413]||(i[413]=a('

Discriminant Groups

See [6] for the general theory of discriminant groups. They are particularly useful to work with primitive embeddings of integral integer quadratic lattices.

From a lattice

',3)),s("details",I1,[s("summary",null,[i[239]||(i[239]=s("a",{id:"discriminant_group-Tuple{ZZLat}",href:"#discriminant_group-Tuple{ZZLat}"},[s("span",{class:"jlbinding"},"discriminant_group")],-1)),i[240]||(i[240]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[249]||(i[249]=a('
julia
discriminant_group(L::ZZLat) -> TorQuadModule

Return the discriminant group of L.

The discriminant group of an integral lattice L is the finite abelian group D = dual(L)/L.

It comes equipped with the discriminant bilinear form

',4)),s("mjx-container",J1,[(e(),l("svg",N1,i[241]||(i[241]=[a('',1)]))),i[242]||(i[242]=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"D"),s("mo",null,"×"),s("mi",null,"D"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Q")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mstyle",{scriptlevel:"0"},[s("mspace",{width:"2em"})]),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",{stretchy:"false"},")"),s("mo",{stretchy:"false"},"↦"),s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mo",null,".")])],-1))]),s("p",null,[i[245]||(i[245]=t("If ")),i[246]||(i[246]=s("code",null,"L",-1)),i[247]||(i[247]=t(" is even, then the discriminant group is equipped with the discriminant quadratic form ")),s("mjx-container",X1,[(e(),l("svg",P1,i[243]||(i[243]=[a('',1)]))),i[244]||(i[244]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"D"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Q")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mn",null,"2"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mo",null,","),s("mi",null,"x"),s("mo",{stretchy:"false"},"↦"),s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"x"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mn",null,"2"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),i[248]||(i[248]=t("."))]),i[250]||(i[250]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[414]||(i[414]=s("h3",{id:"From-a-matrix",tabindex:"-1"},[t("From a matrix "),s("a",{class:"header-anchor",href:"#From-a-matrix","aria-label":'Permalink to "From a matrix {#From-a-matrix}"'},"​")],-1)),s("details",U1,[s("summary",null,[i[251]||(i[251]=s("a",{id:"torsion_quadratic_module-Tuple{QQMatrix}",href:"#torsion_quadratic_module-Tuple{QQMatrix}"},[s("span",{class:"jlbinding"},"torsion_quadratic_module")],-1)),i[252]||(i[252]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[253]||(i[253]=a(`
julia
torsion_quadratic_module(q::QQMatrix) -> TorQuadModule

Return a torsion quadratic module with gram matrix given by q and value module Q/Z. If all the diagonal entries of q have: either even numerator or even denominator, then the value module of the quadratic form is Q/2Z

Example

julia
julia> torsion_quadratic_module(QQ[1//6;])
+true

source

`,5))]),i[411]||(i[411]=s("h3",{id:"Primary-and-elementary-modules",tabindex:"-1"},[t("Primary and elementary modules "),s("a",{class:"header-anchor",href:"#Primary-and-elementary-modules","aria-label":'Permalink to "Primary and elementary modules {#Primary-and-elementary-modules}"'},"​")],-1)),s("details",A1,[s("summary",null,[i[208]||(i[208]=s("a",{id:"is_primary_with_prime-Tuple{TorQuadModule}",href:"#is_primary_with_prime-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),i[209]||(i[209]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[210]||(i[210]=a('
julia
is_primary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not primary, the second return value is -1 by default.

source

',4))]),s("details",V1,[s("summary",null,[i[211]||(i[211]=s("a",{id:"is_primary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_primary")],-1)),i[212]||(i[212]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[213]||(i[213]=a('
julia
is_primary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group.

source

',3))]),s("details",q1,[s("summary",null,[i[214]||(i[214]=s("a",{id:"is_elementary_with_prime-Tuple{TorQuadModule}",href:"#is_elementary_with_prime-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),i[215]||(i[215]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[216]||(i[216]=a('
julia
is_elementary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group, for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not elementary, the second return value is -1 by default.

source

',4))]),s("details",O1,[s("summary",null,[i[217]||(i[217]=s("a",{id:"is_elementary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_elementary")],-1)),i[218]||(i[218]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[219]||(i[219]=a('
julia
is_elementary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group.

source

',3))]),i[412]||(i[412]=s("h3",{id:"Smith-normal-form",tabindex:"-1"},[t("Smith normal form "),s("a",{class:"header-anchor",href:"#Smith-normal-form","aria-label":'Permalink to "Smith normal form {#Smith-normal-form}"'},"​")],-1)),s("details",R1,[s("summary",null,[i[220]||(i[220]=s("a",{id:"snf-Tuple{TorQuadModule}",href:"#snf-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"snf")],-1)),i[221]||(i[221]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[234]||(i[234]=a('
julia
snf(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap
',1)),s("p",null,[i[224]||(i[224]=t("Given a torsion quadratic module ")),i[225]||(i[225]=s("code",null,"T",-1)),i[226]||(i[226]=t(", return a torsion quadratic module ")),i[227]||(i[227]=s("code",null,"S",-1)),i[228]||(i[228]=t(", isometric to ")),i[229]||(i[229]=s("code",null,"T",-1)),i[230]||(i[230]=t(", such that the underlying abelian group of ")),i[231]||(i[231]=s("code",null,"S",-1)),i[232]||(i[232]=t(" is in canonical Smith normal form. It comes with an isometry ")),s("mjx-container",G1,[(e(),l("svg",S1,i[222]||(i[222]=[a('',1)]))),i[223]||(i[223]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",null,":"),s("mi",null,"S"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"T")])],-1))]),i[233]||(i[233]=t("."))]),i[235]||(i[235]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",z1,[s("summary",null,[i[236]||(i[236]=s("a",{id:"is_snf-Tuple{TorQuadModule}",href:"#is_snf-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_snf")],-1)),i[237]||(i[237]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[238]||(i[238]=a('
julia
is_snf(T::TorQuadModule) -> Bool

Given a torsion quadratic module T, return whether its underlying abelian group is in Smith normal form.

source

',3))]),i[413]||(i[413]=a('

Discriminant Groups

See [6] for the general theory of discriminant groups. They are particularly useful to work with primitive embeddings of integral integer quadratic lattices.

From a lattice

',3)),s("details",I1,[s("summary",null,[i[239]||(i[239]=s("a",{id:"discriminant_group-Tuple{ZZLat}",href:"#discriminant_group-Tuple{ZZLat}"},[s("span",{class:"jlbinding"},"discriminant_group")],-1)),i[240]||(i[240]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[249]||(i[249]=a('
julia
discriminant_group(L::ZZLat) -> TorQuadModule

Return the discriminant group of L.

The discriminant group of an integral lattice L is the finite abelian group D = dual(L)/L.

It comes equipped with the discriminant bilinear form

',4)),s("mjx-container",J1,[(e(),l("svg",N1,i[241]||(i[241]=[a('',1)]))),i[242]||(i[242]=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"D"),s("mo",null,"×"),s("mi",null,"D"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Q")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mstyle",{scriptlevel:"0"},[s("mspace",{width:"2em"})]),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",{stretchy:"false"},")"),s("mo",{stretchy:"false"},"↦"),s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mo",null,".")])],-1))]),s("p",null,[i[245]||(i[245]=t("If ")),i[246]||(i[246]=s("code",null,"L",-1)),i[247]||(i[247]=t(" is even, then the discriminant group is equipped with the discriminant quadratic form ")),s("mjx-container",X1,[(e(),l("svg",P1,i[243]||(i[243]=[a('',1)]))),i[244]||(i[244]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"D"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Q")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mn",null,"2"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mo",null,","),s("mi",null,"x"),s("mo",{stretchy:"false"},"↦"),s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"x"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mn",null,"2"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),i[248]||(i[248]=t("."))]),i[250]||(i[250]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[414]||(i[414]=s("h3",{id:"From-a-matrix",tabindex:"-1"},[t("From a matrix "),s("a",{class:"header-anchor",href:"#From-a-matrix","aria-label":'Permalink to "From a matrix {#From-a-matrix}"'},"​")],-1)),s("details",U1,[s("summary",null,[i[251]||(i[251]=s("a",{id:"torsion_quadratic_module-Tuple{QQMatrix}",href:"#torsion_quadratic_module-Tuple{QQMatrix}"},[s("span",{class:"jlbinding"},"torsion_quadratic_module")],-1)),i[252]||(i[252]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[253]||(i[253]=a(`
julia
torsion_quadratic_module(q::QQMatrix) -> TorQuadModule

Return a torsion quadratic module with gram matrix given by q and value module Q/Z. If all the diagonal entries of q have: either even numerator or even denominator, then the value module of the quadratic form is Q/2Z

Example

julia
julia> torsion_quadratic_module(QQ[1//6;])
 Finite quadratic module
   over integer ring
 Abelian group: Z/6
@@ -180,9 +180,9 @@ import{_ as Q,c as l,j as s,a as t,a5 as a,G as h,B as p,o as e}from"./chunks/fr
 Bilinear value module: Q/Z
 Quadratic value module: Q/Z
 Gram matrix quadratic form:
-[1//3]

source

`,5))]),i[415]||(i[415]=s("h3",{id:"Rescaling-the-form",tabindex:"-1"},[t("Rescaling the form "),s("a",{class:"header-anchor",href:"#Rescaling-the-form","aria-label":'Permalink to "Rescaling the form {#Rescaling-the-form}"'},"​")],-1)),s("details",$1,[s("summary",null,[i[254]||(i[254]=s("a",{id:"rescale-Tuple{TorQuadModule, RingElement}",href:"#rescale-Tuple{TorQuadModule, RingElement}"},[s("span",{class:"jlbinding"},"rescale")],-1)),i[255]||(i[255]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[264]||(i[264]=a('
julia
rescale(T::TorQuadModule, k::RingElement) -> TorQuadModule
',1)),s("p",null,[i[258]||(i[258]=t("Return the torsion quadratic module with quadratic form scaled by ")),s("mjx-container",K1,[(e(),l("svg",W1,i[256]||(i[256]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),i[257]||(i[257]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"k")])],-1))]),i[259]||(i[259]=t(", where k is a non-zero rational number. If the old form was defined modulo ")),i[260]||(i[260]=s("code",null,"n",-1)),i[261]||(i[261]=t(", then the new form is defined modulo ")),i[262]||(i[262]=s("code",null,"n k",-1)),i[263]||(i[263]=t("."))]),i[265]||(i[265]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[416]||(i[416]=s("h3",{id:"invariants",tabindex:"-1"},[t("Invariants "),s("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),s("details",Y1,[s("summary",null,[i[266]||(i[266]=s("a",{id:"is_degenerate-Tuple{TorQuadModule}",href:"#is_degenerate-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_degenerate")],-1)),i[267]||(i[267]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[268]||(i[268]=a('
julia
is_degenerate(T::TorQuadModule) -> Bool

Return true if the underlying bilinear form is degenerate.

source

',3))]),s("details",_1,[s("summary",null,[i[269]||(i[269]=s("a",{id:"is_semi_regular-Tuple{TorQuadModule}",href:"#is_semi_regular-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_semi_regular")],-1)),i[270]||(i[270]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[271]||(i[271]=a('
julia
is_semi_regular(T::TorQuadModule) -> Bool

Return whether T is semi-regular, that is its quadratic radical is trivial (see radical_quadratic).

source

',3))]),s("details",s2,[s("summary",null,[i[272]||(i[272]=s("a",{id:"radical_bilinear-Tuple{TorQuadModule}",href:"#radical_bilinear-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"radical_bilinear")],-1)),i[273]||(i[273]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[274]||(i[274]=a('
julia
radical_bilinear(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \\{x \\in T | b(x,T) = 0\\} of the bilinear form b on T.

source

',3))]),s("details",i2,[s("summary",null,[i[275]||(i[275]=s("a",{id:"radical_quadratic-Tuple{TorQuadModule}",href:"#radical_quadratic-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"radical_quadratic")],-1)),i[276]||(i[276]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[277]||(i[277]=a('
julia
radical_quadratic(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \\{x \\in T | b(x,T) = 0 and q(x)=0\\} of the quadratic form q on T.

source

',3))]),s("details",t2,[s("summary",null,[i[278]||(i[278]=s("a",{id:"normal_form-Tuple{TorQuadModule}",href:"#normal_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"normal_form")],-1)),i[279]||(i[279]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[280]||(i[280]=a('
julia
normal_form(T::TorQuadModule; partial=false) -> TorQuadModule, TorQuadModuleMap

Return the normal form N of the given torsion quadratic module T along with the projection T -> N.

Let K be the radical of the quadratic form of T. Then N = T/K is half-regular. Two half-regular torsion quadratic modules are isometric if and only if they have equal normal forms.

source

',4))]),i[417]||(i[417]=s("h3",{id:"genus",tabindex:"-1"},[t("Genus "),s("a",{class:"header-anchor",href:"#genus","aria-label":'Permalink to "Genus"'},"​")],-1)),s("details",a2,[s("summary",null,[i[281]||(i[281]=s("a",{id:"genus-Tuple{TorQuadModule, Tuple{Int64, Int64}}",href:"#genus-Tuple{TorQuadModule, Tuple{Int64, Int64}}"},[s("span",{class:"jlbinding"},"genus")],-1)),i[282]||(i[282]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[283]||(i[283]=a(`
julia
genus(T::TorQuadModule, signature_pair::Tuple{Int, Int};
+[1//3]

source

`,5))]),i[415]||(i[415]=s("h3",{id:"Rescaling-the-form",tabindex:"-1"},[t("Rescaling the form "),s("a",{class:"header-anchor",href:"#Rescaling-the-form","aria-label":'Permalink to "Rescaling the form {#Rescaling-the-form}"'},"​")],-1)),s("details",$1,[s("summary",null,[i[254]||(i[254]=s("a",{id:"rescale-Tuple{TorQuadModule, RingElement}",href:"#rescale-Tuple{TorQuadModule, RingElement}"},[s("span",{class:"jlbinding"},"rescale")],-1)),i[255]||(i[255]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[264]||(i[264]=a('
julia
rescale(T::TorQuadModule, k::RingElement) -> TorQuadModule
',1)),s("p",null,[i[258]||(i[258]=t("Return the torsion quadratic module with quadratic form scaled by ")),s("mjx-container",K1,[(e(),l("svg",W1,i[256]||(i[256]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),i[257]||(i[257]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"k")])],-1))]),i[259]||(i[259]=t(", where k is a non-zero rational number. If the old form was defined modulo ")),i[260]||(i[260]=s("code",null,"n",-1)),i[261]||(i[261]=t(", then the new form is defined modulo ")),i[262]||(i[262]=s("code",null,"n k",-1)),i[263]||(i[263]=t("."))]),i[265]||(i[265]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[416]||(i[416]=s("h3",{id:"invariants",tabindex:"-1"},[t("Invariants "),s("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),s("details",Y1,[s("summary",null,[i[266]||(i[266]=s("a",{id:"is_degenerate-Tuple{TorQuadModule}",href:"#is_degenerate-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_degenerate")],-1)),i[267]||(i[267]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[268]||(i[268]=a('
julia
is_degenerate(T::TorQuadModule) -> Bool

Return true if the underlying bilinear form is degenerate.

source

',3))]),s("details",_1,[s("summary",null,[i[269]||(i[269]=s("a",{id:"is_semi_regular-Tuple{TorQuadModule}",href:"#is_semi_regular-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_semi_regular")],-1)),i[270]||(i[270]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[271]||(i[271]=a('
julia
is_semi_regular(T::TorQuadModule) -> Bool

Return whether T is semi-regular, that is its quadratic radical is trivial (see radical_quadratic).

source

',3))]),s("details",s2,[s("summary",null,[i[272]||(i[272]=s("a",{id:"radical_bilinear-Tuple{TorQuadModule}",href:"#radical_bilinear-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"radical_bilinear")],-1)),i[273]||(i[273]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[274]||(i[274]=a('
julia
radical_bilinear(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \\{x \\in T | b(x,T) = 0\\} of the bilinear form b on T.

source

',3))]),s("details",i2,[s("summary",null,[i[275]||(i[275]=s("a",{id:"radical_quadratic-Tuple{TorQuadModule}",href:"#radical_quadratic-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"radical_quadratic")],-1)),i[276]||(i[276]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[277]||(i[277]=a('
julia
radical_quadratic(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \\{x \\in T | b(x,T) = 0 and q(x)=0\\} of the quadratic form q on T.

source

',3))]),s("details",t2,[s("summary",null,[i[278]||(i[278]=s("a",{id:"normal_form-Tuple{TorQuadModule}",href:"#normal_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"normal_form")],-1)),i[279]||(i[279]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[280]||(i[280]=a('
julia
normal_form(T::TorQuadModule; partial=false) -> TorQuadModule, TorQuadModuleMap

Return the normal form N of the given torsion quadratic module T along with the projection T -> N.

Let K be the radical of the quadratic form of T. Then N = T/K is half-regular. Two half-regular torsion quadratic modules are isometric if and only if they have equal normal forms.

source

',4))]),i[417]||(i[417]=s("h3",{id:"genus",tabindex:"-1"},[t("Genus "),s("a",{class:"header-anchor",href:"#genus","aria-label":'Permalink to "Genus"'},"​")],-1)),s("details",a2,[s("summary",null,[i[281]||(i[281]=s("a",{id:"genus-Tuple{TorQuadModule, Tuple{Int64, Int64}}",href:"#genus-Tuple{TorQuadModule, Tuple{Int64, Int64}}"},[s("span",{class:"jlbinding"},"genus")],-1)),i[282]||(i[282]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[283]||(i[283]=a(`
julia
genus(T::TorQuadModule, signature_pair::Tuple{Int, Int};
                         parity::RationalUnion = modulus_quadratic_form(T))
-                                                                -> ZZGenus

Return the genus of an integer lattice whose discriminant group has the bilinear form of T, the given signature_pair and the given parity.

The argument parity is one of the following: either parity == 1 for genera of odd lattices, or parity == 2 for even lattices. By default, parity is set to be as the parity of the quadratic form on T

If no such genus exists, raise an error.

Reference

[6] Corollary 1.9.4 and 1.16.3.

source

`,7))]),s("details",l2,[s("summary",null,[i[284]||(i[284]=s("a",{id:"brown_invariant-Tuple{TorQuadModule}",href:"#brown_invariant-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"brown_invariant")],-1)),i[285]||(i[285]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[288]||(i[288]=a('
julia
brown_invariant(self::TorQuadModule) -> Nemo.zzModRingElem

Return the Brown invariant of this torsion quadratic form.

Let (D,q) be a torsion quadratic module with values in Q / 2Z. The Brown invariant Br(D,q) in Z/8Z is defined by the equation

',3)),s("mjx-container",e2,[(e(),l("svg",n2,i[286]||(i[286]=[a('',1)]))),i[287]||(i[287]=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"exp"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mn",null,"2"),s("mi",null,"π"),s("mi",null,"i")]),s("mn",null,"8")]),s("mi",null,"B"),s("mi",null,"r"),s("mo",{stretchy:"false"},"("),s("mi",null,"q"),s("mo",{stretchy:"false"},")"),s("mo",{"data-mjx-texclass":"CLOSE"},")")]),s("mo",null,"="),s("mfrac",null,[s("mn",null,"1"),s("msqrt",null,[s("mi",null,"D")])]),s("munder",null,[s("mo",{"data-mjx-texclass":"OP"},"∑"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"x"),s("mo",null,"∈"),s("mi",null,"D")])]),s("mi",null,"exp"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mi",null,"i"),s("mi",null,"π"),s("mi",null,"q"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",{stretchy:"false"},")"),s("mo",{stretchy:"false"},")"),s("mo",null,".")])],-1))]),i[289]||(i[289]=a(`

The Brown invariant is additive with respect to direct sums of torsion quadratic modules.

Examples

julia
julia> L = integer_lattice(gram=matrix(ZZ, [[2,-1,0,0],[-1,2,-1,-1],[0,-1,2,0],[0,-1,0,2]]));
+                                                                -> ZZGenus

Return the genus of an integer lattice whose discriminant group has the bilinear form of T, the given signature_pair and the given parity.

The argument parity is one of the following: either parity == 1 for genera of odd lattices, or parity == 2 for even lattices. By default, parity is set to be as the parity of the quadratic form on T

If no such genus exists, raise an error.

Reference

[6] Corollary 1.9.4 and 1.16.3.

source

`,7))]),s("details",l2,[s("summary",null,[i[284]||(i[284]=s("a",{id:"brown_invariant-Tuple{TorQuadModule}",href:"#brown_invariant-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"brown_invariant")],-1)),i[285]||(i[285]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[288]||(i[288]=a('
julia
brown_invariant(self::TorQuadModule) -> Nemo.zzModRingElem

Return the Brown invariant of this torsion quadratic form.

Let (D,q) be a torsion quadratic module with values in Q / 2Z. The Brown invariant Br(D,q) in Z/8Z is defined by the equation

',3)),s("mjx-container",e2,[(e(),l("svg",n2,i[286]||(i[286]=[a('',1)]))),i[287]||(i[287]=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"exp"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mn",null,"2"),s("mi",null,"π"),s("mi",null,"i")]),s("mn",null,"8")]),s("mi",null,"B"),s("mi",null,"r"),s("mo",{stretchy:"false"},"("),s("mi",null,"q"),s("mo",{stretchy:"false"},")"),s("mo",{"data-mjx-texclass":"CLOSE"},")")]),s("mo",null,"="),s("mfrac",null,[s("mn",null,"1"),s("msqrt",null,[s("mi",null,"D")])]),s("munder",null,[s("mo",{"data-mjx-texclass":"OP"},"∑"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"x"),s("mo",null,"∈"),s("mi",null,"D")])]),s("mi",null,"exp"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mi",null,"i"),s("mi",null,"π"),s("mi",null,"q"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",{stretchy:"false"},")"),s("mo",{stretchy:"false"},")"),s("mo",null,".")])],-1))]),i[289]||(i[289]=a(`

The Brown invariant is additive with respect to direct sums of torsion quadratic modules.

Examples

julia
julia> L = integer_lattice(gram=matrix(ZZ, [[2,-1,0,0],[-1,2,-1,-1],[0,-1,2,0],[0,-1,0,2]]));
 
 julia> T = Hecke.discriminant_group(L);
 
diff --git a/v0.34.8/assets/manual_quad_forms_discriminant_group.md.COmgBTDB.lean.js b/v0.34.8/assets/manual_quad_forms_discriminant_group.md.COmgBTDB.lean.js
index 80d10ae754..f192c40a4f 100644
--- a/v0.34.8/assets/manual_quad_forms_discriminant_group.md.COmgBTDB.lean.js
+++ b/v0.34.8/assets/manual_quad_forms_discriminant_group.md.COmgBTDB.lean.js
@@ -35,7 +35,7 @@ import{_ as Q,c as l,j as s,a as t,a5 as a,G as h,B as p,o as e}from"./chunks/fr
  1
  3//2
  1
`,3)),s("p",null,[i[87]||(i[87]=t("N.B. Since there are no elements of ")),s("mjx-container",P,[(e(),l("svg",U,i[85]||(i[85]=[a('',1)]))),i[86]||(i[86]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),i[88]||(i[88]=t("-lattices, we think of elements of ")),i[89]||(i[89]=s("code",null,"M",-1)),i[90]||(i[90]=t(" as elements of the ambient vector space. Thus if ")),i[91]||(i[91]=s("code",null,"v::Vector",-1)),i[92]||(i[92]=t(" is such an element then the coordinates with respec to the basis of ")),i[93]||(i[93]=s("code",null,"M",-1)),i[94]||(i[94]=t(" are given by ")),i[95]||(i[95]=s("code",null,"solve(basis_matrix(M), v; side = :left)",-1)),i[96]||(i[96]=t("."))]),i[99]||(i[99]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[405]||(i[405]=s("p",null,[t("Most of the functionality mirrors that of "),s("code",null,"AbGrp"),t(" its elements and homomorphisms. Here we display the part that is specific to elements of torsion quadratic modules.")],-1)),i[406]||(i[406]=s("h3",{id:"attributes",tabindex:"-1"},[t("Attributes "),s("a",{class:"header-anchor",href:"#attributes","aria-label":'Permalink to "Attributes"'},"​")],-1)),s("details",$,[s("summary",null,[i[100]||(i[100]=s("a",{id:"abelian_group-Tuple{TorQuadModule}",href:"#abelian_group-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"abelian_group")],-1)),i[101]||(i[101]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[102]||(i[102]=a('
julia
abelian_group(T::TorQuadModule) -> FinGenAbGroup

Return the underlying abelian group of T.

source

',3))]),s("details",K,[s("summary",null,[i[103]||(i[103]=s("a",{id:"cover-Tuple{TorQuadModule}",href:"#cover-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"cover")],-1)),i[104]||(i[104]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[112]||(i[112]=a('
julia
cover(T::TorQuadModule) -> ZZLat
',1)),s("p",null,[i[109]||(i[109]=t("For ")),s("mjx-container",W,[(e(),l("svg",Y,i[105]||(i[105]=[a('',1)]))),i[106]||(i[106]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",null,"="),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N")])],-1))]),i[110]||(i[110]=t(" this returns ")),s("mjx-container",_,[(e(),l("svg",s1,i[107]||(i[107]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),i[108]||(i[108]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"M")])],-1))]),i[111]||(i[111]=t("."))]),i[113]||(i[113]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",i1,[s("summary",null,[i[114]||(i[114]=s("a",{id:"relations-Tuple{TorQuadModule}",href:"#relations-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"relations")],-1)),i[115]||(i[115]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[123]||(i[123]=a('
julia
relations(T::TorQuadModule) -> ZZLat
',1)),s("p",null,[i[120]||(i[120]=t("For ")),s("mjx-container",t1,[(e(),l("svg",a1,i[116]||(i[116]=[a('',1)]))),i[117]||(i[117]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",null,"="),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N")])],-1))]),i[121]||(i[121]=t(" this returns ")),s("mjx-container",l1,[(e(),l("svg",e1,i[118]||(i[118]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),i[119]||(i[119]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"N")])],-1))]),i[122]||(i[122]=t("."))]),i[124]||(i[124]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",n1,[s("summary",null,[i[125]||(i[125]=s("a",{id:"value_module-Tuple{TorQuadModule}",href:"#value_module-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"value_module")],-1)),i[126]||(i[126]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[127]||(i[127]=a('
julia
value_module(T::TorQuadModule) -> QmodnZ

Return the value module Q/nZ of the bilinear form of T.

source

',3))]),s("details",h1,[s("summary",null,[i[128]||(i[128]=s("a",{id:"value_module_quadratic_form-Tuple{TorQuadModule}",href:"#value_module_quadratic_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"value_module_quadratic_form")],-1)),i[129]||(i[129]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[130]||(i[130]=a('
julia
value_module_quadratic_form(T::TorQuadModule) -> QmodnZ

Return the value module Q/mZ of the quadratic form of T.

source

',3))]),s("details",Q1,[s("summary",null,[i[131]||(i[131]=s("a",{id:"gram_matrix_bilinear-Tuple{TorQuadModule}",href:"#gram_matrix_bilinear-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"gram_matrix_bilinear")],-1)),i[132]||(i[132]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[133]||(i[133]=a('
julia
gram_matrix_bilinear(T::TorQuadModule) -> QQMatrix

Return the gram matrix of the bilinear form of T.

source

',3))]),s("details",p1,[s("summary",null,[i[134]||(i[134]=s("a",{id:"gram_matrix_quadratic-Tuple{TorQuadModule}",href:"#gram_matrix_quadratic-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"gram_matrix_quadratic")],-1)),i[135]||(i[135]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[136]||(i[136]=a('
julia
gram_matrix_quadratic(T::TorQuadModule) -> QQMatrix

Return the 'gram matrix' of the quadratic form of T.

The off diagonal entries are given by the bilinear form whereas the diagonal entries are given by the quadratic form.

source

',4))]),s("details",r1,[s("summary",null,[i[137]||(i[137]=s("a",{id:"modulus_bilinear_form-Tuple{TorQuadModule}",href:"#modulus_bilinear_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"modulus_bilinear_form")],-1)),i[138]||(i[138]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[139]||(i[139]=a('
julia
modulus_bilinear_form(T::TorQuadModule) -> QQFieldElem

Return the modulus of the value module of the bilinear form ofT.

source

',3))]),s("details",d1,[s("summary",null,[i[140]||(i[140]=s("a",{id:"modulus_quadratic_form-Tuple{TorQuadModule}",href:"#modulus_quadratic_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"modulus_quadratic_form")],-1)),i[141]||(i[141]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[142]||(i[142]=a('
julia
modulus_quadratic_form(T::TorQuadModule) -> QQFieldElem

Return the modulus of the value module of the quadratic form of T.

source

',3))]),i[407]||(i[407]=s("h3",{id:"elements",tabindex:"-1"},[t("Elements "),s("a",{class:"header-anchor",href:"#elements","aria-label":'Permalink to "Elements"'},"​")],-1)),s("details",o1,[s("summary",null,[i[143]||(i[143]=s("a",{id:"quadratic_product-Tuple{TorQuadModuleElem}",href:"#quadratic_product-Tuple{TorQuadModuleElem}"},[s("span",{class:"jlbinding"},"quadratic_product")],-1)),i[144]||(i[144]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[152]||(i[152]=a('
julia
quadratic_product(a::TorQuadModuleElem) -> QmodnZElem

Return the quadratic product of a.

',2)),s("p",null,[i[149]||(i[149]=t("It is defined in terms of a representative: for ")),s("mjx-container",k1,[(e(),l("svg",T1,i[145]||(i[145]=[a('',1)]))),i[146]||(i[146]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"b"),s("mo",null,"+"),s("mi",null,"M"),s("mo",null,"∈"),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N"),s("mo",null,"="),s("mi",null,"T")])],-1))]),i[150]||(i[150]=t(", this returns ")),s("mjx-container",m1,[(e(),l("svg",g1,i[147]||(i[147]=[a('',1)]))),i[148]||(i[148]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"b"),s("mo",null,","),s("mi",null,"b"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mi",null,"n"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),i[151]||(i[151]=t("."))]),i[153]||(i[153]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",u1,[s("summary",null,[i[154]||(i[154]=s("a",{id:"inner_product-Tuple{TorQuadModuleElem, TorQuadModuleElem}",href:"#inner_product-Tuple{TorQuadModuleElem, TorQuadModuleElem}"},[s("span",{class:"jlbinding"},"inner_product")],-1)),i[155]||(i[155]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[156]||(i[156]=a('
julia
inner_product(a::TorQuadModuleElem, b::TorQuadModuleElem) -> QmodnZElem

Return the inner product of a and b.

source

',3))]),i[408]||(i[408]=s("h3",{id:"Lift-to-the-cover",tabindex:"-1"},[t("Lift to the cover "),s("a",{class:"header-anchor",href:"#Lift-to-the-cover","aria-label":'Permalink to "Lift to the cover {#Lift-to-the-cover}"'},"​")],-1)),s("details",y1,[s("summary",null,[i[157]||(i[157]=s("a",{id:"lift-Tuple{TorQuadModuleElem}",href:"#lift-Tuple{TorQuadModuleElem}"},[s("span",{class:"jlbinding"},"lift")],-1)),i[158]||(i[158]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[166]||(i[166]=a('
julia
lift(a::TorQuadModuleElem) -> Vector{QQFieldElem}

Lift a to the ambient space of cover(parent(a)).

',2)),s("p",null,[i[163]||(i[163]=t("For ")),s("mjx-container",E1,[(e(),l("svg",c1,i[159]||(i[159]=[a('',1)]))),i[160]||(i[160]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a"),s("mo",null,"+"),s("mi",null,"N"),s("mo",null,"∈"),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N")])],-1))]),i[164]||(i[164]=t(" this returns the representative ")),s("mjx-container",x1,[(e(),l("svg",F1,i[161]||(i[161]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),i[162]||(i[162]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),i[165]||(i[165]=t("."))]),i[167]||(i[167]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",w1,[s("summary",null,[i[168]||(i[168]=s("a",{id:"representative-Tuple{TorQuadModuleElem}",href:"#representative-Tuple{TorQuadModuleElem}"},[s("span",{class:"jlbinding"},"representative")],-1)),i[169]||(i[169]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[179]||(i[179]=a('
julia
representative(a::TorQuadModuleElem) -> Vector{QQFieldElem}
',1)),s("p",null,[i[174]||(i[174]=t("For ")),s("mjx-container",C1,[(e(),l("svg",f1,i[170]||(i[170]=[a('',1)]))),i[171]||(i[171]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a"),s("mo",null,"+"),s("mi",null,"N"),s("mo",null,"∈"),s("mi",null,"M"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mi",null,"N")])],-1))]),i[175]||(i[175]=t(" this returns the representative ")),s("mjx-container",H1,[(e(),l("svg",b1,i[172]||(i[172]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D44E",d:"M33 157Q33 258 109 349T280 441Q331 441 370 392Q386 422 416 422Q429 422 439 414T449 394Q449 381 412 234T374 68Q374 43 381 35T402 26Q411 27 422 35Q443 55 463 131Q469 151 473 152Q475 153 483 153H487Q506 153 506 144Q506 138 501 117T481 63T449 13Q436 0 417 -8Q409 -10 393 -10Q359 -10 336 5T306 36L300 51Q299 52 296 50Q294 48 292 46Q233 -10 172 -10Q117 -10 75 30T33 157ZM351 328Q351 334 346 350T323 385T277 405Q242 405 210 374T160 293Q131 214 119 129Q119 126 119 118T118 106Q118 61 136 44T179 26Q217 26 254 59T298 110Q300 114 325 217T351 328Z",style:{"stroke-width":"3"}})])])],-1)]))),i[173]||(i[173]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"a")])],-1))]),i[176]||(i[176]=t(". An alias for ")),i[177]||(i[177]=s("code",null,"lift(a)",-1)),i[178]||(i[178]=t("."))]),i[180]||(i[180]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[409]||(i[409]=s("h3",{id:"Orthogonal-submodules",tabindex:"-1"},[t("Orthogonal submodules "),s("a",{class:"header-anchor",href:"#Orthogonal-submodules","aria-label":'Permalink to "Orthogonal submodules {#Orthogonal-submodules}"'},"​")],-1)),s("details",M1,[s("summary",null,[i[181]||(i[181]=s("a",{id:"orthogonal_submodule-Tuple{TorQuadModule, TorQuadModule}",href:"#orthogonal_submodule-Tuple{TorQuadModule, TorQuadModule}"},[s("span",{class:"jlbinding"},"orthogonal_submodule")],-1)),i[182]||(i[182]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[183]||(i[183]=a('
julia
orthogonal_submodule(T::TorQuadModule, S::TorQuadModule)-> TorQuadModule

Return the orthogonal submodule to the submodule S of T.

source

',3))]),i[410]||(i[410]=s("h3",{id:"isometry",tabindex:"-1"},[t("Isometry "),s("a",{class:"header-anchor",href:"#isometry","aria-label":'Permalink to "Isometry"'},"​")],-1)),s("details",L1,[s("summary",null,[i[184]||(i[184]=s("a",{id:"is_isometric_with_isometry-Tuple{TorQuadModule, TorQuadModule}",href:"#is_isometric_with_isometry-Tuple{TorQuadModule, TorQuadModule}"},[s("span",{class:"jlbinding"},"is_isometric_with_isometry")],-1)),i[185]||(i[185]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[194]||(i[194]=a(`
julia
is_isometric_with_isometry(T::TorQuadModule, U::TorQuadModule)
-                                               -> Bool, TorQuadModuleMap
`,1)),s("p",null,[i[188]||(i[188]=t("Return whether the torsion quadratic modules ")),i[189]||(i[189]=s("code",null,"T",-1)),i[190]||(i[190]=t(" and ")),i[191]||(i[191]=s("code",null,"U",-1)),i[192]||(i[192]=t(" are isometric. If yes, it also returns an isometry ")),s("mjx-container",v1,[(e(),l("svg",D1,i[186]||(i[186]=[a('',1)]))),i[187]||(i[187]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"U")])],-1))]),i[193]||(i[193]=t("."))]),i[195]||(i[195]=a(`

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[2//3 2//3    0    0    0;
+                                               -> Bool, TorQuadModuleMap
`,1)),s("p",null,[i[188]||(i[188]=t("Return whether the torsion quadratic modules ")),i[189]||(i[189]=s("code",null,"T",-1)),i[190]||(i[190]=t(" and ")),i[191]||(i[191]=s("code",null,"U",-1)),i[192]||(i[192]=t(" are isometric. If yes, it also returns an isometry ")),s("mjx-container",v1,[(e(),l("svg",D1,i[186]||(i[186]=[a('',1)]))),i[187]||(i[187]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"U")])],-1))]),i[193]||(i[193]=t("."))]),i[195]||(i[195]=a(`

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[2//3 2//3    0    0    0;
                                        2//3 2//3 2//3    0 2//3;
                                           0 2//3 2//3 2//3    0;
                                           0    0 2//3 2//3    0;
@@ -86,7 +86,7 @@ import{_ as Q,c as l,j as s,a as t,a5 as a,G as h,B as p,o as e}from"./chunks/fr
 
 julia> is_bijective(phi)
 true

source

`,5))]),s("details",B1,[s("summary",null,[i[196]||(i[196]=s("a",{id:"is_anti_isometric_with_anti_isometry-Tuple{TorQuadModule, TorQuadModule}",href:"#is_anti_isometric_with_anti_isometry-Tuple{TorQuadModule, TorQuadModule}"},[s("span",{class:"jlbinding"},"is_anti_isometric_with_anti_isometry")],-1)),i[197]||(i[197]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[206]||(i[206]=a(`
julia
is_anti_isometric_with_anti_isometry(T::TorQuadModule, U::TorQuadModule)
-                                                 -> Bool, TorQuadModuleMap
`,1)),s("p",null,[i[200]||(i[200]=t("Return whether there exists an anti-isometry between the torsion quadratic modules ")),i[201]||(i[201]=s("code",null,"T",-1)),i[202]||(i[202]=t(" and ")),i[203]||(i[203]=s("code",null,"U",-1)),i[204]||(i[204]=t(". If yes, it returns such an anti-isometry ")),s("mjx-container",j1,[(e(),l("svg",Z1,i[198]||(i[198]=[a('',1)]))),i[199]||(i[199]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"U")])],-1))]),i[205]||(i[205]=t("."))]),i[207]||(i[207]=a(`

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[4//5;])
+                                                 -> Bool, TorQuadModuleMap
`,1)),s("p",null,[i[200]||(i[200]=t("Return whether there exists an anti-isometry between the torsion quadratic modules ")),i[201]||(i[201]=s("code",null,"T",-1)),i[202]||(i[202]=t(" and ")),i[203]||(i[203]=s("code",null,"U",-1)),i[204]||(i[204]=t(". If yes, it returns such an anti-isometry ")),s("mjx-container",j1,[(e(),l("svg",Z1,i[198]||(i[198]=[a('',1)]))),i[199]||(i[199]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"T"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"U")])],-1))]),i[205]||(i[205]=t("."))]),i[207]||(i[207]=a(`

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[4//5;])
 Finite quadratic module
   over integer ring
 Abelian group: Z/5
@@ -146,7 +146,7 @@ import{_ as Q,c as l,j as s,a as t,a5 as a,G as h,B as p,o as e}from"./chunks/fr
 julia> a = gens(T)[1];
 
 julia> a*a == -phi(a)*phi(a)
-true

source

`,5))]),i[411]||(i[411]=s("h3",{id:"Primary-and-elementary-modules",tabindex:"-1"},[t("Primary and elementary modules "),s("a",{class:"header-anchor",href:"#Primary-and-elementary-modules","aria-label":'Permalink to "Primary and elementary modules {#Primary-and-elementary-modules}"'},"​")],-1)),s("details",A1,[s("summary",null,[i[208]||(i[208]=s("a",{id:"is_primary_with_prime-Tuple{TorQuadModule}",href:"#is_primary_with_prime-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),i[209]||(i[209]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[210]||(i[210]=a('
julia
is_primary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not primary, the second return value is -1 by default.

source

',4))]),s("details",V1,[s("summary",null,[i[211]||(i[211]=s("a",{id:"is_primary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_primary")],-1)),i[212]||(i[212]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[213]||(i[213]=a('
julia
is_primary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group.

source

',3))]),s("details",q1,[s("summary",null,[i[214]||(i[214]=s("a",{id:"is_elementary_with_prime-Tuple{TorQuadModule}",href:"#is_elementary_with_prime-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),i[215]||(i[215]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[216]||(i[216]=a('
julia
is_elementary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group, for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not elementary, the second return value is -1 by default.

source

',4))]),s("details",O1,[s("summary",null,[i[217]||(i[217]=s("a",{id:"is_elementary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_elementary")],-1)),i[218]||(i[218]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[219]||(i[219]=a('
julia
is_elementary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group.

source

',3))]),i[412]||(i[412]=s("h3",{id:"Smith-normal-form",tabindex:"-1"},[t("Smith normal form "),s("a",{class:"header-anchor",href:"#Smith-normal-form","aria-label":'Permalink to "Smith normal form {#Smith-normal-form}"'},"​")],-1)),s("details",R1,[s("summary",null,[i[220]||(i[220]=s("a",{id:"snf-Tuple{TorQuadModule}",href:"#snf-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"snf")],-1)),i[221]||(i[221]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[234]||(i[234]=a('
julia
snf(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap
',1)),s("p",null,[i[224]||(i[224]=t("Given a torsion quadratic module ")),i[225]||(i[225]=s("code",null,"T",-1)),i[226]||(i[226]=t(", return a torsion quadratic module ")),i[227]||(i[227]=s("code",null,"S",-1)),i[228]||(i[228]=t(", isometric to ")),i[229]||(i[229]=s("code",null,"T",-1)),i[230]||(i[230]=t(", such that the underlying abelian group of ")),i[231]||(i[231]=s("code",null,"S",-1)),i[232]||(i[232]=t(" is in canonical Smith normal form. It comes with an isometry ")),s("mjx-container",G1,[(e(),l("svg",S1,i[222]||(i[222]=[a('',1)]))),i[223]||(i[223]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",null,":"),s("mi",null,"S"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"T")])],-1))]),i[233]||(i[233]=t("."))]),i[235]||(i[235]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",z1,[s("summary",null,[i[236]||(i[236]=s("a",{id:"is_snf-Tuple{TorQuadModule}",href:"#is_snf-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_snf")],-1)),i[237]||(i[237]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[238]||(i[238]=a('
julia
is_snf(T::TorQuadModule) -> Bool

Given a torsion quadratic module T, return whether its underlying abelian group is in Smith normal form.

source

',3))]),i[413]||(i[413]=a('

Discriminant Groups

See [6] for the general theory of discriminant groups. They are particularly useful to work with primitive embeddings of integral integer quadratic lattices.

From a lattice

',3)),s("details",I1,[s("summary",null,[i[239]||(i[239]=s("a",{id:"discriminant_group-Tuple{ZZLat}",href:"#discriminant_group-Tuple{ZZLat}"},[s("span",{class:"jlbinding"},"discriminant_group")],-1)),i[240]||(i[240]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[249]||(i[249]=a('
julia
discriminant_group(L::ZZLat) -> TorQuadModule

Return the discriminant group of L.

The discriminant group of an integral lattice L is the finite abelian group D = dual(L)/L.

It comes equipped with the discriminant bilinear form

',4)),s("mjx-container",J1,[(e(),l("svg",N1,i[241]||(i[241]=[a('',1)]))),i[242]||(i[242]=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"D"),s("mo",null,"×"),s("mi",null,"D"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Q")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mstyle",{scriptlevel:"0"},[s("mspace",{width:"2em"})]),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",{stretchy:"false"},")"),s("mo",{stretchy:"false"},"↦"),s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mo",null,".")])],-1))]),s("p",null,[i[245]||(i[245]=t("If ")),i[246]||(i[246]=s("code",null,"L",-1)),i[247]||(i[247]=t(" is even, then the discriminant group is equipped with the discriminant quadratic form ")),s("mjx-container",X1,[(e(),l("svg",P1,i[243]||(i[243]=[a('',1)]))),i[244]||(i[244]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"D"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Q")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mn",null,"2"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mo",null,","),s("mi",null,"x"),s("mo",{stretchy:"false"},"↦"),s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"x"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mn",null,"2"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),i[248]||(i[248]=t("."))]),i[250]||(i[250]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[414]||(i[414]=s("h3",{id:"From-a-matrix",tabindex:"-1"},[t("From a matrix "),s("a",{class:"header-anchor",href:"#From-a-matrix","aria-label":'Permalink to "From a matrix {#From-a-matrix}"'},"​")],-1)),s("details",U1,[s("summary",null,[i[251]||(i[251]=s("a",{id:"torsion_quadratic_module-Tuple{QQMatrix}",href:"#torsion_quadratic_module-Tuple{QQMatrix}"},[s("span",{class:"jlbinding"},"torsion_quadratic_module")],-1)),i[252]||(i[252]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[253]||(i[253]=a(`
julia
torsion_quadratic_module(q::QQMatrix) -> TorQuadModule

Return a torsion quadratic module with gram matrix given by q and value module Q/Z. If all the diagonal entries of q have: either even numerator or even denominator, then the value module of the quadratic form is Q/2Z

Example

julia
julia> torsion_quadratic_module(QQ[1//6;])
+true

source

`,5))]),i[411]||(i[411]=s("h3",{id:"Primary-and-elementary-modules",tabindex:"-1"},[t("Primary and elementary modules "),s("a",{class:"header-anchor",href:"#Primary-and-elementary-modules","aria-label":'Permalink to "Primary and elementary modules {#Primary-and-elementary-modules}"'},"​")],-1)),s("details",A1,[s("summary",null,[i[208]||(i[208]=s("a",{id:"is_primary_with_prime-Tuple{TorQuadModule}",href:"#is_primary_with_prime-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),i[209]||(i[209]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[210]||(i[210]=a('
julia
is_primary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not primary, the second return value is -1 by default.

source

',4))]),s("details",V1,[s("summary",null,[i[211]||(i[211]=s("a",{id:"is_primary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_primary")],-1)),i[212]||(i[212]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[213]||(i[213]=a('
julia
is_primary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group.

source

',3))]),s("details",q1,[s("summary",null,[i[214]||(i[214]=s("a",{id:"is_elementary_with_prime-Tuple{TorQuadModule}",href:"#is_elementary_with_prime-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),i[215]||(i[215]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[216]||(i[216]=a('
julia
is_elementary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group, for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not elementary, the second return value is -1 by default.

source

',4))]),s("details",O1,[s("summary",null,[i[217]||(i[217]=s("a",{id:"is_elementary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{TorQuadModule, Union{Integer, ZZRingElem}}"},[s("span",{class:"jlbinding"},"is_elementary")],-1)),i[218]||(i[218]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[219]||(i[219]=a('
julia
is_elementary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group.

source

',3))]),i[412]||(i[412]=s("h3",{id:"Smith-normal-form",tabindex:"-1"},[t("Smith normal form "),s("a",{class:"header-anchor",href:"#Smith-normal-form","aria-label":'Permalink to "Smith normal form {#Smith-normal-form}"'},"​")],-1)),s("details",R1,[s("summary",null,[i[220]||(i[220]=s("a",{id:"snf-Tuple{TorQuadModule}",href:"#snf-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"snf")],-1)),i[221]||(i[221]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[234]||(i[234]=a('
julia
snf(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap
',1)),s("p",null,[i[224]||(i[224]=t("Given a torsion quadratic module ")),i[225]||(i[225]=s("code",null,"T",-1)),i[226]||(i[226]=t(", return a torsion quadratic module ")),i[227]||(i[227]=s("code",null,"S",-1)),i[228]||(i[228]=t(", isometric to ")),i[229]||(i[229]=s("code",null,"T",-1)),i[230]||(i[230]=t(", such that the underlying abelian group of ")),i[231]||(i[231]=s("code",null,"S",-1)),i[232]||(i[232]=t(" is in canonical Smith normal form. It comes with an isometry ")),s("mjx-container",G1,[(e(),l("svg",S1,i[222]||(i[222]=[a('',1)]))),i[223]||(i[223]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"f"),s("mo",null,":"),s("mi",null,"S"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mi",null,"T")])],-1))]),i[233]||(i[233]=t("."))]),i[235]||(i[235]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s("details",z1,[s("summary",null,[i[236]||(i[236]=s("a",{id:"is_snf-Tuple{TorQuadModule}",href:"#is_snf-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_snf")],-1)),i[237]||(i[237]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[238]||(i[238]=a('
julia
is_snf(T::TorQuadModule) -> Bool

Given a torsion quadratic module T, return whether its underlying abelian group is in Smith normal form.

source

',3))]),i[413]||(i[413]=a('

Discriminant Groups

See [6] for the general theory of discriminant groups. They are particularly useful to work with primitive embeddings of integral integer quadratic lattices.

From a lattice

',3)),s("details",I1,[s("summary",null,[i[239]||(i[239]=s("a",{id:"discriminant_group-Tuple{ZZLat}",href:"#discriminant_group-Tuple{ZZLat}"},[s("span",{class:"jlbinding"},"discriminant_group")],-1)),i[240]||(i[240]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[249]||(i[249]=a('
julia
discriminant_group(L::ZZLat) -> TorQuadModule

Return the discriminant group of L.

The discriminant group of an integral lattice L is the finite abelian group D = dual(L)/L.

It comes equipped with the discriminant bilinear form

',4)),s("mjx-container",J1,[(e(),l("svg",N1,i[241]||(i[241]=[a('',1)]))),i[242]||(i[242]=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"D"),s("mo",null,"×"),s("mi",null,"D"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Q")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mstyle",{scriptlevel:"0"},[s("mspace",{width:"2em"})]),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",{stretchy:"false"},")"),s("mo",{stretchy:"false"},"↦"),s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"y"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mo",null,".")])],-1))]),s("p",null,[i[245]||(i[245]=t("If ")),i[246]||(i[246]=s("code",null,"L",-1)),i[247]||(i[247]=t(" is even, then the discriminant group is equipped with the discriminant quadratic form ")),s("mjx-container",X1,[(e(),l("svg",P1,i[243]||(i[243]=[a('',1)]))),i[244]||(i[244]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"D"),s("mo",{accent:"false",stretchy:"false"},"→"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Q")]),s("mrow",{"data-mjx-texclass":"ORD"},[s("mo",null,"/")]),s("mn",null,"2"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")]),s("mo",null,","),s("mi",null,"x"),s("mo",{stretchy:"false"},"↦"),s("mi",{mathvariant:"normal"},"Φ"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",null,","),s("mi",null,"x"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("mn",null,"2"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),i[248]||(i[248]=t("."))]),i[250]||(i[250]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[414]||(i[414]=s("h3",{id:"From-a-matrix",tabindex:"-1"},[t("From a matrix "),s("a",{class:"header-anchor",href:"#From-a-matrix","aria-label":'Permalink to "From a matrix {#From-a-matrix}"'},"​")],-1)),s("details",U1,[s("summary",null,[i[251]||(i[251]=s("a",{id:"torsion_quadratic_module-Tuple{QQMatrix}",href:"#torsion_quadratic_module-Tuple{QQMatrix}"},[s("span",{class:"jlbinding"},"torsion_quadratic_module")],-1)),i[252]||(i[252]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[253]||(i[253]=a(`
julia
torsion_quadratic_module(q::QQMatrix) -> TorQuadModule

Return a torsion quadratic module with gram matrix given by q and value module Q/Z. If all the diagonal entries of q have: either even numerator or even denominator, then the value module of the quadratic form is Q/2Z

Example

julia
julia> torsion_quadratic_module(QQ[1//6;])
 Finite quadratic module
   over integer ring
 Abelian group: Z/6
@@ -180,9 +180,9 @@ import{_ as Q,c as l,j as s,a as t,a5 as a,G as h,B as p,o as e}from"./chunks/fr
 Bilinear value module: Q/Z
 Quadratic value module: Q/Z
 Gram matrix quadratic form:
-[1//3]

source

`,5))]),i[415]||(i[415]=s("h3",{id:"Rescaling-the-form",tabindex:"-1"},[t("Rescaling the form "),s("a",{class:"header-anchor",href:"#Rescaling-the-form","aria-label":'Permalink to "Rescaling the form {#Rescaling-the-form}"'},"​")],-1)),s("details",$1,[s("summary",null,[i[254]||(i[254]=s("a",{id:"rescale-Tuple{TorQuadModule, RingElement}",href:"#rescale-Tuple{TorQuadModule, RingElement}"},[s("span",{class:"jlbinding"},"rescale")],-1)),i[255]||(i[255]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[264]||(i[264]=a('
julia
rescale(T::TorQuadModule, k::RingElement) -> TorQuadModule
',1)),s("p",null,[i[258]||(i[258]=t("Return the torsion quadratic module with quadratic form scaled by ")),s("mjx-container",K1,[(e(),l("svg",W1,i[256]||(i[256]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),i[257]||(i[257]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"k")])],-1))]),i[259]||(i[259]=t(", where k is a non-zero rational number. If the old form was defined modulo ")),i[260]||(i[260]=s("code",null,"n",-1)),i[261]||(i[261]=t(", then the new form is defined modulo ")),i[262]||(i[262]=s("code",null,"n k",-1)),i[263]||(i[263]=t("."))]),i[265]||(i[265]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[416]||(i[416]=s("h3",{id:"invariants",tabindex:"-1"},[t("Invariants "),s("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),s("details",Y1,[s("summary",null,[i[266]||(i[266]=s("a",{id:"is_degenerate-Tuple{TorQuadModule}",href:"#is_degenerate-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_degenerate")],-1)),i[267]||(i[267]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[268]||(i[268]=a('
julia
is_degenerate(T::TorQuadModule) -> Bool

Return true if the underlying bilinear form is degenerate.

source

',3))]),s("details",_1,[s("summary",null,[i[269]||(i[269]=s("a",{id:"is_semi_regular-Tuple{TorQuadModule}",href:"#is_semi_regular-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_semi_regular")],-1)),i[270]||(i[270]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[271]||(i[271]=a('
julia
is_semi_regular(T::TorQuadModule) -> Bool

Return whether T is semi-regular, that is its quadratic radical is trivial (see radical_quadratic).

source

',3))]),s("details",s2,[s("summary",null,[i[272]||(i[272]=s("a",{id:"radical_bilinear-Tuple{TorQuadModule}",href:"#radical_bilinear-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"radical_bilinear")],-1)),i[273]||(i[273]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[274]||(i[274]=a('
julia
radical_bilinear(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \\{x \\in T | b(x,T) = 0\\} of the bilinear form b on T.

source

',3))]),s("details",i2,[s("summary",null,[i[275]||(i[275]=s("a",{id:"radical_quadratic-Tuple{TorQuadModule}",href:"#radical_quadratic-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"radical_quadratic")],-1)),i[276]||(i[276]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[277]||(i[277]=a('
julia
radical_quadratic(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \\{x \\in T | b(x,T) = 0 and q(x)=0\\} of the quadratic form q on T.

source

',3))]),s("details",t2,[s("summary",null,[i[278]||(i[278]=s("a",{id:"normal_form-Tuple{TorQuadModule}",href:"#normal_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"normal_form")],-1)),i[279]||(i[279]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[280]||(i[280]=a('
julia
normal_form(T::TorQuadModule; partial=false) -> TorQuadModule, TorQuadModuleMap

Return the normal form N of the given torsion quadratic module T along with the projection T -> N.

Let K be the radical of the quadratic form of T. Then N = T/K is half-regular. Two half-regular torsion quadratic modules are isometric if and only if they have equal normal forms.

source

',4))]),i[417]||(i[417]=s("h3",{id:"genus",tabindex:"-1"},[t("Genus "),s("a",{class:"header-anchor",href:"#genus","aria-label":'Permalink to "Genus"'},"​")],-1)),s("details",a2,[s("summary",null,[i[281]||(i[281]=s("a",{id:"genus-Tuple{TorQuadModule, Tuple{Int64, Int64}}",href:"#genus-Tuple{TorQuadModule, Tuple{Int64, Int64}}"},[s("span",{class:"jlbinding"},"genus")],-1)),i[282]||(i[282]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[283]||(i[283]=a(`
julia
genus(T::TorQuadModule, signature_pair::Tuple{Int, Int};
+[1//3]

source

`,5))]),i[415]||(i[415]=s("h3",{id:"Rescaling-the-form",tabindex:"-1"},[t("Rescaling the form "),s("a",{class:"header-anchor",href:"#Rescaling-the-form","aria-label":'Permalink to "Rescaling the form {#Rescaling-the-form}"'},"​")],-1)),s("details",$1,[s("summary",null,[i[254]||(i[254]=s("a",{id:"rescale-Tuple{TorQuadModule, RingElement}",href:"#rescale-Tuple{TorQuadModule, RingElement}"},[s("span",{class:"jlbinding"},"rescale")],-1)),i[255]||(i[255]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[264]||(i[264]=a('
julia
rescale(T::TorQuadModule, k::RingElement) -> TorQuadModule
',1)),s("p",null,[i[258]||(i[258]=t("Return the torsion quadratic module with quadratic form scaled by ")),s("mjx-container",K1,[(e(),l("svg",W1,i[256]||(i[256]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D458",d:"M121 647Q121 657 125 670T137 683Q138 683 209 688T282 694Q294 694 294 686Q294 679 244 477Q194 279 194 272Q213 282 223 291Q247 309 292 354T362 415Q402 442 438 442Q468 442 485 423T503 369Q503 344 496 327T477 302T456 291T438 288Q418 288 406 299T394 328Q394 353 410 369T442 390L458 393Q446 405 434 405H430Q398 402 367 380T294 316T228 255Q230 254 243 252T267 246T293 238T320 224T342 206T359 180T365 147Q365 130 360 106T354 66Q354 26 381 26Q429 26 459 145Q461 153 479 153H483Q499 153 499 144Q499 139 496 130Q455 -11 378 -11Q333 -11 305 15T277 90Q277 108 280 121T283 145Q283 167 269 183T234 206T200 217T182 220H180Q168 178 159 139T145 81T136 44T129 20T122 7T111 -2Q98 -11 83 -11Q66 -11 57 -1T48 16Q48 26 85 176T158 471L195 616Q196 629 188 632T149 637H144Q134 637 131 637T124 640T121 647Z",style:{"stroke-width":"3"}})])])],-1)]))),i[257]||(i[257]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"k")])],-1))]),i[259]||(i[259]=t(", where k is a non-zero rational number. If the old form was defined modulo ")),i[260]||(i[260]=s("code",null,"n",-1)),i[261]||(i[261]=t(", then the new form is defined modulo ")),i[262]||(i[262]=s("code",null,"n k",-1)),i[263]||(i[263]=t("."))]),i[265]||(i[265]=s("p",null,[s("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i[416]||(i[416]=s("h3",{id:"invariants",tabindex:"-1"},[t("Invariants "),s("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),s("details",Y1,[s("summary",null,[i[266]||(i[266]=s("a",{id:"is_degenerate-Tuple{TorQuadModule}",href:"#is_degenerate-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_degenerate")],-1)),i[267]||(i[267]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[268]||(i[268]=a('
julia
is_degenerate(T::TorQuadModule) -> Bool

Return true if the underlying bilinear form is degenerate.

source

',3))]),s("details",_1,[s("summary",null,[i[269]||(i[269]=s("a",{id:"is_semi_regular-Tuple{TorQuadModule}",href:"#is_semi_regular-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"is_semi_regular")],-1)),i[270]||(i[270]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[271]||(i[271]=a('
julia
is_semi_regular(T::TorQuadModule) -> Bool

Return whether T is semi-regular, that is its quadratic radical is trivial (see radical_quadratic).

source

',3))]),s("details",s2,[s("summary",null,[i[272]||(i[272]=s("a",{id:"radical_bilinear-Tuple{TorQuadModule}",href:"#radical_bilinear-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"radical_bilinear")],-1)),i[273]||(i[273]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[274]||(i[274]=a('
julia
radical_bilinear(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \\{x \\in T | b(x,T) = 0\\} of the bilinear form b on T.

source

',3))]),s("details",i2,[s("summary",null,[i[275]||(i[275]=s("a",{id:"radical_quadratic-Tuple{TorQuadModule}",href:"#radical_quadratic-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"radical_quadratic")],-1)),i[276]||(i[276]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[277]||(i[277]=a('
julia
radical_quadratic(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \\{x \\in T | b(x,T) = 0 and q(x)=0\\} of the quadratic form q on T.

source

',3))]),s("details",t2,[s("summary",null,[i[278]||(i[278]=s("a",{id:"normal_form-Tuple{TorQuadModule}",href:"#normal_form-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"normal_form")],-1)),i[279]||(i[279]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[280]||(i[280]=a('
julia
normal_form(T::TorQuadModule; partial=false) -> TorQuadModule, TorQuadModuleMap

Return the normal form N of the given torsion quadratic module T along with the projection T -> N.

Let K be the radical of the quadratic form of T. Then N = T/K is half-regular. Two half-regular torsion quadratic modules are isometric if and only if they have equal normal forms.

source

',4))]),i[417]||(i[417]=s("h3",{id:"genus",tabindex:"-1"},[t("Genus "),s("a",{class:"header-anchor",href:"#genus","aria-label":'Permalink to "Genus"'},"​")],-1)),s("details",a2,[s("summary",null,[i[281]||(i[281]=s("a",{id:"genus-Tuple{TorQuadModule, Tuple{Int64, Int64}}",href:"#genus-Tuple{TorQuadModule, Tuple{Int64, Int64}}"},[s("span",{class:"jlbinding"},"genus")],-1)),i[282]||(i[282]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[283]||(i[283]=a(`
julia
genus(T::TorQuadModule, signature_pair::Tuple{Int, Int};
                         parity::RationalUnion = modulus_quadratic_form(T))
-                                                                -> ZZGenus

Return the genus of an integer lattice whose discriminant group has the bilinear form of T, the given signature_pair and the given parity.

The argument parity is one of the following: either parity == 1 for genera of odd lattices, or parity == 2 for even lattices. By default, parity is set to be as the parity of the quadratic form on T

If no such genus exists, raise an error.

Reference

[6] Corollary 1.9.4 and 1.16.3.

source

`,7))]),s("details",l2,[s("summary",null,[i[284]||(i[284]=s("a",{id:"brown_invariant-Tuple{TorQuadModule}",href:"#brown_invariant-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"brown_invariant")],-1)),i[285]||(i[285]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[288]||(i[288]=a('
julia
brown_invariant(self::TorQuadModule) -> Nemo.zzModRingElem

Return the Brown invariant of this torsion quadratic form.

Let (D,q) be a torsion quadratic module with values in Q / 2Z. The Brown invariant Br(D,q) in Z/8Z is defined by the equation

',3)),s("mjx-container",e2,[(e(),l("svg",n2,i[286]||(i[286]=[a('',1)]))),i[287]||(i[287]=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"exp"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mn",null,"2"),s("mi",null,"π"),s("mi",null,"i")]),s("mn",null,"8")]),s("mi",null,"B"),s("mi",null,"r"),s("mo",{stretchy:"false"},"("),s("mi",null,"q"),s("mo",{stretchy:"false"},")"),s("mo",{"data-mjx-texclass":"CLOSE"},")")]),s("mo",null,"="),s("mfrac",null,[s("mn",null,"1"),s("msqrt",null,[s("mi",null,"D")])]),s("munder",null,[s("mo",{"data-mjx-texclass":"OP"},"∑"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"x"),s("mo",null,"∈"),s("mi",null,"D")])]),s("mi",null,"exp"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mi",null,"i"),s("mi",null,"π"),s("mi",null,"q"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",{stretchy:"false"},")"),s("mo",{stretchy:"false"},")"),s("mo",null,".")])],-1))]),i[289]||(i[289]=a(`

The Brown invariant is additive with respect to direct sums of torsion quadratic modules.

Examples

julia
julia> L = integer_lattice(gram=matrix(ZZ, [[2,-1,0,0],[-1,2,-1,-1],[0,-1,2,0],[0,-1,0,2]]));
+                                                                -> ZZGenus

Return the genus of an integer lattice whose discriminant group has the bilinear form of T, the given signature_pair and the given parity.

The argument parity is one of the following: either parity == 1 for genera of odd lattices, or parity == 2 for even lattices. By default, parity is set to be as the parity of the quadratic form on T

If no such genus exists, raise an error.

Reference

[6] Corollary 1.9.4 and 1.16.3.

source

`,7))]),s("details",l2,[s("summary",null,[i[284]||(i[284]=s("a",{id:"brown_invariant-Tuple{TorQuadModule}",href:"#brown_invariant-Tuple{TorQuadModule}"},[s("span",{class:"jlbinding"},"brown_invariant")],-1)),i[285]||(i[285]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[288]||(i[288]=a('
julia
brown_invariant(self::TorQuadModule) -> Nemo.zzModRingElem

Return the Brown invariant of this torsion quadratic form.

Let (D,q) be a torsion quadratic module with values in Q / 2Z. The Brown invariant Br(D,q) in Z/8Z is defined by the equation

',3)),s("mjx-container",e2,[(e(),l("svg",n2,i[286]||(i[286]=[a('',1)]))),i[287]||(i[287]=s("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[s("mi",null,"exp"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mrow",{"data-mjx-texclass":"INNER"},[s("mo",{"data-mjx-texclass":"OPEN"},"("),s("mfrac",null,[s("mrow",null,[s("mn",null,"2"),s("mi",null,"π"),s("mi",null,"i")]),s("mn",null,"8")]),s("mi",null,"B"),s("mi",null,"r"),s("mo",{stretchy:"false"},"("),s("mi",null,"q"),s("mo",{stretchy:"false"},")"),s("mo",{"data-mjx-texclass":"CLOSE"},")")]),s("mo",null,"="),s("mfrac",null,[s("mn",null,"1"),s("msqrt",null,[s("mi",null,"D")])]),s("munder",null,[s("mo",{"data-mjx-texclass":"OP"},"∑"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"x"),s("mo",null,"∈"),s("mi",null,"D")])]),s("mi",null,"exp"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mi",null,"i"),s("mi",null,"π"),s("mi",null,"q"),s("mo",{stretchy:"false"},"("),s("mi",null,"x"),s("mo",{stretchy:"false"},")"),s("mo",{stretchy:"false"},")"),s("mo",null,".")])],-1))]),i[289]||(i[289]=a(`

The Brown invariant is additive with respect to direct sums of torsion quadratic modules.

Examples

julia
julia> L = integer_lattice(gram=matrix(ZZ, [[2,-1,0,0],[-1,2,-1,-1],[0,-1,2,0],[0,-1,0,2]]));
 
 julia> T = Hecke.discriminant_group(L);
 
diff --git a/v0.34.8/assets/manual_quad_forms_integer_lattices.md.B7hEml57.js b/v0.34.8/assets/manual_quad_forms_integer_lattices.md.B7hEml57.js
index 5d61c04ea0..40222b379c 100644
--- a/v0.34.8/assets/manual_quad_forms_integer_lattices.md.B7hEml57.js
+++ b/v0.34.8/assets/manual_quad_forms_integer_lattices.md.B7hEml57.js
@@ -1,4 +1,4 @@
-import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/framework.DbhH0_mT.js";const z1=JSON.parse('{"title":"Integer Lattices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/quad_forms/integer_lattices.md","filePath":"manual/quad_forms/integer_lattices.md","lastUpdated":null}'),r={name:"manual/quad_forms/integer_lattices.md"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.665ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 3387.8 882","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.693ex",height:"1.731ex",role:"img",focusable:"false",viewBox:"0 -683 3842.5 765","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.02ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 451 453","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},z={class:"jldocstring custom-block",open:""},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},U={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},W={class:"jldocstring custom-block",open:""},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ss={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.738ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 2536 833","aria-hidden":"true"},ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},as={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.243ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 991.6 833","aria-hidden":"true"},ls={class:"jldocstring custom-block",open:""},es={class:"jldocstring custom-block",open:""},ns={class:"jldocstring custom-block",open:""},hs={class:"jldocstring custom-block",open:""},ps={class:"jldocstring custom-block",open:""},ks={class:"jldocstring custom-block",open:""},rs={class:"jldocstring custom-block",open:""},ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},os={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},gs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ms={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Fs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Cs={class:"jldocstring custom-block",open:""},Es={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},us={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},xs={class:"jldocstring custom-block",open:""},cs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ws={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},bs={class:"jldocstring custom-block",open:""},Bs={class:"jldocstring custom-block",open:""},fs={class:"jldocstring custom-block",open:""},vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Hs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ms={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.666ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 8250.4 1000","aria-hidden":"true"},js={class:"jldocstring custom-block",open:""},Zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ds={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},As={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Vs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.737ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 7397.8 1000","aria-hidden":"true"},Ss={class:"jldocstring custom-block",open:""},Gs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.14ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2713.7 1000","aria-hidden":"true"},Os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},zs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.394ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5478.2 1000","aria-hidden":"true"},Js={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.973ex",height:"1.57ex",role:"img",focusable:"false",viewBox:"0 -683 2198 694","aria-hidden":"true"},Ns={class:"jldocstring custom-block",open:""},qs={class:"jldocstring custom-block",open:""},Us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ps={class:"jldocstring custom-block",open:""},Ks={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ws={class:"jldocstring custom-block",open:""},Ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},si={class:"jldocstring custom-block",open:""},ii={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ti={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ai={class:"jldocstring custom-block",open:""},li={class:"jldocstring custom-block",open:""},ei={class:"jldocstring custom-block",open:""},ni={class:"jldocstring custom-block",open:""},hi={class:"jldocstring custom-block",open:""},pi={class:"jldocstring custom-block",open:""},ki={class:"jldocstring custom-block",open:""},ri={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},di={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.729ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 764 680","aria-hidden":"true"},oi={class:"jldocstring custom-block",open:""},gi={class:"jldocstring custom-block",open:""},Qi={class:"jldocstring custom-block",open:""},Ti={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},mi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"17.47ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 7721.8 970.2","aria-hidden":"true"},yi={class:"jldocstring custom-block",open:""},Fi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ci={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},Ei={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ui={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},xi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ci={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},wi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Bi={class:"jldocstring custom-block",open:""},fi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},vi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Li={class:"jldocstring custom-block",open:""},Hi={class:"jldocstring custom-block",open:""},Mi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ji={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Zi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Di={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},Ai={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Vi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.303ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -694 576 705","aria-hidden":"true"},Si={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Gi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.464ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2415 1000","aria-hidden":"true"},Ri={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Oi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},zi={class:"jldocstring custom-block",open:""},Ji={class:"jldocstring custom-block",open:""},Ii={class:"jldocstring custom-block",open:""},Ni={class:"jldocstring custom-block",open:""},qi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ui={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},Xi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},Ki={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$i={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},Wi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Yi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.646ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 5147.6 833","aria-hidden":"true"},_i={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},st={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.586ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1585.2 833","aria-hidden":"true"},it={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},tt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.326ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1469.9 833","aria-hidden":"true"},at={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},lt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},et={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},nt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},ht={class:"jldocstring custom-block",open:""},pt={class:"jldocstring custom-block",open:""},kt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},rt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.575ex",height:"1.568ex",role:"img",focusable:"false",viewBox:"0 -683 1580 693","aria-hidden":"true"},dt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ot={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},gt={class:"jldocstring custom-block",open:""},Qt={class:"jldocstring custom-block",open:""},Tt={class:"jldocstring custom-block",open:""},mt={class:"jldocstring custom-block",open:""},yt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ft={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ct={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Et={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.164ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 4050.6 882","aria-hidden":"true"},ut={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.662ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 3828.4 882","aria-hidden":"true"},ct={class:"jldocstring custom-block",open:""},wt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Bt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ft={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.404ex",height:"1.857ex",role:"img",focusable:"false",viewBox:"0 -683 3272.6 821","aria-hidden":"true"},vt={class:"jldocstring custom-block",open:""},Lt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ht={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Mt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},jt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.911ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3054.6 776","aria-hidden":"true"},Zt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Dt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.085ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3131.6 776","aria-hidden":"true"},At={class:"jldocstring custom-block",open:""},Vt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},St={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.14ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2713.7 1000","aria-hidden":"true"},Gt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ot={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},zt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.038ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3110.7 1000","aria-hidden":"true"},Jt={class:"jldocstring custom-block",open:""},It={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Nt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},qt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ut={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},Xt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},Kt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$t={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Wt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Yt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},_t={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},sa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},ia={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ta={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},aa={class:"jldocstring custom-block",open:""},la={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ea={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},na={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ha={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},pa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ka={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},ra={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},da={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},oa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ga={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Qa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ta={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},ma={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ya={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Fa={class:"jldocstring custom-block",open:""},Ca={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ea={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ua={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},ca={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},wa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},ba={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ba={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},fa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},va={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},La={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ha={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Ma={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ja={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Za={class:"jldocstring custom-block",open:""},Da={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Aa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Va={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Sa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.459ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 645 727","aria-hidden":"true"},Ga={class:"jldocstring custom-block",open:""},Ra={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Oa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.28ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1008 840.8","aria-hidden":"true"},za={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ja={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Ia={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},Na={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.695ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.263ex",height:"4.842ex",role:"img",focusable:"false",viewBox:"0 -949 4978.2 2140.2","aria-hidden":"true"},qa={class:"jldocstring custom-block",open:""},Ua={class:"jldocstring custom-block",open:""},Xa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ka={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$a={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.229ex",height:"1.486ex",role:"img",focusable:"false",viewBox:"0 -441 543 657","aria-hidden":"true"},Wa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ya={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.5ex",height:"1.907ex",role:"img",focusable:"false",viewBox:"0 -705 4641 843","aria-hidden":"true"},_a={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.229ex",height:"1.486ex",role:"img",focusable:"false",viewBox:"0 -441 543 657","aria-hidden":"true"},i2={class:"jldocstring custom-block",open:""},t2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},l2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.5ex",height:"1.907ex",role:"img",focusable:"false",viewBox:"0 -705 4641 843","aria-hidden":"true"},n2={class:"jldocstring custom-block",open:""},h2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},k2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},d2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},g2={class:"jldocstring custom-block",open:""},Q2={class:"jldocstring custom-block",open:""},T2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},y2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},C2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.244ex",height:"2.059ex",role:"img",focusable:"false",viewBox:"0 -705 550 910","aria-hidden":"true"},u2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},c2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.09ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2692 1000","aria-hidden":"true"},b2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},f2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},L2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},M2={class:"jldocstring custom-block",open:""},j2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},D2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},V2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},G2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},O2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},J2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.949ex",role:"img",focusable:"false",viewBox:"0 -861.5 1319.8 861.5","aria-hidden":"true"},N2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},U2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},P2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},$2={class:"jldocstring custom-block",open:""},W2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},_2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},t1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},a1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},h1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.92ex",role:"img",focusable:"false",viewBox:"0 -683 1319.8 848.6","aria-hidden":"true"},k1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.949ex",role:"img",focusable:"false",viewBox:"0 -861.5 1319.8 861.5","aria-hidden":"true"},g1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},y1={class:"jldocstring custom-block",open:""},F1={class:"jldocstring custom-block",open:""},C1={class:"jldocstring custom-block",open:""},E1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.182ex",height:"1.97ex",role:"img",focusable:"false",viewBox:"0 -705 1406.4 870.6","aria-hidden":"true"},w1={class:"jldocstring custom-block",open:""},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.564ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.371ex",height:"2.387ex",role:"img",focusable:"false",viewBox:"0 -805.6 4583.8 1055.1","aria-hidden":"true"},f1={class:"jldocstring custom-block",open:""},v1={class:"jldocstring custom-block",open:""},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.564ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.371ex",height:"2.387ex",role:"img",focusable:"false",viewBox:"0 -805.6 4583.8 1055.1","aria-hidden":"true"},M1={class:"jldocstring custom-block",open:""},j1={class:"jldocstring custom-block",open:""},Z1={class:"jldocstring custom-block",open:""};function D1(A1,s,V1,S1,G1,R1){const n=k("Badge");return e(),l("div",null,[s[871]||(s[871]=i("h1",{id:"Integer-Lattices",tabindex:"-1"},[t("Integer Lattices "),i("a",{class:"header-anchor",href:"#Integer-Lattices","aria-label":'Permalink to "Integer Lattices {#Integer-Lattices}"'},"​")],-1)),i("p",null,[s[8]||(s[8]=t("An integer lattice ")),i("mjx-container",d,[(e(),l("svg",o,s[0]||(s[0]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[1]||(s[1]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[9]||(s[9]=t(" is a finitely generated ")),i("mjx-container",g,[(e(),l("svg",Q,s[2]||(s[2]=[a('',1)]))),s[3]||(s[3]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[10]||(s[10]=t("-submodule of a quadratic vector space ")),i("mjx-container",T,[(e(),l("svg",m,s[4]||(s[4]=[a('',1)]))),s[5]||(s[5]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V"),i("mo",null,"="),i("msup",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Q")]),i("mi",null,"n")])])],-1))]),s[11]||(s[11]=t(" over the rational numbers. Integer lattices are also known as quadratic forms over the integers. We will refer to them as ")),i("mjx-container",y,[(e(),l("svg",F,s[6]||(s[6]=[a('',1)]))),s[7]||(s[7]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[12]||(s[12]=t("-lattices."))]),i("p",null,[s[31]||(s[31]=t("A ")),i("mjx-container",C,[(e(),l("svg",E,s[13]||(s[13]=[a('',1)]))),s[14]||(s[14]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[32]||(s[32]=t("-lattice ")),i("mjx-container",u,[(e(),l("svg",x,s[15]||(s[15]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[16]||(s[16]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[33]||(s[33]=t(" has the type ")),s[34]||(s[34]=i("code",null,"ZZLat",-1)),s[35]||(s[35]=t(". It is given in terms of its ambient quadratic space ")),i("mjx-container",c,[(e(),l("svg",w,s[17]||(s[17]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),s[18]||(s[18]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V")])],-1))]),s[36]||(s[36]=t(" together with a basis matrix ")),i("mjx-container",b,[(e(),l("svg",B,s[19]||(s[19]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[20]||(s[20]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[37]||(s[37]=t(" whose rows span ")),i("mjx-container",f,[(e(),l("svg",v,s[21]||(s[21]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[22]||(s[22]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[38]||(s[38]=t(", i.e. ")),i("mjx-container",L,[(e(),l("svg",H,s[23]||(s[23]=[a('',1)]))),s[24]||(s[24]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,"="),i("msup",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"r")]),i("mi",null,"B")])],-1))]),s[39]||(s[39]=t(" where ")),i("mjx-container",M,[(e(),l("svg",j,s[25]||(s[25]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D45F",d:"M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),s[26]||(s[26]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"r")])],-1))]),s[40]||(s[40]=t(" is the (")),i("mjx-container",Z,[(e(),l("svg",D,s[27]||(s[27]=[a('',1)]))),s[28]||(s[28]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[41]||(s[41]=t("-module) rank of ")),i("mjx-container",A,[(e(),l("svg",V,s[29]||(s[29]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[30]||(s[30]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[42]||(s[42]=t("."))]),i("p",null,[s[47]||(s[47]=t("To access ")),i("mjx-container",S,[(e(),l("svg",G,s[43]||(s[43]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),s[44]||(s[44]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V")])],-1))]),s[48]||(s[48]=t(" and ")),i("mjx-container",R,[(e(),l("svg",O,s[45]||(s[45]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[46]||(s[46]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[49]||(s[49]=t(" see ")),s[50]||(s[50]=i("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#ambient_space-Tuple{ZZLat}"},[i("code",null,"ambient_space(L::ZZLat)")],-1)),s[51]||(s[51]=t(" and ")),s[52]||(s[52]=i("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#basis_matrix-Tuple{ZZLat}"},[i("code",null,"basis_matrix(L::ZZLat)")],-1)),s[53]||(s[53]=t("."))]),s[872]||(s[872]=i("h2",{id:"Creation-of-integer-lattices",tabindex:"-1"},[t("Creation of integer lattices "),i("a",{class:"header-anchor",href:"#Creation-of-integer-lattices","aria-label":'Permalink to "Creation of integer lattices {#Creation-of-integer-lattices}"'},"​")],-1)),s[873]||(s[873]=i("h3",{id:"From-a-gram-matrix",tabindex:"-1"},[t("From a gram matrix "),i("a",{class:"header-anchor",href:"#From-a-gram-matrix","aria-label":'Permalink to "From a gram matrix {#From-a-gram-matrix}"'},"​")],-1)),i("details",z,[i("summary",null,[s[54]||(s[54]=i("a",{id:"integer_lattice-Tuple{QQMatrix}",href:"#integer_lattice-Tuple{QQMatrix}"},[i("span",{class:"jlbinding"},"integer_lattice")],-1)),s[55]||(s[55]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[68]||(s[68]=a('
julia
integer_lattice([B::MatElem]; gram) -> ZZLat
',1)),i("p",null,[s[58]||(s[58]=t("Return the Z-lattice with basis matrix ")),i("mjx-container",J,[(e(),l("svg",I,s[56]||(s[56]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[57]||(s[57]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[59]||(s[59]=t(" inside the quadratic space with Gram matrix ")),s[60]||(s[60]=i("code",null,"gram",-1)),s[61]||(s[61]=t("."))]),i("p",null,[s[64]||(s[64]=t("If the keyword ")),s[65]||(s[65]=i("code",null,"gram",-1)),s[66]||(s[66]=t(" is not specified, the Gram matrix is the identity matrix. If ")),i("mjx-container",N,[(e(),l("svg",q,s[62]||(s[62]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[63]||(s[63]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[67]||(s[67]=t(" is not specified, the basis matrix is the identity matrix."))]),s[69]||(s[69]=a(`

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1//2, 0, 0, 2]));
+import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/framework.DbhH0_mT.js";const z1=JSON.parse('{"title":"Integer Lattices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/quad_forms/integer_lattices.md","filePath":"manual/quad_forms/integer_lattices.md","lastUpdated":null}'),r={name:"manual/quad_forms/integer_lattices.md"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.665ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 3387.8 882","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.693ex",height:"1.731ex",role:"img",focusable:"false",viewBox:"0 -683 3842.5 765","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.02ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 451 453","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},z={class:"jldocstring custom-block",open:""},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},U={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},W={class:"jldocstring custom-block",open:""},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ss={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.738ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 2536 833","aria-hidden":"true"},ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},as={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.243ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 991.6 833","aria-hidden":"true"},ls={class:"jldocstring custom-block",open:""},es={class:"jldocstring custom-block",open:""},ns={class:"jldocstring custom-block",open:""},hs={class:"jldocstring custom-block",open:""},ps={class:"jldocstring custom-block",open:""},ks={class:"jldocstring custom-block",open:""},rs={class:"jldocstring custom-block",open:""},ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},os={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},gs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ms={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Fs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Cs={class:"jldocstring custom-block",open:""},Es={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},us={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},xs={class:"jldocstring custom-block",open:""},cs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ws={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},bs={class:"jldocstring custom-block",open:""},Bs={class:"jldocstring custom-block",open:""},fs={class:"jldocstring custom-block",open:""},vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Hs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ms={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.666ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 8250.4 1000","aria-hidden":"true"},js={class:"jldocstring custom-block",open:""},Zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ds={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},As={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Vs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.737ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 7397.8 1000","aria-hidden":"true"},Ss={class:"jldocstring custom-block",open:""},Gs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.14ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2713.7 1000","aria-hidden":"true"},Os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},zs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.394ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5478.2 1000","aria-hidden":"true"},Js={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.973ex",height:"1.57ex",role:"img",focusable:"false",viewBox:"0 -683 2198 694","aria-hidden":"true"},Ns={class:"jldocstring custom-block",open:""},qs={class:"jldocstring custom-block",open:""},Us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ps={class:"jldocstring custom-block",open:""},Ks={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ws={class:"jldocstring custom-block",open:""},Ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},si={class:"jldocstring custom-block",open:""},ii={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ti={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ai={class:"jldocstring custom-block",open:""},li={class:"jldocstring custom-block",open:""},ei={class:"jldocstring custom-block",open:""},ni={class:"jldocstring custom-block",open:""},hi={class:"jldocstring custom-block",open:""},pi={class:"jldocstring custom-block",open:""},ki={class:"jldocstring custom-block",open:""},ri={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},di={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.729ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 764 680","aria-hidden":"true"},oi={class:"jldocstring custom-block",open:""},gi={class:"jldocstring custom-block",open:""},Qi={class:"jldocstring custom-block",open:""},Ti={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},mi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"17.47ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 7721.8 970.2","aria-hidden":"true"},yi={class:"jldocstring custom-block",open:""},Fi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ci={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},Ei={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ui={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},xi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ci={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},wi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Bi={class:"jldocstring custom-block",open:""},fi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},vi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Li={class:"jldocstring custom-block",open:""},Hi={class:"jldocstring custom-block",open:""},Mi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ji={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Zi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Di={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},Ai={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Vi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.303ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -694 576 705","aria-hidden":"true"},Si={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Gi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.464ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2415 1000","aria-hidden":"true"},Ri={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Oi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},zi={class:"jldocstring custom-block",open:""},Ji={class:"jldocstring custom-block",open:""},Ii={class:"jldocstring custom-block",open:""},Ni={class:"jldocstring custom-block",open:""},qi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ui={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},Xi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},Ki={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$i={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},Wi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Yi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.646ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 5147.6 833","aria-hidden":"true"},_i={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},st={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.586ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1585.2 833","aria-hidden":"true"},it={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},tt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.326ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1469.9 833","aria-hidden":"true"},at={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},lt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},et={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},nt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},ht={class:"jldocstring custom-block",open:""},pt={class:"jldocstring custom-block",open:""},kt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},rt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.575ex",height:"1.568ex",role:"img",focusable:"false",viewBox:"0 -683 1580 693","aria-hidden":"true"},dt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ot={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},gt={class:"jldocstring custom-block",open:""},Qt={class:"jldocstring custom-block",open:""},Tt={class:"jldocstring custom-block",open:""},mt={class:"jldocstring custom-block",open:""},yt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ft={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ct={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Et={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.164ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 4050.6 882","aria-hidden":"true"},ut={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.662ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 3828.4 882","aria-hidden":"true"},ct={class:"jldocstring custom-block",open:""},wt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Bt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ft={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.404ex",height:"1.857ex",role:"img",focusable:"false",viewBox:"0 -683 3272.6 821","aria-hidden":"true"},vt={class:"jldocstring custom-block",open:""},Lt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ht={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Mt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},jt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.911ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3054.6 776","aria-hidden":"true"},Zt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Dt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.085ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3131.6 776","aria-hidden":"true"},At={class:"jldocstring custom-block",open:""},Vt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},St={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.14ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2713.7 1000","aria-hidden":"true"},Gt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ot={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},zt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.038ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3110.7 1000","aria-hidden":"true"},Jt={class:"jldocstring custom-block",open:""},It={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Nt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},qt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ut={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},Xt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},Kt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$t={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Wt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Yt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},_t={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},sa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},ia={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ta={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},aa={class:"jldocstring custom-block",open:""},la={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ea={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},na={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ha={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},pa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ka={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},ra={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},da={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},oa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ga={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Qa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ta={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},ma={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ya={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Fa={class:"jldocstring custom-block",open:""},Ca={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ea={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ua={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},ca={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},wa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},ba={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ba={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},fa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},va={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},La={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ha={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Ma={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ja={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Za={class:"jldocstring custom-block",open:""},Da={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Aa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Va={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Sa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.459ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 645 727","aria-hidden":"true"},Ga={class:"jldocstring custom-block",open:""},Ra={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Oa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.28ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1008 840.8","aria-hidden":"true"},za={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ja={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Ia={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},Na={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.695ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.263ex",height:"4.842ex",role:"img",focusable:"false",viewBox:"0 -949 4978.2 2140.2","aria-hidden":"true"},qa={class:"jldocstring custom-block",open:""},Ua={class:"jldocstring custom-block",open:""},Xa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ka={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$a={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.229ex",height:"1.486ex",role:"img",focusable:"false",viewBox:"0 -441 543 657","aria-hidden":"true"},Wa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ya={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.5ex",height:"1.907ex",role:"img",focusable:"false",viewBox:"0 -705 4641 843","aria-hidden":"true"},_a={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.229ex",height:"1.486ex",role:"img",focusable:"false",viewBox:"0 -441 543 657","aria-hidden":"true"},i2={class:"jldocstring custom-block",open:""},t2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},l2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.5ex",height:"1.907ex",role:"img",focusable:"false",viewBox:"0 -705 4641 843","aria-hidden":"true"},n2={class:"jldocstring custom-block",open:""},h2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},k2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},d2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},g2={class:"jldocstring custom-block",open:""},Q2={class:"jldocstring custom-block",open:""},T2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},y2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},C2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.244ex",height:"2.059ex",role:"img",focusable:"false",viewBox:"0 -705 550 910","aria-hidden":"true"},u2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},c2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.09ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2692 1000","aria-hidden":"true"},b2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},f2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},L2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},M2={class:"jldocstring custom-block",open:""},j2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},D2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},V2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},G2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},O2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},J2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.949ex",role:"img",focusable:"false",viewBox:"0 -861.5 1319.8 861.5","aria-hidden":"true"},N2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},U2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},P2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},$2={class:"jldocstring custom-block",open:""},W2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},_2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},t1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},a1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},h1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.92ex",role:"img",focusable:"false",viewBox:"0 -683 1319.8 848.6","aria-hidden":"true"},k1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.949ex",role:"img",focusable:"false",viewBox:"0 -861.5 1319.8 861.5","aria-hidden":"true"},g1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},y1={class:"jldocstring custom-block",open:""},F1={class:"jldocstring custom-block",open:""},C1={class:"jldocstring custom-block",open:""},E1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.182ex",height:"1.97ex",role:"img",focusable:"false",viewBox:"0 -705 1406.4 870.6","aria-hidden":"true"},w1={class:"jldocstring custom-block",open:""},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.564ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.371ex",height:"2.387ex",role:"img",focusable:"false",viewBox:"0 -805.6 4583.8 1055.1","aria-hidden":"true"},f1={class:"jldocstring custom-block",open:""},v1={class:"jldocstring custom-block",open:""},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.564ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.371ex",height:"2.387ex",role:"img",focusable:"false",viewBox:"0 -805.6 4583.8 1055.1","aria-hidden":"true"},M1={class:"jldocstring custom-block",open:""},j1={class:"jldocstring custom-block",open:""},Z1={class:"jldocstring custom-block",open:""};function D1(A1,s,V1,S1,G1,R1){const n=k("Badge");return e(),l("div",null,[s[871]||(s[871]=i("h1",{id:"Integer-Lattices",tabindex:"-1"},[t("Integer Lattices "),i("a",{class:"header-anchor",href:"#Integer-Lattices","aria-label":'Permalink to "Integer Lattices {#Integer-Lattices}"'},"​")],-1)),i("p",null,[s[8]||(s[8]=t("An integer lattice ")),i("mjx-container",d,[(e(),l("svg",o,s[0]||(s[0]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[1]||(s[1]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[9]||(s[9]=t(" is a finitely generated ")),i("mjx-container",g,[(e(),l("svg",Q,s[2]||(s[2]=[a('',1)]))),s[3]||(s[3]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[10]||(s[10]=t("-submodule of a quadratic vector space ")),i("mjx-container",T,[(e(),l("svg",m,s[4]||(s[4]=[a('',1)]))),s[5]||(s[5]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V"),i("mo",null,"="),i("msup",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Q")]),i("mi",null,"n")])])],-1))]),s[11]||(s[11]=t(" over the rational numbers. Integer lattices are also known as quadratic forms over the integers. We will refer to them as ")),i("mjx-container",y,[(e(),l("svg",F,s[6]||(s[6]=[a('',1)]))),s[7]||(s[7]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[12]||(s[12]=t("-lattices."))]),i("p",null,[s[31]||(s[31]=t("A ")),i("mjx-container",C,[(e(),l("svg",E,s[13]||(s[13]=[a('',1)]))),s[14]||(s[14]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[32]||(s[32]=t("-lattice ")),i("mjx-container",u,[(e(),l("svg",x,s[15]||(s[15]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[16]||(s[16]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[33]||(s[33]=t(" has the type ")),s[34]||(s[34]=i("code",null,"ZZLat",-1)),s[35]||(s[35]=t(". It is given in terms of its ambient quadratic space ")),i("mjx-container",c,[(e(),l("svg",w,s[17]||(s[17]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),s[18]||(s[18]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V")])],-1))]),s[36]||(s[36]=t(" together with a basis matrix ")),i("mjx-container",b,[(e(),l("svg",B,s[19]||(s[19]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[20]||(s[20]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[37]||(s[37]=t(" whose rows span ")),i("mjx-container",f,[(e(),l("svg",v,s[21]||(s[21]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[22]||(s[22]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[38]||(s[38]=t(", i.e. ")),i("mjx-container",L,[(e(),l("svg",H,s[23]||(s[23]=[a('',1)]))),s[24]||(s[24]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,"="),i("msup",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"r")]),i("mi",null,"B")])],-1))]),s[39]||(s[39]=t(" where ")),i("mjx-container",M,[(e(),l("svg",j,s[25]||(s[25]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D45F",d:"M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),s[26]||(s[26]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"r")])],-1))]),s[40]||(s[40]=t(" is the (")),i("mjx-container",Z,[(e(),l("svg",D,s[27]||(s[27]=[a('',1)]))),s[28]||(s[28]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[41]||(s[41]=t("-module) rank of ")),i("mjx-container",A,[(e(),l("svg",V,s[29]||(s[29]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[30]||(s[30]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[42]||(s[42]=t("."))]),i("p",null,[s[47]||(s[47]=t("To access ")),i("mjx-container",S,[(e(),l("svg",G,s[43]||(s[43]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),s[44]||(s[44]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V")])],-1))]),s[48]||(s[48]=t(" and ")),i("mjx-container",R,[(e(),l("svg",O,s[45]||(s[45]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[46]||(s[46]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[49]||(s[49]=t(" see ")),s[50]||(s[50]=i("a",{href:"/v0.34.8/manual/quad_forms/integer_lattices#ambient_space-Tuple{ZZLat}"},[i("code",null,"ambient_space(L::ZZLat)")],-1)),s[51]||(s[51]=t(" and ")),s[52]||(s[52]=i("a",{href:"/v0.34.8/manual/quad_forms/integer_lattices#basis_matrix-Tuple{ZZLat}"},[i("code",null,"basis_matrix(L::ZZLat)")],-1)),s[53]||(s[53]=t("."))]),s[872]||(s[872]=i("h2",{id:"Creation-of-integer-lattices",tabindex:"-1"},[t("Creation of integer lattices "),i("a",{class:"header-anchor",href:"#Creation-of-integer-lattices","aria-label":'Permalink to "Creation of integer lattices {#Creation-of-integer-lattices}"'},"​")],-1)),s[873]||(s[873]=i("h3",{id:"From-a-gram-matrix",tabindex:"-1"},[t("From a gram matrix "),i("a",{class:"header-anchor",href:"#From-a-gram-matrix","aria-label":'Permalink to "From a gram matrix {#From-a-gram-matrix}"'},"​")],-1)),i("details",z,[i("summary",null,[s[54]||(s[54]=i("a",{id:"integer_lattice-Tuple{QQMatrix}",href:"#integer_lattice-Tuple{QQMatrix}"},[i("span",{class:"jlbinding"},"integer_lattice")],-1)),s[55]||(s[55]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[68]||(s[68]=a('
julia
integer_lattice([B::MatElem]; gram) -> ZZLat
',1)),i("p",null,[s[58]||(s[58]=t("Return the Z-lattice with basis matrix ")),i("mjx-container",J,[(e(),l("svg",I,s[56]||(s[56]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[57]||(s[57]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[59]||(s[59]=t(" inside the quadratic space with Gram matrix ")),s[60]||(s[60]=i("code",null,"gram",-1)),s[61]||(s[61]=t("."))]),i("p",null,[s[64]||(s[64]=t("If the keyword ")),s[65]||(s[65]=i("code",null,"gram",-1)),s[66]||(s[66]=t(" is not specified, the Gram matrix is the identity matrix. If ")),i("mjx-container",N,[(e(),l("svg",q,s[62]||(s[62]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[63]||(s[63]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[67]||(s[67]=t(" is not specified, the basis matrix is the identity matrix."))]),s[69]||(s[69]=a(`

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1//2, 0, 0, 2]));
 
 julia> gram_matrix(L) == matrix(QQ, 2, 2, [1//4, 0, 0, 4])
 true
@@ -16,7 +16,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 
 julia> gram_matrix(L)
 [  0   -13]
-[-13     0]

source

`,3))]),i("details",W,[i("summary",null,[s[88]||(s[88]=i("a",{id:"integer_lattice-Tuple{Symbol, Union{Int64, ZZRingElem}}",href:"#integer_lattice-Tuple{Symbol, Union{Int64, ZZRingElem}}"},[i("span",{class:"jlbinding"},"integer_lattice")],-1)),s[89]||(s[89]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[104]||(s[104]=a('
julia
integer_lattice(S::Symbol, n::RationalUnion = 1) -> ZZlat
',1)),i("p",null,[s[96]||(s[96]=t("Given ")),s[97]||(s[97]=i("code",null,"S = :H",-1)),s[98]||(s[98]=t(" or ")),s[99]||(s[99]=i("code",null,"S = :U",-1)),s[100]||(s[100]=t(", return a ")),i("mjx-container",Y,[(e(),l("svg",_,s[90]||(s[90]=[a('',1)]))),s[91]||(s[91]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[101]||(s[101]=t("-lattice admitting ")),i("mjx-container",ss,[(e(),l("svg",is,s[92]||(s[92]=[a('',1)]))),s[93]||(s[93]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"∗"),i("msub",null,[i("mi",null,"J"),i("mn",null,"2")])])],-1))]),s[102]||(s[102]=t(" as Gram matrix in some basis, where ")),i("mjx-container",ts,[(e(),l("svg",as,s[94]||(s[94]=[a('',1)]))),s[95]||(s[95]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"J"),i("mn",null,"2")])])],-1))]),s[103]||(s[103]=t(" is the 2-by-2 matrix with 0's on the main diagonal and 1's elsewhere."))]),s[105]||(s[105]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ls,[i("summary",null,[s[106]||(s[106]=i("a",{id:"leech_lattice",href:"#leech_lattice"},[i("span",{class:"jlbinding"},"leech_lattice")],-1)),s[107]||(s[107]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[108]||(s[108]=a(`
julia
leech_lattice() -> ZZLat

Return the Leech lattice.

source

julia
leech_lattice(niemeier_lattice::ZZLat) -> ZZLat, QQMatrix, Int

Return a triple L, v, h where L is the Leech lattice.

L is an h-neighbor of the Niemeier lattice N with respect to v. This means that L / L ∩ N ≅ ℤ / h ℤ. Here h is the Coxeter number of the Niemeier lattice.

This implements the 23 holy constructions of the Leech lattice in [5].

Examples

julia
julia> R = integer_lattice(gram=2 * identity_matrix(ZZ, 24));
+[-13     0]

source

`,3))]),i("details",W,[i("summary",null,[s[88]||(s[88]=i("a",{id:"integer_lattice-Tuple{Symbol, Union{Int64, ZZRingElem}}",href:"#integer_lattice-Tuple{Symbol, Union{Int64, ZZRingElem}}"},[i("span",{class:"jlbinding"},"integer_lattice")],-1)),s[89]||(s[89]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[104]||(s[104]=a('
julia
integer_lattice(S::Symbol, n::RationalUnion = 1) -> ZZlat
',1)),i("p",null,[s[96]||(s[96]=t("Given ")),s[97]||(s[97]=i("code",null,"S = :H",-1)),s[98]||(s[98]=t(" or ")),s[99]||(s[99]=i("code",null,"S = :U",-1)),s[100]||(s[100]=t(", return a ")),i("mjx-container",Y,[(e(),l("svg",_,s[90]||(s[90]=[a('',1)]))),s[91]||(s[91]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[101]||(s[101]=t("-lattice admitting ")),i("mjx-container",ss,[(e(),l("svg",is,s[92]||(s[92]=[a('',1)]))),s[93]||(s[93]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"∗"),i("msub",null,[i("mi",null,"J"),i("mn",null,"2")])])],-1))]),s[102]||(s[102]=t(" as Gram matrix in some basis, where ")),i("mjx-container",ts,[(e(),l("svg",as,s[94]||(s[94]=[a('',1)]))),s[95]||(s[95]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"J"),i("mn",null,"2")])])],-1))]),s[103]||(s[103]=t(" is the 2-by-2 matrix with 0's on the main diagonal and 1's elsewhere."))]),s[105]||(s[105]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ls,[i("summary",null,[s[106]||(s[106]=i("a",{id:"leech_lattice",href:"#leech_lattice"},[i("span",{class:"jlbinding"},"leech_lattice")],-1)),s[107]||(s[107]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[108]||(s[108]=a(`
julia
leech_lattice() -> ZZLat

Return the Leech lattice.

source

julia
leech_lattice(niemeier_lattice::ZZLat) -> ZZLat, QQMatrix, Int

Return a triple L, v, h where L is the Leech lattice.

L is an h-neighbor of the Niemeier lattice N with respect to v. This means that L / L ∩ N ≅ ℤ / h ℤ. Here h is the Coxeter number of the Niemeier lattice.

This implements the 23 holy constructions of the Leech lattice in [5].

Examples

julia
julia> R = integer_lattice(gram=2 * identity_matrix(ZZ, 24));
 
 julia> N = maximal_even_lattice(R) # Some Niemeier lattice
 Integer lattice of rank 24 and degree 24
@@ -149,7 +149,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 Genus symbol for integer lattices
 Signatures: (3, 0, 20)
 Local symbol:
-  Local genus symbol at 2: 1^22 4^1_7

source

`,6))]),s[876]||(s[876]=a('

From a genus

Integer lattices can be created as representatives of a genus. See (representative(L::ZZGenus))

Rescaling the Quadratic Form

',3)),i("details",ps,[i("summary",null,[s[118]||(s[118]=i("a",{id:"rescale-Tuple{ZZLat, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZLat, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[i("span",{class:"jlbinding"},"rescale")],-1)),s[119]||(s[119]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[120]||(s[120]=a(`
julia
rescale(L::ZZLat, r::RationalUnion) -> ZZLat

Return the lattice L in the quadratic space with form r \\Phi.

Examples

This can be useful to apply methods intended for positive definite lattices.

julia
julia> L = integer_lattice(gram=ZZ[-1 0; 0 -1])
+  Local genus symbol at 2: 1^22 4^1_7

source

`,6))]),s[876]||(s[876]=a('

From a genus

Integer lattices can be created as representatives of a genus. See (representative(L::ZZGenus))

Rescaling the Quadratic Form

',3)),i("details",ps,[i("summary",null,[s[118]||(s[118]=i("a",{id:"rescale-Tuple{ZZLat, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZLat, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[i("span",{class:"jlbinding"},"rescale")],-1)),s[119]||(s[119]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[120]||(s[120]=a(`
julia
rescale(L::ZZLat, r::RationalUnion) -> ZZLat

Return the lattice L in the quadratic space with form r \\Phi.

Examples

This can be useful to apply methods intended for positive definite lattices.

julia
julia> L = integer_lattice(gram=ZZ[-1 0; 0 -1])
 Integer lattice of rank 2 and degree 2
 with gram matrix
 [-1    0]
@@ -169,9 +169,9 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
   over rational field
 with gram matrix
 [ 4   -2]
-[-2    5]

source

`,3))]),s[878]||(s[878]=i("h2",{id:"invariants",tabindex:"-1"},[t("Invariants "),i("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),i("details",bs,[i("summary",null,[s[160]||(s[160]=i("a",{id:"rank-Tuple{ZZLat}",href:"#rank-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"rank")],-1)),s[161]||(s[161]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[162]||(s[162]=a('
julia
rank(L::AbstractLat) -> Int

Return the rank of the underlying module of the lattice L.

source

',3))]),i("details",Bs,[i("summary",null,[s[163]||(s[163]=i("a",{id:"det-Tuple{ZZLat}",href:"#det-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"det")],-1)),s[164]||(s[164]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[165]||(s[165]=a('
julia
det(L::ZZLat) -> QQFieldElem

Return the determinant of the gram matrix of L.

source

',3))]),i("details",fs,[i("summary",null,[s[166]||(s[166]=i("a",{id:"scale-Tuple{ZZLat}",href:"#scale-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"scale")],-1)),s[167]||(s[167]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[177]||(s[177]=a('
julia
scale(L::ZZLat) -> QQFieldElem

Return the scale of L.

',2)),i("p",null,[s[172]||(s[172]=t("The scale of ")),s[173]||(s[173]=i("code",null,"L",-1)),s[174]||(s[174]=t(" is defined as the positive generator of the ")),i("mjx-container",vs,[(e(),l("svg",Ls,s[168]||(s[168]=[a('',1)]))),s[169]||(s[169]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[175]||(s[175]=t("-ideal generated by ")),i("mjx-container",Hs,[(e(),l("svg",Ms,s[170]||(s[170]=[a('',1)]))),s[171]||(s[171]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{fence:"false",stretchy:"false"},"{"),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"y"),i("mo",{stretchy:"false"},")"),i("mo",null,":"),i("mi",null,"x"),i("mo",null,","),i("mi",null,"y"),i("mo",null,"∈"),i("mi",null,"L"),i("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[176]||(s[176]=t("."))]),s[178]||(s[178]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",js,[i("summary",null,[s[179]||(s[179]=i("a",{id:"norm-Tuple{ZZLat}",href:"#norm-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"norm")],-1)),s[180]||(s[180]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[190]||(s[190]=a('
julia
norm(L::ZZLat) -> QQFieldElem

Return the norm of L.

',2)),i("p",null,[s[185]||(s[185]=t("The norm of ")),s[186]||(s[186]=i("code",null,"L",-1)),s[187]||(s[187]=t(" is defined as the positive generator of the ")),i("mjx-container",Zs,[(e(),l("svg",Ds,s[181]||(s[181]=[a('',1)]))),s[182]||(s[182]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[188]||(s[188]=t("- ideal generated by ")),i("mjx-container",As,[(e(),l("svg",Vs,s[183]||(s[183]=[a('',1)]))),s[184]||(s[184]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{fence:"false",stretchy:"false"},"{"),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"x"),i("mo",{stretchy:"false"},")"),i("mo",null,":"),i("mi",null,"x"),i("mo",null,"∈"),i("mi",null,"L"),i("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[189]||(s[189]=t("."))]),s[191]||(s[191]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ss,[i("summary",null,[s[192]||(s[192]=i("a",{id:"iseven-Tuple{ZZLat}",href:"#iseven-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"iseven")],-1)),s[193]||(s[193]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[206]||(s[206]=a('
julia
iseven(L::ZZLat) -> Bool

Return whether L is even.

',2)),i("p",null,[s[200]||(s[200]=t("An integer lattice ")),s[201]||(s[201]=i("code",null,"L",-1)),s[202]||(s[202]=t(" in the rational quadratic space ")),i("mjx-container",Gs,[(e(),l("svg",Rs,s[194]||(s[194]=[a('',1)]))),s[195]||(s[195]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{stretchy:"false"},"("),i("mi",null,"V"),i("mo",null,","),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},")")])],-1))]),s[203]||(s[203]=t(" is called even if ")),i("mjx-container",Os,[(e(),l("svg",zs,s[196]||(s[196]=[a('',1)]))),s[197]||(s[197]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"x"),i("mo",{stretchy:"false"},")"),i("mo",null,"∈"),i("mn",null,"2"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[204]||(s[204]=t(" for all ")),i("mjx-container",Js,[(e(),l("svg",Is,s[198]||(s[198]=[a('',1)]))),s[199]||(s[199]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"x"),i("mi",null,"i"),i("mi",null,"n"),i("mi",null,"L")])],-1))]),s[205]||(s[205]=t("."))]),s[207]||(s[207]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ns,[i("summary",null,[s[208]||(s[208]=i("a",{id:"is_integral-Tuple{ZZLat}",href:"#is_integral-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_integral")],-1)),s[209]||(s[209]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[210]||(s[210]=a('
julia
is_integral(L::AbstractLat) -> Bool

Return whether the lattice L is integral.

source

',3))]),i("details",qs,[i("summary",null,[s[211]||(s[211]=i("a",{id:"is_primary_with_prime-Tuple{ZZLat}",href:"#is_primary_with_prime-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),s[212]||(s[212]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[217]||(s[217]=a('
julia
is_primary_with_prime(L::ZZLat) -> Bool, ZZRingElem
',1)),i("p",null,[s[215]||(s[215]=t("Given a ")),i("mjx-container",Us,[(e(),l("svg",Xs,s[213]||(s[213]=[a('',1)]))),s[214]||(s[214]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[216]||(s[216]=a('-lattice L, return whether L is primary, that is whether L is integral and its discriminant group (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.',15))]),s[218]||(s[218]=i("p",null,[t("Note that for unimodular lattices, this function returns "),i("code",null,"(true, 1)"),t(". If the lattice is not primary, the second return value is "),i("code",null,"-1"),t(" by default.")],-1)),s[219]||(s[219]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ps,[i("summary",null,[s[220]||(s[220]=i("a",{id:"is_primary-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"is_primary")],-1)),s[221]||(s[221]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[226]||(s[226]=a('
julia
is_primary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
',1)),i("p",null,[s[224]||(s[224]=t("Given an integral ")),i("mjx-container",Ks,[(e(),l("svg",$s,s[222]||(s[222]=[a('',1)]))),s[223]||(s[223]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[225]||(s[225]=a('-lattice L and a prime number p, return whether L is p-primary, that is whether its discriminant group (see discriminant_group) is a p-group.',13))]),s[227]||(s[227]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ws,[i("summary",null,[s[228]||(s[228]=i("a",{id:"is_elementary_with_prime-Tuple{ZZLat}",href:"#is_elementary_with_prime-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),s[229]||(s[229]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[234]||(s[234]=a('
julia
is_elementary_with_prime(L::ZZLat) -> Bool, ZZRingElem
',1)),i("p",null,[s[232]||(s[232]=t("Given a ")),i("mjx-container",Ys,[(e(),l("svg",_s,s[230]||(s[230]=[a('',1)]))),s[231]||(s[231]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[233]||(s[233]=a('-lattice L, return whether L is elementary, that is whether L is integral and its discriminant group (see discriminant_group) is an elemenentary p-group for some prime number p. In case it is, p is also returned as second output.',15))]),s[235]||(s[235]=i("p",null,[t("Note that for unimodular lattices, this function returns "),i("code",null,"(true, 1)"),t(". If the lattice is not elementary, the second return value is "),i("code",null,"-1"),t(" by default.")],-1)),s[236]||(s[236]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",si,[i("summary",null,[s[237]||(s[237]=i("a",{id:"is_elementary-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"is_elementary")],-1)),s[238]||(s[238]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[243]||(s[243]=a('
julia
is_elementary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
',1)),i("p",null,[s[241]||(s[241]=t("Given an integral ")),i("mjx-container",ii,[(e(),l("svg",ti,s[239]||(s[239]=[a('',1)]))),s[240]||(s[240]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[242]||(s[242]=a('-lattice L and a prime number p, return whether L is p-elementary, that is whether its discriminant group (see discriminant_group) is an elementary p-group.',13))]),s[244]||(s[244]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[879]||(s[879]=i("h3",{id:"The-Genus",tabindex:"-1"},[t("The Genus "),i("a",{class:"header-anchor",href:"#The-Genus","aria-label":'Permalink to "The Genus {#The-Genus}"'},"​")],-1)),s[880]||(s[880]=i("p",null,[t("For an integral lattice The genus of an integer lattice collects its local invariants. "),i("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#genus-Tuple{ZZLat}"},[i("code",null,"genus(::ZZLat)")])],-1)),i("details",ai,[i("summary",null,[s[245]||(s[245]=i("a",{id:"mass-Tuple{ZZLat}",href:"#mass-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"mass")],-1)),s[246]||(s[246]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[247]||(s[247]=a('
julia
mass(L::ZZLat) -> QQFieldElem

Return the mass of the genus of L.

source

',3))]),i("details",li,[i("summary",null,[s[248]||(s[248]=i("a",{id:"genus_representatives-Tuple{ZZLat}",href:"#genus_representatives-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"genus_representatives")],-1)),s[249]||(s[249]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[250]||(s[250]=a('
julia
genus_representatives(L::ZZLat) -> Vector{ZZLat}

Return representatives for the isometry classes in the genus of L.

source

',3))]),s[881]||(s[881]=i("h3",{id:"Real-invariants",tabindex:"-1"},[t("Real invariants "),i("a",{class:"header-anchor",href:"#Real-invariants","aria-label":'Permalink to "Real invariants {#Real-invariants}"'},"​")],-1)),i("details",ei,[i("summary",null,[s[251]||(s[251]=i("a",{id:"signature_tuple-Tuple{ZZLat}",href:"#signature_tuple-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"signature_tuple")],-1)),s[252]||(s[252]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[253]||(s[253]=a('
julia
signature_tuple(L::ZZLat) -> Tuple{Int,Int,Int}

Return the number of (positive, zero, negative) inertia of L.

source

',3))]),i("details",ni,[i("summary",null,[s[254]||(s[254]=i("a",{id:"is_positive_definite-Tuple{ZZLat}",href:"#is_positive_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_positive_definite")],-1)),s[255]||(s[255]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[256]||(s[256]=a('
julia
is_positive_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is positive definite.

source

',3))]),i("details",hi,[i("summary",null,[s[257]||(s[257]=i("a",{id:"is_negative_definite-Tuple{ZZLat}",href:"#is_negative_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_negative_definite")],-1)),s[258]||(s[258]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[259]||(s[259]=a('
julia
is_negative_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is negative definite.

source

',3))]),i("details",pi,[i("summary",null,[s[260]||(s[260]=i("a",{id:"is_definite-Tuple{ZZLat}",href:"#is_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_definite")],-1)),s[261]||(s[261]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[262]||(s[262]=a('
julia
is_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is definite.

source

',3))]),s[882]||(s[882]=i("h2",{id:"isometries",tabindex:"-1"},[t("Isometries "),i("a",{class:"header-anchor",href:"#isometries","aria-label":'Permalink to "Isometries"'},"​")],-1)),i("details",ki,[i("summary",null,[s[263]||(s[263]=i("a",{id:"automorphism_group_generators-Tuple{ZZLat}",href:"#automorphism_group_generators-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"automorphism_group_generators")],-1)),s[264]||(s[264]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[269]||(s[269]=a('
julia
automorphism_group_generators(E::EllipticCurve) -> Vector{EllCrvIso}
',1)),i("p",null,[s[267]||(s[267]=t("Return generators of the automorphism group of ")),i("mjx-container",ri,[(e(),l("svg",di,s[265]||(s[265]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D438",d:"M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z",style:{"stroke-width":"3"}})])])],-1)]))),s[266]||(s[266]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E")])],-1))]),s[268]||(s[268]=t("."))]),s[270]||(s[270]=a(`

source

julia
automorphism_group_generators(L::AbstractLat; ambient_representation::Bool = true,
+[-2    5]

source

`,3))]),s[878]||(s[878]=i("h2",{id:"invariants",tabindex:"-1"},[t("Invariants "),i("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),i("details",bs,[i("summary",null,[s[160]||(s[160]=i("a",{id:"rank-Tuple{ZZLat}",href:"#rank-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"rank")],-1)),s[161]||(s[161]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[162]||(s[162]=a('
julia
rank(L::AbstractLat) -> Int

Return the rank of the underlying module of the lattice L.

source

',3))]),i("details",Bs,[i("summary",null,[s[163]||(s[163]=i("a",{id:"det-Tuple{ZZLat}",href:"#det-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"det")],-1)),s[164]||(s[164]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[165]||(s[165]=a('
julia
det(L::ZZLat) -> QQFieldElem

Return the determinant of the gram matrix of L.

source

',3))]),i("details",fs,[i("summary",null,[s[166]||(s[166]=i("a",{id:"scale-Tuple{ZZLat}",href:"#scale-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"scale")],-1)),s[167]||(s[167]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[177]||(s[177]=a('
julia
scale(L::ZZLat) -> QQFieldElem

Return the scale of L.

',2)),i("p",null,[s[172]||(s[172]=t("The scale of ")),s[173]||(s[173]=i("code",null,"L",-1)),s[174]||(s[174]=t(" is defined as the positive generator of the ")),i("mjx-container",vs,[(e(),l("svg",Ls,s[168]||(s[168]=[a('',1)]))),s[169]||(s[169]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[175]||(s[175]=t("-ideal generated by ")),i("mjx-container",Hs,[(e(),l("svg",Ms,s[170]||(s[170]=[a('',1)]))),s[171]||(s[171]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{fence:"false",stretchy:"false"},"{"),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"y"),i("mo",{stretchy:"false"},")"),i("mo",null,":"),i("mi",null,"x"),i("mo",null,","),i("mi",null,"y"),i("mo",null,"∈"),i("mi",null,"L"),i("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[176]||(s[176]=t("."))]),s[178]||(s[178]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",js,[i("summary",null,[s[179]||(s[179]=i("a",{id:"norm-Tuple{ZZLat}",href:"#norm-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"norm")],-1)),s[180]||(s[180]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[190]||(s[190]=a('
julia
norm(L::ZZLat) -> QQFieldElem

Return the norm of L.

',2)),i("p",null,[s[185]||(s[185]=t("The norm of ")),s[186]||(s[186]=i("code",null,"L",-1)),s[187]||(s[187]=t(" is defined as the positive generator of the ")),i("mjx-container",Zs,[(e(),l("svg",Ds,s[181]||(s[181]=[a('',1)]))),s[182]||(s[182]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[188]||(s[188]=t("- ideal generated by ")),i("mjx-container",As,[(e(),l("svg",Vs,s[183]||(s[183]=[a('',1)]))),s[184]||(s[184]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{fence:"false",stretchy:"false"},"{"),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"x"),i("mo",{stretchy:"false"},")"),i("mo",null,":"),i("mi",null,"x"),i("mo",null,"∈"),i("mi",null,"L"),i("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[189]||(s[189]=t("."))]),s[191]||(s[191]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ss,[i("summary",null,[s[192]||(s[192]=i("a",{id:"iseven-Tuple{ZZLat}",href:"#iseven-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"iseven")],-1)),s[193]||(s[193]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[206]||(s[206]=a('
julia
iseven(L::ZZLat) -> Bool

Return whether L is even.

',2)),i("p",null,[s[200]||(s[200]=t("An integer lattice ")),s[201]||(s[201]=i("code",null,"L",-1)),s[202]||(s[202]=t(" in the rational quadratic space ")),i("mjx-container",Gs,[(e(),l("svg",Rs,s[194]||(s[194]=[a('',1)]))),s[195]||(s[195]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{stretchy:"false"},"("),i("mi",null,"V"),i("mo",null,","),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},")")])],-1))]),s[203]||(s[203]=t(" is called even if ")),i("mjx-container",Os,[(e(),l("svg",zs,s[196]||(s[196]=[a('',1)]))),s[197]||(s[197]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"x"),i("mo",{stretchy:"false"},")"),i("mo",null,"∈"),i("mn",null,"2"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[204]||(s[204]=t(" for all ")),i("mjx-container",Js,[(e(),l("svg",Is,s[198]||(s[198]=[a('',1)]))),s[199]||(s[199]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"x"),i("mi",null,"i"),i("mi",null,"n"),i("mi",null,"L")])],-1))]),s[205]||(s[205]=t("."))]),s[207]||(s[207]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ns,[i("summary",null,[s[208]||(s[208]=i("a",{id:"is_integral-Tuple{ZZLat}",href:"#is_integral-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_integral")],-1)),s[209]||(s[209]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[210]||(s[210]=a('
julia
is_integral(L::AbstractLat) -> Bool

Return whether the lattice L is integral.

source

',3))]),i("details",qs,[i("summary",null,[s[211]||(s[211]=i("a",{id:"is_primary_with_prime-Tuple{ZZLat}",href:"#is_primary_with_prime-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),s[212]||(s[212]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[217]||(s[217]=a('
julia
is_primary_with_prime(L::ZZLat) -> Bool, ZZRingElem
',1)),i("p",null,[s[215]||(s[215]=t("Given a ")),i("mjx-container",Us,[(e(),l("svg",Xs,s[213]||(s[213]=[a('',1)]))),s[214]||(s[214]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[216]||(s[216]=a('-lattice L, return whether L is primary, that is whether L is integral and its discriminant group (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.',15))]),s[218]||(s[218]=i("p",null,[t("Note that for unimodular lattices, this function returns "),i("code",null,"(true, 1)"),t(". If the lattice is not primary, the second return value is "),i("code",null,"-1"),t(" by default.")],-1)),s[219]||(s[219]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ps,[i("summary",null,[s[220]||(s[220]=i("a",{id:"is_primary-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"is_primary")],-1)),s[221]||(s[221]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[226]||(s[226]=a('
julia
is_primary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
',1)),i("p",null,[s[224]||(s[224]=t("Given an integral ")),i("mjx-container",Ks,[(e(),l("svg",$s,s[222]||(s[222]=[a('',1)]))),s[223]||(s[223]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[225]||(s[225]=a('-lattice L and a prime number p, return whether L is p-primary, that is whether its discriminant group (see discriminant_group) is a p-group.',13))]),s[227]||(s[227]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ws,[i("summary",null,[s[228]||(s[228]=i("a",{id:"is_elementary_with_prime-Tuple{ZZLat}",href:"#is_elementary_with_prime-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),s[229]||(s[229]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[234]||(s[234]=a('
julia
is_elementary_with_prime(L::ZZLat) -> Bool, ZZRingElem
',1)),i("p",null,[s[232]||(s[232]=t("Given a ")),i("mjx-container",Ys,[(e(),l("svg",_s,s[230]||(s[230]=[a('',1)]))),s[231]||(s[231]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[233]||(s[233]=a('-lattice L, return whether L is elementary, that is whether L is integral and its discriminant group (see discriminant_group) is an elemenentary p-group for some prime number p. In case it is, p is also returned as second output.',15))]),s[235]||(s[235]=i("p",null,[t("Note that for unimodular lattices, this function returns "),i("code",null,"(true, 1)"),t(". If the lattice is not elementary, the second return value is "),i("code",null,"-1"),t(" by default.")],-1)),s[236]||(s[236]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",si,[i("summary",null,[s[237]||(s[237]=i("a",{id:"is_elementary-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"is_elementary")],-1)),s[238]||(s[238]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[243]||(s[243]=a('
julia
is_elementary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
',1)),i("p",null,[s[241]||(s[241]=t("Given an integral ")),i("mjx-container",ii,[(e(),l("svg",ti,s[239]||(s[239]=[a('',1)]))),s[240]||(s[240]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[242]||(s[242]=a('-lattice L and a prime number p, return whether L is p-elementary, that is whether its discriminant group (see discriminant_group) is an elementary p-group.',13))]),s[244]||(s[244]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[879]||(s[879]=i("h3",{id:"The-Genus",tabindex:"-1"},[t("The Genus "),i("a",{class:"header-anchor",href:"#The-Genus","aria-label":'Permalink to "The Genus {#The-Genus}"'},"​")],-1)),s[880]||(s[880]=i("p",null,[t("For an integral lattice The genus of an integer lattice collects its local invariants. "),i("a",{href:"/v0.34.8/manual/quad_forms/Zgenera#genus-Tuple{ZZLat}"},[i("code",null,"genus(::ZZLat)")])],-1)),i("details",ai,[i("summary",null,[s[245]||(s[245]=i("a",{id:"mass-Tuple{ZZLat}",href:"#mass-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"mass")],-1)),s[246]||(s[246]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[247]||(s[247]=a('
julia
mass(L::ZZLat) -> QQFieldElem

Return the mass of the genus of L.

source

',3))]),i("details",li,[i("summary",null,[s[248]||(s[248]=i("a",{id:"genus_representatives-Tuple{ZZLat}",href:"#genus_representatives-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"genus_representatives")],-1)),s[249]||(s[249]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[250]||(s[250]=a('
julia
genus_representatives(L::ZZLat) -> Vector{ZZLat}

Return representatives for the isometry classes in the genus of L.

source

',3))]),s[881]||(s[881]=i("h3",{id:"Real-invariants",tabindex:"-1"},[t("Real invariants "),i("a",{class:"header-anchor",href:"#Real-invariants","aria-label":'Permalink to "Real invariants {#Real-invariants}"'},"​")],-1)),i("details",ei,[i("summary",null,[s[251]||(s[251]=i("a",{id:"signature_tuple-Tuple{ZZLat}",href:"#signature_tuple-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"signature_tuple")],-1)),s[252]||(s[252]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[253]||(s[253]=a('
julia
signature_tuple(L::ZZLat) -> Tuple{Int,Int,Int}

Return the number of (positive, zero, negative) inertia of L.

source

',3))]),i("details",ni,[i("summary",null,[s[254]||(s[254]=i("a",{id:"is_positive_definite-Tuple{ZZLat}",href:"#is_positive_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_positive_definite")],-1)),s[255]||(s[255]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[256]||(s[256]=a('
julia
is_positive_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is positive definite.

source

',3))]),i("details",hi,[i("summary",null,[s[257]||(s[257]=i("a",{id:"is_negative_definite-Tuple{ZZLat}",href:"#is_negative_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_negative_definite")],-1)),s[258]||(s[258]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[259]||(s[259]=a('
julia
is_negative_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is negative definite.

source

',3))]),i("details",pi,[i("summary",null,[s[260]||(s[260]=i("a",{id:"is_definite-Tuple{ZZLat}",href:"#is_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_definite")],-1)),s[261]||(s[261]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[262]||(s[262]=a('
julia
is_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is definite.

source

',3))]),s[882]||(s[882]=i("h2",{id:"isometries",tabindex:"-1"},[t("Isometries "),i("a",{class:"header-anchor",href:"#isometries","aria-label":'Permalink to "Isometries"'},"​")],-1)),i("details",ki,[i("summary",null,[s[263]||(s[263]=i("a",{id:"automorphism_group_generators-Tuple{ZZLat}",href:"#automorphism_group_generators-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"automorphism_group_generators")],-1)),s[264]||(s[264]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[269]||(s[269]=a('
julia
automorphism_group_generators(E::EllipticCurve) -> Vector{EllCrvIso}
',1)),i("p",null,[s[267]||(s[267]=t("Return generators of the automorphism group of ")),i("mjx-container",ri,[(e(),l("svg",di,s[265]||(s[265]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D438",d:"M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z",style:{"stroke-width":"3"}})])])],-1)]))),s[266]||(s[266]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E")])],-1))]),s[268]||(s[268]=t("."))]),s[270]||(s[270]=a(`

source

julia
automorphism_group_generators(L::AbstractLat; ambient_representation::Bool = true,
                                               depth::Int = -1, bacher_depth::Int = 0)
-                                                      -> Vector{MatElem}

Given a definite lattice L, return generators for the automorphism group of L. If ambient_representation == true (the default), the transformations are represented with respect to the ambient space of L. Otherwise, the transformations are represented with respect to the (pseudo-)basis of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

`,5))]),i("details",oi,[i("summary",null,[s[271]||(s[271]=i("a",{id:"automorphism_group_order-Tuple{ZZLat}",href:"#automorphism_group_order-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"automorphism_group_order")],-1)),s[272]||(s[272]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[273]||(s[273]=a('
julia
automorphism_group_order(L::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Int

Given a definite lattice L, return the order of the automorphism group of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

',4))]),i("details",gi,[i("summary",null,[s[274]||(s[274]=i("a",{id:"is_isometric-Tuple{ZZLat, ZZLat}",href:"#is_isometric-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"is_isometric")],-1)),s[275]||(s[275]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[276]||(s[276]=a('
julia
is_isometric(L::AbstractLat, M::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Bool

Return whether the lattices L and M are isometric.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

',4))]),i("details",Qi,[i("summary",null,[s[277]||(s[277]=i("a",{id:"is_locally_isometric-Tuple{ZZLat, ZZLat, Int64}",href:"#is_locally_isometric-Tuple{ZZLat, ZZLat, Int64}"},[i("span",{class:"jlbinding"},"is_locally_isometric")],-1)),s[278]||(s[278]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[283]||(s[283]=a('
julia
is_locally_isometric(L::ZZLat, M::ZZLat, p::Int) -> Bool

Return whether L and M are isometric over the p-adic integers.

',2)),i("p",null,[s[281]||(s[281]=t("i.e. whether ")),i("mjx-container",Ti,[(e(),l("svg",mi,s[279]||(s[279]=[a('',1)]))),s[280]||(s[280]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,"⊗"),i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"p")]),i("mo",null,"≅"),i("mi",null,"M"),i("mo",null,"⊗"),i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"p")])])],-1))]),s[282]||(s[282]=t("."))]),s[284]||(s[284]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[883]||(s[883]=i("h1",{id:"Root-lattices",tabindex:"-1"},[t("Root lattices "),i("a",{class:"header-anchor",href:"#Root-lattices","aria-label":'Permalink to "Root lattices {#Root-lattices}"'},"​")],-1)),i("details",yi,[i("summary",null,[s[285]||(s[285]=i("a",{id:"root_lattice_recognition-Tuple{ZZLat}",href:"#root_lattice_recognition-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"root_lattice_recognition")],-1)),s[286]||(s[286]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[304]||(s[304]=a('
julia
root_lattice_recognition(L::ZZLat)

Return the ADE type of the root sublattice of L.

',2)),i("p",null,[s[293]||(s[293]=t("The root sublattice is the lattice spanned by the vectors of squared length ")),i("mjx-container",Fi,[(e(),l("svg",Ci,s[287]||(s[287]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),s[288]||(s[288]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"1")])],-1))]),s[294]||(s[294]=t(" and ")),i("mjx-container",Ei,[(e(),l("svg",ui,s[289]||(s[289]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"32",d:"M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z",style:{"stroke-width":"3"}})])])],-1)]))),s[290]||(s[290]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"2")])],-1))]),s[295]||(s[295]=t(". The odd lattice of rank 1 and determinant ")),i("mjx-container",xi,[(e(),l("svg",ci,s[291]||(s[291]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),s[292]||(s[292]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"1")])],-1))]),s[296]||(s[296]=t(" is denoted by ")),s[297]||(s[297]=i("code",null,"(:I, 1)",-1)),s[298]||(s[298]=t("."))]),s[305]||(s[305]=i("p",null,"Input:",-1)),i("p",null,[s[301]||(s[301]=i("code",null,"L",-1)),s[302]||(s[302]=t(" – a definite and integral ")),i("mjx-container",wi,[(e(),l("svg",bi,s[299]||(s[299]=[a('',1)]))),s[300]||(s[300]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[303]||(s[303]=t("-lattice."))]),s[306]||(s[306]=a(`

Output:

Two lists, the first one containing the ADE types and the second one the irreducible root sublattices.

For more recognizable gram matrices use root_lattice_recognition_fundamental.

Examples

julia
julia> L = integer_lattice(gram=ZZ[4  0 0  0 3  0 3  0;
+                                                      -> Vector{MatElem}

Given a definite lattice L, return generators for the automorphism group of L. If ambient_representation == true (the default), the transformations are represented with respect to the ambient space of L. Otherwise, the transformations are represented with respect to the (pseudo-)basis of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

`,5))]),i("details",oi,[i("summary",null,[s[271]||(s[271]=i("a",{id:"automorphism_group_order-Tuple{ZZLat}",href:"#automorphism_group_order-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"automorphism_group_order")],-1)),s[272]||(s[272]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[273]||(s[273]=a('
julia
automorphism_group_order(L::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Int

Given a definite lattice L, return the order of the automorphism group of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

',4))]),i("details",gi,[i("summary",null,[s[274]||(s[274]=i("a",{id:"is_isometric-Tuple{ZZLat, ZZLat}",href:"#is_isometric-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"is_isometric")],-1)),s[275]||(s[275]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[276]||(s[276]=a('
julia
is_isometric(L::AbstractLat, M::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Bool

Return whether the lattices L and M are isometric.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

',4))]),i("details",Qi,[i("summary",null,[s[277]||(s[277]=i("a",{id:"is_locally_isometric-Tuple{ZZLat, ZZLat, Int64}",href:"#is_locally_isometric-Tuple{ZZLat, ZZLat, Int64}"},[i("span",{class:"jlbinding"},"is_locally_isometric")],-1)),s[278]||(s[278]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[283]||(s[283]=a('
julia
is_locally_isometric(L::ZZLat, M::ZZLat, p::Int) -> Bool

Return whether L and M are isometric over the p-adic integers.

',2)),i("p",null,[s[281]||(s[281]=t("i.e. whether ")),i("mjx-container",Ti,[(e(),l("svg",mi,s[279]||(s[279]=[a('',1)]))),s[280]||(s[280]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,"⊗"),i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"p")]),i("mo",null,"≅"),i("mi",null,"M"),i("mo",null,"⊗"),i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"p")])])],-1))]),s[282]||(s[282]=t("."))]),s[284]||(s[284]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[883]||(s[883]=i("h1",{id:"Root-lattices",tabindex:"-1"},[t("Root lattices "),i("a",{class:"header-anchor",href:"#Root-lattices","aria-label":'Permalink to "Root lattices {#Root-lattices}"'},"​")],-1)),i("details",yi,[i("summary",null,[s[285]||(s[285]=i("a",{id:"root_lattice_recognition-Tuple{ZZLat}",href:"#root_lattice_recognition-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"root_lattice_recognition")],-1)),s[286]||(s[286]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[304]||(s[304]=a('
julia
root_lattice_recognition(L::ZZLat)

Return the ADE type of the root sublattice of L.

',2)),i("p",null,[s[293]||(s[293]=t("The root sublattice is the lattice spanned by the vectors of squared length ")),i("mjx-container",Fi,[(e(),l("svg",Ci,s[287]||(s[287]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),s[288]||(s[288]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"1")])],-1))]),s[294]||(s[294]=t(" and ")),i("mjx-container",Ei,[(e(),l("svg",ui,s[289]||(s[289]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"32",d:"M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z",style:{"stroke-width":"3"}})])])],-1)]))),s[290]||(s[290]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"2")])],-1))]),s[295]||(s[295]=t(". The odd lattice of rank 1 and determinant ")),i("mjx-container",xi,[(e(),l("svg",ci,s[291]||(s[291]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),s[292]||(s[292]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"1")])],-1))]),s[296]||(s[296]=t(" is denoted by ")),s[297]||(s[297]=i("code",null,"(:I, 1)",-1)),s[298]||(s[298]=t("."))]),s[305]||(s[305]=i("p",null,"Input:",-1)),i("p",null,[s[301]||(s[301]=i("code",null,"L",-1)),s[302]||(s[302]=t(" – a definite and integral ")),i("mjx-container",wi,[(e(),l("svg",bi,s[299]||(s[299]=[a('',1)]))),s[300]||(s[300]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[303]||(s[303]=t("-lattice."))]),s[306]||(s[306]=a(`

Output:

Two lists, the first one containing the ADE types and the second one the irreducible root sublattices.

For more recognizable gram matrices use root_lattice_recognition_fundamental.

Examples

julia
julia> L = integer_lattice(gram=ZZ[4  0 0  0 3  0 3  0;
                             0 16 8 12 2 12 6 10;
                             0  8 8  6 2  8 4  5;
                             0 12 6 10 2  9 5  8;
@@ -233,7 +233,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 [0   -1   -1    2   -1    0    0]
 [0    0    0   -1    2   -1    0]
 [0    0    0    0   -1    2   -1]
-[0    0    0    0    0   -1    2]

source

`,5))]),i("details",Li,[i("summary",null,[s[316]||(s[316]=i("a",{id:"ADE_type-Tuple{MatrixElem}",href:"#ADE_type-Tuple{MatrixElem}"},[i("span",{class:"jlbinding"},"ADE_type")],-1)),s[317]||(s[317]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[318]||(s[318]=a(`
julia
ADE_type(G::MatrixElem) -> Tuple{Symbol,Int64}

Return the type of the irreducible root lattice with gram matrix G.

See also root_lattice_recognition.

Examples

julia
julia> Hecke.ADE_type(gram_matrix(root_lattice(:A,3)))
+[0    0    0    0    0   -1    2]

source

`,5))]),i("details",Li,[i("summary",null,[s[316]||(s[316]=i("a",{id:"ADE_type-Tuple{MatrixElem}",href:"#ADE_type-Tuple{MatrixElem}"},[i("span",{class:"jlbinding"},"ADE_type")],-1)),s[317]||(s[317]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[318]||(s[318]=a(`
julia
ADE_type(G::MatrixElem) -> Tuple{Symbol,Int64}

Return the type of the irreducible root lattice with gram matrix G.

See also root_lattice_recognition.

Examples

julia
julia> Hecke.ADE_type(gram_matrix(root_lattice(:A,3)))
 (:A, 3)

source

`,6))]),i("details",Hi,[i("summary",null,[s[319]||(s[319]=i("a",{id:"coxeter_number-Tuple{Symbol, Any}",href:"#coxeter_number-Tuple{Symbol, Any}"},[i("span",{class:"jlbinding"},"coxeter_number")],-1)),s[320]||(s[320]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[339]||(s[339]=a('
julia
coxeter_number(ADE::Symbol, n) -> Int

Return the Coxeter number of the corresponding ADE root lattice.

',2)),i("p",null,[s[331]||(s[331]=t("If ")),i("mjx-container",Mi,[(e(),l("svg",ji,s[321]||(s[321]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[322]||(s[322]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[332]||(s[332]=t(" is a root lattice and ")),i("mjx-container",Zi,[(e(),l("svg",Di,s[323]||(s[323]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),s[324]||(s[324]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"R")])],-1))]),s[333]||(s[333]=t(" its set of roots, then the Coxeter number ")),i("mjx-container",Ai,[(e(),l("svg",Vi,s[325]||(s[325]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"210E",d:"M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z",style:{"stroke-width":"3"}})])])],-1)]))),s[326]||(s[326]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"h")])],-1))]),s[334]||(s[334]=t(" is ")),i("mjx-container",Si,[(e(),l("svg",Gi,s[327]||(s[327]=[a('',1)]))),s[328]||(s[328]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"R"),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"n")])],-1))]),s[335]||(s[335]=t(" where ")),s[336]||(s[336]=i("code",null,"n",-1)),s[337]||(s[337]=t(" is the rank of ")),i("mjx-container",Ri,[(e(),l("svg",Oi,s[329]||(s[329]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[330]||(s[330]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[338]||(s[338]=t("."))]),s[340]||(s[340]=a(`

Examples

julia
julia> coxeter_number(:D, 4)
 6

source

`,3))]),i("details",zi,[i("summary",null,[s[341]||(s[341]=i("a",{id:"highest_root-Tuple{Symbol, Any}",href:"#highest_root-Tuple{Symbol, Any}"},[i("span",{class:"jlbinding"},"highest_root")],-1)),s[342]||(s[342]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[343]||(s[343]=a(`
julia
highest_root(ADE::Symbol, n) -> ZZMatrix

Return coordinates of the highest root of root_lattice(ADE, n).

Examples

julia
julia> highest_root(:E, 6)
 [1   2   3   2   1   2]

source

`,5))]),s[884]||(s[884]=i("h2",{id:"Module-operations",tabindex:"-1"},[t("Module operations "),i("a",{class:"header-anchor",href:"#Module-operations","aria-label":'Permalink to "Module operations {#Module-operations}"'},"​")],-1)),s[885]||(s[885]=i("p",null,"Most module operations assume that the lattices live in the same ambient space. For instance only lattices in the same ambient space compare.",-1)),i("details",Ji,[i("summary",null,[s[344]||(s[344]=i("a",{id:"==-Tuple{ZZLat, ZZLat}",href:"#==-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"==")],-1)),s[345]||(s[345]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[346]||(s[346]=i("p",null,[t("Return "),i("code",null,"true"),t(" if both lattices have the same ambient quadratic space and the same underlying module.")],-1)),s[347]||(s[347]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ii,[i("summary",null,[s[348]||(s[348]=i("a",{id:"is_sublattice-Tuple{ZZLat, ZZLat}",href:"#is_sublattice-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"is_sublattice")],-1)),s[349]||(s[349]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[350]||(s[350]=a('
julia
is_sublattice(L::AbstractLat, M::AbstractLat) -> Bool

Return whether M is a sublattice of the lattice L.

source

',3))]),i("details",Ni,[i("summary",null,[s[351]||(s[351]=i("a",{id:"is_sublattice_with_relations-Tuple{ZZLat, ZZLat}",href:"#is_sublattice_with_relations-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"is_sublattice_with_relations")],-1)),s[352]||(s[352]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[378]||(s[378]=a('
julia
is_sublattice_with_relations(M::ZZLat, N::ZZLat) -> Bool, QQMatrix
',1)),i("p",null,[s[369]||(s[369]=t("Returns whether ")),i("mjx-container",qi,[(e(),l("svg",Ui,s[353]||(s[353]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[354]||(s[354]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"N")])],-1))]),s[370]||(s[370]=t(" is a sublattice of ")),i("mjx-container",Xi,[(e(),l("svg",Pi,s[355]||(s[355]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[356]||(s[356]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"M")])],-1))]),s[371]||(s[371]=t(". In this case, the second return value is a matrix ")),i("mjx-container",Ki,[(e(),l("svg",$i,s[357]||(s[357]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[358]||(s[358]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[372]||(s[372]=t(" such that ")),i("mjx-container",Wi,[(e(),l("svg",Yi,s[359]||(s[359]=[a('',1)]))),s[360]||(s[360]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B"),i("msub",null,[i("mi",null,"B"),i("mi",null,"M")]),i("mo",null,"="),i("msub",null,[i("mi",null,"B"),i("mi",null,"N")])])],-1))]),s[373]||(s[373]=t(", where ")),i("mjx-container",_i,[(e(),l("svg",st,s[361]||(s[361]=[a('',1)]))),s[362]||(s[362]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"B"),i("mi",null,"M")])])],-1))]),s[374]||(s[374]=t(" and ")),i("mjx-container",it,[(e(),l("svg",tt,s[363]||(s[363]=[a('',1)]))),s[364]||(s[364]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"B"),i("mi",null,"N")])])],-1))]),s[375]||(s[375]=t(" are the basis matrices of ")),i("mjx-container",at,[(e(),l("svg",lt,s[365]||(s[365]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[366]||(s[366]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"M")])],-1))]),s[376]||(s[376]=t(" and ")),i("mjx-container",et,[(e(),l("svg",nt,s[367]||(s[367]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[368]||(s[368]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"N")])],-1))]),s[377]||(s[377]=t(" respectively."))]),s[379]||(s[379]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ht,[i("summary",null,[s[380]||(s[380]=i("a",{id:"+-Tuple{ZZLat, ZZLat}",href:"#+-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"+")],-1)),s[381]||(s[381]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[382]||(s[382]=a('
julia
+(L::AbstractLat, M::AbstractLat) -> AbstractLat

Return the sum of the lattices L and M.

The lattices L and M must have the same ambient space.

source

',4))]),i("details",pt,[i("summary",null,[s[383]||(s[383]=i("a",{id:"*-Tuple{Union{Integer, QQFieldElem, ZZRingElem, Rational}, ZZLat}",href:"#*-Tuple{Union{Integer, QQFieldElem, ZZRingElem, Rational}, ZZLat}"},[i("span",{class:"jlbinding"},"*")],-1)),s[384]||(s[384]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[392]||(s[392]=a('
julia
*(a::RationalUnion, L::ZZLat) -> ZZLat
',1)),i("p",null,[s[389]||(s[389]=t("Return the lattice ")),i("mjx-container",kt,[(e(),l("svg",rt,s[385]||(s[385]=[a('',1)]))),s[386]||(s[386]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"a"),i("mi",null,"M")])],-1))]),s[390]||(s[390]=t(" inside the ambient space of ")),i("mjx-container",dt,[(e(),l("svg",ot,s[387]||(s[387]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[388]||(s[388]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"M")])],-1))]),s[391]||(s[391]=t("."))]),s[393]||(s[393]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",gt,[i("summary",null,[s[394]||(s[394]=i("a",{id:"intersect-Tuple{ZZLat, ZZLat}",href:"#intersect-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"intersect")],-1)),s[395]||(s[395]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[396]||(s[396]=a('
julia
intersect(L::AbstractLat, M::AbstractLat) -> AbstractLat

Return the intersection of the lattices L and M.

The lattices L and M must have the same ambient space.

source

',4))]),i("details",Qt,[i("summary",null,[s[397]||(s[397]=i("a",{id:"in-Tuple{Vector, ZZLat}",href:"#in-Tuple{Vector, ZZLat}"},[i("span",{class:"jlbinding"},"in")],-1)),s[398]||(s[398]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[399]||(s[399]=a('
julia
Base.in(v::Vector, L::ZZLat) -> Bool

Return whether the vector v lies in the lattice L.

source

',3))]),i("details",Tt,[i("summary",null,[s[400]||(s[400]=i("a",{id:"in-Tuple{QQMatrix, ZZLat}",href:"#in-Tuple{QQMatrix, ZZLat}"},[i("span",{class:"jlbinding"},"in")],-1)),s[401]||(s[401]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[402]||(s[402]=a('
julia
Base.in(v::QQMatrix, L::ZZLat) -> Bool

Return whether the row span of v lies in the lattice L.

source

',3))]),i("details",mt,[i("summary",null,[s[403]||(s[403]=i("a",{id:"primitive_closure-Tuple{ZZLat, ZZLat}",href:"#primitive_closure-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"primitive_closure")],-1)),s[404]||(s[404]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[423]||(s[423]=a('
julia
primitive_closure(M::ZZLat, N::ZZLat) -> ZZLat
',1)),i("p",null,[s[411]||(s[411]=t("Given two ")),i("mjx-container",yt,[(e(),l("svg",Ft,s[405]||(s[405]=[a('',1)]))),s[406]||(s[406]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[412]||(s[412]=t("-lattices ")),s[413]||(s[413]=i("code",null,"M",-1)),s[414]||(s[414]=t(" and ")),s[415]||(s[415]=i("code",null,"N",-1)),s[416]||(s[416]=t(" with ")),i("mjx-container",Ct,[(e(),l("svg",Et,s[407]||(s[407]=[a('',1)]))),s[408]||(s[408]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"N"),i("mo",null,"⊆"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Q")]),i("mi",null,"M")])],-1))]),s[417]||(s[417]=t(", return the primitive closure ")),i("mjx-container",ut,[(e(),l("svg",xt,s[409]||(s[409]=[a('',1)]))),s[410]||(s[410]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"M"),i("mo",null,"∩"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Q")]),i("mi",null,"N")])],-1))]),s[418]||(s[418]=t(" of ")),s[419]||(s[419]=i("code",null,"N",-1)),s[420]||(s[420]=t(" in ")),s[421]||(s[421]=i("code",null,"M",-1)),s[422]||(s[422]=t("."))]),s[424]||(s[424]=a(`

Examples

julia
julia> M = root_lattice(:D, 6);
@@ -282,7 +282,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 true

source

`,3))]),i("details",vt,[i("summary",null,[s[440]||(s[440]=i("a",{id:"is_primitive-Tuple{ZZLat, Union{QQMatrix, Vector}}",href:"#is_primitive-Tuple{ZZLat, Union{QQMatrix, Vector}}"},[i("span",{class:"jlbinding"},"is_primitive")],-1)),s[441]||(s[441]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[462]||(s[462]=a('
julia
is_primitive(L::ZZLat, v::Union{Vector, QQMatrix}) -> Bool

Return whether the vector v is primitive in L.

',2)),i("p",null,[s[448]||(s[448]=t("A vector ")),s[449]||(s[449]=i("code",null,"v",-1)),s[450]||(s[450]=t(" in a ")),i("mjx-container",Lt,[(e(),l("svg",Ht,s[442]||(s[442]=[a('',1)]))),s[443]||(s[443]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[451]||(s[451]=t("-lattice ")),s[452]||(s[452]=i("code",null,"L",-1)),s[453]||(s[453]=t(" is called primitive if for all ")),s[454]||(s[454]=i("code",null,"w",-1)),s[455]||(s[455]=t(" in ")),s[456]||(s[456]=i("code",null,"L",-1)),s[457]||(s[457]=t(" such that ")),i("mjx-container",Mt,[(e(),l("svg",jt,s[444]||(s[444]=[a('',1)]))),s[445]||(s[445]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"v"),i("mo",null,"="),i("mi",null,"d"),i("mi",null,"w")])],-1))]),s[458]||(s[458]=t(" for some integer ")),s[459]||(s[459]=i("code",null,"d",-1)),s[460]||(s[460]=t(", then ")),i("mjx-container",Zt,[(e(),l("svg",Dt,s[446]||(s[446]=[a('',1)]))),s[447]||(s[447]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"d"),i("mo",null,"="),i("mo",null,"±"),i("mn",null,"1")])],-1))]),s[461]||(s[461]=t("."))]),s[463]||(s[463]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",At,[i("summary",null,[s[464]||(s[464]=i("a",{id:"divisibility-Tuple{ZZLat, Union{QQMatrix, Vector}}",href:"#divisibility-Tuple{ZZLat, Union{QQMatrix, Vector}}"},[i("span",{class:"jlbinding"},"divisibility")],-1)),s[465]||(s[465]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[484]||(s[484]=a('
julia
divisibility(L::ZZLat, v::Union{Vector, QQMatrix}) -> QQFieldElem

Return the divisibility of v with respect to L.

',2)),i("p",null,[s[472]||(s[472]=t("For a vector ")),s[473]||(s[473]=i("code",null,"v",-1)),s[474]||(s[474]=t(" in the ambient quadratic space ")),i("mjx-container",Vt,[(e(),l("svg",St,s[466]||(s[466]=[a('',1)]))),s[467]||(s[467]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{stretchy:"false"},"("),i("mi",null,"V"),i("mo",null,","),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},")")])],-1))]),s[475]||(s[475]=t(" of ")),s[476]||(s[476]=i("code",null,"L",-1)),s[477]||(s[477]=t(", we call the divisibility of ")),s[478]||(s[478]=i("code",null,"v",-1)),s[479]||(s[479]=t(" with the respect to ")),s[480]||(s[480]=i("code",null,"L",-1)),s[481]||(s[481]=t(" the non-negative generator of the fractional ")),i("mjx-container",Gt,[(e(),l("svg",Rt,s[468]||(s[468]=[a('',1)]))),s[469]||(s[469]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[482]||(s[482]=t("-ideal ")),i("mjx-container",Ot,[(e(),l("svg",zt,s[470]||(s[470]=[a('',1)]))),s[471]||(s[471]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"v"),i("mo",null,","),i("mi",null,"L"),i("mo",{stretchy:"false"},")")])],-1))]),s[483]||(s[483]=t("."))]),s[485]||(s[485]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[886]||(s[886]=i("h2",{id:"embeddings",tabindex:"-1"},[t("Embeddings "),i("a",{class:"header-anchor",href:"#embeddings","aria-label":'Permalink to "Embeddings"'},"​")],-1)),s[887]||(s[887]=i("h3",{id:"Categorical-constructions",tabindex:"-1"},[t("Categorical constructions "),i("a",{class:"header-anchor",href:"#Categorical-constructions","aria-label":'Permalink to "Categorical constructions {#Categorical-constructions}"'},"​")],-1)),i("details",Jt,[i("summary",null,[s[486]||(s[486]=i("a",{id:"direct_sum-Tuple{Vector{ZZLat}}",href:"#direct_sum-Tuple{Vector{ZZLat}}"},[i("span",{class:"jlbinding"},"direct_sum")],-1)),s[487]||(s[487]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[521]||(s[521]=a(`
julia
direct_sum(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
 direct_sum(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
`,1)),i("p",null,[s[496]||(s[496]=t("Given a collection of ")),i("mjx-container",It,[(e(),l("svg",Nt,s[488]||(s[488]=[a('',1)]))),s[489]||(s[489]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[497]||(s[497]=t("-lattices ")),i("mjx-container",qt,[(e(),l("svg",Ut,s[490]||(s[490]=[a('',1)]))),s[491]||(s[491]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,","),i("mo",null,"…"),i("mo",null,","),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[498]||(s[498]=t(", return their direct sum ")),i("mjx-container",Xt,[(e(),l("svg",Pt,s[492]||(s[492]=[a('',1)]))),s[493]||(s[493]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,":="),i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,"⊕"),i("mo",null,"…"),i("mo",null,"⊕"),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[499]||(s[499]=t(", together with the injections ")),i("mjx-container",Kt,[(e(),l("svg",$t,s[494]||(s[494]=[a('',1)]))),s[495]||(s[495]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[500]||(s[500]=t(". (seen as maps between the corresponding ambient spaces)."))]),i("p",null,[s[507]||(s[507]=t("For objects of type ")),s[508]||(s[508]=i("code",null,"ZZLat",-1)),s[509]||(s[509]=t(", finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain ")),s[510]||(s[510]=i("code",null,"L",-1)),s[511]||(s[511]=t(" as a direct product with the projections ")),i("mjx-container",Wt,[(e(),l("svg",Yt,s[501]||(s[501]=[a('',1)]))),s[502]||(s[502]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[512]||(s[512]=t(", one should call ")),s[513]||(s[513]=i("code",null,"direct_product(x)",-1)),s[514]||(s[514]=t(". If one wants to obtain ")),s[515]||(s[515]=i("code",null,"L",-1)),s[516]||(s[516]=t(" as a biproduct with the injections ")),i("mjx-container",_t,[(e(),l("svg",sa,s[503]||(s[503]=[a('',1)]))),s[504]||(s[504]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[517]||(s[517]=t(" and the projections ")),i("mjx-container",ia,[(e(),l("svg",ta,s[505]||(s[505]=[a('',1)]))),s[506]||(s[506]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[518]||(s[518]=t(", one should call ")),s[519]||(s[519]=i("code",null,"biproduct(x)",-1)),s[520]||(s[520]=t("."))]),s[522]||(s[522]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",aa,[i("summary",null,[s[523]||(s[523]=i("a",{id:"direct_product-Tuple{Vector{ZZLat}}",href:"#direct_product-Tuple{Vector{ZZLat}}"},[i("span",{class:"jlbinding"},"direct_product")],-1)),s[524]||(s[524]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[558]||(s[558]=a(`
julia
direct_product(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
 direct_product(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
`,1)),i("p",null,[s[533]||(s[533]=t("Given a collection of ")),i("mjx-container",la,[(e(),l("svg",ea,s[525]||(s[525]=[a('',1)]))),s[526]||(s[526]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[534]||(s[534]=t("-lattices ")),i("mjx-container",na,[(e(),l("svg",ha,s[527]||(s[527]=[a('',1)]))),s[528]||(s[528]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,","),i("mo",null,"…"),i("mo",null,","),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[535]||(s[535]=t(", return their direct product ")),i("mjx-container",pa,[(e(),l("svg",ka,s[529]||(s[529]=[a('',1)]))),s[530]||(s[530]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,":="),i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,"×"),i("mo",null,"…"),i("mo",null,"×"),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[536]||(s[536]=t(", together with the projections ")),i("mjx-container",ra,[(e(),l("svg",da,s[531]||(s[531]=[a('',1)]))),s[532]||(s[532]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[537]||(s[537]=t(". (seen as maps between the corresponding ambient spaces)."))]),i("p",null,[s[544]||(s[544]=t("For objects of type ")),s[545]||(s[545]=i("code",null,"ZZLat",-1)),s[546]||(s[546]=t(", finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain ")),s[547]||(s[547]=i("code",null,"L",-1)),s[548]||(s[548]=t(" as a direct sum with the injections ")),i("mjx-container",oa,[(e(),l("svg",ga,s[538]||(s[538]=[a('',1)]))),s[539]||(s[539]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[549]||(s[549]=t(", one should call ")),s[550]||(s[550]=i("code",null,"direct_sum(x)",-1)),s[551]||(s[551]=t(". If one wants to obtain ")),s[552]||(s[552]=i("code",null,"L",-1)),s[553]||(s[553]=t(" as a biproduct with the injections ")),i("mjx-container",Qa,[(e(),l("svg",Ta,s[540]||(s[540]=[a('',1)]))),s[541]||(s[541]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[554]||(s[554]=t(" and the projections ")),i("mjx-container",ma,[(e(),l("svg",ya,s[542]||(s[542]=[a('',1)]))),s[543]||(s[543]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[555]||(s[555]=t(", one should call ")),s[556]||(s[556]=i("code",null,"biproduct(x)",-1)),s[557]||(s[557]=t("."))]),s[559]||(s[559]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Fa,[i("summary",null,[s[560]||(s[560]=i("a",{id:"biproduct-Tuple{Vector{ZZLat}}",href:"#biproduct-Tuple{Vector{ZZLat}}"},[i("span",{class:"jlbinding"},"biproduct")],-1)),s[561]||(s[561]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[595]||(s[595]=a(`
julia
biproduct(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
-biproduct(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
`,1)),i("p",null,[s[572]||(s[572]=t("Given a collection of ")),i("mjx-container",Ca,[(e(),l("svg",Ea,s[562]||(s[562]=[a('',1)]))),s[563]||(s[563]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[573]||(s[573]=t("-lattices ")),i("mjx-container",ua,[(e(),l("svg",xa,s[564]||(s[564]=[a('',1)]))),s[565]||(s[565]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,","),i("mo",null,"…"),i("mo",null,","),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[574]||(s[574]=t(", return their biproduct ")),i("mjx-container",ca,[(e(),l("svg",wa,s[566]||(s[566]=[a('',1)]))),s[567]||(s[567]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,":="),i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,"⊕"),i("mo",null,"…"),i("mo",null,"⊕"),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[575]||(s[575]=t(", together with the injections ")),i("mjx-container",ba,[(e(),l("svg",Ba,s[568]||(s[568]=[a('',1)]))),s[569]||(s[569]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[576]||(s[576]=t(" and the projections ")),i("mjx-container",fa,[(e(),l("svg",va,s[570]||(s[570]=[a('',1)]))),s[571]||(s[571]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[577]||(s[577]=t(". (seen as maps between the corresponding ambient spaces)."))]),i("p",null,[s[582]||(s[582]=t("For objects of type ")),s[583]||(s[583]=i("code",null,"ZZLat",-1)),s[584]||(s[584]=t(", finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain ")),s[585]||(s[585]=i("code",null,"L",-1)),s[586]||(s[586]=t(" as a direct sum with the injections ")),i("mjx-container",La,[(e(),l("svg",Ha,s[578]||(s[578]=[a('',1)]))),s[579]||(s[579]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[587]||(s[587]=t(", one should call ")),s[588]||(s[588]=i("code",null,"direct_sum(x)",-1)),s[589]||(s[589]=t(". If one wants to obtain ")),s[590]||(s[590]=i("code",null,"L",-1)),s[591]||(s[591]=t(" as a direct product with the projections ")),i("mjx-container",Ma,[(e(),l("svg",ja,s[580]||(s[580]=[a('',1)]))),s[581]||(s[581]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[592]||(s[592]=t(", one should call ")),s[593]||(s[593]=i("code",null,"direct_product(x)",-1)),s[594]||(s[594]=t("."))]),s[596]||(s[596]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[888]||(s[888]=i("h3",{id:"Orthogonal-sublattices",tabindex:"-1"},[t("Orthogonal sublattices "),i("a",{class:"header-anchor",href:"#Orthogonal-sublattices","aria-label":'Permalink to "Orthogonal sublattices {#Orthogonal-sublattices}"'},"​")],-1)),i("details",Za,[i("summary",null,[s[597]||(s[597]=i("a",{id:"orthogonal_submodule-Tuple{ZZLat, ZZLat}",href:"#orthogonal_submodule-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"orthogonal_submodule")],-1)),s[598]||(s[598]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[606]||(s[606]=a('
julia
orthogonal_submodule(L::ZZLat, S::ZZLat) -> ZZLat
',1)),i("p",null,[s[603]||(s[603]=t("Return the largest submodule of ")),i("mjx-container",Da,[(e(),l("svg",Aa,s[599]||(s[599]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[600]||(s[600]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[604]||(s[604]=t(" orthogonal to ")),i("mjx-container",Va,[(e(),l("svg",Sa,s[601]||(s[601]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),s[602]||(s[602]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"S")])],-1))]),s[605]||(s[605]=t("."))]),s[607]||(s[607]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ga,[i("summary",null,[s[608]||(s[608]=i("a",{id:"irreducible_components-Tuple{ZZLat}",href:"#irreducible_components-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"irreducible_components")],-1)),s[609]||(s[609]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[619]||(s[619]=a('
julia
irreducible_components(L::ZZLat) -> Vector{ZZLat}
',1)),i("p",null,[s[614]||(s[614]=t("Return the irreducible components ")),i("mjx-container",Ra,[(e(),l("svg",Oa,s[610]||(s[610]=[a('',1)]))),s[611]||(s[611]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[615]||(s[615]=t(" of the positive definite lattice ")),i("mjx-container",za,[(e(),l("svg",Ja,s[612]||(s[612]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[613]||(s[613]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[616]||(s[616]=t("."))]),s[620]||(s[620]=i("p",null,[t("This yields a maximal orthogonal splitting of "),i("code",null,"L"),t(" as")],-1)),i("mjx-container",Ia,[(e(),l("svg",Na,s[617]||(s[617]=[a('',1)]))),s[618]||(s[618]=i("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[i("mi",null,"L"),i("mo",null,"="),i("munder",null,[i("mo",{"data-mjx-texclass":"OP"},"⨁"),i("mi",null,"i")]),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",null,".")])],-1))]),s[621]||(s[621]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[889]||(s[889]=i("h3",{id:"Dual-lattice",tabindex:"-1"},[t("Dual lattice "),i("a",{class:"header-anchor",href:"#Dual-lattice","aria-label":'Permalink to "Dual lattice {#Dual-lattice}"'},"​")],-1)),i("details",qa,[i("summary",null,[s[622]||(s[622]=i("a",{id:"dual-Tuple{ZZLat}",href:"#dual-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"dual")],-1)),s[623]||(s[623]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[624]||(s[624]=a('
julia
dual(L::AbstractLat) -> AbstractLat

Return the dual lattice of the lattice L.

source

',3))]),s[890]||(s[890]=a('

Discriminant group

See discriminant_group(L::ZZLat).

Overlattices

',3)),i("details",Ua,[i("summary",null,[s[625]||(s[625]=i("a",{id:"glue_map-Tuple{ZZLat, ZZLat, ZZLat}",href:"#glue_map-Tuple{ZZLat, ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"glue_map")],-1)),s[626]||(s[626]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[644]||(s[644]=a(`
julia
glue_map(L::ZZLat, S::ZZLat, R::ZZLat; check=true)
+biproduct(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
`,1)),i("p",null,[s[572]||(s[572]=t("Given a collection of ")),i("mjx-container",Ca,[(e(),l("svg",Ea,s[562]||(s[562]=[a('',1)]))),s[563]||(s[563]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[573]||(s[573]=t("-lattices ")),i("mjx-container",ua,[(e(),l("svg",xa,s[564]||(s[564]=[a('',1)]))),s[565]||(s[565]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,","),i("mo",null,"…"),i("mo",null,","),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[574]||(s[574]=t(", return their biproduct ")),i("mjx-container",ca,[(e(),l("svg",wa,s[566]||(s[566]=[a('',1)]))),s[567]||(s[567]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,":="),i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,"⊕"),i("mo",null,"…"),i("mo",null,"⊕"),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[575]||(s[575]=t(", together with the injections ")),i("mjx-container",ba,[(e(),l("svg",Ba,s[568]||(s[568]=[a('',1)]))),s[569]||(s[569]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[576]||(s[576]=t(" and the projections ")),i("mjx-container",fa,[(e(),l("svg",va,s[570]||(s[570]=[a('',1)]))),s[571]||(s[571]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[577]||(s[577]=t(". (seen as maps between the corresponding ambient spaces)."))]),i("p",null,[s[582]||(s[582]=t("For objects of type ")),s[583]||(s[583]=i("code",null,"ZZLat",-1)),s[584]||(s[584]=t(", finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain ")),s[585]||(s[585]=i("code",null,"L",-1)),s[586]||(s[586]=t(" as a direct sum with the injections ")),i("mjx-container",La,[(e(),l("svg",Ha,s[578]||(s[578]=[a('',1)]))),s[579]||(s[579]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[587]||(s[587]=t(", one should call ")),s[588]||(s[588]=i("code",null,"direct_sum(x)",-1)),s[589]||(s[589]=t(". If one wants to obtain ")),s[590]||(s[590]=i("code",null,"L",-1)),s[591]||(s[591]=t(" as a direct product with the projections ")),i("mjx-container",Ma,[(e(),l("svg",ja,s[580]||(s[580]=[a('',1)]))),s[581]||(s[581]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[592]||(s[592]=t(", one should call ")),s[593]||(s[593]=i("code",null,"direct_product(x)",-1)),s[594]||(s[594]=t("."))]),s[596]||(s[596]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[888]||(s[888]=i("h3",{id:"Orthogonal-sublattices",tabindex:"-1"},[t("Orthogonal sublattices "),i("a",{class:"header-anchor",href:"#Orthogonal-sublattices","aria-label":'Permalink to "Orthogonal sublattices {#Orthogonal-sublattices}"'},"​")],-1)),i("details",Za,[i("summary",null,[s[597]||(s[597]=i("a",{id:"orthogonal_submodule-Tuple{ZZLat, ZZLat}",href:"#orthogonal_submodule-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"orthogonal_submodule")],-1)),s[598]||(s[598]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[606]||(s[606]=a('
julia
orthogonal_submodule(L::ZZLat, S::ZZLat) -> ZZLat
',1)),i("p",null,[s[603]||(s[603]=t("Return the largest submodule of ")),i("mjx-container",Da,[(e(),l("svg",Aa,s[599]||(s[599]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[600]||(s[600]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[604]||(s[604]=t(" orthogonal to ")),i("mjx-container",Va,[(e(),l("svg",Sa,s[601]||(s[601]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),s[602]||(s[602]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"S")])],-1))]),s[605]||(s[605]=t("."))]),s[607]||(s[607]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ga,[i("summary",null,[s[608]||(s[608]=i("a",{id:"irreducible_components-Tuple{ZZLat}",href:"#irreducible_components-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"irreducible_components")],-1)),s[609]||(s[609]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[619]||(s[619]=a('
julia
irreducible_components(L::ZZLat) -> Vector{ZZLat}
',1)),i("p",null,[s[614]||(s[614]=t("Return the irreducible components ")),i("mjx-container",Ra,[(e(),l("svg",Oa,s[610]||(s[610]=[a('',1)]))),s[611]||(s[611]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[615]||(s[615]=t(" of the positive definite lattice ")),i("mjx-container",za,[(e(),l("svg",Ja,s[612]||(s[612]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[613]||(s[613]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[616]||(s[616]=t("."))]),s[620]||(s[620]=i("p",null,[t("This yields a maximal orthogonal splitting of "),i("code",null,"L"),t(" as")],-1)),i("mjx-container",Ia,[(e(),l("svg",Na,s[617]||(s[617]=[a('',1)]))),s[618]||(s[618]=i("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[i("mi",null,"L"),i("mo",null,"="),i("munder",null,[i("mo",{"data-mjx-texclass":"OP"},"⨁"),i("mi",null,"i")]),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",null,".")])],-1))]),s[621]||(s[621]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[889]||(s[889]=i("h3",{id:"Dual-lattice",tabindex:"-1"},[t("Dual lattice "),i("a",{class:"header-anchor",href:"#Dual-lattice","aria-label":'Permalink to "Dual lattice {#Dual-lattice}"'},"​")],-1)),i("details",qa,[i("summary",null,[s[622]||(s[622]=i("a",{id:"dual-Tuple{ZZLat}",href:"#dual-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"dual")],-1)),s[623]||(s[623]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[624]||(s[624]=a('
julia
dual(L::AbstractLat) -> AbstractLat

Return the dual lattice of the lattice L.

source

',3))]),s[890]||(s[890]=a('

Discriminant group

See discriminant_group(L::ZZLat).

Overlattices

',3)),i("details",Ua,[i("summary",null,[s[625]||(s[625]=i("a",{id:"glue_map-Tuple{ZZLat, ZZLat, ZZLat}",href:"#glue_map-Tuple{ZZLat, ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"glue_map")],-1)),s[626]||(s[626]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[644]||(s[644]=a(`
julia
glue_map(L::ZZLat, S::ZZLat, R::ZZLat; check=true)
                        -> Tuple{TorQuadModuleMap, TorQuadModuleMap, TorQuadModuleMap}
`,1)),i("p",null,[s[635]||(s[635]=t("Given three integral ")),i("mjx-container",Xa,[(e(),l("svg",Pa,s[627]||(s[627]=[a('',1)]))),s[628]||(s[628]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[636]||(s[636]=a("-lattices L, S and R, with S and R primitive sublattices of L and such that the sum of the ranks of S and R is equal to the rank of L, return the glue map ",19)),i("mjx-container",Ka,[(e(),l("svg",$a,s[629]||(s[629]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D6FE",d:"M31 249Q11 249 11 258Q11 275 26 304T66 365T129 418T206 441Q233 441 239 440Q287 429 318 386T371 255Q385 195 385 170Q385 166 386 166L398 193Q418 244 443 300T486 391T508 430Q510 431 524 431H537Q543 425 543 422Q543 418 522 378T463 251T391 71Q385 55 378 6T357 -100Q341 -165 330 -190T303 -216Q286 -216 286 -188Q286 -138 340 32L346 51L347 69Q348 79 348 100Q348 257 291 317Q251 355 196 355Q148 355 108 329T51 260Q49 251 47 251Q45 249 31 249Z",style:{"stroke-width":"3"}})])])],-1)]))),s[630]||(s[630]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"γ")])],-1))]),s[637]||(s[637]=t(" of the primitive extension ")),i("mjx-container",Wa,[(e(),l("svg",Ya,s[631]||(s[631]=[a('',1)]))),s[632]||(s[632]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"S"),i("mo",null,"+"),i("mi",null,"R"),i("mo",null,"⊆"),i("mi",null,"L")])],-1))]),s[638]||(s[638]=t(", as well as the inclusion maps of the domain and codomain of ")),i("mjx-container",_a,[(e(),l("svg",s2,s[633]||(s[633]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D6FE",d:"M31 249Q11 249 11 258Q11 275 26 304T66 365T129 418T206 441Q233 441 239 440Q287 429 318 386T371 255Q385 195 385 170Q385 166 386 166L398 193Q418 244 443 300T486 391T508 430Q510 431 524 431H537Q543 425 543 422Q543 418 522 378T463 251T391 71Q385 55 378 6T357 -100Q341 -165 330 -190T303 -216Q286 -216 286 -188Q286 -138 340 32L346 51L347 69Q348 79 348 100Q348 257 291 317Q251 355 196 355Q148 355 108 329T51 260Q49 251 47 251Q45 249 31 249Z",style:{"stroke-width":"3"}})])])],-1)]))),s[634]||(s[634]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"γ")])],-1))]),s[639]||(s[639]=t(" into the respective discriminant groups of ")),s[640]||(s[640]=i("code",null,"S",-1)),s[641]||(s[641]=t(" and ")),s[642]||(s[642]=i("code",null,"R",-1)),s[643]||(s[643]=t("."))]),s[645]||(s[645]=a(`

Example

julia
julia> M = root_lattice(:E,8);
 
 julia> f = matrix(QQ, 8, 8, [-1 -1  0  0  0  0  0  0;
@@ -351,7 +351,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
                   ambient_representation::Bool = true) -> ZZLat
`,1)),i("p",null,[s[730]||(s[730]=t("Given a ")),i("mjx-container",j2,[(e(),l("svg",Z2,s[716]||(s[716]=[a('',1)]))),s[717]||(s[717]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[731]||(s[731]=t("-lattice ")),i("mjx-container",D2,[(e(),l("svg",A2,s[718]||(s[718]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[719]||(s[719]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[732]||(s[732]=t(" and a list of matrices ")),i("mjx-container",V2,[(e(),l("svg",S2,s[720]||(s[720]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[721]||(s[721]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[733]||(s[733]=t(" inducing endomorphisms of ")),i("mjx-container",G2,[(e(),l("svg",R2,s[722]||(s[722]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[723]||(s[723]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[734]||(s[734]=t(" (or just one matrix ")),i("mjx-container",O2,[(e(),l("svg",z2,s[724]||(s[724]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[725]||(s[725]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[735]||(s[735]=t("), return the lattice ")),i("mjx-container",J2,[(e(),l("svg",I2,s[726]||(s[726]=[a('',1)]))),s[727]||(s[727]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msup",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[736]||(s[736]=t(", consisting on elements fixed by ")),i("mjx-container",N2,[(e(),l("svg",q2,s[728]||(s[728]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[729]||(s[729]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[737]||(s[737]=t("."))]),i("p",null,[s[742]||(s[742]=t("If ")),s[743]||(s[743]=i("code",null,"ambient_representation",-1)),s[744]||(s[744]=t(" is ")),s[745]||(s[745]=i("code",null,"true",-1)),s[746]||(s[746]=t(" (the default), the endomorphism is represented with respect to the ambient space of ")),i("mjx-container",U2,[(e(),l("svg",X2,s[738]||(s[738]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[739]||(s[739]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[747]||(s[747]=t(". Otherwise, the endomorphism is represented with respect to the basis of ")),i("mjx-container",P2,[(e(),l("svg",K2,s[740]||(s[740]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[741]||(s[741]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[748]||(s[748]=t("."))]),s[750]||(s[750]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",$2,[i("summary",null,[s[751]||(s[751]=i("a",{id:"coinvariant_lattice-Tuple{ZZLat, Union{MatElem, Vector{<:MatElem}}}",href:"#coinvariant_lattice-Tuple{ZZLat, Union{MatElem, Vector{<:MatElem}}}"},[i("span",{class:"jlbinding"},"coinvariant_lattice")],-1)),s[752]||(s[752]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[791]||(s[791]=a(`
julia
coinvariant_lattice(L::ZZLat, G::Vector{MatElem};
                     ambient_representation::Bool = true) -> ZZLat
 coinvariant_lattice(L::ZZLat, G::MatElem;
-                    ambient_representation::Bool = true) -> ZZLat
`,1)),i("p",null,[s[769]||(s[769]=t("Given a ")),i("mjx-container",W2,[(e(),l("svg",Y2,s[753]||(s[753]=[a('',1)]))),s[754]||(s[754]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[770]||(s[770]=t("-lattice ")),i("mjx-container",_2,[(e(),l("svg",s1,s[755]||(s[755]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[756]||(s[756]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[771]||(s[771]=t(" and a list of matrices ")),i("mjx-container",i1,[(e(),l("svg",t1,s[757]||(s[757]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[758]||(s[758]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[772]||(s[772]=t(" inducing endomorphisms of ")),i("mjx-container",a1,[(e(),l("svg",l1,s[759]||(s[759]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[760]||(s[760]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[773]||(s[773]=t(" (or just one matrix ")),i("mjx-container",e1,[(e(),l("svg",n1,s[761]||(s[761]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[762]||(s[762]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[774]||(s[774]=t("), return the orthogonal complement ")),i("mjx-container",h1,[(e(),l("svg",p1,s[763]||(s[763]=[a('',1)]))),s[764]||(s[764]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[775]||(s[775]=t(" in ")),i("mjx-container",k1,[(e(),l("svg",r1,s[765]||(s[765]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[766]||(s[766]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[776]||(s[776]=t(" of the fixed lattice ")),i("mjx-container",d1,[(e(),l("svg",o1,s[767]||(s[767]=[a('',1)]))),s[768]||(s[768]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msup",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[777]||(s[777]=t(" (see ")),s[778]||(s[778]=i("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#invariant_lattice-Tuple{ZZLat, Vector{<:MatElem}}"},[i("code",null,"invariant_lattice")],-1)),s[779]||(s[779]=t(")."))]),i("p",null,[s[784]||(s[784]=t("If ")),s[785]||(s[785]=i("code",null,"ambient_representation",-1)),s[786]||(s[786]=t(" is ")),s[787]||(s[787]=i("code",null,"true",-1)),s[788]||(s[788]=t(" (the default), the endomorphism is represented with respect to the ambient space of ")),i("mjx-container",g1,[(e(),l("svg",Q1,s[780]||(s[780]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[781]||(s[781]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[789]||(s[789]=t(". Otherwise, the endomorphism is represented with respect to the basis of ")),i("mjx-container",T1,[(e(),l("svg",m1,s[782]||(s[782]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[783]||(s[783]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[790]||(s[790]=t("."))]),s[792]||(s[792]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[892]||(s[892]=i("h3",{id:"Computing-embeddings",tabindex:"-1"},[t("Computing embeddings "),i("a",{class:"header-anchor",href:"#Computing-embeddings","aria-label":'Permalink to "Computing embeddings {#Computing-embeddings}"'},"​")],-1)),i("details",y1,[i("summary",null,[s[793]||(s[793]=i("a",{id:"embed-Tuple{ZZLat, ZZGenus}",href:"#embed-Tuple{ZZLat, ZZGenus}"},[i("span",{class:"jlbinding"},"embed")],-1)),s[794]||(s[794]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[795]||(s[795]=a(`
julia
embed(S::ZZLat, G::Genus, primitive::Bool=true) -> Bool, embedding

Return a (primitive) embedding of the integral lattice S into some lattice in the genus of G.

julia
julia> G = integer_genera((8,0), 1, even=true)[1];
+                    ambient_representation::Bool = true) -> ZZLat
`,1)),i("p",null,[s[769]||(s[769]=t("Given a ")),i("mjx-container",W2,[(e(),l("svg",Y2,s[753]||(s[753]=[a('',1)]))),s[754]||(s[754]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[770]||(s[770]=t("-lattice ")),i("mjx-container",_2,[(e(),l("svg",s1,s[755]||(s[755]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[756]||(s[756]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[771]||(s[771]=t(" and a list of matrices ")),i("mjx-container",i1,[(e(),l("svg",t1,s[757]||(s[757]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[758]||(s[758]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[772]||(s[772]=t(" inducing endomorphisms of ")),i("mjx-container",a1,[(e(),l("svg",l1,s[759]||(s[759]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[760]||(s[760]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[773]||(s[773]=t(" (or just one matrix ")),i("mjx-container",e1,[(e(),l("svg",n1,s[761]||(s[761]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[762]||(s[762]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[774]||(s[774]=t("), return the orthogonal complement ")),i("mjx-container",h1,[(e(),l("svg",p1,s[763]||(s[763]=[a('',1)]))),s[764]||(s[764]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[775]||(s[775]=t(" in ")),i("mjx-container",k1,[(e(),l("svg",r1,s[765]||(s[765]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[766]||(s[766]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[776]||(s[776]=t(" of the fixed lattice ")),i("mjx-container",d1,[(e(),l("svg",o1,s[767]||(s[767]=[a('',1)]))),s[768]||(s[768]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msup",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[777]||(s[777]=t(" (see ")),s[778]||(s[778]=i("a",{href:"/v0.34.8/manual/quad_forms/integer_lattices#invariant_lattice-Tuple{ZZLat, Vector{<:MatElem}}"},[i("code",null,"invariant_lattice")],-1)),s[779]||(s[779]=t(")."))]),i("p",null,[s[784]||(s[784]=t("If ")),s[785]||(s[785]=i("code",null,"ambient_representation",-1)),s[786]||(s[786]=t(" is ")),s[787]||(s[787]=i("code",null,"true",-1)),s[788]||(s[788]=t(" (the default), the endomorphism is represented with respect to the ambient space of ")),i("mjx-container",g1,[(e(),l("svg",Q1,s[780]||(s[780]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[781]||(s[781]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[789]||(s[789]=t(". Otherwise, the endomorphism is represented with respect to the basis of ")),i("mjx-container",T1,[(e(),l("svg",m1,s[782]||(s[782]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[783]||(s[783]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[790]||(s[790]=t("."))]),s[792]||(s[792]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[892]||(s[892]=i("h3",{id:"Computing-embeddings",tabindex:"-1"},[t("Computing embeddings "),i("a",{class:"header-anchor",href:"#Computing-embeddings","aria-label":'Permalink to "Computing embeddings {#Computing-embeddings}"'},"​")],-1)),i("details",y1,[i("summary",null,[s[793]||(s[793]=i("a",{id:"embed-Tuple{ZZLat, ZZGenus}",href:"#embed-Tuple{ZZLat, ZZGenus}"},[i("span",{class:"jlbinding"},"embed")],-1)),s[794]||(s[794]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[795]||(s[795]=a(`
julia
embed(S::ZZLat, G::Genus, primitive::Bool=true) -> Bool, embedding

Return a (primitive) embedding of the integral lattice S into some lattice in the genus of G.

julia
julia> G = integer_genera((8,0), 1, even=true)[1];
 
 julia> L, S, i = embed(root_lattice(:A,5), G);

source

`,4))]),i("details",F1,[i("summary",null,[s[796]||(s[796]=i("a",{id:"embed_in_unimodular-Tuple{ZZLat, Union{Integer, ZZRingElem}, Union{Integer, ZZRingElem}}",href:"#embed_in_unimodular-Tuple{ZZLat, Union{Integer, ZZRingElem}, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"embed_in_unimodular")],-1)),s[797]||(s[797]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[798]||(s[798]=a(`
julia
embed_in_unimodular(S::ZZLat, pos::Int, neg::Int, primitive=true, even=true) -> Bool, L, S', iS, iR

Return a (primitive) embedding of the integral lattice S into some (even) unimodular lattice of signature (pos, neg).

For now this works only for even lattices.

julia
julia> NS = direct_sum(integer_lattice(:U), rescale(root_lattice(:A, 16), -1))[1];
 
@@ -387,10 +387,10 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 
 julia> is_primitive(LK3, iNS)
 true

source

`,5))]),s[893]||(s[893]=i("h2",{id:"LLL,-Short-and-Close-Vectors",tabindex:"-1"},[t("LLL, Short and Close Vectors "),i("a",{class:"header-anchor",href:"#LLL,-Short-and-Close-Vectors","aria-label":'Permalink to "LLL, Short and Close Vectors {#LLL,-Short-and-Close-Vectors}"'},"​")],-1)),s[894]||(s[894]=i("h3",{id:"LLL-and-indefinite-LLL",tabindex:"-1"},[t("LLL and indefinite LLL "),i("a",{class:"header-anchor",href:"#LLL-and-indefinite-LLL","aria-label":'Permalink to "LLL and indefinite LLL {#LLL-and-indefinite-LLL}"'},"​")],-1)),i("details",C1,[i("summary",null,[s[799]||(s[799]=i("a",{id:"lll-Tuple{ZZLat}",href:"#lll-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"lll")],-1)),s[800]||(s[800]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[820]||(s[820]=a('
julia
lll(L::ZZLat, same_ambient::Bool = true) -> ZZLat
',1)),i("p",null,[s[805]||(s[805]=t("Given an integral ")),i("mjx-container",E1,[(e(),l("svg",u1,s[801]||(s[801]=[a('',1)]))),s[802]||(s[802]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[806]||(s[806]=t("-lattice ")),s[807]||(s[807]=i("code",null,"L",-1)),s[808]||(s[808]=t(" with basis matrix ")),s[809]||(s[809]=i("code",null,"B",-1)),s[810]||(s[810]=t(", compute a basis ")),s[811]||(s[811]=i("code",null,"C",-1)),s[812]||(s[812]=t(" of ")),s[813]||(s[813]=i("code",null,"L",-1)),s[814]||(s[814]=t(" such that the gram matrix ")),i("mjx-container",x1,[(e(),l("svg",c1,s[803]||(s[803]=[a('',1)]))),s[804]||(s[804]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"G"),i("mi",null,"C")])])],-1))]),s[815]||(s[815]=t(" of ")),s[816]||(s[816]=i("code",null,"L",-1)),s[817]||(s[817]=t(" with respect to ")),s[818]||(s[818]=i("code",null,"C",-1)),s[819]||(s[819]=t(" is LLL-reduced."))]),s[821]||(s[821]=i("p",null,[t("By default, it creates the lattice in the same ambient space as "),i("code",null,"L"),t(". This can be disabled by setting "),i("code",null,"same_ambient = false"),t(". Works with both definite and indefinite lattices.")],-1)),s[822]||(s[822]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[895]||(s[895]=i("h3",{id:"Short-Vectors",tabindex:"-1"},[t("Short Vectors "),i("a",{class:"header-anchor",href:"#Short-Vectors","aria-label":'Permalink to "Short Vectors {#Short-Vectors}"'},"​")],-1)),i("details",w1,[i("summary",null,[s[823]||(s[823]=i("a",{id:"short_vectors",href:"#short_vectors"},[i("span",{class:"jlbinding"},"short_vectors")],-1)),s[824]||(s[824]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[839]||(s[839]=a(`
julia
short_vectors(L::ZZLat, [lb = 0], ub, [elem_type = ZZRingElem]; check::Bool = true)
-                                   -> Vector{Tuple{Vector{elem_type}, QQFieldElem}}
`,1)),i("p",null,[s[827]||(s[827]=t("Return all tuples ")),s[828]||(s[828]=i("code",null,"(v, n)",-1)),s[829]||(s[829]=t(" such that ")),i("mjx-container",b1,[(e(),l("svg",B1,s[825]||(s[825]=[a('',1)]))),s[826]||(s[826]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"="),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"v"),i("mi",null,"G"),i("msup",null,[i("mi",null,"v"),i("mi",null,"t")]),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),s[830]||(s[830]=t(" satisfies ")),s[831]||(s[831]=i("code",null,"lb <= n <= ub",-1)),s[832]||(s[832]=t(", where ")),s[833]||(s[833]=i("code",null,"G",-1)),s[834]||(s[834]=t(" is the Gram matrix of ")),s[835]||(s[835]=i("code",null,"L",-1)),s[836]||(s[836]=t(" and ")),s[837]||(s[837]=i("code",null,"v",-1)),s[838]||(s[838]=t(" is non-zero."))]),s[840]||(s[840]=a('

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors_iterator for an iterator version.

source

',4))]),i("details",f1,[i("summary",null,[s[841]||(s[841]=i("a",{id:"shortest_vectors",href:"#shortest_vectors"},[i("span",{class:"jlbinding"},"shortest_vectors")],-1)),s[842]||(s[842]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[843]||(s[843]=a(`
julia
shortest_vectors(L::ZZLat, [elem_type = ZZRingElem]; check::Bool = true)
-                                           -> QQFieldElem, Vector{elem_type}, QQFieldElem}

Return the list of shortest non-zero vectors in absolute value. Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also minimum.

source

`,5))]),i("details",v1,[i("summary",null,[s[844]||(s[844]=i("a",{id:"short_vectors_iterator",href:"#short_vectors_iterator"},[i("span",{class:"jlbinding"},"short_vectors_iterator")],-1)),s[845]||(s[845]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[860]||(s[860]=a(`
julia
short_vectors_iterator(L::ZZLat, [lb = 0], ub,
+                                   -> Vector{Tuple{Vector{elem_type}, QQFieldElem}}
`,1)),i("p",null,[s[827]||(s[827]=t("Return all tuples ")),s[828]||(s[828]=i("code",null,"(v, n)",-1)),s[829]||(s[829]=t(" such that ")),i("mjx-container",b1,[(e(),l("svg",B1,s[825]||(s[825]=[a('',1)]))),s[826]||(s[826]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"="),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"v"),i("mi",null,"G"),i("msup",null,[i("mi",null,"v"),i("mi",null,"t")]),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),s[830]||(s[830]=t(" satisfies ")),s[831]||(s[831]=i("code",null,"lb <= n <= ub",-1)),s[832]||(s[832]=t(", where ")),s[833]||(s[833]=i("code",null,"G",-1)),s[834]||(s[834]=t(" is the Gram matrix of ")),s[835]||(s[835]=i("code",null,"L",-1)),s[836]||(s[836]=t(" and ")),s[837]||(s[837]=i("code",null,"v",-1)),s[838]||(s[838]=t(" is non-zero."))]),s[840]||(s[840]=a('

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors_iterator for an iterator version.

source

',4))]),i("details",f1,[i("summary",null,[s[841]||(s[841]=i("a",{id:"shortest_vectors",href:"#shortest_vectors"},[i("span",{class:"jlbinding"},"shortest_vectors")],-1)),s[842]||(s[842]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[843]||(s[843]=a(`
julia
shortest_vectors(L::ZZLat, [elem_type = ZZRingElem]; check::Bool = true)
+                                           -> QQFieldElem, Vector{elem_type}, QQFieldElem}

Return the list of shortest non-zero vectors in absolute value. Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also minimum.

source

`,5))]),i("details",v1,[i("summary",null,[s[844]||(s[844]=i("a",{id:"short_vectors_iterator",href:"#short_vectors_iterator"},[i("span",{class:"jlbinding"},"short_vectors_iterator")],-1)),s[845]||(s[845]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[860]||(s[860]=a(`
julia
short_vectors_iterator(L::ZZLat, [lb = 0], ub,
                        [elem_type = ZZRingElem]; check::Bool = true)
-                                -> Tuple{Vector{elem_type}, QQFieldElem} (iterator)
`,1)),i("p",null,[s[848]||(s[848]=t("Return an iterator for all tuples ")),s[849]||(s[849]=i("code",null,"(v, n)",-1)),s[850]||(s[850]=t(" such that ")),i("mjx-container",L1,[(e(),l("svg",H1,s[846]||(s[846]=[a('',1)]))),s[847]||(s[847]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"="),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"v"),i("mi",null,"G"),i("msup",null,[i("mi",null,"v"),i("mi",null,"t")]),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),s[851]||(s[851]=t(" satisfies ")),s[852]||(s[852]=i("code",null,"lb <= n <= ub",-1)),s[853]||(s[853]=t(", where ")),s[854]||(s[854]=i("code",null,"G",-1)),s[855]||(s[855]=t(" is the Gram matrix of ")),s[856]||(s[856]=i("code",null,"L",-1)),s[857]||(s[857]=t(" and ")),s[858]||(s[858]=i("code",null,"v",-1)),s[859]||(s[859]=t(" is non-zero."))]),s[861]||(s[861]=a('

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors.

source

',4))]),i("details",M1,[i("summary",null,[s[862]||(s[862]=i("a",{id:"minimum-Tuple{ZZLat}",href:"#minimum-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"minimum")],-1)),s[863]||(s[863]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[864]||(s[864]=a('
julia
minimum(L::ZZLat) -> QQFieldElem

Return the minimum absolute squared length among the non-zero vectors in L.

source

',3))]),i("details",j1,[i("summary",null,[s[865]||(s[865]=i("a",{id:"kissing_number-Tuple{ZZLat}",href:"#kissing_number-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"kissing_number")],-1)),s[866]||(s[866]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[867]||(s[867]=a('
julia
kissing_number(L::ZZLat) -> Int

Return the Kissing number of the sphere packing defined by L.

This is the number of non-overlapping spheres touching any other given sphere.

source

',4))]),s[896]||(s[896]=i("h3",{id:"Close-Vectors",tabindex:"-1"},[t("Close Vectors "),i("a",{class:"header-anchor",href:"#Close-Vectors","aria-label":'Permalink to "Close Vectors {#Close-Vectors}"'},"​")],-1)),i("details",Z1,[i("summary",null,[s[868]||(s[868]=i("a",{id:"close_vectors-Tuple{ZZLat, Vector, Vararg{Any}}",href:"#close_vectors-Tuple{ZZLat, Vector, Vararg{Any}}"},[i("span",{class:"jlbinding"},"close_vectors")],-1)),s[869]||(s[869]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[870]||(s[870]=a(`
julia
close_vectors(L:ZZLat, v:Vector, [lb,], ub; check::Bool = false)
+                                -> Tuple{Vector{elem_type}, QQFieldElem} (iterator)
`,1)),i("p",null,[s[848]||(s[848]=t("Return an iterator for all tuples ")),s[849]||(s[849]=i("code",null,"(v, n)",-1)),s[850]||(s[850]=t(" such that ")),i("mjx-container",L1,[(e(),l("svg",H1,s[846]||(s[846]=[a('',1)]))),s[847]||(s[847]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"="),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"v"),i("mi",null,"G"),i("msup",null,[i("mi",null,"v"),i("mi",null,"t")]),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),s[851]||(s[851]=t(" satisfies ")),s[852]||(s[852]=i("code",null,"lb <= n <= ub",-1)),s[853]||(s[853]=t(", where ")),s[854]||(s[854]=i("code",null,"G",-1)),s[855]||(s[855]=t(" is the Gram matrix of ")),s[856]||(s[856]=i("code",null,"L",-1)),s[857]||(s[857]=t(" and ")),s[858]||(s[858]=i("code",null,"v",-1)),s[859]||(s[859]=t(" is non-zero."))]),s[861]||(s[861]=a('

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors.

source

',4))]),i("details",M1,[i("summary",null,[s[862]||(s[862]=i("a",{id:"minimum-Tuple{ZZLat}",href:"#minimum-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"minimum")],-1)),s[863]||(s[863]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[864]||(s[864]=a('
julia
minimum(L::ZZLat) -> QQFieldElem

Return the minimum absolute squared length among the non-zero vectors in L.

source

',3))]),i("details",j1,[i("summary",null,[s[865]||(s[865]=i("a",{id:"kissing_number-Tuple{ZZLat}",href:"#kissing_number-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"kissing_number")],-1)),s[866]||(s[866]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[867]||(s[867]=a('
julia
kissing_number(L::ZZLat) -> Int

Return the Kissing number of the sphere packing defined by L.

This is the number of non-overlapping spheres touching any other given sphere.

source

',4))]),s[896]||(s[896]=i("h3",{id:"Close-Vectors",tabindex:"-1"},[t("Close Vectors "),i("a",{class:"header-anchor",href:"#Close-Vectors","aria-label":'Permalink to "Close Vectors {#Close-Vectors}"'},"​")],-1)),i("details",Z1,[i("summary",null,[s[868]||(s[868]=i("a",{id:"close_vectors-Tuple{ZZLat, Vector, Vararg{Any}}",href:"#close_vectors-Tuple{ZZLat, Vector, Vararg{Any}}"},[i("span",{class:"jlbinding"},"close_vectors")],-1)),s[869]||(s[869]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[870]||(s[870]=a(`
julia
close_vectors(L:ZZLat, v:Vector, [lb,], ub; check::Bool = false)
                                         -> Vector{Tuple{Vector{Int}}, QQFieldElem}

Return all tuples (x, d) where x is an element of L such that d = b(v - x, v - x) <= ub. If lb is provided, then also lb <= d.

If filter is not nothing, then only those x with filter(x) evaluating to true are returned.

By default, it will be checked whether L is positive definite. This can be disabled setting check = false.

Both input and output are with respect to the basis matrix of L.

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1, 0, 0, 2]));
 
 julia> close_vectors(L, [1, 1], 1)
diff --git a/v0.34.8/assets/manual_quad_forms_integer_lattices.md.B7hEml57.lean.js b/v0.34.8/assets/manual_quad_forms_integer_lattices.md.B7hEml57.lean.js
index 5d61c04ea0..40222b379c 100644
--- a/v0.34.8/assets/manual_quad_forms_integer_lattices.md.B7hEml57.lean.js
+++ b/v0.34.8/assets/manual_quad_forms_integer_lattices.md.B7hEml57.lean.js
@@ -1,4 +1,4 @@
-import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/framework.DbhH0_mT.js";const z1=JSON.parse('{"title":"Integer Lattices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/quad_forms/integer_lattices.md","filePath":"manual/quad_forms/integer_lattices.md","lastUpdated":null}'),r={name:"manual/quad_forms/integer_lattices.md"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.665ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 3387.8 882","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.693ex",height:"1.731ex",role:"img",focusable:"false",viewBox:"0 -683 3842.5 765","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.02ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 451 453","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},z={class:"jldocstring custom-block",open:""},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},U={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},W={class:"jldocstring custom-block",open:""},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ss={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.738ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 2536 833","aria-hidden":"true"},ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},as={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.243ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 991.6 833","aria-hidden":"true"},ls={class:"jldocstring custom-block",open:""},es={class:"jldocstring custom-block",open:""},ns={class:"jldocstring custom-block",open:""},hs={class:"jldocstring custom-block",open:""},ps={class:"jldocstring custom-block",open:""},ks={class:"jldocstring custom-block",open:""},rs={class:"jldocstring custom-block",open:""},ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},os={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},gs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ms={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Fs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Cs={class:"jldocstring custom-block",open:""},Es={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},us={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},xs={class:"jldocstring custom-block",open:""},cs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ws={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},bs={class:"jldocstring custom-block",open:""},Bs={class:"jldocstring custom-block",open:""},fs={class:"jldocstring custom-block",open:""},vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Hs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ms={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.666ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 8250.4 1000","aria-hidden":"true"},js={class:"jldocstring custom-block",open:""},Zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ds={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},As={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Vs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.737ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 7397.8 1000","aria-hidden":"true"},Ss={class:"jldocstring custom-block",open:""},Gs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.14ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2713.7 1000","aria-hidden":"true"},Os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},zs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.394ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5478.2 1000","aria-hidden":"true"},Js={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.973ex",height:"1.57ex",role:"img",focusable:"false",viewBox:"0 -683 2198 694","aria-hidden":"true"},Ns={class:"jldocstring custom-block",open:""},qs={class:"jldocstring custom-block",open:""},Us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ps={class:"jldocstring custom-block",open:""},Ks={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ws={class:"jldocstring custom-block",open:""},Ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},si={class:"jldocstring custom-block",open:""},ii={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ti={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ai={class:"jldocstring custom-block",open:""},li={class:"jldocstring custom-block",open:""},ei={class:"jldocstring custom-block",open:""},ni={class:"jldocstring custom-block",open:""},hi={class:"jldocstring custom-block",open:""},pi={class:"jldocstring custom-block",open:""},ki={class:"jldocstring custom-block",open:""},ri={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},di={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.729ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 764 680","aria-hidden":"true"},oi={class:"jldocstring custom-block",open:""},gi={class:"jldocstring custom-block",open:""},Qi={class:"jldocstring custom-block",open:""},Ti={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},mi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"17.47ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 7721.8 970.2","aria-hidden":"true"},yi={class:"jldocstring custom-block",open:""},Fi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ci={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},Ei={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ui={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},xi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ci={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},wi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Bi={class:"jldocstring custom-block",open:""},fi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},vi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Li={class:"jldocstring custom-block",open:""},Hi={class:"jldocstring custom-block",open:""},Mi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ji={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Zi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Di={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},Ai={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Vi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.303ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -694 576 705","aria-hidden":"true"},Si={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Gi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.464ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2415 1000","aria-hidden":"true"},Ri={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Oi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},zi={class:"jldocstring custom-block",open:""},Ji={class:"jldocstring custom-block",open:""},Ii={class:"jldocstring custom-block",open:""},Ni={class:"jldocstring custom-block",open:""},qi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ui={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},Xi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},Ki={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$i={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},Wi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Yi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.646ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 5147.6 833","aria-hidden":"true"},_i={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},st={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.586ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1585.2 833","aria-hidden":"true"},it={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},tt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.326ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1469.9 833","aria-hidden":"true"},at={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},lt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},et={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},nt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},ht={class:"jldocstring custom-block",open:""},pt={class:"jldocstring custom-block",open:""},kt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},rt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.575ex",height:"1.568ex",role:"img",focusable:"false",viewBox:"0 -683 1580 693","aria-hidden":"true"},dt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ot={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},gt={class:"jldocstring custom-block",open:""},Qt={class:"jldocstring custom-block",open:""},Tt={class:"jldocstring custom-block",open:""},mt={class:"jldocstring custom-block",open:""},yt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ft={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ct={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Et={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.164ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 4050.6 882","aria-hidden":"true"},ut={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.662ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 3828.4 882","aria-hidden":"true"},ct={class:"jldocstring custom-block",open:""},wt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Bt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ft={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.404ex",height:"1.857ex",role:"img",focusable:"false",viewBox:"0 -683 3272.6 821","aria-hidden":"true"},vt={class:"jldocstring custom-block",open:""},Lt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ht={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Mt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},jt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.911ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3054.6 776","aria-hidden":"true"},Zt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Dt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.085ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3131.6 776","aria-hidden":"true"},At={class:"jldocstring custom-block",open:""},Vt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},St={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.14ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2713.7 1000","aria-hidden":"true"},Gt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ot={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},zt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.038ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3110.7 1000","aria-hidden":"true"},Jt={class:"jldocstring custom-block",open:""},It={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Nt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},qt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ut={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},Xt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},Kt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$t={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Wt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Yt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},_t={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},sa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},ia={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ta={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},aa={class:"jldocstring custom-block",open:""},la={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ea={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},na={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ha={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},pa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ka={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},ra={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},da={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},oa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ga={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Qa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ta={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},ma={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ya={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Fa={class:"jldocstring custom-block",open:""},Ca={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ea={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ua={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},ca={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},wa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},ba={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ba={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},fa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},va={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},La={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ha={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Ma={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ja={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Za={class:"jldocstring custom-block",open:""},Da={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Aa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Va={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Sa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.459ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 645 727","aria-hidden":"true"},Ga={class:"jldocstring custom-block",open:""},Ra={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Oa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.28ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1008 840.8","aria-hidden":"true"},za={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ja={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Ia={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},Na={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.695ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.263ex",height:"4.842ex",role:"img",focusable:"false",viewBox:"0 -949 4978.2 2140.2","aria-hidden":"true"},qa={class:"jldocstring custom-block",open:""},Ua={class:"jldocstring custom-block",open:""},Xa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ka={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$a={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.229ex",height:"1.486ex",role:"img",focusable:"false",viewBox:"0 -441 543 657","aria-hidden":"true"},Wa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ya={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.5ex",height:"1.907ex",role:"img",focusable:"false",viewBox:"0 -705 4641 843","aria-hidden":"true"},_a={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.229ex",height:"1.486ex",role:"img",focusable:"false",viewBox:"0 -441 543 657","aria-hidden":"true"},i2={class:"jldocstring custom-block",open:""},t2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},l2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.5ex",height:"1.907ex",role:"img",focusable:"false",viewBox:"0 -705 4641 843","aria-hidden":"true"},n2={class:"jldocstring custom-block",open:""},h2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},k2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},d2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},g2={class:"jldocstring custom-block",open:""},Q2={class:"jldocstring custom-block",open:""},T2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},y2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},C2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.244ex",height:"2.059ex",role:"img",focusable:"false",viewBox:"0 -705 550 910","aria-hidden":"true"},u2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},c2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.09ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2692 1000","aria-hidden":"true"},b2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},f2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},L2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},M2={class:"jldocstring custom-block",open:""},j2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},D2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},V2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},G2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},O2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},J2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.949ex",role:"img",focusable:"false",viewBox:"0 -861.5 1319.8 861.5","aria-hidden":"true"},N2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},U2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},P2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},$2={class:"jldocstring custom-block",open:""},W2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},_2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},t1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},a1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},h1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.92ex",role:"img",focusable:"false",viewBox:"0 -683 1319.8 848.6","aria-hidden":"true"},k1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.949ex",role:"img",focusable:"false",viewBox:"0 -861.5 1319.8 861.5","aria-hidden":"true"},g1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},y1={class:"jldocstring custom-block",open:""},F1={class:"jldocstring custom-block",open:""},C1={class:"jldocstring custom-block",open:""},E1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.182ex",height:"1.97ex",role:"img",focusable:"false",viewBox:"0 -705 1406.4 870.6","aria-hidden":"true"},w1={class:"jldocstring custom-block",open:""},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.564ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.371ex",height:"2.387ex",role:"img",focusable:"false",viewBox:"0 -805.6 4583.8 1055.1","aria-hidden":"true"},f1={class:"jldocstring custom-block",open:""},v1={class:"jldocstring custom-block",open:""},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.564ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.371ex",height:"2.387ex",role:"img",focusable:"false",viewBox:"0 -805.6 4583.8 1055.1","aria-hidden":"true"},M1={class:"jldocstring custom-block",open:""},j1={class:"jldocstring custom-block",open:""},Z1={class:"jldocstring custom-block",open:""};function D1(A1,s,V1,S1,G1,R1){const n=k("Badge");return e(),l("div",null,[s[871]||(s[871]=i("h1",{id:"Integer-Lattices",tabindex:"-1"},[t("Integer Lattices "),i("a",{class:"header-anchor",href:"#Integer-Lattices","aria-label":'Permalink to "Integer Lattices {#Integer-Lattices}"'},"​")],-1)),i("p",null,[s[8]||(s[8]=t("An integer lattice ")),i("mjx-container",d,[(e(),l("svg",o,s[0]||(s[0]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[1]||(s[1]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[9]||(s[9]=t(" is a finitely generated ")),i("mjx-container",g,[(e(),l("svg",Q,s[2]||(s[2]=[a('',1)]))),s[3]||(s[3]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[10]||(s[10]=t("-submodule of a quadratic vector space ")),i("mjx-container",T,[(e(),l("svg",m,s[4]||(s[4]=[a('',1)]))),s[5]||(s[5]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V"),i("mo",null,"="),i("msup",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Q")]),i("mi",null,"n")])])],-1))]),s[11]||(s[11]=t(" over the rational numbers. Integer lattices are also known as quadratic forms over the integers. We will refer to them as ")),i("mjx-container",y,[(e(),l("svg",F,s[6]||(s[6]=[a('',1)]))),s[7]||(s[7]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[12]||(s[12]=t("-lattices."))]),i("p",null,[s[31]||(s[31]=t("A ")),i("mjx-container",C,[(e(),l("svg",E,s[13]||(s[13]=[a('',1)]))),s[14]||(s[14]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[32]||(s[32]=t("-lattice ")),i("mjx-container",u,[(e(),l("svg",x,s[15]||(s[15]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[16]||(s[16]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[33]||(s[33]=t(" has the type ")),s[34]||(s[34]=i("code",null,"ZZLat",-1)),s[35]||(s[35]=t(". It is given in terms of its ambient quadratic space ")),i("mjx-container",c,[(e(),l("svg",w,s[17]||(s[17]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),s[18]||(s[18]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V")])],-1))]),s[36]||(s[36]=t(" together with a basis matrix ")),i("mjx-container",b,[(e(),l("svg",B,s[19]||(s[19]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[20]||(s[20]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[37]||(s[37]=t(" whose rows span ")),i("mjx-container",f,[(e(),l("svg",v,s[21]||(s[21]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[22]||(s[22]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[38]||(s[38]=t(", i.e. ")),i("mjx-container",L,[(e(),l("svg",H,s[23]||(s[23]=[a('',1)]))),s[24]||(s[24]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,"="),i("msup",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"r")]),i("mi",null,"B")])],-1))]),s[39]||(s[39]=t(" where ")),i("mjx-container",M,[(e(),l("svg",j,s[25]||(s[25]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D45F",d:"M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),s[26]||(s[26]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"r")])],-1))]),s[40]||(s[40]=t(" is the (")),i("mjx-container",Z,[(e(),l("svg",D,s[27]||(s[27]=[a('',1)]))),s[28]||(s[28]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[41]||(s[41]=t("-module) rank of ")),i("mjx-container",A,[(e(),l("svg",V,s[29]||(s[29]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[30]||(s[30]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[42]||(s[42]=t("."))]),i("p",null,[s[47]||(s[47]=t("To access ")),i("mjx-container",S,[(e(),l("svg",G,s[43]||(s[43]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),s[44]||(s[44]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V")])],-1))]),s[48]||(s[48]=t(" and ")),i("mjx-container",R,[(e(),l("svg",O,s[45]||(s[45]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[46]||(s[46]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[49]||(s[49]=t(" see ")),s[50]||(s[50]=i("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#ambient_space-Tuple{ZZLat}"},[i("code",null,"ambient_space(L::ZZLat)")],-1)),s[51]||(s[51]=t(" and ")),s[52]||(s[52]=i("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#basis_matrix-Tuple{ZZLat}"},[i("code",null,"basis_matrix(L::ZZLat)")],-1)),s[53]||(s[53]=t("."))]),s[872]||(s[872]=i("h2",{id:"Creation-of-integer-lattices",tabindex:"-1"},[t("Creation of integer lattices "),i("a",{class:"header-anchor",href:"#Creation-of-integer-lattices","aria-label":'Permalink to "Creation of integer lattices {#Creation-of-integer-lattices}"'},"​")],-1)),s[873]||(s[873]=i("h3",{id:"From-a-gram-matrix",tabindex:"-1"},[t("From a gram matrix "),i("a",{class:"header-anchor",href:"#From-a-gram-matrix","aria-label":'Permalink to "From a gram matrix {#From-a-gram-matrix}"'},"​")],-1)),i("details",z,[i("summary",null,[s[54]||(s[54]=i("a",{id:"integer_lattice-Tuple{QQMatrix}",href:"#integer_lattice-Tuple{QQMatrix}"},[i("span",{class:"jlbinding"},"integer_lattice")],-1)),s[55]||(s[55]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[68]||(s[68]=a('
julia
integer_lattice([B::MatElem]; gram) -> ZZLat
',1)),i("p",null,[s[58]||(s[58]=t("Return the Z-lattice with basis matrix ")),i("mjx-container",J,[(e(),l("svg",I,s[56]||(s[56]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[57]||(s[57]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[59]||(s[59]=t(" inside the quadratic space with Gram matrix ")),s[60]||(s[60]=i("code",null,"gram",-1)),s[61]||(s[61]=t("."))]),i("p",null,[s[64]||(s[64]=t("If the keyword ")),s[65]||(s[65]=i("code",null,"gram",-1)),s[66]||(s[66]=t(" is not specified, the Gram matrix is the identity matrix. If ")),i("mjx-container",N,[(e(),l("svg",q,s[62]||(s[62]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[63]||(s[63]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[67]||(s[67]=t(" is not specified, the basis matrix is the identity matrix."))]),s[69]||(s[69]=a(`

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1//2, 0, 0, 2]));
+import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/framework.DbhH0_mT.js";const z1=JSON.parse('{"title":"Integer Lattices","description":"","frontmatter":{},"headers":[],"relativePath":"manual/quad_forms/integer_lattices.md","filePath":"manual/quad_forms/integer_lattices.md","lastUpdated":null}'),r={name:"manual/quad_forms/integer_lattices.md"},d={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.665ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 3387.8 882","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.693ex",height:"1.731ex",role:"img",focusable:"false",viewBox:"0 -683 3842.5 765","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.02ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 451 453","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},V={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},G={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},z={class:"jldocstring custom-block",open:""},J={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},N={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},U={class:"jldocstring custom-block",open:""},X={class:"jldocstring custom-block",open:""},P={class:"jldocstring custom-block",open:""},K={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},W={class:"jldocstring custom-block",open:""},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ss={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.738ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 2536 833","aria-hidden":"true"},ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},as={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.243ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 991.6 833","aria-hidden":"true"},ls={class:"jldocstring custom-block",open:""},es={class:"jldocstring custom-block",open:""},ns={class:"jldocstring custom-block",open:""},hs={class:"jldocstring custom-block",open:""},ps={class:"jldocstring custom-block",open:""},ks={class:"jldocstring custom-block",open:""},rs={class:"jldocstring custom-block",open:""},ds={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},os={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},gs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Qs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Ts={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ms={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Fs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Cs={class:"jldocstring custom-block",open:""},Es={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},us={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},xs={class:"jldocstring custom-block",open:""},cs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ws={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},bs={class:"jldocstring custom-block",open:""},Bs={class:"jldocstring custom-block",open:""},fs={class:"jldocstring custom-block",open:""},vs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ls={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Hs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ms={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.666ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 8250.4 1000","aria-hidden":"true"},js={class:"jldocstring custom-block",open:""},Zs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ds={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},As={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Vs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"16.737ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 7397.8 1000","aria-hidden":"true"},Ss={class:"jldocstring custom-block",open:""},Gs={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.14ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2713.7 1000","aria-hidden":"true"},Os={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},zs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.394ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 5478.2 1000","aria-hidden":"true"},Js={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Is={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.973ex",height:"1.57ex",role:"img",focusable:"false",viewBox:"0 -683 2198 694","aria-hidden":"true"},Ns={class:"jldocstring custom-block",open:""},qs={class:"jldocstring custom-block",open:""},Us={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Xs={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ps={class:"jldocstring custom-block",open:""},Ks={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ws={class:"jldocstring custom-block",open:""},Ys={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_s={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},si={class:"jldocstring custom-block",open:""},ii={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ti={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ai={class:"jldocstring custom-block",open:""},li={class:"jldocstring custom-block",open:""},ei={class:"jldocstring custom-block",open:""},ni={class:"jldocstring custom-block",open:""},hi={class:"jldocstring custom-block",open:""},pi={class:"jldocstring custom-block",open:""},ki={class:"jldocstring custom-block",open:""},ri={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},di={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.729ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 764 680","aria-hidden":"true"},oi={class:"jldocstring custom-block",open:""},gi={class:"jldocstring custom-block",open:""},Qi={class:"jldocstring custom-block",open:""},Ti={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},mi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.65ex"},xmlns:"http://www.w3.org/2000/svg",width:"17.47ex",height:"2.195ex",role:"img",focusable:"false",viewBox:"0 -683 7721.8 970.2","aria-hidden":"true"},yi={class:"jldocstring custom-block",open:""},Fi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ci={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},Ei={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ui={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},xi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ci={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.131ex",height:"1.507ex",role:"img",focusable:"false",viewBox:"0 -666 500 666","aria-hidden":"true"},wi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Bi={class:"jldocstring custom-block",open:""},fi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},vi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Li={class:"jldocstring custom-block",open:""},Hi={class:"jldocstring custom-block",open:""},Mi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ji={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Zi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Di={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.048ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.593ex",role:"img",focusable:"false",viewBox:"0 -683 759 704","aria-hidden":"true"},Ai={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Vi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.303ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -694 576 705","aria-hidden":"true"},Si={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Gi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.464ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2415 1000","aria-hidden":"true"},Ri={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Oi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},zi={class:"jldocstring custom-block",open:""},Ji={class:"jldocstring custom-block",open:""},Ii={class:"jldocstring custom-block",open:""},Ni={class:"jldocstring custom-block",open:""},qi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ui={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},Xi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},Ki={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$i={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.717ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 759 683","aria-hidden":"true"},Wi={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Yi={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.646ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 5147.6 833","aria-hidden":"true"},_i={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},st={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.586ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1585.2 833","aria-hidden":"true"},it={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},tt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.326ex",height:"1.885ex",role:"img",focusable:"false",viewBox:"0 -683 1469.9 833","aria-hidden":"true"},at={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},lt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},et={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},nt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},ht={class:"jldocstring custom-block",open:""},pt={class:"jldocstring custom-block",open:""},kt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},rt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.023ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.575ex",height:"1.568ex",role:"img",focusable:"false",viewBox:"0 -683 1580 693","aria-hidden":"true"},dt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ot={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},gt={class:"jldocstring custom-block",open:""},Qt={class:"jldocstring custom-block",open:""},Tt={class:"jldocstring custom-block",open:""},mt={class:"jldocstring custom-block",open:""},yt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ft={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ct={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Et={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.164ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 4050.6 882","aria-hidden":"true"},ut={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.41ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.662ex",height:"1.995ex",role:"img",focusable:"false",viewBox:"0 -701 3828.4 882","aria-hidden":"true"},ct={class:"jldocstring custom-block",open:""},wt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},bt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Bt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ft={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.404ex",height:"1.857ex",role:"img",focusable:"false",viewBox:"0 -683 3272.6 821","aria-hidden":"true"},vt={class:"jldocstring custom-block",open:""},Lt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ht={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Mt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},jt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.911ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3054.6 776","aria-hidden":"true"},Zt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Dt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.085ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3131.6 776","aria-hidden":"true"},At={class:"jldocstring custom-block",open:""},Vt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},St={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.14ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2713.7 1000","aria-hidden":"true"},Gt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Rt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ot={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},zt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.038ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 3110.7 1000","aria-hidden":"true"},Jt={class:"jldocstring custom-block",open:""},It={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Nt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},qt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ut={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},Xt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},Kt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$t={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Wt={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Yt={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},_t={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},sa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},ia={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ta={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},aa={class:"jldocstring custom-block",open:""},la={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ea={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},na={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ha={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},pa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ka={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},ra={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},da={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},oa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ga={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Qa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ta={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},ma={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ya={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Fa={class:"jldocstring custom-block",open:""},Ca={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ea={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},ua={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},xa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.258ex",height:"1.984ex",role:"img",focusable:"false",viewBox:"0 -683 4533.8 877","aria-hidden":"true"},ca={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},wa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"18.587ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 8215.3 840.8","aria-hidden":"true"},ba={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ba={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},fa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},va={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},La={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ha={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Ma={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},ja={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.341ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 3244.5 840.8","aria-hidden":"true"},Za={class:"jldocstring custom-block",open:""},Da={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Aa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Va={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Sa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.459ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 645 727","aria-hidden":"true"},Ga={class:"jldocstring custom-block",open:""},Ra={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Oa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.28ex",height:"1.902ex",role:"img",focusable:"false",viewBox:"0 -683 1008 840.8","aria-hidden":"true"},za={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ja={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},Ia={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},Na={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.695ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.263ex",height:"4.842ex",role:"img",focusable:"false",viewBox:"0 -949 4978.2 2140.2","aria-hidden":"true"},qa={class:"jldocstring custom-block",open:""},Ua={class:"jldocstring custom-block",open:""},Xa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Pa={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},Ka={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},$a={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.229ex",height:"1.486ex",role:"img",focusable:"false",viewBox:"0 -441 543 657","aria-hidden":"true"},Wa={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Ya={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.5ex",height:"1.907ex",role:"img",focusable:"false",viewBox:"0 -705 4641 843","aria-hidden":"true"},_a={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.489ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.229ex",height:"1.486ex",role:"img",focusable:"false",viewBox:"0 -441 543 657","aria-hidden":"true"},i2={class:"jldocstring custom-block",open:""},t2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},l2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.312ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.5ex",height:"1.907ex",role:"img",focusable:"false",viewBox:"0 -705 4641 843","aria-hidden":"true"},n2={class:"jldocstring custom-block",open:""},h2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},k2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},d2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.138ex",height:"1.439ex",role:"img",focusable:"false",viewBox:"0 -442 503 636","aria-hidden":"true"},g2={class:"jldocstring custom-block",open:""},Q2={class:"jldocstring custom-block",open:""},T2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},y2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},C2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.464ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.244ex",height:"2.059ex",role:"img",focusable:"false",viewBox:"0 -705 550 910","aria-hidden":"true"},u2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},c2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.09ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2692 1000","aria-hidden":"true"},b2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},f2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},L2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},M2={class:"jldocstring custom-block",open:""},j2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},D2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},V2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},G2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},R2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},O2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},J2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.949ex",role:"img",focusable:"false",viewBox:"0 -861.5 1319.8 861.5","aria-hidden":"true"},N2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},U2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},X2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},P2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},$2={class:"jldocstring custom-block",open:""},W2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y2={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.59ex",height:"1.552ex",role:"img",focusable:"false",viewBox:"0 -686 703 686","aria-hidden":"true"},_2={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},s1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},t1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},a1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},e1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.778ex",height:"1.645ex",role:"img",focusable:"false",viewBox:"0 -705 786 727","aria-hidden":"true"},h1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.92ex",role:"img",focusable:"false",viewBox:"0 -683 1319.8 848.6","aria-hidden":"true"},k1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},r1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},d1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.986ex",height:"1.949ex",role:"img",focusable:"false",viewBox:"0 -861.5 1319.8 861.5","aria-hidden":"true"},g1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},T1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.541ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 681 683","aria-hidden":"true"},y1={class:"jldocstring custom-block",open:""},F1={class:"jldocstring custom-block",open:""},C1={class:"jldocstring custom-block",open:""},E1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.509ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 667 683","aria-hidden":"true"},x1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.182ex",height:"1.97ex",role:"img",focusable:"false",viewBox:"0 -705 1406.4 870.6","aria-hidden":"true"},w1={class:"jldocstring custom-block",open:""},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.564ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.371ex",height:"2.387ex",role:"img",focusable:"false",viewBox:"0 -805.6 4583.8 1055.1","aria-hidden":"true"},f1={class:"jldocstring custom-block",open:""},v1={class:"jldocstring custom-block",open:""},L1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.564ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.371ex",height:"2.387ex",role:"img",focusable:"false",viewBox:"0 -805.6 4583.8 1055.1","aria-hidden":"true"},M1={class:"jldocstring custom-block",open:""},j1={class:"jldocstring custom-block",open:""},Z1={class:"jldocstring custom-block",open:""};function D1(A1,s,V1,S1,G1,R1){const n=k("Badge");return e(),l("div",null,[s[871]||(s[871]=i("h1",{id:"Integer-Lattices",tabindex:"-1"},[t("Integer Lattices "),i("a",{class:"header-anchor",href:"#Integer-Lattices","aria-label":'Permalink to "Integer Lattices {#Integer-Lattices}"'},"​")],-1)),i("p",null,[s[8]||(s[8]=t("An integer lattice ")),i("mjx-container",d,[(e(),l("svg",o,s[0]||(s[0]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[1]||(s[1]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[9]||(s[9]=t(" is a finitely generated ")),i("mjx-container",g,[(e(),l("svg",Q,s[2]||(s[2]=[a('',1)]))),s[3]||(s[3]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[10]||(s[10]=t("-submodule of a quadratic vector space ")),i("mjx-container",T,[(e(),l("svg",m,s[4]||(s[4]=[a('',1)]))),s[5]||(s[5]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V"),i("mo",null,"="),i("msup",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Q")]),i("mi",null,"n")])])],-1))]),s[11]||(s[11]=t(" over the rational numbers. Integer lattices are also known as quadratic forms over the integers. We will refer to them as ")),i("mjx-container",y,[(e(),l("svg",F,s[6]||(s[6]=[a('',1)]))),s[7]||(s[7]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[12]||(s[12]=t("-lattices."))]),i("p",null,[s[31]||(s[31]=t("A ")),i("mjx-container",C,[(e(),l("svg",E,s[13]||(s[13]=[a('',1)]))),s[14]||(s[14]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[32]||(s[32]=t("-lattice ")),i("mjx-container",u,[(e(),l("svg",x,s[15]||(s[15]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[16]||(s[16]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[33]||(s[33]=t(" has the type ")),s[34]||(s[34]=i("code",null,"ZZLat",-1)),s[35]||(s[35]=t(". It is given in terms of its ambient quadratic space ")),i("mjx-container",c,[(e(),l("svg",w,s[17]||(s[17]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),s[18]||(s[18]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V")])],-1))]),s[36]||(s[36]=t(" together with a basis matrix ")),i("mjx-container",b,[(e(),l("svg",B,s[19]||(s[19]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[20]||(s[20]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[37]||(s[37]=t(" whose rows span ")),i("mjx-container",f,[(e(),l("svg",v,s[21]||(s[21]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[22]||(s[22]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[38]||(s[38]=t(", i.e. ")),i("mjx-container",L,[(e(),l("svg",H,s[23]||(s[23]=[a('',1)]))),s[24]||(s[24]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,"="),i("msup",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"r")]),i("mi",null,"B")])],-1))]),s[39]||(s[39]=t(" where ")),i("mjx-container",M,[(e(),l("svg",j,s[25]||(s[25]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D45F",d:"M21 287Q22 290 23 295T28 317T38 348T53 381T73 411T99 433T132 442Q161 442 183 430T214 408T225 388Q227 382 228 382T236 389Q284 441 347 441H350Q398 441 422 400Q430 381 430 363Q430 333 417 315T391 292T366 288Q346 288 334 299T322 328Q322 376 378 392Q356 405 342 405Q286 405 239 331Q229 315 224 298T190 165Q156 25 151 16Q138 -11 108 -11Q95 -11 87 -5T76 7T74 17Q74 30 114 189T154 366Q154 405 128 405Q107 405 92 377T68 316T57 280Q55 278 41 278H27Q21 284 21 287Z",style:{"stroke-width":"3"}})])])],-1)]))),s[26]||(s[26]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"r")])],-1))]),s[40]||(s[40]=t(" is the (")),i("mjx-container",Z,[(e(),l("svg",D,s[27]||(s[27]=[a('',1)]))),s[28]||(s[28]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[41]||(s[41]=t("-module) rank of ")),i("mjx-container",A,[(e(),l("svg",V,s[29]||(s[29]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[30]||(s[30]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[42]||(s[42]=t("."))]),i("p",null,[s[47]||(s[47]=t("To access ")),i("mjx-container",S,[(e(),l("svg",G,s[43]||(s[43]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),s[44]||(s[44]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"V")])],-1))]),s[48]||(s[48]=t(" and ")),i("mjx-container",R,[(e(),l("svg",O,s[45]||(s[45]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[46]||(s[46]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[49]||(s[49]=t(" see ")),s[50]||(s[50]=i("a",{href:"/v0.34.8/manual/quad_forms/integer_lattices#ambient_space-Tuple{ZZLat}"},[i("code",null,"ambient_space(L::ZZLat)")],-1)),s[51]||(s[51]=t(" and ")),s[52]||(s[52]=i("a",{href:"/v0.34.8/manual/quad_forms/integer_lattices#basis_matrix-Tuple{ZZLat}"},[i("code",null,"basis_matrix(L::ZZLat)")],-1)),s[53]||(s[53]=t("."))]),s[872]||(s[872]=i("h2",{id:"Creation-of-integer-lattices",tabindex:"-1"},[t("Creation of integer lattices "),i("a",{class:"header-anchor",href:"#Creation-of-integer-lattices","aria-label":'Permalink to "Creation of integer lattices {#Creation-of-integer-lattices}"'},"​")],-1)),s[873]||(s[873]=i("h3",{id:"From-a-gram-matrix",tabindex:"-1"},[t("From a gram matrix "),i("a",{class:"header-anchor",href:"#From-a-gram-matrix","aria-label":'Permalink to "From a gram matrix {#From-a-gram-matrix}"'},"​")],-1)),i("details",z,[i("summary",null,[s[54]||(s[54]=i("a",{id:"integer_lattice-Tuple{QQMatrix}",href:"#integer_lattice-Tuple{QQMatrix}"},[i("span",{class:"jlbinding"},"integer_lattice")],-1)),s[55]||(s[55]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[68]||(s[68]=a('
julia
integer_lattice([B::MatElem]; gram) -> ZZLat
',1)),i("p",null,[s[58]||(s[58]=t("Return the Z-lattice with basis matrix ")),i("mjx-container",J,[(e(),l("svg",I,s[56]||(s[56]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[57]||(s[57]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[59]||(s[59]=t(" inside the quadratic space with Gram matrix ")),s[60]||(s[60]=i("code",null,"gram",-1)),s[61]||(s[61]=t("."))]),i("p",null,[s[64]||(s[64]=t("If the keyword ")),s[65]||(s[65]=i("code",null,"gram",-1)),s[66]||(s[66]=t(" is not specified, the Gram matrix is the identity matrix. If ")),i("mjx-container",N,[(e(),l("svg",q,s[62]||(s[62]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[63]||(s[63]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[67]||(s[67]=t(" is not specified, the basis matrix is the identity matrix."))]),s[69]||(s[69]=a(`

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1//2, 0, 0, 2]));
 
 julia> gram_matrix(L) == matrix(QQ, 2, 2, [1//4, 0, 0, 4])
 true
@@ -16,7 +16,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 
 julia> gram_matrix(L)
 [  0   -13]
-[-13     0]

source

`,3))]),i("details",W,[i("summary",null,[s[88]||(s[88]=i("a",{id:"integer_lattice-Tuple{Symbol, Union{Int64, ZZRingElem}}",href:"#integer_lattice-Tuple{Symbol, Union{Int64, ZZRingElem}}"},[i("span",{class:"jlbinding"},"integer_lattice")],-1)),s[89]||(s[89]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[104]||(s[104]=a('
julia
integer_lattice(S::Symbol, n::RationalUnion = 1) -> ZZlat
',1)),i("p",null,[s[96]||(s[96]=t("Given ")),s[97]||(s[97]=i("code",null,"S = :H",-1)),s[98]||(s[98]=t(" or ")),s[99]||(s[99]=i("code",null,"S = :U",-1)),s[100]||(s[100]=t(", return a ")),i("mjx-container",Y,[(e(),l("svg",_,s[90]||(s[90]=[a('',1)]))),s[91]||(s[91]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[101]||(s[101]=t("-lattice admitting ")),i("mjx-container",ss,[(e(),l("svg",is,s[92]||(s[92]=[a('',1)]))),s[93]||(s[93]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"∗"),i("msub",null,[i("mi",null,"J"),i("mn",null,"2")])])],-1))]),s[102]||(s[102]=t(" as Gram matrix in some basis, where ")),i("mjx-container",ts,[(e(),l("svg",as,s[94]||(s[94]=[a('',1)]))),s[95]||(s[95]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"J"),i("mn",null,"2")])])],-1))]),s[103]||(s[103]=t(" is the 2-by-2 matrix with 0's on the main diagonal and 1's elsewhere."))]),s[105]||(s[105]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ls,[i("summary",null,[s[106]||(s[106]=i("a",{id:"leech_lattice",href:"#leech_lattice"},[i("span",{class:"jlbinding"},"leech_lattice")],-1)),s[107]||(s[107]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[108]||(s[108]=a(`
julia
leech_lattice() -> ZZLat

Return the Leech lattice.

source

julia
leech_lattice(niemeier_lattice::ZZLat) -> ZZLat, QQMatrix, Int

Return a triple L, v, h where L is the Leech lattice.

L is an h-neighbor of the Niemeier lattice N with respect to v. This means that L / L ∩ N ≅ ℤ / h ℤ. Here h is the Coxeter number of the Niemeier lattice.

This implements the 23 holy constructions of the Leech lattice in [5].

Examples

julia
julia> R = integer_lattice(gram=2 * identity_matrix(ZZ, 24));
+[-13     0]

source

`,3))]),i("details",W,[i("summary",null,[s[88]||(s[88]=i("a",{id:"integer_lattice-Tuple{Symbol, Union{Int64, ZZRingElem}}",href:"#integer_lattice-Tuple{Symbol, Union{Int64, ZZRingElem}}"},[i("span",{class:"jlbinding"},"integer_lattice")],-1)),s[89]||(s[89]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[104]||(s[104]=a('
julia
integer_lattice(S::Symbol, n::RationalUnion = 1) -> ZZlat
',1)),i("p",null,[s[96]||(s[96]=t("Given ")),s[97]||(s[97]=i("code",null,"S = :H",-1)),s[98]||(s[98]=t(" or ")),s[99]||(s[99]=i("code",null,"S = :U",-1)),s[100]||(s[100]=t(", return a ")),i("mjx-container",Y,[(e(),l("svg",_,s[90]||(s[90]=[a('',1)]))),s[91]||(s[91]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[101]||(s[101]=t("-lattice admitting ")),i("mjx-container",ss,[(e(),l("svg",is,s[92]||(s[92]=[a('',1)]))),s[93]||(s[93]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"∗"),i("msub",null,[i("mi",null,"J"),i("mn",null,"2")])])],-1))]),s[102]||(s[102]=t(" as Gram matrix in some basis, where ")),i("mjx-container",ts,[(e(),l("svg",as,s[94]||(s[94]=[a('',1)]))),s[95]||(s[95]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"J"),i("mn",null,"2")])])],-1))]),s[103]||(s[103]=t(" is the 2-by-2 matrix with 0's on the main diagonal and 1's elsewhere."))]),s[105]||(s[105]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ls,[i("summary",null,[s[106]||(s[106]=i("a",{id:"leech_lattice",href:"#leech_lattice"},[i("span",{class:"jlbinding"},"leech_lattice")],-1)),s[107]||(s[107]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[108]||(s[108]=a(`
julia
leech_lattice() -> ZZLat

Return the Leech lattice.

source

julia
leech_lattice(niemeier_lattice::ZZLat) -> ZZLat, QQMatrix, Int

Return a triple L, v, h where L is the Leech lattice.

L is an h-neighbor of the Niemeier lattice N with respect to v. This means that L / L ∩ N ≅ ℤ / h ℤ. Here h is the Coxeter number of the Niemeier lattice.

This implements the 23 holy constructions of the Leech lattice in [5].

Examples

julia
julia> R = integer_lattice(gram=2 * identity_matrix(ZZ, 24));
 
 julia> N = maximal_even_lattice(R) # Some Niemeier lattice
 Integer lattice of rank 24 and degree 24
@@ -149,7 +149,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 Genus symbol for integer lattices
 Signatures: (3, 0, 20)
 Local symbol:
-  Local genus symbol at 2: 1^22 4^1_7

source

`,6))]),s[876]||(s[876]=a('

From a genus

Integer lattices can be created as representatives of a genus. See (representative(L::ZZGenus))

Rescaling the Quadratic Form

',3)),i("details",ps,[i("summary",null,[s[118]||(s[118]=i("a",{id:"rescale-Tuple{ZZLat, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZLat, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[i("span",{class:"jlbinding"},"rescale")],-1)),s[119]||(s[119]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[120]||(s[120]=a(`
julia
rescale(L::ZZLat, r::RationalUnion) -> ZZLat

Return the lattice L in the quadratic space with form r \\Phi.

Examples

This can be useful to apply methods intended for positive definite lattices.

julia
julia> L = integer_lattice(gram=ZZ[-1 0; 0 -1])
+  Local genus symbol at 2: 1^22 4^1_7

source

`,6))]),s[876]||(s[876]=a('

From a genus

Integer lattices can be created as representatives of a genus. See (representative(L::ZZGenus))

Rescaling the Quadratic Form

',3)),i("details",ps,[i("summary",null,[s[118]||(s[118]=i("a",{id:"rescale-Tuple{ZZLat, Union{Integer, QQFieldElem, ZZRingElem, Rational}}",href:"#rescale-Tuple{ZZLat, Union{Integer, QQFieldElem, ZZRingElem, Rational}}"},[i("span",{class:"jlbinding"},"rescale")],-1)),s[119]||(s[119]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[120]||(s[120]=a(`
julia
rescale(L::ZZLat, r::RationalUnion) -> ZZLat

Return the lattice L in the quadratic space with form r \\Phi.

Examples

This can be useful to apply methods intended for positive definite lattices.

julia
julia> L = integer_lattice(gram=ZZ[-1 0; 0 -1])
 Integer lattice of rank 2 and degree 2
 with gram matrix
 [-1    0]
@@ -169,9 +169,9 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
   over rational field
 with gram matrix
 [ 4   -2]
-[-2    5]

source

`,3))]),s[878]||(s[878]=i("h2",{id:"invariants",tabindex:"-1"},[t("Invariants "),i("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),i("details",bs,[i("summary",null,[s[160]||(s[160]=i("a",{id:"rank-Tuple{ZZLat}",href:"#rank-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"rank")],-1)),s[161]||(s[161]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[162]||(s[162]=a('
julia
rank(L::AbstractLat) -> Int

Return the rank of the underlying module of the lattice L.

source

',3))]),i("details",Bs,[i("summary",null,[s[163]||(s[163]=i("a",{id:"det-Tuple{ZZLat}",href:"#det-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"det")],-1)),s[164]||(s[164]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[165]||(s[165]=a('
julia
det(L::ZZLat) -> QQFieldElem

Return the determinant of the gram matrix of L.

source

',3))]),i("details",fs,[i("summary",null,[s[166]||(s[166]=i("a",{id:"scale-Tuple{ZZLat}",href:"#scale-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"scale")],-1)),s[167]||(s[167]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[177]||(s[177]=a('
julia
scale(L::ZZLat) -> QQFieldElem

Return the scale of L.

',2)),i("p",null,[s[172]||(s[172]=t("The scale of ")),s[173]||(s[173]=i("code",null,"L",-1)),s[174]||(s[174]=t(" is defined as the positive generator of the ")),i("mjx-container",vs,[(e(),l("svg",Ls,s[168]||(s[168]=[a('',1)]))),s[169]||(s[169]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[175]||(s[175]=t("-ideal generated by ")),i("mjx-container",Hs,[(e(),l("svg",Ms,s[170]||(s[170]=[a('',1)]))),s[171]||(s[171]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{fence:"false",stretchy:"false"},"{"),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"y"),i("mo",{stretchy:"false"},")"),i("mo",null,":"),i("mi",null,"x"),i("mo",null,","),i("mi",null,"y"),i("mo",null,"∈"),i("mi",null,"L"),i("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[176]||(s[176]=t("."))]),s[178]||(s[178]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",js,[i("summary",null,[s[179]||(s[179]=i("a",{id:"norm-Tuple{ZZLat}",href:"#norm-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"norm")],-1)),s[180]||(s[180]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[190]||(s[190]=a('
julia
norm(L::ZZLat) -> QQFieldElem

Return the norm of L.

',2)),i("p",null,[s[185]||(s[185]=t("The norm of ")),s[186]||(s[186]=i("code",null,"L",-1)),s[187]||(s[187]=t(" is defined as the positive generator of the ")),i("mjx-container",Zs,[(e(),l("svg",Ds,s[181]||(s[181]=[a('',1)]))),s[182]||(s[182]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[188]||(s[188]=t("- ideal generated by ")),i("mjx-container",As,[(e(),l("svg",Vs,s[183]||(s[183]=[a('',1)]))),s[184]||(s[184]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{fence:"false",stretchy:"false"},"{"),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"x"),i("mo",{stretchy:"false"},")"),i("mo",null,":"),i("mi",null,"x"),i("mo",null,"∈"),i("mi",null,"L"),i("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[189]||(s[189]=t("."))]),s[191]||(s[191]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ss,[i("summary",null,[s[192]||(s[192]=i("a",{id:"iseven-Tuple{ZZLat}",href:"#iseven-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"iseven")],-1)),s[193]||(s[193]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[206]||(s[206]=a('
julia
iseven(L::ZZLat) -> Bool

Return whether L is even.

',2)),i("p",null,[s[200]||(s[200]=t("An integer lattice ")),s[201]||(s[201]=i("code",null,"L",-1)),s[202]||(s[202]=t(" in the rational quadratic space ")),i("mjx-container",Gs,[(e(),l("svg",Rs,s[194]||(s[194]=[a('',1)]))),s[195]||(s[195]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{stretchy:"false"},"("),i("mi",null,"V"),i("mo",null,","),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},")")])],-1))]),s[203]||(s[203]=t(" is called even if ")),i("mjx-container",Os,[(e(),l("svg",zs,s[196]||(s[196]=[a('',1)]))),s[197]||(s[197]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"x"),i("mo",{stretchy:"false"},")"),i("mo",null,"∈"),i("mn",null,"2"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[204]||(s[204]=t(" for all ")),i("mjx-container",Js,[(e(),l("svg",Is,s[198]||(s[198]=[a('',1)]))),s[199]||(s[199]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"x"),i("mi",null,"i"),i("mi",null,"n"),i("mi",null,"L")])],-1))]),s[205]||(s[205]=t("."))]),s[207]||(s[207]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ns,[i("summary",null,[s[208]||(s[208]=i("a",{id:"is_integral-Tuple{ZZLat}",href:"#is_integral-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_integral")],-1)),s[209]||(s[209]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[210]||(s[210]=a('
julia
is_integral(L::AbstractLat) -> Bool

Return whether the lattice L is integral.

source

',3))]),i("details",qs,[i("summary",null,[s[211]||(s[211]=i("a",{id:"is_primary_with_prime-Tuple{ZZLat}",href:"#is_primary_with_prime-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),s[212]||(s[212]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[217]||(s[217]=a('
julia
is_primary_with_prime(L::ZZLat) -> Bool, ZZRingElem
',1)),i("p",null,[s[215]||(s[215]=t("Given a ")),i("mjx-container",Us,[(e(),l("svg",Xs,s[213]||(s[213]=[a('',1)]))),s[214]||(s[214]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[216]||(s[216]=a('-lattice L, return whether L is primary, that is whether L is integral and its discriminant group (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.',15))]),s[218]||(s[218]=i("p",null,[t("Note that for unimodular lattices, this function returns "),i("code",null,"(true, 1)"),t(". If the lattice is not primary, the second return value is "),i("code",null,"-1"),t(" by default.")],-1)),s[219]||(s[219]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ps,[i("summary",null,[s[220]||(s[220]=i("a",{id:"is_primary-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"is_primary")],-1)),s[221]||(s[221]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[226]||(s[226]=a('
julia
is_primary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
',1)),i("p",null,[s[224]||(s[224]=t("Given an integral ")),i("mjx-container",Ks,[(e(),l("svg",$s,s[222]||(s[222]=[a('',1)]))),s[223]||(s[223]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[225]||(s[225]=a('-lattice L and a prime number p, return whether L is p-primary, that is whether its discriminant group (see discriminant_group) is a p-group.',13))]),s[227]||(s[227]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ws,[i("summary",null,[s[228]||(s[228]=i("a",{id:"is_elementary_with_prime-Tuple{ZZLat}",href:"#is_elementary_with_prime-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),s[229]||(s[229]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[234]||(s[234]=a('
julia
is_elementary_with_prime(L::ZZLat) -> Bool, ZZRingElem
',1)),i("p",null,[s[232]||(s[232]=t("Given a ")),i("mjx-container",Ys,[(e(),l("svg",_s,s[230]||(s[230]=[a('',1)]))),s[231]||(s[231]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[233]||(s[233]=a('-lattice L, return whether L is elementary, that is whether L is integral and its discriminant group (see discriminant_group) is an elemenentary p-group for some prime number p. In case it is, p is also returned as second output.',15))]),s[235]||(s[235]=i("p",null,[t("Note that for unimodular lattices, this function returns "),i("code",null,"(true, 1)"),t(". If the lattice is not elementary, the second return value is "),i("code",null,"-1"),t(" by default.")],-1)),s[236]||(s[236]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",si,[i("summary",null,[s[237]||(s[237]=i("a",{id:"is_elementary-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"is_elementary")],-1)),s[238]||(s[238]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[243]||(s[243]=a('
julia
is_elementary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
',1)),i("p",null,[s[241]||(s[241]=t("Given an integral ")),i("mjx-container",ii,[(e(),l("svg",ti,s[239]||(s[239]=[a('',1)]))),s[240]||(s[240]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[242]||(s[242]=a('-lattice L and a prime number p, return whether L is p-elementary, that is whether its discriminant group (see discriminant_group) is an elementary p-group.',13))]),s[244]||(s[244]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[879]||(s[879]=i("h3",{id:"The-Genus",tabindex:"-1"},[t("The Genus "),i("a",{class:"header-anchor",href:"#The-Genus","aria-label":'Permalink to "The Genus {#The-Genus}"'},"​")],-1)),s[880]||(s[880]=i("p",null,[t("For an integral lattice The genus of an integer lattice collects its local invariants. "),i("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/Zgenera#genus-Tuple{ZZLat}"},[i("code",null,"genus(::ZZLat)")])],-1)),i("details",ai,[i("summary",null,[s[245]||(s[245]=i("a",{id:"mass-Tuple{ZZLat}",href:"#mass-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"mass")],-1)),s[246]||(s[246]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[247]||(s[247]=a('
julia
mass(L::ZZLat) -> QQFieldElem

Return the mass of the genus of L.

source

',3))]),i("details",li,[i("summary",null,[s[248]||(s[248]=i("a",{id:"genus_representatives-Tuple{ZZLat}",href:"#genus_representatives-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"genus_representatives")],-1)),s[249]||(s[249]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[250]||(s[250]=a('
julia
genus_representatives(L::ZZLat) -> Vector{ZZLat}

Return representatives for the isometry classes in the genus of L.

source

',3))]),s[881]||(s[881]=i("h3",{id:"Real-invariants",tabindex:"-1"},[t("Real invariants "),i("a",{class:"header-anchor",href:"#Real-invariants","aria-label":'Permalink to "Real invariants {#Real-invariants}"'},"​")],-1)),i("details",ei,[i("summary",null,[s[251]||(s[251]=i("a",{id:"signature_tuple-Tuple{ZZLat}",href:"#signature_tuple-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"signature_tuple")],-1)),s[252]||(s[252]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[253]||(s[253]=a('
julia
signature_tuple(L::ZZLat) -> Tuple{Int,Int,Int}

Return the number of (positive, zero, negative) inertia of L.

source

',3))]),i("details",ni,[i("summary",null,[s[254]||(s[254]=i("a",{id:"is_positive_definite-Tuple{ZZLat}",href:"#is_positive_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_positive_definite")],-1)),s[255]||(s[255]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[256]||(s[256]=a('
julia
is_positive_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is positive definite.

source

',3))]),i("details",hi,[i("summary",null,[s[257]||(s[257]=i("a",{id:"is_negative_definite-Tuple{ZZLat}",href:"#is_negative_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_negative_definite")],-1)),s[258]||(s[258]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[259]||(s[259]=a('
julia
is_negative_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is negative definite.

source

',3))]),i("details",pi,[i("summary",null,[s[260]||(s[260]=i("a",{id:"is_definite-Tuple{ZZLat}",href:"#is_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_definite")],-1)),s[261]||(s[261]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[262]||(s[262]=a('
julia
is_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is definite.

source

',3))]),s[882]||(s[882]=i("h2",{id:"isometries",tabindex:"-1"},[t("Isometries "),i("a",{class:"header-anchor",href:"#isometries","aria-label":'Permalink to "Isometries"'},"​")],-1)),i("details",ki,[i("summary",null,[s[263]||(s[263]=i("a",{id:"automorphism_group_generators-Tuple{ZZLat}",href:"#automorphism_group_generators-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"automorphism_group_generators")],-1)),s[264]||(s[264]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[269]||(s[269]=a('
julia
automorphism_group_generators(E::EllipticCurve) -> Vector{EllCrvIso}
',1)),i("p",null,[s[267]||(s[267]=t("Return generators of the automorphism group of ")),i("mjx-container",ri,[(e(),l("svg",di,s[265]||(s[265]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D438",d:"M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z",style:{"stroke-width":"3"}})])])],-1)]))),s[266]||(s[266]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E")])],-1))]),s[268]||(s[268]=t("."))]),s[270]||(s[270]=a(`

source

julia
automorphism_group_generators(L::AbstractLat; ambient_representation::Bool = true,
+[-2    5]

source

`,3))]),s[878]||(s[878]=i("h2",{id:"invariants",tabindex:"-1"},[t("Invariants "),i("a",{class:"header-anchor",href:"#invariants","aria-label":'Permalink to "Invariants"'},"​")],-1)),i("details",bs,[i("summary",null,[s[160]||(s[160]=i("a",{id:"rank-Tuple{ZZLat}",href:"#rank-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"rank")],-1)),s[161]||(s[161]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[162]||(s[162]=a('
julia
rank(L::AbstractLat) -> Int

Return the rank of the underlying module of the lattice L.

source

',3))]),i("details",Bs,[i("summary",null,[s[163]||(s[163]=i("a",{id:"det-Tuple{ZZLat}",href:"#det-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"det")],-1)),s[164]||(s[164]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[165]||(s[165]=a('
julia
det(L::ZZLat) -> QQFieldElem

Return the determinant of the gram matrix of L.

source

',3))]),i("details",fs,[i("summary",null,[s[166]||(s[166]=i("a",{id:"scale-Tuple{ZZLat}",href:"#scale-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"scale")],-1)),s[167]||(s[167]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[177]||(s[177]=a('
julia
scale(L::ZZLat) -> QQFieldElem

Return the scale of L.

',2)),i("p",null,[s[172]||(s[172]=t("The scale of ")),s[173]||(s[173]=i("code",null,"L",-1)),s[174]||(s[174]=t(" is defined as the positive generator of the ")),i("mjx-container",vs,[(e(),l("svg",Ls,s[168]||(s[168]=[a('',1)]))),s[169]||(s[169]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[175]||(s[175]=t("-ideal generated by ")),i("mjx-container",Hs,[(e(),l("svg",Ms,s[170]||(s[170]=[a('',1)]))),s[171]||(s[171]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{fence:"false",stretchy:"false"},"{"),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"y"),i("mo",{stretchy:"false"},")"),i("mo",null,":"),i("mi",null,"x"),i("mo",null,","),i("mi",null,"y"),i("mo",null,"∈"),i("mi",null,"L"),i("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[176]||(s[176]=t("."))]),s[178]||(s[178]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",js,[i("summary",null,[s[179]||(s[179]=i("a",{id:"norm-Tuple{ZZLat}",href:"#norm-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"norm")],-1)),s[180]||(s[180]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[190]||(s[190]=a('
julia
norm(L::ZZLat) -> QQFieldElem

Return the norm of L.

',2)),i("p",null,[s[185]||(s[185]=t("The norm of ")),s[186]||(s[186]=i("code",null,"L",-1)),s[187]||(s[187]=t(" is defined as the positive generator of the ")),i("mjx-container",Zs,[(e(),l("svg",Ds,s[181]||(s[181]=[a('',1)]))),s[182]||(s[182]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[188]||(s[188]=t("- ideal generated by ")),i("mjx-container",As,[(e(),l("svg",Vs,s[183]||(s[183]=[a('',1)]))),s[184]||(s[184]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{fence:"false",stretchy:"false"},"{"),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"x"),i("mo",{stretchy:"false"},")"),i("mo",null,":"),i("mi",null,"x"),i("mo",null,"∈"),i("mi",null,"L"),i("mo",{fence:"false",stretchy:"false"},"}")])],-1))]),s[189]||(s[189]=t("."))]),s[191]||(s[191]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ss,[i("summary",null,[s[192]||(s[192]=i("a",{id:"iseven-Tuple{ZZLat}",href:"#iseven-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"iseven")],-1)),s[193]||(s[193]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[206]||(s[206]=a('
julia
iseven(L::ZZLat) -> Bool

Return whether L is even.

',2)),i("p",null,[s[200]||(s[200]=t("An integer lattice ")),s[201]||(s[201]=i("code",null,"L",-1)),s[202]||(s[202]=t(" in the rational quadratic space ")),i("mjx-container",Gs,[(e(),l("svg",Rs,s[194]||(s[194]=[a('',1)]))),s[195]||(s[195]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{stretchy:"false"},"("),i("mi",null,"V"),i("mo",null,","),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},")")])],-1))]),s[203]||(s[203]=t(" is called even if ")),i("mjx-container",Os,[(e(),l("svg",zs,s[196]||(s[196]=[a('',1)]))),s[197]||(s[197]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"x"),i("mo",null,","),i("mi",null,"x"),i("mo",{stretchy:"false"},")"),i("mo",null,"∈"),i("mn",null,"2"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[204]||(s[204]=t(" for all ")),i("mjx-container",Js,[(e(),l("svg",Is,s[198]||(s[198]=[a('',1)]))),s[199]||(s[199]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"x"),i("mi",null,"i"),i("mi",null,"n"),i("mi",null,"L")])],-1))]),s[205]||(s[205]=t("."))]),s[207]||(s[207]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ns,[i("summary",null,[s[208]||(s[208]=i("a",{id:"is_integral-Tuple{ZZLat}",href:"#is_integral-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_integral")],-1)),s[209]||(s[209]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[210]||(s[210]=a('
julia
is_integral(L::AbstractLat) -> Bool

Return whether the lattice L is integral.

source

',3))]),i("details",qs,[i("summary",null,[s[211]||(s[211]=i("a",{id:"is_primary_with_prime-Tuple{ZZLat}",href:"#is_primary_with_prime-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_primary_with_prime")],-1)),s[212]||(s[212]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[217]||(s[217]=a('
julia
is_primary_with_prime(L::ZZLat) -> Bool, ZZRingElem
',1)),i("p",null,[s[215]||(s[215]=t("Given a ")),i("mjx-container",Us,[(e(),l("svg",Xs,s[213]||(s[213]=[a('',1)]))),s[214]||(s[214]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[216]||(s[216]=a('-lattice L, return whether L is primary, that is whether L is integral and its discriminant group (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.',15))]),s[218]||(s[218]=i("p",null,[t("Note that for unimodular lattices, this function returns "),i("code",null,"(true, 1)"),t(". If the lattice is not primary, the second return value is "),i("code",null,"-1"),t(" by default.")],-1)),s[219]||(s[219]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ps,[i("summary",null,[s[220]||(s[220]=i("a",{id:"is_primary-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#is_primary-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"is_primary")],-1)),s[221]||(s[221]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[226]||(s[226]=a('
julia
is_primary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
',1)),i("p",null,[s[224]||(s[224]=t("Given an integral ")),i("mjx-container",Ks,[(e(),l("svg",$s,s[222]||(s[222]=[a('',1)]))),s[223]||(s[223]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[225]||(s[225]=a('-lattice L and a prime number p, return whether L is p-primary, that is whether its discriminant group (see discriminant_group) is a p-group.',13))]),s[227]||(s[227]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ws,[i("summary",null,[s[228]||(s[228]=i("a",{id:"is_elementary_with_prime-Tuple{ZZLat}",href:"#is_elementary_with_prime-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_elementary_with_prime")],-1)),s[229]||(s[229]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[234]||(s[234]=a('
julia
is_elementary_with_prime(L::ZZLat) -> Bool, ZZRingElem
',1)),i("p",null,[s[232]||(s[232]=t("Given a ")),i("mjx-container",Ys,[(e(),l("svg",_s,s[230]||(s[230]=[a('',1)]))),s[231]||(s[231]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[233]||(s[233]=a('-lattice L, return whether L is elementary, that is whether L is integral and its discriminant group (see discriminant_group) is an elemenentary p-group for some prime number p. In case it is, p is also returned as second output.',15))]),s[235]||(s[235]=i("p",null,[t("Note that for unimodular lattices, this function returns "),i("code",null,"(true, 1)"),t(". If the lattice is not elementary, the second return value is "),i("code",null,"-1"),t(" by default.")],-1)),s[236]||(s[236]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",si,[i("summary",null,[s[237]||(s[237]=i("a",{id:"is_elementary-Tuple{ZZLat, Union{Integer, ZZRingElem}}",href:"#is_elementary-Tuple{ZZLat, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"is_elementary")],-1)),s[238]||(s[238]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[243]||(s[243]=a('
julia
is_elementary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
',1)),i("p",null,[s[241]||(s[241]=t("Given an integral ")),i("mjx-container",ii,[(e(),l("svg",ti,s[239]||(s[239]=[a('',1)]))),s[240]||(s[240]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[242]||(s[242]=a('-lattice L and a prime number p, return whether L is p-elementary, that is whether its discriminant group (see discriminant_group) is an elementary p-group.',13))]),s[244]||(s[244]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[879]||(s[879]=i("h3",{id:"The-Genus",tabindex:"-1"},[t("The Genus "),i("a",{class:"header-anchor",href:"#The-Genus","aria-label":'Permalink to "The Genus {#The-Genus}"'},"​")],-1)),s[880]||(s[880]=i("p",null,[t("For an integral lattice The genus of an integer lattice collects its local invariants. "),i("a",{href:"/v0.34.8/manual/quad_forms/Zgenera#genus-Tuple{ZZLat}"},[i("code",null,"genus(::ZZLat)")])],-1)),i("details",ai,[i("summary",null,[s[245]||(s[245]=i("a",{id:"mass-Tuple{ZZLat}",href:"#mass-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"mass")],-1)),s[246]||(s[246]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[247]||(s[247]=a('
julia
mass(L::ZZLat) -> QQFieldElem

Return the mass of the genus of L.

source

',3))]),i("details",li,[i("summary",null,[s[248]||(s[248]=i("a",{id:"genus_representatives-Tuple{ZZLat}",href:"#genus_representatives-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"genus_representatives")],-1)),s[249]||(s[249]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[250]||(s[250]=a('
julia
genus_representatives(L::ZZLat) -> Vector{ZZLat}

Return representatives for the isometry classes in the genus of L.

source

',3))]),s[881]||(s[881]=i("h3",{id:"Real-invariants",tabindex:"-1"},[t("Real invariants "),i("a",{class:"header-anchor",href:"#Real-invariants","aria-label":'Permalink to "Real invariants {#Real-invariants}"'},"​")],-1)),i("details",ei,[i("summary",null,[s[251]||(s[251]=i("a",{id:"signature_tuple-Tuple{ZZLat}",href:"#signature_tuple-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"signature_tuple")],-1)),s[252]||(s[252]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[253]||(s[253]=a('
julia
signature_tuple(L::ZZLat) -> Tuple{Int,Int,Int}

Return the number of (positive, zero, negative) inertia of L.

source

',3))]),i("details",ni,[i("summary",null,[s[254]||(s[254]=i("a",{id:"is_positive_definite-Tuple{ZZLat}",href:"#is_positive_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_positive_definite")],-1)),s[255]||(s[255]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[256]||(s[256]=a('
julia
is_positive_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is positive definite.

source

',3))]),i("details",hi,[i("summary",null,[s[257]||(s[257]=i("a",{id:"is_negative_definite-Tuple{ZZLat}",href:"#is_negative_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_negative_definite")],-1)),s[258]||(s[258]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[259]||(s[259]=a('
julia
is_negative_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is negative definite.

source

',3))]),i("details",pi,[i("summary",null,[s[260]||(s[260]=i("a",{id:"is_definite-Tuple{ZZLat}",href:"#is_definite-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"is_definite")],-1)),s[261]||(s[261]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[262]||(s[262]=a('
julia
is_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is definite.

source

',3))]),s[882]||(s[882]=i("h2",{id:"isometries",tabindex:"-1"},[t("Isometries "),i("a",{class:"header-anchor",href:"#isometries","aria-label":'Permalink to "Isometries"'},"​")],-1)),i("details",ki,[i("summary",null,[s[263]||(s[263]=i("a",{id:"automorphism_group_generators-Tuple{ZZLat}",href:"#automorphism_group_generators-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"automorphism_group_generators")],-1)),s[264]||(s[264]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[269]||(s[269]=a('
julia
automorphism_group_generators(E::EllipticCurve) -> Vector{EllCrvIso}
',1)),i("p",null,[s[267]||(s[267]=t("Return generators of the automorphism group of ")),i("mjx-container",ri,[(e(),l("svg",di,s[265]||(s[265]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D438",d:"M492 213Q472 213 472 226Q472 230 477 250T482 285Q482 316 461 323T364 330H312Q311 328 277 192T243 52Q243 48 254 48T334 46Q428 46 458 48T518 61Q567 77 599 117T670 248Q680 270 683 272Q690 274 698 274Q718 274 718 261Q613 7 608 2Q605 0 322 0H133Q31 0 31 11Q31 13 34 25Q38 41 42 43T65 46Q92 46 125 49Q139 52 144 61Q146 66 215 342T285 622Q285 629 281 629Q273 632 228 634H197Q191 640 191 642T193 659Q197 676 203 680H757Q764 676 764 669Q764 664 751 557T737 447Q735 440 717 440H705Q698 445 698 453L701 476Q704 500 704 528Q704 558 697 578T678 609T643 625T596 632T532 634H485Q397 633 392 631Q388 629 386 622Q385 619 355 499T324 377Q347 376 372 376H398Q464 376 489 391T534 472Q538 488 540 490T557 493Q562 493 565 493T570 492T572 491T574 487T577 483L544 351Q511 218 508 216Q505 213 492 213Z",style:{"stroke-width":"3"}})])])],-1)]))),s[266]||(s[266]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"E")])],-1))]),s[268]||(s[268]=t("."))]),s[270]||(s[270]=a(`

source

julia
automorphism_group_generators(L::AbstractLat; ambient_representation::Bool = true,
                                               depth::Int = -1, bacher_depth::Int = 0)
-                                                      -> Vector{MatElem}

Given a definite lattice L, return generators for the automorphism group of L. If ambient_representation == true (the default), the transformations are represented with respect to the ambient space of L. Otherwise, the transformations are represented with respect to the (pseudo-)basis of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

`,5))]),i("details",oi,[i("summary",null,[s[271]||(s[271]=i("a",{id:"automorphism_group_order-Tuple{ZZLat}",href:"#automorphism_group_order-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"automorphism_group_order")],-1)),s[272]||(s[272]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[273]||(s[273]=a('
julia
automorphism_group_order(L::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Int

Given a definite lattice L, return the order of the automorphism group of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

',4))]),i("details",gi,[i("summary",null,[s[274]||(s[274]=i("a",{id:"is_isometric-Tuple{ZZLat, ZZLat}",href:"#is_isometric-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"is_isometric")],-1)),s[275]||(s[275]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[276]||(s[276]=a('
julia
is_isometric(L::AbstractLat, M::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Bool

Return whether the lattices L and M are isometric.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

',4))]),i("details",Qi,[i("summary",null,[s[277]||(s[277]=i("a",{id:"is_locally_isometric-Tuple{ZZLat, ZZLat, Int64}",href:"#is_locally_isometric-Tuple{ZZLat, ZZLat, Int64}"},[i("span",{class:"jlbinding"},"is_locally_isometric")],-1)),s[278]||(s[278]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[283]||(s[283]=a('
julia
is_locally_isometric(L::ZZLat, M::ZZLat, p::Int) -> Bool

Return whether L and M are isometric over the p-adic integers.

',2)),i("p",null,[s[281]||(s[281]=t("i.e. whether ")),i("mjx-container",Ti,[(e(),l("svg",mi,s[279]||(s[279]=[a('',1)]))),s[280]||(s[280]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,"⊗"),i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"p")]),i("mo",null,"≅"),i("mi",null,"M"),i("mo",null,"⊗"),i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"p")])])],-1))]),s[282]||(s[282]=t("."))]),s[284]||(s[284]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[883]||(s[883]=i("h1",{id:"Root-lattices",tabindex:"-1"},[t("Root lattices "),i("a",{class:"header-anchor",href:"#Root-lattices","aria-label":'Permalink to "Root lattices {#Root-lattices}"'},"​")],-1)),i("details",yi,[i("summary",null,[s[285]||(s[285]=i("a",{id:"root_lattice_recognition-Tuple{ZZLat}",href:"#root_lattice_recognition-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"root_lattice_recognition")],-1)),s[286]||(s[286]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[304]||(s[304]=a('
julia
root_lattice_recognition(L::ZZLat)

Return the ADE type of the root sublattice of L.

',2)),i("p",null,[s[293]||(s[293]=t("The root sublattice is the lattice spanned by the vectors of squared length ")),i("mjx-container",Fi,[(e(),l("svg",Ci,s[287]||(s[287]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),s[288]||(s[288]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"1")])],-1))]),s[294]||(s[294]=t(" and ")),i("mjx-container",Ei,[(e(),l("svg",ui,s[289]||(s[289]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"32",d:"M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z",style:{"stroke-width":"3"}})])])],-1)]))),s[290]||(s[290]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"2")])],-1))]),s[295]||(s[295]=t(". The odd lattice of rank 1 and determinant ")),i("mjx-container",xi,[(e(),l("svg",ci,s[291]||(s[291]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),s[292]||(s[292]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"1")])],-1))]),s[296]||(s[296]=t(" is denoted by ")),s[297]||(s[297]=i("code",null,"(:I, 1)",-1)),s[298]||(s[298]=t("."))]),s[305]||(s[305]=i("p",null,"Input:",-1)),i("p",null,[s[301]||(s[301]=i("code",null,"L",-1)),s[302]||(s[302]=t(" – a definite and integral ")),i("mjx-container",wi,[(e(),l("svg",bi,s[299]||(s[299]=[a('',1)]))),s[300]||(s[300]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[303]||(s[303]=t("-lattice."))]),s[306]||(s[306]=a(`

Output:

Two lists, the first one containing the ADE types and the second one the irreducible root sublattices.

For more recognizable gram matrices use root_lattice_recognition_fundamental.

Examples

julia
julia> L = integer_lattice(gram=ZZ[4  0 0  0 3  0 3  0;
+                                                      -> Vector{MatElem}

Given a definite lattice L, return generators for the automorphism group of L. If ambient_representation == true (the default), the transformations are represented with respect to the ambient space of L. Otherwise, the transformations are represented with respect to the (pseudo-)basis of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

`,5))]),i("details",oi,[i("summary",null,[s[271]||(s[271]=i("a",{id:"automorphism_group_order-Tuple{ZZLat}",href:"#automorphism_group_order-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"automorphism_group_order")],-1)),s[272]||(s[272]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[273]||(s[273]=a('
julia
automorphism_group_order(L::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Int

Given a definite lattice L, return the order of the automorphism group of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

',4))]),i("details",gi,[i("summary",null,[s[274]||(s[274]=i("a",{id:"is_isometric-Tuple{ZZLat, ZZLat}",href:"#is_isometric-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"is_isometric")],-1)),s[275]||(s[275]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[276]||(s[276]=a('
julia
is_isometric(L::AbstractLat, M::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Bool

Return whether the lattices L and M are isometric.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

',4))]),i("details",Qi,[i("summary",null,[s[277]||(s[277]=i("a",{id:"is_locally_isometric-Tuple{ZZLat, ZZLat, Int64}",href:"#is_locally_isometric-Tuple{ZZLat, ZZLat, Int64}"},[i("span",{class:"jlbinding"},"is_locally_isometric")],-1)),s[278]||(s[278]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[283]||(s[283]=a('
julia
is_locally_isometric(L::ZZLat, M::ZZLat, p::Int) -> Bool

Return whether L and M are isometric over the p-adic integers.

',2)),i("p",null,[s[281]||(s[281]=t("i.e. whether ")),i("mjx-container",Ti,[(e(),l("svg",mi,s[279]||(s[279]=[a('',1)]))),s[280]||(s[280]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,"⊗"),i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"p")]),i("mo",null,"≅"),i("mi",null,"M"),i("mo",null,"⊗"),i("msub",null,[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")]),i("mi",null,"p")])])],-1))]),s[282]||(s[282]=t("."))]),s[284]||(s[284]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[883]||(s[883]=i("h1",{id:"Root-lattices",tabindex:"-1"},[t("Root lattices "),i("a",{class:"header-anchor",href:"#Root-lattices","aria-label":'Permalink to "Root lattices {#Root-lattices}"'},"​")],-1)),i("details",yi,[i("summary",null,[s[285]||(s[285]=i("a",{id:"root_lattice_recognition-Tuple{ZZLat}",href:"#root_lattice_recognition-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"root_lattice_recognition")],-1)),s[286]||(s[286]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[304]||(s[304]=a('
julia
root_lattice_recognition(L::ZZLat)

Return the ADE type of the root sublattice of L.

',2)),i("p",null,[s[293]||(s[293]=t("The root sublattice is the lattice spanned by the vectors of squared length ")),i("mjx-container",Fi,[(e(),l("svg",Ci,s[287]||(s[287]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),s[288]||(s[288]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"1")])],-1))]),s[294]||(s[294]=t(" and ")),i("mjx-container",Ei,[(e(),l("svg",ui,s[289]||(s[289]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"32",d:"M109 429Q82 429 66 447T50 491Q50 562 103 614T235 666Q326 666 387 610T449 465Q449 422 429 383T381 315T301 241Q265 210 201 149L142 93L218 92Q375 92 385 97Q392 99 409 186V189H449V186Q448 183 436 95T421 3V0H50V19V31Q50 38 56 46T86 81Q115 113 136 137Q145 147 170 174T204 211T233 244T261 278T284 308T305 340T320 369T333 401T340 431T343 464Q343 527 309 573T212 619Q179 619 154 602T119 569T109 550Q109 549 114 549Q132 549 151 535T170 489Q170 464 154 447T109 429Z",style:{"stroke-width":"3"}})])])],-1)]))),s[290]||(s[290]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"2")])],-1))]),s[295]||(s[295]=t(". The odd lattice of rank 1 and determinant ")),i("mjx-container",xi,[(e(),l("svg",ci,s[291]||(s[291]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mn"},[i("path",{"data-c":"31",d:"M213 578L200 573Q186 568 160 563T102 556H83V602H102Q149 604 189 617T245 641T273 663Q275 666 285 666Q294 666 302 660V361L303 61Q310 54 315 52T339 48T401 46H427V0H416Q395 3 257 3Q121 3 100 0H88V46H114Q136 46 152 46T177 47T193 50T201 52T207 57T213 61V578Z",style:{"stroke-width":"3"}})])])],-1)]))),s[292]||(s[292]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mn",null,"1")])],-1))]),s[296]||(s[296]=t(" is denoted by ")),s[297]||(s[297]=i("code",null,"(:I, 1)",-1)),s[298]||(s[298]=t("."))]),s[305]||(s[305]=i("p",null,"Input:",-1)),i("p",null,[s[301]||(s[301]=i("code",null,"L",-1)),s[302]||(s[302]=t(" – a definite and integral ")),i("mjx-container",wi,[(e(),l("svg",bi,s[299]||(s[299]=[a('',1)]))),s[300]||(s[300]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[303]||(s[303]=t("-lattice."))]),s[306]||(s[306]=a(`

Output:

Two lists, the first one containing the ADE types and the second one the irreducible root sublattices.

For more recognizable gram matrices use root_lattice_recognition_fundamental.

Examples

julia
julia> L = integer_lattice(gram=ZZ[4  0 0  0 3  0 3  0;
                             0 16 8 12 2 12 6 10;
                             0  8 8  6 2  8 4  5;
                             0 12 6 10 2  9 5  8;
@@ -233,7 +233,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 [0   -1   -1    2   -1    0    0]
 [0    0    0   -1    2   -1    0]
 [0    0    0    0   -1    2   -1]
-[0    0    0    0    0   -1    2]

source

`,5))]),i("details",Li,[i("summary",null,[s[316]||(s[316]=i("a",{id:"ADE_type-Tuple{MatrixElem}",href:"#ADE_type-Tuple{MatrixElem}"},[i("span",{class:"jlbinding"},"ADE_type")],-1)),s[317]||(s[317]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[318]||(s[318]=a(`
julia
ADE_type(G::MatrixElem) -> Tuple{Symbol,Int64}

Return the type of the irreducible root lattice with gram matrix G.

See also root_lattice_recognition.

Examples

julia
julia> Hecke.ADE_type(gram_matrix(root_lattice(:A,3)))
+[0    0    0    0    0   -1    2]

source

`,5))]),i("details",Li,[i("summary",null,[s[316]||(s[316]=i("a",{id:"ADE_type-Tuple{MatrixElem}",href:"#ADE_type-Tuple{MatrixElem}"},[i("span",{class:"jlbinding"},"ADE_type")],-1)),s[317]||(s[317]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[318]||(s[318]=a(`
julia
ADE_type(G::MatrixElem) -> Tuple{Symbol,Int64}

Return the type of the irreducible root lattice with gram matrix G.

See also root_lattice_recognition.

Examples

julia
julia> Hecke.ADE_type(gram_matrix(root_lattice(:A,3)))
 (:A, 3)

source

`,6))]),i("details",Hi,[i("summary",null,[s[319]||(s[319]=i("a",{id:"coxeter_number-Tuple{Symbol, Any}",href:"#coxeter_number-Tuple{Symbol, Any}"},[i("span",{class:"jlbinding"},"coxeter_number")],-1)),s[320]||(s[320]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[339]||(s[339]=a('
julia
coxeter_number(ADE::Symbol, n) -> Int

Return the Coxeter number of the corresponding ADE root lattice.

',2)),i("p",null,[s[331]||(s[331]=t("If ")),i("mjx-container",Mi,[(e(),l("svg",ji,s[321]||(s[321]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[322]||(s[322]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[332]||(s[332]=t(" is a root lattice and ")),i("mjx-container",Zi,[(e(),l("svg",Di,s[323]||(s[323]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D445",d:"M230 637Q203 637 198 638T193 649Q193 676 204 682Q206 683 378 683Q550 682 564 680Q620 672 658 652T712 606T733 563T739 529Q739 484 710 445T643 385T576 351T538 338L545 333Q612 295 612 223Q612 212 607 162T602 80V71Q602 53 603 43T614 25T640 16Q668 16 686 38T712 85Q717 99 720 102T735 105Q755 105 755 93Q755 75 731 36Q693 -21 641 -21H632Q571 -21 531 4T487 82Q487 109 502 166T517 239Q517 290 474 313Q459 320 449 321T378 323H309L277 193Q244 61 244 59Q244 55 245 54T252 50T269 48T302 46H333Q339 38 339 37T336 19Q332 6 326 0H311Q275 2 180 2Q146 2 117 2T71 2T50 1Q33 1 33 10Q33 12 36 24Q41 43 46 45Q50 46 61 46H67Q94 46 127 49Q141 52 146 61Q149 65 218 339T287 628Q287 635 230 637ZM630 554Q630 586 609 608T523 636Q521 636 500 636T462 637H440Q393 637 386 627Q385 624 352 494T319 361Q319 360 388 360Q466 361 492 367Q556 377 592 426Q608 449 619 486T630 554Z",style:{"stroke-width":"3"}})])])],-1)]))),s[324]||(s[324]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"R")])],-1))]),s[333]||(s[333]=t(" its set of roots, then the Coxeter number ")),i("mjx-container",Ai,[(e(),l("svg",Vi,s[325]||(s[325]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"210E",d:"M137 683Q138 683 209 688T282 694Q294 694 294 685Q294 674 258 534Q220 386 220 383Q220 381 227 388Q288 442 357 442Q411 442 444 415T478 336Q478 285 440 178T402 50Q403 36 407 31T422 26Q450 26 474 56T513 138Q516 149 519 151T535 153Q555 153 555 145Q555 144 551 130Q535 71 500 33Q466 -10 419 -10H414Q367 -10 346 17T325 74Q325 90 361 192T398 345Q398 404 354 404H349Q266 404 205 306L198 293L164 158Q132 28 127 16Q114 -11 83 -11Q69 -11 59 -2T48 16Q48 30 121 320L195 616Q195 629 188 632T149 637H128Q122 643 122 645T124 664Q129 683 137 683Z",style:{"stroke-width":"3"}})])])],-1)]))),s[326]||(s[326]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"h")])],-1))]),s[334]||(s[334]=t(" is ")),i("mjx-container",Si,[(e(),l("svg",Gi,s[327]||(s[327]=[a('',1)]))),s[328]||(s[328]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"R"),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mo",null,"/")]),i("mi",null,"n")])],-1))]),s[335]||(s[335]=t(" where ")),s[336]||(s[336]=i("code",null,"n",-1)),s[337]||(s[337]=t(" is the rank of ")),i("mjx-container",Ri,[(e(),l("svg",Oi,s[329]||(s[329]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[330]||(s[330]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[338]||(s[338]=t("."))]),s[340]||(s[340]=a(`

Examples

julia
julia> coxeter_number(:D, 4)
 6

source

`,3))]),i("details",zi,[i("summary",null,[s[341]||(s[341]=i("a",{id:"highest_root-Tuple{Symbol, Any}",href:"#highest_root-Tuple{Symbol, Any}"},[i("span",{class:"jlbinding"},"highest_root")],-1)),s[342]||(s[342]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[343]||(s[343]=a(`
julia
highest_root(ADE::Symbol, n) -> ZZMatrix

Return coordinates of the highest root of root_lattice(ADE, n).

Examples

julia
julia> highest_root(:E, 6)
 [1   2   3   2   1   2]

source

`,5))]),s[884]||(s[884]=i("h2",{id:"Module-operations",tabindex:"-1"},[t("Module operations "),i("a",{class:"header-anchor",href:"#Module-operations","aria-label":'Permalink to "Module operations {#Module-operations}"'},"​")],-1)),s[885]||(s[885]=i("p",null,"Most module operations assume that the lattices live in the same ambient space. For instance only lattices in the same ambient space compare.",-1)),i("details",Ji,[i("summary",null,[s[344]||(s[344]=i("a",{id:"==-Tuple{ZZLat, ZZLat}",href:"#==-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"==")],-1)),s[345]||(s[345]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[346]||(s[346]=i("p",null,[t("Return "),i("code",null,"true"),t(" if both lattices have the same ambient quadratic space and the same underlying module.")],-1)),s[347]||(s[347]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ii,[i("summary",null,[s[348]||(s[348]=i("a",{id:"is_sublattice-Tuple{ZZLat, ZZLat}",href:"#is_sublattice-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"is_sublattice")],-1)),s[349]||(s[349]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[350]||(s[350]=a('
julia
is_sublattice(L::AbstractLat, M::AbstractLat) -> Bool

Return whether M is a sublattice of the lattice L.

source

',3))]),i("details",Ni,[i("summary",null,[s[351]||(s[351]=i("a",{id:"is_sublattice_with_relations-Tuple{ZZLat, ZZLat}",href:"#is_sublattice_with_relations-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"is_sublattice_with_relations")],-1)),s[352]||(s[352]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[378]||(s[378]=a('
julia
is_sublattice_with_relations(M::ZZLat, N::ZZLat) -> Bool, QQMatrix
',1)),i("p",null,[s[369]||(s[369]=t("Returns whether ")),i("mjx-container",qi,[(e(),l("svg",Ui,s[353]||(s[353]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[354]||(s[354]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"N")])],-1))]),s[370]||(s[370]=t(" is a sublattice of ")),i("mjx-container",Xi,[(e(),l("svg",Pi,s[355]||(s[355]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[356]||(s[356]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"M")])],-1))]),s[371]||(s[371]=t(". In this case, the second return value is a matrix ")),i("mjx-container",Ki,[(e(),l("svg",$i,s[357]||(s[357]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D435",d:"M231 637Q204 637 199 638T194 649Q194 676 205 682Q206 683 335 683Q594 683 608 681Q671 671 713 636T756 544Q756 480 698 429T565 360L555 357Q619 348 660 311T702 219Q702 146 630 78T453 1Q446 0 242 0Q42 0 39 2Q35 5 35 10Q35 17 37 24Q42 43 47 45Q51 46 62 46H68Q95 46 128 49Q142 52 147 61Q150 65 219 339T288 628Q288 635 231 637ZM649 544Q649 574 634 600T585 634Q578 636 493 637Q473 637 451 637T416 636H403Q388 635 384 626Q382 622 352 506Q352 503 351 500L320 374H401Q482 374 494 376Q554 386 601 434T649 544ZM595 229Q595 273 572 302T512 336Q506 337 429 337Q311 337 310 336Q310 334 293 263T258 122L240 52Q240 48 252 48T333 46Q422 46 429 47Q491 54 543 105T595 229Z",style:{"stroke-width":"3"}})])])],-1)]))),s[358]||(s[358]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B")])],-1))]),s[372]||(s[372]=t(" such that ")),i("mjx-container",Wi,[(e(),l("svg",Yi,s[359]||(s[359]=[a('',1)]))),s[360]||(s[360]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"B"),i("msub",null,[i("mi",null,"B"),i("mi",null,"M")]),i("mo",null,"="),i("msub",null,[i("mi",null,"B"),i("mi",null,"N")])])],-1))]),s[373]||(s[373]=t(", where ")),i("mjx-container",_i,[(e(),l("svg",st,s[361]||(s[361]=[a('',1)]))),s[362]||(s[362]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"B"),i("mi",null,"M")])])],-1))]),s[374]||(s[374]=t(" and ")),i("mjx-container",it,[(e(),l("svg",tt,s[363]||(s[363]=[a('',1)]))),s[364]||(s[364]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"B"),i("mi",null,"N")])])],-1))]),s[375]||(s[375]=t(" are the basis matrices of ")),i("mjx-container",at,[(e(),l("svg",lt,s[365]||(s[365]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[366]||(s[366]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"M")])],-1))]),s[376]||(s[376]=t(" and ")),i("mjx-container",et,[(e(),l("svg",nt,s[367]||(s[367]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[368]||(s[368]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"N")])],-1))]),s[377]||(s[377]=t(" respectively."))]),s[379]||(s[379]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",ht,[i("summary",null,[s[380]||(s[380]=i("a",{id:"+-Tuple{ZZLat, ZZLat}",href:"#+-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"+")],-1)),s[381]||(s[381]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[382]||(s[382]=a('
julia
+(L::AbstractLat, M::AbstractLat) -> AbstractLat

Return the sum of the lattices L and M.

The lattices L and M must have the same ambient space.

source

',4))]),i("details",pt,[i("summary",null,[s[383]||(s[383]=i("a",{id:"*-Tuple{Union{Integer, QQFieldElem, ZZRingElem, Rational}, ZZLat}",href:"#*-Tuple{Union{Integer, QQFieldElem, ZZRingElem, Rational}, ZZLat}"},[i("span",{class:"jlbinding"},"*")],-1)),s[384]||(s[384]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[392]||(s[392]=a('
julia
*(a::RationalUnion, L::ZZLat) -> ZZLat
',1)),i("p",null,[s[389]||(s[389]=t("Return the lattice ")),i("mjx-container",kt,[(e(),l("svg",rt,s[385]||(s[385]=[a('',1)]))),s[386]||(s[386]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"a"),i("mi",null,"M")])],-1))]),s[390]||(s[390]=t(" inside the ambient space of ")),i("mjx-container",dt,[(e(),l("svg",ot,s[387]||(s[387]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),s[388]||(s[388]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"M")])],-1))]),s[391]||(s[391]=t("."))]),s[393]||(s[393]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",gt,[i("summary",null,[s[394]||(s[394]=i("a",{id:"intersect-Tuple{ZZLat, ZZLat}",href:"#intersect-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"intersect")],-1)),s[395]||(s[395]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[396]||(s[396]=a('
julia
intersect(L::AbstractLat, M::AbstractLat) -> AbstractLat

Return the intersection of the lattices L and M.

The lattices L and M must have the same ambient space.

source

',4))]),i("details",Qt,[i("summary",null,[s[397]||(s[397]=i("a",{id:"in-Tuple{Vector, ZZLat}",href:"#in-Tuple{Vector, ZZLat}"},[i("span",{class:"jlbinding"},"in")],-1)),s[398]||(s[398]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[399]||(s[399]=a('
julia
Base.in(v::Vector, L::ZZLat) -> Bool

Return whether the vector v lies in the lattice L.

source

',3))]),i("details",Tt,[i("summary",null,[s[400]||(s[400]=i("a",{id:"in-Tuple{QQMatrix, ZZLat}",href:"#in-Tuple{QQMatrix, ZZLat}"},[i("span",{class:"jlbinding"},"in")],-1)),s[401]||(s[401]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[402]||(s[402]=a('
julia
Base.in(v::QQMatrix, L::ZZLat) -> Bool

Return whether the row span of v lies in the lattice L.

source

',3))]),i("details",mt,[i("summary",null,[s[403]||(s[403]=i("a",{id:"primitive_closure-Tuple{ZZLat, ZZLat}",href:"#primitive_closure-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"primitive_closure")],-1)),s[404]||(s[404]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[423]||(s[423]=a('
julia
primitive_closure(M::ZZLat, N::ZZLat) -> ZZLat
',1)),i("p",null,[s[411]||(s[411]=t("Given two ")),i("mjx-container",yt,[(e(),l("svg",Ft,s[405]||(s[405]=[a('',1)]))),s[406]||(s[406]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[412]||(s[412]=t("-lattices ")),s[413]||(s[413]=i("code",null,"M",-1)),s[414]||(s[414]=t(" and ")),s[415]||(s[415]=i("code",null,"N",-1)),s[416]||(s[416]=t(" with ")),i("mjx-container",Ct,[(e(),l("svg",Et,s[407]||(s[407]=[a('',1)]))),s[408]||(s[408]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"N"),i("mo",null,"⊆"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Q")]),i("mi",null,"M")])],-1))]),s[417]||(s[417]=t(", return the primitive closure ")),i("mjx-container",ut,[(e(),l("svg",xt,s[409]||(s[409]=[a('',1)]))),s[410]||(s[410]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"M"),i("mo",null,"∩"),i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Q")]),i("mi",null,"N")])],-1))]),s[418]||(s[418]=t(" of ")),s[419]||(s[419]=i("code",null,"N",-1)),s[420]||(s[420]=t(" in ")),s[421]||(s[421]=i("code",null,"M",-1)),s[422]||(s[422]=t("."))]),s[424]||(s[424]=a(`

Examples

julia
julia> M = root_lattice(:D, 6);
@@ -282,7 +282,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 true

source

`,3))]),i("details",vt,[i("summary",null,[s[440]||(s[440]=i("a",{id:"is_primitive-Tuple{ZZLat, Union{QQMatrix, Vector}}",href:"#is_primitive-Tuple{ZZLat, Union{QQMatrix, Vector}}"},[i("span",{class:"jlbinding"},"is_primitive")],-1)),s[441]||(s[441]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[462]||(s[462]=a('
julia
is_primitive(L::ZZLat, v::Union{Vector, QQMatrix}) -> Bool

Return whether the vector v is primitive in L.

',2)),i("p",null,[s[448]||(s[448]=t("A vector ")),s[449]||(s[449]=i("code",null,"v",-1)),s[450]||(s[450]=t(" in a ")),i("mjx-container",Lt,[(e(),l("svg",Ht,s[442]||(s[442]=[a('',1)]))),s[443]||(s[443]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[451]||(s[451]=t("-lattice ")),s[452]||(s[452]=i("code",null,"L",-1)),s[453]||(s[453]=t(" is called primitive if for all ")),s[454]||(s[454]=i("code",null,"w",-1)),s[455]||(s[455]=t(" in ")),s[456]||(s[456]=i("code",null,"L",-1)),s[457]||(s[457]=t(" such that ")),i("mjx-container",Mt,[(e(),l("svg",jt,s[444]||(s[444]=[a('',1)]))),s[445]||(s[445]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"v"),i("mo",null,"="),i("mi",null,"d"),i("mi",null,"w")])],-1))]),s[458]||(s[458]=t(" for some integer ")),s[459]||(s[459]=i("code",null,"d",-1)),s[460]||(s[460]=t(", then ")),i("mjx-container",Zt,[(e(),l("svg",Dt,s[446]||(s[446]=[a('',1)]))),s[447]||(s[447]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"d"),i("mo",null,"="),i("mo",null,"±"),i("mn",null,"1")])],-1))]),s[461]||(s[461]=t("."))]),s[463]||(s[463]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",At,[i("summary",null,[s[464]||(s[464]=i("a",{id:"divisibility-Tuple{ZZLat, Union{QQMatrix, Vector}}",href:"#divisibility-Tuple{ZZLat, Union{QQMatrix, Vector}}"},[i("span",{class:"jlbinding"},"divisibility")],-1)),s[465]||(s[465]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[484]||(s[484]=a('
julia
divisibility(L::ZZLat, v::Union{Vector, QQMatrix}) -> QQFieldElem

Return the divisibility of v with respect to L.

',2)),i("p",null,[s[472]||(s[472]=t("For a vector ")),s[473]||(s[473]=i("code",null,"v",-1)),s[474]||(s[474]=t(" in the ambient quadratic space ")),i("mjx-container",Vt,[(e(),l("svg",St,s[466]||(s[466]=[a('',1)]))),s[467]||(s[467]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mo",{stretchy:"false"},"("),i("mi",null,"V"),i("mo",null,","),i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},")")])],-1))]),s[475]||(s[475]=t(" of ")),s[476]||(s[476]=i("code",null,"L",-1)),s[477]||(s[477]=t(", we call the divisibility of ")),s[478]||(s[478]=i("code",null,"v",-1)),s[479]||(s[479]=t(" with the respect to ")),s[480]||(s[480]=i("code",null,"L",-1)),s[481]||(s[481]=t(" the non-negative generator of the fractional ")),i("mjx-container",Gt,[(e(),l("svg",Rt,s[468]||(s[468]=[a('',1)]))),s[469]||(s[469]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[482]||(s[482]=t("-ideal ")),i("mjx-container",Ot,[(e(),l("svg",zt,s[470]||(s[470]=[a('',1)]))),s[471]||(s[471]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",{mathvariant:"normal"},"Φ"),i("mo",{stretchy:"false"},"("),i("mi",null,"v"),i("mo",null,","),i("mi",null,"L"),i("mo",{stretchy:"false"},")")])],-1))]),s[483]||(s[483]=t("."))]),s[485]||(s[485]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[886]||(s[886]=i("h2",{id:"embeddings",tabindex:"-1"},[t("Embeddings "),i("a",{class:"header-anchor",href:"#embeddings","aria-label":'Permalink to "Embeddings"'},"​")],-1)),s[887]||(s[887]=i("h3",{id:"Categorical-constructions",tabindex:"-1"},[t("Categorical constructions "),i("a",{class:"header-anchor",href:"#Categorical-constructions","aria-label":'Permalink to "Categorical constructions {#Categorical-constructions}"'},"​")],-1)),i("details",Jt,[i("summary",null,[s[486]||(s[486]=i("a",{id:"direct_sum-Tuple{Vector{ZZLat}}",href:"#direct_sum-Tuple{Vector{ZZLat}}"},[i("span",{class:"jlbinding"},"direct_sum")],-1)),s[487]||(s[487]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[521]||(s[521]=a(`
julia
direct_sum(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
 direct_sum(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
`,1)),i("p",null,[s[496]||(s[496]=t("Given a collection of ")),i("mjx-container",It,[(e(),l("svg",Nt,s[488]||(s[488]=[a('',1)]))),s[489]||(s[489]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[497]||(s[497]=t("-lattices ")),i("mjx-container",qt,[(e(),l("svg",Ut,s[490]||(s[490]=[a('',1)]))),s[491]||(s[491]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,","),i("mo",null,"…"),i("mo",null,","),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[498]||(s[498]=t(", return their direct sum ")),i("mjx-container",Xt,[(e(),l("svg",Pt,s[492]||(s[492]=[a('',1)]))),s[493]||(s[493]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,":="),i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,"⊕"),i("mo",null,"…"),i("mo",null,"⊕"),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[499]||(s[499]=t(", together with the injections ")),i("mjx-container",Kt,[(e(),l("svg",$t,s[494]||(s[494]=[a('',1)]))),s[495]||(s[495]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[500]||(s[500]=t(". (seen as maps between the corresponding ambient spaces)."))]),i("p",null,[s[507]||(s[507]=t("For objects of type ")),s[508]||(s[508]=i("code",null,"ZZLat",-1)),s[509]||(s[509]=t(", finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain ")),s[510]||(s[510]=i("code",null,"L",-1)),s[511]||(s[511]=t(" as a direct product with the projections ")),i("mjx-container",Wt,[(e(),l("svg",Yt,s[501]||(s[501]=[a('',1)]))),s[502]||(s[502]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[512]||(s[512]=t(", one should call ")),s[513]||(s[513]=i("code",null,"direct_product(x)",-1)),s[514]||(s[514]=t(". If one wants to obtain ")),s[515]||(s[515]=i("code",null,"L",-1)),s[516]||(s[516]=t(" as a biproduct with the injections ")),i("mjx-container",_t,[(e(),l("svg",sa,s[503]||(s[503]=[a('',1)]))),s[504]||(s[504]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[517]||(s[517]=t(" and the projections ")),i("mjx-container",ia,[(e(),l("svg",ta,s[505]||(s[505]=[a('',1)]))),s[506]||(s[506]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[518]||(s[518]=t(", one should call ")),s[519]||(s[519]=i("code",null,"biproduct(x)",-1)),s[520]||(s[520]=t("."))]),s[522]||(s[522]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",aa,[i("summary",null,[s[523]||(s[523]=i("a",{id:"direct_product-Tuple{Vector{ZZLat}}",href:"#direct_product-Tuple{Vector{ZZLat}}"},[i("span",{class:"jlbinding"},"direct_product")],-1)),s[524]||(s[524]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[558]||(s[558]=a(`
julia
direct_product(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
 direct_product(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
`,1)),i("p",null,[s[533]||(s[533]=t("Given a collection of ")),i("mjx-container",la,[(e(),l("svg",ea,s[525]||(s[525]=[a('',1)]))),s[526]||(s[526]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[534]||(s[534]=t("-lattices ")),i("mjx-container",na,[(e(),l("svg",ha,s[527]||(s[527]=[a('',1)]))),s[528]||(s[528]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,","),i("mo",null,"…"),i("mo",null,","),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[535]||(s[535]=t(", return their direct product ")),i("mjx-container",pa,[(e(),l("svg",ka,s[529]||(s[529]=[a('',1)]))),s[530]||(s[530]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,":="),i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,"×"),i("mo",null,"…"),i("mo",null,"×"),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[536]||(s[536]=t(", together with the projections ")),i("mjx-container",ra,[(e(),l("svg",da,s[531]||(s[531]=[a('',1)]))),s[532]||(s[532]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[537]||(s[537]=t(". (seen as maps between the corresponding ambient spaces)."))]),i("p",null,[s[544]||(s[544]=t("For objects of type ")),s[545]||(s[545]=i("code",null,"ZZLat",-1)),s[546]||(s[546]=t(", finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain ")),s[547]||(s[547]=i("code",null,"L",-1)),s[548]||(s[548]=t(" as a direct sum with the injections ")),i("mjx-container",oa,[(e(),l("svg",ga,s[538]||(s[538]=[a('',1)]))),s[539]||(s[539]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[549]||(s[549]=t(", one should call ")),s[550]||(s[550]=i("code",null,"direct_sum(x)",-1)),s[551]||(s[551]=t(". If one wants to obtain ")),s[552]||(s[552]=i("code",null,"L",-1)),s[553]||(s[553]=t(" as a biproduct with the injections ")),i("mjx-container",Qa,[(e(),l("svg",Ta,s[540]||(s[540]=[a('',1)]))),s[541]||(s[541]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[554]||(s[554]=t(" and the projections ")),i("mjx-container",ma,[(e(),l("svg",ya,s[542]||(s[542]=[a('',1)]))),s[543]||(s[543]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[555]||(s[555]=t(", one should call ")),s[556]||(s[556]=i("code",null,"biproduct(x)",-1)),s[557]||(s[557]=t("."))]),s[559]||(s[559]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Fa,[i("summary",null,[s[560]||(s[560]=i("a",{id:"biproduct-Tuple{Vector{ZZLat}}",href:"#biproduct-Tuple{Vector{ZZLat}}"},[i("span",{class:"jlbinding"},"biproduct")],-1)),s[561]||(s[561]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[595]||(s[595]=a(`
julia
biproduct(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
-biproduct(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
`,1)),i("p",null,[s[572]||(s[572]=t("Given a collection of ")),i("mjx-container",Ca,[(e(),l("svg",Ea,s[562]||(s[562]=[a('',1)]))),s[563]||(s[563]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[573]||(s[573]=t("-lattices ")),i("mjx-container",ua,[(e(),l("svg",xa,s[564]||(s[564]=[a('',1)]))),s[565]||(s[565]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,","),i("mo",null,"…"),i("mo",null,","),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[574]||(s[574]=t(", return their biproduct ")),i("mjx-container",ca,[(e(),l("svg",wa,s[566]||(s[566]=[a('',1)]))),s[567]||(s[567]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,":="),i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,"⊕"),i("mo",null,"…"),i("mo",null,"⊕"),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[575]||(s[575]=t(", together with the injections ")),i("mjx-container",ba,[(e(),l("svg",Ba,s[568]||(s[568]=[a('',1)]))),s[569]||(s[569]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[576]||(s[576]=t(" and the projections ")),i("mjx-container",fa,[(e(),l("svg",va,s[570]||(s[570]=[a('',1)]))),s[571]||(s[571]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[577]||(s[577]=t(". (seen as maps between the corresponding ambient spaces)."))]),i("p",null,[s[582]||(s[582]=t("For objects of type ")),s[583]||(s[583]=i("code",null,"ZZLat",-1)),s[584]||(s[584]=t(", finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain ")),s[585]||(s[585]=i("code",null,"L",-1)),s[586]||(s[586]=t(" as a direct sum with the injections ")),i("mjx-container",La,[(e(),l("svg",Ha,s[578]||(s[578]=[a('',1)]))),s[579]||(s[579]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[587]||(s[587]=t(", one should call ")),s[588]||(s[588]=i("code",null,"direct_sum(x)",-1)),s[589]||(s[589]=t(". If one wants to obtain ")),s[590]||(s[590]=i("code",null,"L",-1)),s[591]||(s[591]=t(" as a direct product with the projections ")),i("mjx-container",Ma,[(e(),l("svg",ja,s[580]||(s[580]=[a('',1)]))),s[581]||(s[581]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[592]||(s[592]=t(", one should call ")),s[593]||(s[593]=i("code",null,"direct_product(x)",-1)),s[594]||(s[594]=t("."))]),s[596]||(s[596]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[888]||(s[888]=i("h3",{id:"Orthogonal-sublattices",tabindex:"-1"},[t("Orthogonal sublattices "),i("a",{class:"header-anchor",href:"#Orthogonal-sublattices","aria-label":'Permalink to "Orthogonal sublattices {#Orthogonal-sublattices}"'},"​")],-1)),i("details",Za,[i("summary",null,[s[597]||(s[597]=i("a",{id:"orthogonal_submodule-Tuple{ZZLat, ZZLat}",href:"#orthogonal_submodule-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"orthogonal_submodule")],-1)),s[598]||(s[598]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[606]||(s[606]=a('
julia
orthogonal_submodule(L::ZZLat, S::ZZLat) -> ZZLat
',1)),i("p",null,[s[603]||(s[603]=t("Return the largest submodule of ")),i("mjx-container",Da,[(e(),l("svg",Aa,s[599]||(s[599]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[600]||(s[600]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[604]||(s[604]=t(" orthogonal to ")),i("mjx-container",Va,[(e(),l("svg",Sa,s[601]||(s[601]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),s[602]||(s[602]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"S")])],-1))]),s[605]||(s[605]=t("."))]),s[607]||(s[607]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ga,[i("summary",null,[s[608]||(s[608]=i("a",{id:"irreducible_components-Tuple{ZZLat}",href:"#irreducible_components-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"irreducible_components")],-1)),s[609]||(s[609]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[619]||(s[619]=a('
julia
irreducible_components(L::ZZLat) -> Vector{ZZLat}
',1)),i("p",null,[s[614]||(s[614]=t("Return the irreducible components ")),i("mjx-container",Ra,[(e(),l("svg",Oa,s[610]||(s[610]=[a('',1)]))),s[611]||(s[611]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[615]||(s[615]=t(" of the positive definite lattice ")),i("mjx-container",za,[(e(),l("svg",Ja,s[612]||(s[612]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[613]||(s[613]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[616]||(s[616]=t("."))]),s[620]||(s[620]=i("p",null,[t("This yields a maximal orthogonal splitting of "),i("code",null,"L"),t(" as")],-1)),i("mjx-container",Ia,[(e(),l("svg",Na,s[617]||(s[617]=[a('',1)]))),s[618]||(s[618]=i("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[i("mi",null,"L"),i("mo",null,"="),i("munder",null,[i("mo",{"data-mjx-texclass":"OP"},"⨁"),i("mi",null,"i")]),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",null,".")])],-1))]),s[621]||(s[621]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[889]||(s[889]=i("h3",{id:"Dual-lattice",tabindex:"-1"},[t("Dual lattice "),i("a",{class:"header-anchor",href:"#Dual-lattice","aria-label":'Permalink to "Dual lattice {#Dual-lattice}"'},"​")],-1)),i("details",qa,[i("summary",null,[s[622]||(s[622]=i("a",{id:"dual-Tuple{ZZLat}",href:"#dual-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"dual")],-1)),s[623]||(s[623]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[624]||(s[624]=a('
julia
dual(L::AbstractLat) -> AbstractLat

Return the dual lattice of the lattice L.

source

',3))]),s[890]||(s[890]=a('

Discriminant group

See discriminant_group(L::ZZLat).

Overlattices

',3)),i("details",Ua,[i("summary",null,[s[625]||(s[625]=i("a",{id:"glue_map-Tuple{ZZLat, ZZLat, ZZLat}",href:"#glue_map-Tuple{ZZLat, ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"glue_map")],-1)),s[626]||(s[626]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[644]||(s[644]=a(`
julia
glue_map(L::ZZLat, S::ZZLat, R::ZZLat; check=true)
+biproduct(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
`,1)),i("p",null,[s[572]||(s[572]=t("Given a collection of ")),i("mjx-container",Ca,[(e(),l("svg",Ea,s[562]||(s[562]=[a('',1)]))),s[563]||(s[563]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[573]||(s[573]=t("-lattices ")),i("mjx-container",ua,[(e(),l("svg",xa,s[564]||(s[564]=[a('',1)]))),s[565]||(s[565]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,","),i("mo",null,"…"),i("mo",null,","),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[574]||(s[574]=t(", return their biproduct ")),i("mjx-container",ca,[(e(),l("svg",wa,s[566]||(s[566]=[a('',1)]))),s[567]||(s[567]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",null,":="),i("msub",null,[i("mi",null,"L"),i("mn",null,"1")]),i("mo",null,"⊕"),i("mo",null,"…"),i("mo",null,"⊕"),i("msub",null,[i("mi",null,"L"),i("mi",null,"n")])])],-1))]),s[575]||(s[575]=t(", together with the injections ")),i("mjx-container",ba,[(e(),l("svg",Ba,s[568]||(s[568]=[a('',1)]))),s[569]||(s[569]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[576]||(s[576]=t(" and the projections ")),i("mjx-container",fa,[(e(),l("svg",va,s[570]||(s[570]=[a('',1)]))),s[571]||(s[571]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[577]||(s[577]=t(". (seen as maps between the corresponding ambient spaces)."))]),i("p",null,[s[582]||(s[582]=t("For objects of type ")),s[583]||(s[583]=i("code",null,"ZZLat",-1)),s[584]||(s[584]=t(", finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain ")),s[585]||(s[585]=i("code",null,"L",-1)),s[586]||(s[586]=t(" as a direct sum with the injections ")),i("mjx-container",La,[(e(),l("svg",Ha,s[578]||(s[578]=[a('',1)]))),s[579]||(s[579]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",{accent:"false",stretchy:"false"},"→"),i("mi",null,"L")])],-1))]),s[587]||(s[587]=t(", one should call ")),s[588]||(s[588]=i("code",null,"direct_sum(x)",-1)),s[589]||(s[589]=t(". If one wants to obtain ")),s[590]||(s[590]=i("code",null,"L",-1)),s[591]||(s[591]=t(" as a direct product with the projections ")),i("mjx-container",Ma,[(e(),l("svg",ja,s[580]||(s[580]=[a('',1)]))),s[581]||(s[581]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L"),i("mo",{accent:"false",stretchy:"false"},"→"),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[592]||(s[592]=t(", one should call ")),s[593]||(s[593]=i("code",null,"direct_product(x)",-1)),s[594]||(s[594]=t("."))]),s[596]||(s[596]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[888]||(s[888]=i("h3",{id:"Orthogonal-sublattices",tabindex:"-1"},[t("Orthogonal sublattices "),i("a",{class:"header-anchor",href:"#Orthogonal-sublattices","aria-label":'Permalink to "Orthogonal sublattices {#Orthogonal-sublattices}"'},"​")],-1)),i("details",Za,[i("summary",null,[s[597]||(s[597]=i("a",{id:"orthogonal_submodule-Tuple{ZZLat, ZZLat}",href:"#orthogonal_submodule-Tuple{ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"orthogonal_submodule")],-1)),s[598]||(s[598]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[606]||(s[606]=a('
julia
orthogonal_submodule(L::ZZLat, S::ZZLat) -> ZZLat
',1)),i("p",null,[s[603]||(s[603]=t("Return the largest submodule of ")),i("mjx-container",Da,[(e(),l("svg",Aa,s[599]||(s[599]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[600]||(s[600]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[604]||(s[604]=t(" orthogonal to ")),i("mjx-container",Va,[(e(),l("svg",Sa,s[601]||(s[601]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D446",d:"M308 24Q367 24 416 76T466 197Q466 260 414 284Q308 311 278 321T236 341Q176 383 176 462Q176 523 208 573T273 648Q302 673 343 688T407 704H418H425Q521 704 564 640Q565 640 577 653T603 682T623 704Q624 704 627 704T632 705Q645 705 645 698T617 577T585 459T569 456Q549 456 549 465Q549 471 550 475Q550 478 551 494T553 520Q553 554 544 579T526 616T501 641Q465 662 419 662Q362 662 313 616T263 510Q263 480 278 458T319 427Q323 425 389 408T456 390Q490 379 522 342T554 242Q554 216 546 186Q541 164 528 137T492 78T426 18T332 -20Q320 -22 298 -22Q199 -22 144 33L134 44L106 13Q83 -14 78 -18T65 -22Q52 -22 52 -14Q52 -11 110 221Q112 227 130 227H143Q149 221 149 216Q149 214 148 207T144 186T142 153Q144 114 160 87T203 47T255 29T308 24Z",style:{"stroke-width":"3"}})])])],-1)]))),s[602]||(s[602]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"S")])],-1))]),s[605]||(s[605]=t("."))]),s[607]||(s[607]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",Ga,[i("summary",null,[s[608]||(s[608]=i("a",{id:"irreducible_components-Tuple{ZZLat}",href:"#irreducible_components-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"irreducible_components")],-1)),s[609]||(s[609]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[619]||(s[619]=a('
julia
irreducible_components(L::ZZLat) -> Vector{ZZLat}
',1)),i("p",null,[s[614]||(s[614]=t("Return the irreducible components ")),i("mjx-container",Ra,[(e(),l("svg",Oa,s[610]||(s[610]=[a('',1)]))),s[611]||(s[611]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"i")])])],-1))]),s[615]||(s[615]=t(" of the positive definite lattice ")),i("mjx-container",za,[(e(),l("svg",Ja,s[612]||(s[612]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[613]||(s[613]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[616]||(s[616]=t("."))]),s[620]||(s[620]=i("p",null,[t("This yields a maximal orthogonal splitting of "),i("code",null,"L"),t(" as")],-1)),i("mjx-container",Ia,[(e(),l("svg",Na,s[617]||(s[617]=[a('',1)]))),s[618]||(s[618]=i("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[i("mi",null,"L"),i("mo",null,"="),i("munder",null,[i("mo",{"data-mjx-texclass":"OP"},"⨁"),i("mi",null,"i")]),i("msub",null,[i("mi",null,"L"),i("mi",null,"i")]),i("mo",null,".")])],-1))]),s[621]||(s[621]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[889]||(s[889]=i("h3",{id:"Dual-lattice",tabindex:"-1"},[t("Dual lattice "),i("a",{class:"header-anchor",href:"#Dual-lattice","aria-label":'Permalink to "Dual lattice {#Dual-lattice}"'},"​")],-1)),i("details",qa,[i("summary",null,[s[622]||(s[622]=i("a",{id:"dual-Tuple{ZZLat}",href:"#dual-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"dual")],-1)),s[623]||(s[623]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[624]||(s[624]=a('
julia
dual(L::AbstractLat) -> AbstractLat

Return the dual lattice of the lattice L.

source

',3))]),s[890]||(s[890]=a('

Discriminant group

See discriminant_group(L::ZZLat).

Overlattices

',3)),i("details",Ua,[i("summary",null,[s[625]||(s[625]=i("a",{id:"glue_map-Tuple{ZZLat, ZZLat, ZZLat}",href:"#glue_map-Tuple{ZZLat, ZZLat, ZZLat}"},[i("span",{class:"jlbinding"},"glue_map")],-1)),s[626]||(s[626]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[644]||(s[644]=a(`
julia
glue_map(L::ZZLat, S::ZZLat, R::ZZLat; check=true)
                        -> Tuple{TorQuadModuleMap, TorQuadModuleMap, TorQuadModuleMap}
`,1)),i("p",null,[s[635]||(s[635]=t("Given three integral ")),i("mjx-container",Xa,[(e(),l("svg",Pa,s[627]||(s[627]=[a('',1)]))),s[628]||(s[628]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[636]||(s[636]=a("-lattices L, S and R, with S and R primitive sublattices of L and such that the sum of the ranks of S and R is equal to the rank of L, return the glue map ",19)),i("mjx-container",Ka,[(e(),l("svg",$a,s[629]||(s[629]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D6FE",d:"M31 249Q11 249 11 258Q11 275 26 304T66 365T129 418T206 441Q233 441 239 440Q287 429 318 386T371 255Q385 195 385 170Q385 166 386 166L398 193Q418 244 443 300T486 391T508 430Q510 431 524 431H537Q543 425 543 422Q543 418 522 378T463 251T391 71Q385 55 378 6T357 -100Q341 -165 330 -190T303 -216Q286 -216 286 -188Q286 -138 340 32L346 51L347 69Q348 79 348 100Q348 257 291 317Q251 355 196 355Q148 355 108 329T51 260Q49 251 47 251Q45 249 31 249Z",style:{"stroke-width":"3"}})])])],-1)]))),s[630]||(s[630]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"γ")])],-1))]),s[637]||(s[637]=t(" of the primitive extension ")),i("mjx-container",Wa,[(e(),l("svg",Ya,s[631]||(s[631]=[a('',1)]))),s[632]||(s[632]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"S"),i("mo",null,"+"),i("mi",null,"R"),i("mo",null,"⊆"),i("mi",null,"L")])],-1))]),s[638]||(s[638]=t(", as well as the inclusion maps of the domain and codomain of ")),i("mjx-container",_a,[(e(),l("svg",s2,s[633]||(s[633]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D6FE",d:"M31 249Q11 249 11 258Q11 275 26 304T66 365T129 418T206 441Q233 441 239 440Q287 429 318 386T371 255Q385 195 385 170Q385 166 386 166L398 193Q418 244 443 300T486 391T508 430Q510 431 524 431H537Q543 425 543 422Q543 418 522 378T463 251T391 71Q385 55 378 6T357 -100Q341 -165 330 -190T303 -216Q286 -216 286 -188Q286 -138 340 32L346 51L347 69Q348 79 348 100Q348 257 291 317Q251 355 196 355Q148 355 108 329T51 260Q49 251 47 251Q45 249 31 249Z",style:{"stroke-width":"3"}})])])],-1)]))),s[634]||(s[634]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"γ")])],-1))]),s[639]||(s[639]=t(" into the respective discriminant groups of ")),s[640]||(s[640]=i("code",null,"S",-1)),s[641]||(s[641]=t(" and ")),s[642]||(s[642]=i("code",null,"R",-1)),s[643]||(s[643]=t("."))]),s[645]||(s[645]=a(`

Example

julia
julia> M = root_lattice(:E,8);
 
 julia> f = matrix(QQ, 8, 8, [-1 -1  0  0  0  0  0  0;
@@ -351,7 +351,7 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
                   ambient_representation::Bool = true) -> ZZLat
`,1)),i("p",null,[s[730]||(s[730]=t("Given a ")),i("mjx-container",j2,[(e(),l("svg",Z2,s[716]||(s[716]=[a('',1)]))),s[717]||(s[717]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[731]||(s[731]=t("-lattice ")),i("mjx-container",D2,[(e(),l("svg",A2,s[718]||(s[718]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[719]||(s[719]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[732]||(s[732]=t(" and a list of matrices ")),i("mjx-container",V2,[(e(),l("svg",S2,s[720]||(s[720]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[721]||(s[721]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[733]||(s[733]=t(" inducing endomorphisms of ")),i("mjx-container",G2,[(e(),l("svg",R2,s[722]||(s[722]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[723]||(s[723]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[734]||(s[734]=t(" (or just one matrix ")),i("mjx-container",O2,[(e(),l("svg",z2,s[724]||(s[724]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[725]||(s[725]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[735]||(s[735]=t("), return the lattice ")),i("mjx-container",J2,[(e(),l("svg",I2,s[726]||(s[726]=[a('',1)]))),s[727]||(s[727]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msup",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[736]||(s[736]=t(", consisting on elements fixed by ")),i("mjx-container",N2,[(e(),l("svg",q2,s[728]||(s[728]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[729]||(s[729]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[737]||(s[737]=t("."))]),i("p",null,[s[742]||(s[742]=t("If ")),s[743]||(s[743]=i("code",null,"ambient_representation",-1)),s[744]||(s[744]=t(" is ")),s[745]||(s[745]=i("code",null,"true",-1)),s[746]||(s[746]=t(" (the default), the endomorphism is represented with respect to the ambient space of ")),i("mjx-container",U2,[(e(),l("svg",X2,s[738]||(s[738]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[739]||(s[739]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[747]||(s[747]=t(". Otherwise, the endomorphism is represented with respect to the basis of ")),i("mjx-container",P2,[(e(),l("svg",K2,s[740]||(s[740]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[741]||(s[741]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[748]||(s[748]=t("."))]),s[750]||(s[750]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),i("details",$2,[i("summary",null,[s[751]||(s[751]=i("a",{id:"coinvariant_lattice-Tuple{ZZLat, Union{MatElem, Vector{<:MatElem}}}",href:"#coinvariant_lattice-Tuple{ZZLat, Union{MatElem, Vector{<:MatElem}}}"},[i("span",{class:"jlbinding"},"coinvariant_lattice")],-1)),s[752]||(s[752]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[791]||(s[791]=a(`
julia
coinvariant_lattice(L::ZZLat, G::Vector{MatElem};
                     ambient_representation::Bool = true) -> ZZLat
 coinvariant_lattice(L::ZZLat, G::MatElem;
-                    ambient_representation::Bool = true) -> ZZLat
`,1)),i("p",null,[s[769]||(s[769]=t("Given a ")),i("mjx-container",W2,[(e(),l("svg",Y2,s[753]||(s[753]=[a('',1)]))),s[754]||(s[754]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[770]||(s[770]=t("-lattice ")),i("mjx-container",_2,[(e(),l("svg",s1,s[755]||(s[755]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[756]||(s[756]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[771]||(s[771]=t(" and a list of matrices ")),i("mjx-container",i1,[(e(),l("svg",t1,s[757]||(s[757]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[758]||(s[758]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[772]||(s[772]=t(" inducing endomorphisms of ")),i("mjx-container",a1,[(e(),l("svg",l1,s[759]||(s[759]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[760]||(s[760]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[773]||(s[773]=t(" (or just one matrix ")),i("mjx-container",e1,[(e(),l("svg",n1,s[761]||(s[761]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[762]||(s[762]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[774]||(s[774]=t("), return the orthogonal complement ")),i("mjx-container",h1,[(e(),l("svg",p1,s[763]||(s[763]=[a('',1)]))),s[764]||(s[764]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[775]||(s[775]=t(" in ")),i("mjx-container",k1,[(e(),l("svg",r1,s[765]||(s[765]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[766]||(s[766]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[776]||(s[776]=t(" of the fixed lattice ")),i("mjx-container",d1,[(e(),l("svg",o1,s[767]||(s[767]=[a('',1)]))),s[768]||(s[768]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msup",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[777]||(s[777]=t(" (see ")),s[778]||(s[778]=i("a",{href:"/Hecke.jl/v0.34.8/manual/quad_forms/integer_lattices#invariant_lattice-Tuple{ZZLat, Vector{<:MatElem}}"},[i("code",null,"invariant_lattice")],-1)),s[779]||(s[779]=t(")."))]),i("p",null,[s[784]||(s[784]=t("If ")),s[785]||(s[785]=i("code",null,"ambient_representation",-1)),s[786]||(s[786]=t(" is ")),s[787]||(s[787]=i("code",null,"true",-1)),s[788]||(s[788]=t(" (the default), the endomorphism is represented with respect to the ambient space of ")),i("mjx-container",g1,[(e(),l("svg",Q1,s[780]||(s[780]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[781]||(s[781]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[789]||(s[789]=t(". Otherwise, the endomorphism is represented with respect to the basis of ")),i("mjx-container",T1,[(e(),l("svg",m1,s[782]||(s[782]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[783]||(s[783]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[790]||(s[790]=t("."))]),s[792]||(s[792]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[892]||(s[892]=i("h3",{id:"Computing-embeddings",tabindex:"-1"},[t("Computing embeddings "),i("a",{class:"header-anchor",href:"#Computing-embeddings","aria-label":'Permalink to "Computing embeddings {#Computing-embeddings}"'},"​")],-1)),i("details",y1,[i("summary",null,[s[793]||(s[793]=i("a",{id:"embed-Tuple{ZZLat, ZZGenus}",href:"#embed-Tuple{ZZLat, ZZGenus}"},[i("span",{class:"jlbinding"},"embed")],-1)),s[794]||(s[794]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[795]||(s[795]=a(`
julia
embed(S::ZZLat, G::Genus, primitive::Bool=true) -> Bool, embedding

Return a (primitive) embedding of the integral lattice S into some lattice in the genus of G.

julia
julia> G = integer_genera((8,0), 1, even=true)[1];
+                    ambient_representation::Bool = true) -> ZZLat
`,1)),i("p",null,[s[769]||(s[769]=t("Given a ")),i("mjx-container",W2,[(e(),l("svg",Y2,s[753]||(s[753]=[a('',1)]))),s[754]||(s[754]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"bold"},"Z")])])],-1))]),s[770]||(s[770]=t("-lattice ")),i("mjx-container",_2,[(e(),l("svg",s1,s[755]||(s[755]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[756]||(s[756]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[771]||(s[771]=t(" and a list of matrices ")),i("mjx-container",i1,[(e(),l("svg",t1,s[757]||(s[757]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[758]||(s[758]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[772]||(s[772]=t(" inducing endomorphisms of ")),i("mjx-container",a1,[(e(),l("svg",l1,s[759]||(s[759]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[760]||(s[760]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[773]||(s[773]=t(" (or just one matrix ")),i("mjx-container",e1,[(e(),l("svg",n1,s[761]||(s[761]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43A",d:"M50 252Q50 367 117 473T286 641T490 704Q580 704 633 653Q642 643 648 636T656 626L657 623Q660 623 684 649Q691 655 699 663T715 679T725 690L740 705H746Q760 705 760 698Q760 694 728 561Q692 422 692 421Q690 416 687 415T669 413H653Q647 419 647 422Q647 423 648 429T650 449T651 481Q651 552 619 605T510 659Q492 659 471 656T418 643T357 615T294 567T236 496T189 394T158 260Q156 242 156 221Q156 173 170 136T206 79T256 45T308 28T353 24Q407 24 452 47T514 106Q517 114 529 161T541 214Q541 222 528 224T468 227H431Q425 233 425 235T427 254Q431 267 437 273H454Q494 271 594 271Q634 271 659 271T695 272T707 272Q721 272 721 263Q721 261 719 249Q714 230 709 228Q706 227 694 227Q674 227 653 224Q646 221 643 215T629 164Q620 131 614 108Q589 6 586 3Q584 1 581 1Q571 1 553 21T530 52Q530 53 528 52T522 47Q448 -22 322 -22Q201 -22 126 55T50 252Z",style:{"stroke-width":"3"}})])])],-1)]))),s[762]||(s[762]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"G")])],-1))]),s[774]||(s[774]=t("), return the orthogonal complement ")),i("mjx-container",h1,[(e(),l("svg",p1,s[763]||(s[763]=[a('',1)]))),s[764]||(s[764]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[775]||(s[775]=t(" in ")),i("mjx-container",k1,[(e(),l("svg",r1,s[765]||(s[765]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[766]||(s[766]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[776]||(s[776]=t(" of the fixed lattice ")),i("mjx-container",d1,[(e(),l("svg",o1,s[767]||(s[767]=[a('',1)]))),s[768]||(s[768]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msup",null,[i("mi",null,"L"),i("mi",null,"G")])])],-1))]),s[777]||(s[777]=t(" (see ")),s[778]||(s[778]=i("a",{href:"/v0.34.8/manual/quad_forms/integer_lattices#invariant_lattice-Tuple{ZZLat, Vector{<:MatElem}}"},[i("code",null,"invariant_lattice")],-1)),s[779]||(s[779]=t(")."))]),i("p",null,[s[784]||(s[784]=t("If ")),s[785]||(s[785]=i("code",null,"ambient_representation",-1)),s[786]||(s[786]=t(" is ")),s[787]||(s[787]=i("code",null,"true",-1)),s[788]||(s[788]=t(" (the default), the endomorphism is represented with respect to the ambient space of ")),i("mjx-container",g1,[(e(),l("svg",Q1,s[780]||(s[780]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[781]||(s[781]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[789]||(s[789]=t(". Otherwise, the endomorphism is represented with respect to the basis of ")),i("mjx-container",T1,[(e(),l("svg",m1,s[782]||(s[782]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D43F",d:"M228 637Q194 637 192 641Q191 643 191 649Q191 673 202 682Q204 683 217 683Q271 680 344 680Q485 680 506 683H518Q524 677 524 674T522 656Q517 641 513 637H475Q406 636 394 628Q387 624 380 600T313 336Q297 271 279 198T252 88L243 52Q243 48 252 48T311 46H328Q360 46 379 47T428 54T478 72T522 106T564 161Q580 191 594 228T611 270Q616 273 628 273H641Q647 264 647 262T627 203T583 83T557 9Q555 4 553 3T537 0T494 -1Q483 -1 418 -1T294 0H116Q32 0 32 10Q32 17 34 24Q39 43 44 45Q48 46 59 46H65Q92 46 125 49Q139 52 144 61Q147 65 216 339T285 628Q285 635 228 637Z",style:{"stroke-width":"3"}})])])],-1)]))),s[783]||(s[783]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"L")])],-1))]),s[790]||(s[790]=t("."))]),s[792]||(s[792]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[892]||(s[892]=i("h3",{id:"Computing-embeddings",tabindex:"-1"},[t("Computing embeddings "),i("a",{class:"header-anchor",href:"#Computing-embeddings","aria-label":'Permalink to "Computing embeddings {#Computing-embeddings}"'},"​")],-1)),i("details",y1,[i("summary",null,[s[793]||(s[793]=i("a",{id:"embed-Tuple{ZZLat, ZZGenus}",href:"#embed-Tuple{ZZLat, ZZGenus}"},[i("span",{class:"jlbinding"},"embed")],-1)),s[794]||(s[794]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[795]||(s[795]=a(`
julia
embed(S::ZZLat, G::Genus, primitive::Bool=true) -> Bool, embedding

Return a (primitive) embedding of the integral lattice S into some lattice in the genus of G.

julia
julia> G = integer_genera((8,0), 1, even=true)[1];
 
 julia> L, S, i = embed(root_lattice(:A,5), G);

source

`,4))]),i("details",F1,[i("summary",null,[s[796]||(s[796]=i("a",{id:"embed_in_unimodular-Tuple{ZZLat, Union{Integer, ZZRingElem}, Union{Integer, ZZRingElem}}",href:"#embed_in_unimodular-Tuple{ZZLat, Union{Integer, ZZRingElem}, Union{Integer, ZZRingElem}}"},[i("span",{class:"jlbinding"},"embed_in_unimodular")],-1)),s[797]||(s[797]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[798]||(s[798]=a(`
julia
embed_in_unimodular(S::ZZLat, pos::Int, neg::Int, primitive=true, even=true) -> Bool, L, S', iS, iR

Return a (primitive) embedding of the integral lattice S into some (even) unimodular lattice of signature (pos, neg).

For now this works only for even lattices.

julia
julia> NS = direct_sum(integer_lattice(:U), rescale(root_lattice(:A, 16), -1))[1];
 
@@ -387,10 +387,10 @@ import{_ as p,c as l,j as i,a as t,a5 as a,G as h,B as k,o as e}from"./chunks/fr
 
 julia> is_primitive(LK3, iNS)
 true

source

`,5))]),s[893]||(s[893]=i("h2",{id:"LLL,-Short-and-Close-Vectors",tabindex:"-1"},[t("LLL, Short and Close Vectors "),i("a",{class:"header-anchor",href:"#LLL,-Short-and-Close-Vectors","aria-label":'Permalink to "LLL, Short and Close Vectors {#LLL,-Short-and-Close-Vectors}"'},"​")],-1)),s[894]||(s[894]=i("h3",{id:"LLL-and-indefinite-LLL",tabindex:"-1"},[t("LLL and indefinite LLL "),i("a",{class:"header-anchor",href:"#LLL-and-indefinite-LLL","aria-label":'Permalink to "LLL and indefinite LLL {#LLL-and-indefinite-LLL}"'},"​")],-1)),i("details",C1,[i("summary",null,[s[799]||(s[799]=i("a",{id:"lll-Tuple{ZZLat}",href:"#lll-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"lll")],-1)),s[800]||(s[800]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[820]||(s[820]=a('
julia
lll(L::ZZLat, same_ambient::Bool = true) -> ZZLat
',1)),i("p",null,[s[805]||(s[805]=t("Given an integral ")),i("mjx-container",E1,[(e(),l("svg",u1,s[801]||(s[801]=[a('',1)]))),s[802]||(s[802]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mrow",{"data-mjx-texclass":"ORD"},[i("mi",{mathvariant:"double-struck"},"Z")])])],-1))]),s[806]||(s[806]=t("-lattice ")),s[807]||(s[807]=i("code",null,"L",-1)),s[808]||(s[808]=t(" with basis matrix ")),s[809]||(s[809]=i("code",null,"B",-1)),s[810]||(s[810]=t(", compute a basis ")),s[811]||(s[811]=i("code",null,"C",-1)),s[812]||(s[812]=t(" of ")),s[813]||(s[813]=i("code",null,"L",-1)),s[814]||(s[814]=t(" such that the gram matrix ")),i("mjx-container",x1,[(e(),l("svg",c1,s[803]||(s[803]=[a('',1)]))),s[804]||(s[804]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("msub",null,[i("mi",null,"G"),i("mi",null,"C")])])],-1))]),s[815]||(s[815]=t(" of ")),s[816]||(s[816]=i("code",null,"L",-1)),s[817]||(s[817]=t(" with respect to ")),s[818]||(s[818]=i("code",null,"C",-1)),s[819]||(s[819]=t(" is LLL-reduced."))]),s[821]||(s[821]=i("p",null,[t("By default, it creates the lattice in the same ambient space as "),i("code",null,"L"),t(". This can be disabled by setting "),i("code",null,"same_ambient = false"),t(". Works with both definite and indefinite lattices.")],-1)),s[822]||(s[822]=i("p",null,[i("a",{href:"https://github.com/thofma/Hecke.jl",target:"_blank",rel:"noreferrer"},"source")],-1))]),s[895]||(s[895]=i("h3",{id:"Short-Vectors",tabindex:"-1"},[t("Short Vectors "),i("a",{class:"header-anchor",href:"#Short-Vectors","aria-label":'Permalink to "Short Vectors {#Short-Vectors}"'},"​")],-1)),i("details",w1,[i("summary",null,[s[823]||(s[823]=i("a",{id:"short_vectors",href:"#short_vectors"},[i("span",{class:"jlbinding"},"short_vectors")],-1)),s[824]||(s[824]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[839]||(s[839]=a(`
julia
short_vectors(L::ZZLat, [lb = 0], ub, [elem_type = ZZRingElem]; check::Bool = true)
-                                   -> Vector{Tuple{Vector{elem_type}, QQFieldElem}}
`,1)),i("p",null,[s[827]||(s[827]=t("Return all tuples ")),s[828]||(s[828]=i("code",null,"(v, n)",-1)),s[829]||(s[829]=t(" such that ")),i("mjx-container",b1,[(e(),l("svg",B1,s[825]||(s[825]=[a('',1)]))),s[826]||(s[826]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"="),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"v"),i("mi",null,"G"),i("msup",null,[i("mi",null,"v"),i("mi",null,"t")]),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),s[830]||(s[830]=t(" satisfies ")),s[831]||(s[831]=i("code",null,"lb <= n <= ub",-1)),s[832]||(s[832]=t(", where ")),s[833]||(s[833]=i("code",null,"G",-1)),s[834]||(s[834]=t(" is the Gram matrix of ")),s[835]||(s[835]=i("code",null,"L",-1)),s[836]||(s[836]=t(" and ")),s[837]||(s[837]=i("code",null,"v",-1)),s[838]||(s[838]=t(" is non-zero."))]),s[840]||(s[840]=a('

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors_iterator for an iterator version.

source

',4))]),i("details",f1,[i("summary",null,[s[841]||(s[841]=i("a",{id:"shortest_vectors",href:"#shortest_vectors"},[i("span",{class:"jlbinding"},"shortest_vectors")],-1)),s[842]||(s[842]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[843]||(s[843]=a(`
julia
shortest_vectors(L::ZZLat, [elem_type = ZZRingElem]; check::Bool = true)
-                                           -> QQFieldElem, Vector{elem_type}, QQFieldElem}

Return the list of shortest non-zero vectors in absolute value. Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also minimum.

source

`,5))]),i("details",v1,[i("summary",null,[s[844]||(s[844]=i("a",{id:"short_vectors_iterator",href:"#short_vectors_iterator"},[i("span",{class:"jlbinding"},"short_vectors_iterator")],-1)),s[845]||(s[845]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[860]||(s[860]=a(`
julia
short_vectors_iterator(L::ZZLat, [lb = 0], ub,
+                                   -> Vector{Tuple{Vector{elem_type}, QQFieldElem}}
`,1)),i("p",null,[s[827]||(s[827]=t("Return all tuples ")),s[828]||(s[828]=i("code",null,"(v, n)",-1)),s[829]||(s[829]=t(" such that ")),i("mjx-container",b1,[(e(),l("svg",B1,s[825]||(s[825]=[a('',1)]))),s[826]||(s[826]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"="),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"v"),i("mi",null,"G"),i("msup",null,[i("mi",null,"v"),i("mi",null,"t")]),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),s[830]||(s[830]=t(" satisfies ")),s[831]||(s[831]=i("code",null,"lb <= n <= ub",-1)),s[832]||(s[832]=t(", where ")),s[833]||(s[833]=i("code",null,"G",-1)),s[834]||(s[834]=t(" is the Gram matrix of ")),s[835]||(s[835]=i("code",null,"L",-1)),s[836]||(s[836]=t(" and ")),s[837]||(s[837]=i("code",null,"v",-1)),s[838]||(s[838]=t(" is non-zero."))]),s[840]||(s[840]=a('

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors_iterator for an iterator version.

source

',4))]),i("details",f1,[i("summary",null,[s[841]||(s[841]=i("a",{id:"shortest_vectors",href:"#shortest_vectors"},[i("span",{class:"jlbinding"},"shortest_vectors")],-1)),s[842]||(s[842]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[843]||(s[843]=a(`
julia
shortest_vectors(L::ZZLat, [elem_type = ZZRingElem]; check::Bool = true)
+                                           -> QQFieldElem, Vector{elem_type}, QQFieldElem}

Return the list of shortest non-zero vectors in absolute value. Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also minimum.

source

`,5))]),i("details",v1,[i("summary",null,[s[844]||(s[844]=i("a",{id:"short_vectors_iterator",href:"#short_vectors_iterator"},[i("span",{class:"jlbinding"},"short_vectors_iterator")],-1)),s[845]||(s[845]=t()),h(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[860]||(s[860]=a(`
julia
short_vectors_iterator(L::ZZLat, [lb = 0], ub,
                        [elem_type = ZZRingElem]; check::Bool = true)
-                                -> Tuple{Vector{elem_type}, QQFieldElem} (iterator)
`,1)),i("p",null,[s[848]||(s[848]=t("Return an iterator for all tuples ")),s[849]||(s[849]=i("code",null,"(v, n)",-1)),s[850]||(s[850]=t(" such that ")),i("mjx-container",L1,[(e(),l("svg",H1,s[846]||(s[846]=[a('',1)]))),s[847]||(s[847]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"="),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"v"),i("mi",null,"G"),i("msup",null,[i("mi",null,"v"),i("mi",null,"t")]),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),s[851]||(s[851]=t(" satisfies ")),s[852]||(s[852]=i("code",null,"lb <= n <= ub",-1)),s[853]||(s[853]=t(", where ")),s[854]||(s[854]=i("code",null,"G",-1)),s[855]||(s[855]=t(" is the Gram matrix of ")),s[856]||(s[856]=i("code",null,"L",-1)),s[857]||(s[857]=t(" and ")),s[858]||(s[858]=i("code",null,"v",-1)),s[859]||(s[859]=t(" is non-zero."))]),s[861]||(s[861]=a('

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors.

source

',4))]),i("details",M1,[i("summary",null,[s[862]||(s[862]=i("a",{id:"minimum-Tuple{ZZLat}",href:"#minimum-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"minimum")],-1)),s[863]||(s[863]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[864]||(s[864]=a('
julia
minimum(L::ZZLat) -> QQFieldElem

Return the minimum absolute squared length among the non-zero vectors in L.

source

',3))]),i("details",j1,[i("summary",null,[s[865]||(s[865]=i("a",{id:"kissing_number-Tuple{ZZLat}",href:"#kissing_number-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"kissing_number")],-1)),s[866]||(s[866]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[867]||(s[867]=a('
julia
kissing_number(L::ZZLat) -> Int

Return the Kissing number of the sphere packing defined by L.

This is the number of non-overlapping spheres touching any other given sphere.

source

',4))]),s[896]||(s[896]=i("h3",{id:"Close-Vectors",tabindex:"-1"},[t("Close Vectors "),i("a",{class:"header-anchor",href:"#Close-Vectors","aria-label":'Permalink to "Close Vectors {#Close-Vectors}"'},"​")],-1)),i("details",Z1,[i("summary",null,[s[868]||(s[868]=i("a",{id:"close_vectors-Tuple{ZZLat, Vector, Vararg{Any}}",href:"#close_vectors-Tuple{ZZLat, Vector, Vararg{Any}}"},[i("span",{class:"jlbinding"},"close_vectors")],-1)),s[869]||(s[869]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[870]||(s[870]=a(`
julia
close_vectors(L:ZZLat, v:Vector, [lb,], ub; check::Bool = false)
+                                -> Tuple{Vector{elem_type}, QQFieldElem} (iterator)
`,1)),i("p",null,[s[848]||(s[848]=t("Return an iterator for all tuples ")),s[849]||(s[849]=i("code",null,"(v, n)",-1)),s[850]||(s[850]=t(" such that ")),i("mjx-container",L1,[(e(),l("svg",H1,s[846]||(s[846]=[a('',1)]))),s[847]||(s[847]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"n"),i("mo",null,"="),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|"),i("mi",null,"v"),i("mi",null,"G"),i("msup",null,[i("mi",null,"v"),i("mi",null,"t")]),i("mo",{"data-mjx-texclass":"ORD",stretchy:"false"},"|")])],-1))]),s[851]||(s[851]=t(" satisfies ")),s[852]||(s[852]=i("code",null,"lb <= n <= ub",-1)),s[853]||(s[853]=t(", where ")),s[854]||(s[854]=i("code",null,"G",-1)),s[855]||(s[855]=t(" is the Gram matrix of ")),s[856]||(s[856]=i("code",null,"L",-1)),s[857]||(s[857]=t(" and ")),s[858]||(s[858]=i("code",null,"v",-1)),s[859]||(s[859]=t(" is non-zero."))]),s[861]||(s[861]=a('

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors.

source

',4))]),i("details",M1,[i("summary",null,[s[862]||(s[862]=i("a",{id:"minimum-Tuple{ZZLat}",href:"#minimum-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"minimum")],-1)),s[863]||(s[863]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[864]||(s[864]=a('
julia
minimum(L::ZZLat) -> QQFieldElem

Return the minimum absolute squared length among the non-zero vectors in L.

source

',3))]),i("details",j1,[i("summary",null,[s[865]||(s[865]=i("a",{id:"kissing_number-Tuple{ZZLat}",href:"#kissing_number-Tuple{ZZLat}"},[i("span",{class:"jlbinding"},"kissing_number")],-1)),s[866]||(s[866]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[867]||(s[867]=a('
julia
kissing_number(L::ZZLat) -> Int

Return the Kissing number of the sphere packing defined by L.

This is the number of non-overlapping spheres touching any other given sphere.

source

',4))]),s[896]||(s[896]=i("h3",{id:"Close-Vectors",tabindex:"-1"},[t("Close Vectors "),i("a",{class:"header-anchor",href:"#Close-Vectors","aria-label":'Permalink to "Close Vectors {#Close-Vectors}"'},"​")],-1)),i("details",Z1,[i("summary",null,[s[868]||(s[868]=i("a",{id:"close_vectors-Tuple{ZZLat, Vector, Vararg{Any}}",href:"#close_vectors-Tuple{ZZLat, Vector, Vararg{Any}}"},[i("span",{class:"jlbinding"},"close_vectors")],-1)),s[869]||(s[869]=t()),h(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[870]||(s[870]=a(`
julia
close_vectors(L:ZZLat, v:Vector, [lb,], ub; check::Bool = false)
                                         -> Vector{Tuple{Vector{Int}}, QQFieldElem}

Return all tuples (x, d) where x is an element of L such that d = b(v - x, v - x) <= ub. If lb is provided, then also lb <= d.

If filter is not nothing, then only those x with filter(x) evaluating to true are returned.

By default, it will be checked whether L is positive definite. This can be disabled setting check = false.

Both input and output are with respect to the basis matrix of L.

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1, 0, 0, 2]));
 
 julia> close_vectors(L, [1, 1], 1)
diff --git a/v0.34.8/examples.html b/v0.34.8/examples.html
index bd6e911255..9a0ba48290 100644
--- a/v0.34.8/examples.html
+++ b/v0.34.8/examples.html
@@ -6,20 +6,20 @@
     Examples and sample code | Hecke
     
     
-    
-    
+    
+    
     
-    
-    
-    
-    
-    
+    
+    
+    
+    
+    
     
     
   
   
-    
Skip to content

Examples and sample code

- +
Skip to content

Examples and sample code

+ \ No newline at end of file diff --git a/v0.34.8/howto/index.html b/v0.34.8/howto/index.html index ba6a0312fa..5a23e6c64a 100644 --- a/v0.34.8/howto/index.html +++ b/v0.34.8/howto/index.html @@ -6,20 +6,20 @@ How-to guides | Hecke - - + + - - - - - + + + + + -
Skip to content
- +
Skip to content
+ \ No newline at end of file diff --git a/v0.34.8/howto/reduction.html b/v0.34.8/howto/reduction.html index 454ef44538..02b50d2b72 100644 --- a/v0.34.8/howto/reduction.html +++ b/v0.34.8/howto/reduction.html @@ -6,19 +6,19 @@ Reduction of polynomials over number fields modulo a prime ideal | Hecke - - + + - - - - - + + + + + -
Skip to content

Reduction of polynomials over number fields modulo a prime ideal

Given a polynomial fK[x] and a prime ideal p of OK, we want to determine the reduction f¯F[x], where F=OK/p is the residue field. Concretely, we want to reduce the polynomial f=x3+(1+ζ7+ζ72)x2+(23+55ζ75)x+(ζ7+77)/2 over Q(ζ7). We begin by defining the cyclomotic field and the polynomial.

julia

+    
Skip to content

Reduction of polynomials over number fields modulo a prime ideal

Given a polynomial fK[x] and a prime ideal p of OK, we want to determine the reduction f¯F[x], where F=OK/p is the residue field. Concretely, we want to reduce the polynomial f=x3+(1+ζ7+ζ72)x2+(23+55ζ75)x+(ζ7+77)/2 over Q(ζ7). We begin by defining the cyclomotic field and the polynomial.

julia

 julia> K, ζ = cyclotomic_field(7);
 
 julia> Kx, x = K['x'];
@@ -55,7 +55,7 @@
 
 julia> base_ring(fbar) === F
 true
- + \ No newline at end of file diff --git a/v0.34.8/index.html b/v0.34.8/index.html index a507b20e2e..b99a6852b1 100644 --- a/v0.34.8/index.html +++ b/v0.34.8/index.html @@ -6,19 +6,19 @@ Hecke - - + + - - - - - + + + + + -
Skip to content

Hecke

Computational number theory for everyone

Features

  • Number fields (absolute, relative, simple and non-simple)

  • Orders and ideals in number fields

  • Class and unit group computations of orders

  • Lattice enumeration

  • Sparse linear algebra

  • Class field theory

  • Abelian groups

  • Associative algebras

  • Ideals and orders in (semsimple) associative algebras

  • Locally free class groups of orders in semisimple algebras

  • Quadratic and Hermitian forms and lattices

Citing Hecke

If your research depends on computations done with Hecke, please consider giving us a formal citation:

@inproceedings{nemo,
+    
Skip to content

Hecke

Computational number theory for everyone

Features

  • Number fields (absolute, relative, simple and non-simple)

  • Orders and ideals in number fields

  • Class and unit group computations of orders

  • Lattice enumeration

  • Sparse linear algebra

  • Class field theory

  • Abelian groups

  • Associative algebras

  • Ideals and orders in (semsimple) associative algebras

  • Locally free class groups of orders in semisimple algebras

  • Quadratic and Hermitian forms and lattices

Citing Hecke

If your research depends on computations done with Hecke, please consider giving us a formal citation:

@inproceedings{nemo,
     author = {Fieker, Claus and Hart, William and Hofmann, Tommy and Johansson, Fredrik},
      title = {Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language},
  booktitle = {Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation},
@@ -31,7 +31,7 @@
  publisher = {ACM},
    address = {New York, NY, USA},
 }

Acknowledgement

Hecke is part of the OSCAR project and the development is supported by the Deutsche Forschungsgemeinschaft DFG within the Collaborative Research Center TRR 195.

- + \ No newline at end of file diff --git a/v0.34.8/manual/abelian/elements.html b/v0.34.8/manual/abelian/elements.html index 42ac14dc44..ce314eb23e 100644 --- a/v0.34.8/manual/abelian/elements.html +++ b/v0.34.8/manual/abelian/elements.html @@ -6,19 +6,19 @@ Elements | Hecke - - + + - - - - - + + + + + -
Skip to content

Elements

Elements in a finitely generated abelian group are of type FinGenAbGroupElem and are always given as a linear combination of the generators. Internally this representation is normliased to have a unique representative.

Creation

In addition to the standard function id, zero and one that can be used to create the neutral element, we also support more targeted creation:

gens Method
julia
gens(G::FinGenAbGroup) -> Vector{FinGenAbGroupElem}

The sequence of generators of G.

source

FinGenAbGroup Method
julia
(A::FinGenAbGroup)(x::Vector{ZZRingElem}) -> FinGenAbGroupElem

Given an array x of elements of type ZZRingElem of the same length as ngens(A), this function returns the element of A with components x.

source

FinGenAbGroup Method
julia
(A::FinGenAbGroup)(x::ZZMatrix) -> FinGenAbGroupElem

Given a matrix over the integers with either 1 row and ngens(A) columns or ngens(A) rows and 1 column, this function returns the element of A with components x.

source

getindex Method
julia
getindex(A::FinGenAbGroup, i::Int) -> FinGenAbGroupElem

Returns the element of A with components (0,,0,1,0,,0), where the 1 is at the i-th position.

source

rand Method
julia
rand(G::FinGenAbGroup) -> FinGenAbGroupElem

Returns an element of G chosen uniformly at random.

source

rand Method
julia
rand(G::FinGenAbGroup, B::ZZRingElem) -> FinGenAbGroupElem

For a (potentially infinite) abelian group G, return an element chosen uniformly at random with coefficients bounded by B.

source

parent Method
julia
parent(x::FinGenAbGroupElem) -> FinGenAbGroup

Returns the parent of x.

source

Access

getindex Method
julia
getindex(x::FinGenAbGroupElem, v::AbstractVector{Int}) -> Vector{ZZRingElem}

Returns the i-th components of the element x where iv.

Note

This function is inefficient since the elements are internally stored using ZZMatrix but this function outputs a vector.

source

getindex Method
julia
getindex(x::FinGenAbGroupElem, i::Int) -> ZZRingElem

Returns the i-th component of the element x.

source

Predicates

We have the standard predicates iszero, isone and is_identity to test an element for being trivial.

Invariants

order Method
julia
order(A::FinGenAbGroupElem) -> ZZRingElem

Returns the order of A. It is assumed that the order is finite.

source

Iterator

One can iterate over the elements of a finite abelian group.

julia

+    
Skip to content

Elements

Elements in a finitely generated abelian group are of type FinGenAbGroupElem and are always given as a linear combination of the generators. Internally this representation is normliased to have a unique representative.

Creation

In addition to the standard function id, zero and one that can be used to create the neutral element, we also support more targeted creation:

gens Method
julia
gens(G::FinGenAbGroup) -> Vector{FinGenAbGroupElem}

The sequence of generators of G.

source

FinGenAbGroup Method
julia
(A::FinGenAbGroup)(x::Vector{ZZRingElem}) -> FinGenAbGroupElem

Given an array x of elements of type ZZRingElem of the same length as ngens(A), this function returns the element of A with components x.

source

FinGenAbGroup Method
julia
(A::FinGenAbGroup)(x::ZZMatrix) -> FinGenAbGroupElem

Given a matrix over the integers with either 1 row and ngens(A) columns or ngens(A) rows and 1 column, this function returns the element of A with components x.

source

getindex Method
julia
getindex(A::FinGenAbGroup, i::Int) -> FinGenAbGroupElem

Returns the element of A with components (0,,0,1,0,,0), where the 1 is at the i-th position.

source

rand Method
julia
rand(G::FinGenAbGroup) -> FinGenAbGroupElem

Returns an element of G chosen uniformly at random.

source

rand Method
julia
rand(G::FinGenAbGroup, B::ZZRingElem) -> FinGenAbGroupElem

For a (potentially infinite) abelian group G, return an element chosen uniformly at random with coefficients bounded by B.

source

parent Method
julia
parent(x::FinGenAbGroupElem) -> FinGenAbGroup

Returns the parent of x.

source

Access

getindex Method
julia
getindex(x::FinGenAbGroupElem, v::AbstractVector{Int}) -> Vector{ZZRingElem}

Returns the i-th components of the element x where iv.

Note

This function is inefficient since the elements are internally stored using ZZMatrix but this function outputs a vector.

source

getindex Method
julia
getindex(x::FinGenAbGroupElem, i::Int) -> ZZRingElem

Returns the i-th component of the element x.

source

Predicates

We have the standard predicates iszero, isone and is_identity to test an element for being trivial.

Invariants

order Method
julia
order(A::FinGenAbGroupElem) -> ZZRingElem

Returns the order of A. It is assumed that the order is finite.

source

Iterator

One can iterate over the elements of a finite abelian group.

julia

 julia> G = abelian_group(ZZRingElem[1 2; 3 4])
 Finitely generated abelian group
   with 2 generators and 2 relations and relation matrix
@@ -29,8 +29,8 @@
          println(g)
        end
 Abelian group element [0, 0]
-Abelian group element [0, 1]
- +Abelian group element [0, 1]
+ \ No newline at end of file diff --git a/v0.34.8/manual/abelian/introduction.html b/v0.34.8/manual/abelian/introduction.html index feba426734..d3eb446f3b 100644 --- a/v0.34.8/manual/abelian/introduction.html +++ b/v0.34.8/manual/abelian/introduction.html @@ -6,19 +6,19 @@ Introduction | Hecke - - + + - - - - - + + + + + -
Skip to content

Introduction

Within Hecke, abelian groups are of generic abstract type GrpAb which does not have to be finitely generated, Q/Z is an example of a more general abelian group. Having said that, most of the functionality is restricted to abelian groups that are finitely presented as Z-modules.

Basic Creation

Finitely presented (as Z-modules) abelian groups are of type FinGenAbGroup with elements of type FinGenAbGroupElem. The creation is mostly via a relation matrix M=(mi,j) for 1in and 1jm. This creates a group with m generators ej and relations

i=1nmi,jej=0.
abelian_group Method
julia
abelian_group(::Type{T} = FinGenAbGroup, M::ZZMatrix) -> FinGenAbGroup

Creates the abelian group with relation matrix M. That is, the group will have ncols(M) generators and each row of M describes one relation.

source

abelian_group Method
julia
abelian_group(::Type{T} = FinGenAbGroup, M::AbstractMatrix{<:IntegerUnion})

Creates the abelian group with relation matrix M. That is, the group will have ncols(M) generators and each row of M describes one relation.

source

abelian_group Method
julia
abelian_group(::Type{T} = FinGenAbGroup, M::AbstractMatrix{<:IntegerUnion})

Creates the abelian group with relation matrix M. That is, the group will have ncols(M) generators and each row of M describes one relation.

source

Alternatively, there are shortcuts to create products of cyclic groups:

abelian_group Method
julia
abelian_group(::Type{T} = FinGenAbGroup, M::AbstractVector{<:IntegerUnion}) -> FinGenAbGroup
+    
Skip to content

Introduction

Within Hecke, abelian groups are of generic abstract type GrpAb which does not have to be finitely generated, Q/Z is an example of a more general abelian group. Having said that, most of the functionality is restricted to abelian groups that are finitely presented as Z-modules.

Basic Creation

Finitely presented (as Z-modules) abelian groups are of type FinGenAbGroup with elements of type FinGenAbGroupElem. The creation is mostly via a relation matrix M=(mi,j) for 1in and 1jm. This creates a group with m generators ej and relations

i=1nmi,jej=0.
abelian_group Method
julia
abelian_group(::Type{T} = FinGenAbGroup, M::ZZMatrix) -> FinGenAbGroup

Creates the abelian group with relation matrix M. That is, the group will have ncols(M) generators and each row of M describes one relation.

source

abelian_group Method
julia
abelian_group(::Type{T} = FinGenAbGroup, M::AbstractMatrix{<:IntegerUnion})

Creates the abelian group with relation matrix M. That is, the group will have ncols(M) generators and each row of M describes one relation.

source

abelian_group Method
julia
abelian_group(::Type{T} = FinGenAbGroup, M::AbstractMatrix{<:IntegerUnion})

Creates the abelian group with relation matrix M. That is, the group will have ncols(M) generators and each row of M describes one relation.

source

Alternatively, there are shortcuts to create products of cyclic groups:

abelian_group Method
julia
abelian_group(::Type{T} = FinGenAbGroup, M::AbstractVector{<:IntegerUnion}) -> FinGenAbGroup
 abelian_group(::Type{T} = FinGenAbGroup, M::IntegerUnion...) -> FinGenAbGroup

Creates the direct product of the cyclic groups Z/mi, where mi is the ith entry of M.

source

julia

 julia> G = abelian_group(2, 2, 6)
 (Z/2)^2 x Z/6

or even

free_abelian_group Method
julia
free_abelian_group(::Type{T} = FinGenAbGroup, n::Int) -> FinGenAbGroup

Creates the free abelian group of rank n.

source

abelian_groups Method
julia
abelian_groups(n::Int) -> Vector{FinGenAbGroup}

Given a positive integer n, return a list of all abelian groups of order n.

source

julia

@@ -26,8 +26,8 @@
 3-element Vector{FinGenAbGroup}:
  (Z/2)^3
  Z/2 x Z/4
- Z/8

Invariants

is_snf Method
julia
is_snf(G::FinGenAbGroup) -> Bool

Return whether the current relation matrix of the group G is in Smith normal form.

source

number_of_generators Method
julia
number_of_generators(G::FinGenAbGroup) -> Int

Return the number of generators of G in the current representation.

source

nrels Method
julia
number_of_relations(G::FinGenAbGroup) -> Int

Return the number of relations of G in the current representation.

source

rels Method
julia
rels(A::FinGenAbGroup) -> ZZMatrix

Return the currently used relations of G as a single matrix.

source

is_finite Method
julia
isfinite(A::FinGenAbGroup) -> Bool

Return whether A is finite.

source

torsion_free_rank Method
julia
torsion_free_rank(A::FinGenAbGroup) -> Int

Return the torsion free rank of A, that is, the dimension of the Q-vectorspace AZQ.

See also rank.

source

order Method
julia
order(A::FinGenAbGroup) -> ZZRingElem

Return the order of A. It is assumed that A is finite.

source

exponent Method
julia
exponent(A::FinGenAbGroup) -> ZZRingElem

Return the exponent of A. It is assumed that A is finite.

source

is_trivial Method
julia
is_trivial(A::FinGenAbGroup) -> Bool

Return whether A is the trivial group.

source

is_torsion Method
julia
is_torsion(G::FinGenAbGroup) -> Bool

Return whether G is a torsion group.

source

is_cyclic Method
julia
is_cyclic(G::FinGenAbGroup) -> Bool

Return whether G is cyclic.

source

elementary_divisors Method
julia
elementary_divisors(G::FinGenAbGroup) -> Vector{ZZRingElem}

Given G, return the elementary divisors of G, that is, the unique non-negative integers e1,,ek with eiei+1 and ei1 such that GZ/e1Z××Z/ekZ.

source

- + Z/8

Invariants

is_snf Method
julia
is_snf(G::FinGenAbGroup) -> Bool

Return whether the current relation matrix of the group G is in Smith normal form.

source

number_of_generators Method
julia
number_of_generators(G::FinGenAbGroup) -> Int

Return the number of generators of G in the current representation.

source

nrels Method
julia
number_of_relations(G::FinGenAbGroup) -> Int

Return the number of relations of G in the current representation.

source

rels Method
julia
rels(A::FinGenAbGroup) -> ZZMatrix

Return the currently used relations of G as a single matrix.

source

is_finite Method
julia
isfinite(A::FinGenAbGroup) -> Bool

Return whether A is finite.

source

torsion_free_rank Method
julia
torsion_free_rank(A::FinGenAbGroup) -> Int

Return the torsion free rank of A, that is, the dimension of the Q-vectorspace AZQ.

See also rank.

source

order Method
julia
order(A::FinGenAbGroup) -> ZZRingElem

Return the order of A. It is assumed that A is finite.

source

exponent Method
julia
exponent(A::FinGenAbGroup) -> ZZRingElem

Return the exponent of A. It is assumed that A is finite.

source

is_trivial Method
julia
is_trivial(A::FinGenAbGroup) -> Bool

Return whether A is the trivial group.

source

is_torsion Method
julia
is_torsion(G::FinGenAbGroup) -> Bool

Return whether G is a torsion group.

source

is_cyclic Method
julia
is_cyclic(G::FinGenAbGroup) -> Bool

Return whether G is cyclic.

source

elementary_divisors Method
julia
elementary_divisors(G::FinGenAbGroup) -> Vector{ZZRingElem}

Given G, return the elementary divisors of G, that is, the unique non-negative integers e1,,ek with eiei+1 and ei1 such that GZ/e1Z××Z/ekZ.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/abelian/maps.html b/v0.34.8/manual/abelian/maps.html index fb8c24354e..cb57416e1f 100644 --- a/v0.34.8/manual/abelian/maps.html +++ b/v0.34.8/manual/abelian/maps.html @@ -6,19 +6,19 @@ Maps | Hecke - - + + - - - - - + + + + + -
Skip to content

Maps

Maps between abelian groups are mainly of type FinGenAbGroupHom. They allow normal map operations such as image, preimage, domain, codomain and can be created in a variety of situations.

Maps between abelian groups can be constructed via

  • images of the generators

  • pairs of elements

  • via composition

  • and isomorphism/ inclusion testing

hom_direct_sum Method
julia
hom_direct_sum(G::FinGenAbGroup, H::FinGenAbGroup, A::Matrix{ <: Map{FinGenAbGroup, FinGenAbGroup}}) -> Map

Given groups G and H that are created as direct products as well as a matrix A containing maps A[i,j]:GiHj, return the induced homomorphism.

source

is_isomorphic Method
julia
is_isomorphic(G::FinGenAbGroup, H::FinGenAbGroup) -> Bool

Return whether G and H are isomorphic.

source

julia

+    
Skip to content

Maps

Maps between abelian groups are mainly of type FinGenAbGroupHom. They allow normal map operations such as image, preimage, domain, codomain and can be created in a variety of situations.

Maps between abelian groups can be constructed via

  • images of the generators

  • pairs of elements

  • via composition

  • and isomorphism/ inclusion testing

hom_direct_sum Method
julia
hom_direct_sum(G::FinGenAbGroup, H::FinGenAbGroup, A::Matrix{ <: Map{FinGenAbGroup, FinGenAbGroup}}) -> Map

Given groups G and H that are created as direct products as well as a matrix A containing maps A[i,j]:GiHj, return the induced homomorphism.

source

is_isomorphic Method
julia
is_isomorphic(G::FinGenAbGroup, H::FinGenAbGroup) -> Bool

Return whether G and H are isomorphic.

source

julia

 julia> G = free_abelian_group(2)
 Z^2
 
@@ -41,8 +41,8 @@
   to Z^2
 
 julia> (h+h)(gen(G, 1))
-Abelian group element [0, 4]
- +Abelian group element [0, 4]
+ \ No newline at end of file diff --git a/v0.34.8/manual/abelian/structural.html b/v0.34.8/manual/abelian/structural.html index 787666a7fd..abe64401e6 100644 --- a/v0.34.8/manual/abelian/structural.html +++ b/v0.34.8/manual/abelian/structural.html @@ -6,19 +6,19 @@ Structural Computations | Hecke - - + + - - - - - + + + + + -
Skip to content

Structural Computations

Abelian groups support a wide range of structural operations such as

  • enumeration of subgroups

  • (outer) direct products

  • tensor and hom constructions

  • free resolutions and general complexes

  • (co)-homology and tensor and hom-functors

snf Method
julia
snf(A::FinGenAbGroup) -> FinGenAbGroup, FinGenAbGroupHom

Return a pair (G,f), where G is an abelian group in canonical Smith normal form isomorphic to A and an isomorphism f:GA.

source

find_isomorphism Method
julia
find_isomorphism(G, op, A::GrpAb) -> Dict, Dict

Given an abelian group A and a collection G which is an abelian group with the operation op, this functions returns isomorphisms GA and AG encoded as dictionaries.

It is assumed that G and A are isomorphic.

source

Subgroups and Quotients

torsion_subgroup Method
julia
torsion_subgroup(G::FinGenAbGroup) -> FinGenAbGroup, Map

Return the torsion subgroup of G.

source

sub Method
julia
sub(G::FinGenAbGroup, s::Vector{FinGenAbGroupElem}) -> FinGenAbGroup, FinGenAbGroupHom

Create the subgroup H of G generated by the elements in s together with the injection ι:HG.

source

sub Method
julia
sub(A::SMat, r::AbstractUnitRange, c::AbstractUnitRange) -> SMat

Return the submatrix of A, where the rows correspond to r and the columns correspond to c.

source

julia
sub(s::Vector{FinGenAbGroupElem}) -> FinGenAbGroup, FinGenAbGroupHom

Assuming that the non-empty array s contains elements of an abelian group G, this functions returns the subgroup H of G generated by the elements in s together with the injection ι:HG.

source

sub Method
julia
sub(G::FinGenAbGroup, M::ZZMatrix) -> FinGenAbGroup, FinGenAbGroupHom

Create the subgroup H of G generated by the elements corresponding to the rows of M together with the injection ι:HG.

source

sub Method
julia
sub(G::FinGenAbGroup, n::ZZRingElem) -> FinGenAbGroup, FinGenAbGroupHom

Create the subgroup nG of G together with the injection ι:nGG.

source

sub Method
julia
sub(G::FinGenAbGroup, n::Integer) -> FinGenAbGroup, Map

Create the subgroup nG of G together with the injection ι:nGG.

source

sylow_subgroup Method
julia
sylow_subgroup(G::FinGenAbGroup, p::IntegerUnion) -> FinGenAbGroup, FinGenAbGroupHom

Return the Sylow psubgroup of the finitely generated abelian group G, for a prime p. This is the subgroup of p-power order in G whose index in G is coprime to p.

Examples

julia
julia> A = abelian_group(ZZRingElem[2, 6, 30])
+    
Skip to content

Structural Computations

Abelian groups support a wide range of structural operations such as

  • enumeration of subgroups

  • (outer) direct products

  • tensor and hom constructions

  • free resolutions and general complexes

  • (co)-homology and tensor and hom-functors

snf Method
julia
snf(A::FinGenAbGroup) -> FinGenAbGroup, FinGenAbGroupHom

Return a pair (G,f), where G is an abelian group in canonical Smith normal form isomorphic to A and an isomorphism f:GA.

source

find_isomorphism Method
julia
find_isomorphism(G, op, A::GrpAb) -> Dict, Dict

Given an abelian group A and a collection G which is an abelian group with the operation op, this functions returns isomorphisms GA and AG encoded as dictionaries.

It is assumed that G and A are isomorphic.

source

Subgroups and Quotients

torsion_subgroup Method
julia
torsion_subgroup(G::FinGenAbGroup) -> FinGenAbGroup, Map

Return the torsion subgroup of G.

source

sub Method
julia
sub(G::FinGenAbGroup, s::Vector{FinGenAbGroupElem}) -> FinGenAbGroup, FinGenAbGroupHom

Create the subgroup H of G generated by the elements in s together with the injection ι:HG.

source

sub Method
julia
sub(A::SMat, r::AbstractUnitRange, c::AbstractUnitRange) -> SMat

Return the submatrix of A, where the rows correspond to r and the columns correspond to c.

source

julia
sub(s::Vector{FinGenAbGroupElem}) -> FinGenAbGroup, FinGenAbGroupHom

Assuming that the non-empty array s contains elements of an abelian group G, this functions returns the subgroup H of G generated by the elements in s together with the injection ι:HG.

source

sub Method
julia
sub(G::FinGenAbGroup, M::ZZMatrix) -> FinGenAbGroup, FinGenAbGroupHom

Create the subgroup H of G generated by the elements corresponding to the rows of M together with the injection ι:HG.

source

sub Method
julia
sub(G::FinGenAbGroup, n::ZZRingElem) -> FinGenAbGroup, FinGenAbGroupHom

Create the subgroup nG of G together with the injection ι:nGG.

source

sub Method
julia
sub(G::FinGenAbGroup, n::Integer) -> FinGenAbGroup, Map

Create the subgroup nG of G together with the injection ι:nGG.

source

sylow_subgroup Method
julia
sylow_subgroup(G::FinGenAbGroup, p::IntegerUnion) -> FinGenAbGroup, FinGenAbGroupHom

Return the Sylow psubgroup of the finitely generated abelian group G, for a prime p. This is the subgroup of p-power order in G whose index in G is coprime to p.

Examples

julia
julia> A = abelian_group(ZZRingElem[2, 6, 30])
 Z/2 x Z/6 x Z/30
 
 julia> H, j = sylow_subgroup(A, 2);
@@ -28,7 +28,7 @@
 
 julia> divexact(order(A), order(H))
 45

source

has_quotient Method
julia
has_quotient(G::FinGenAbGroup, invariant::Vector{Int}) -> Bool

Given an abelian group G, return true if it has a quotient with given elementary divisors and false otherwise.

source

has_complement Method
julia
has_complement(f::FinGenAbGroupHom) -> Bool, FinGenAbGroupHom
-has_complement(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool, FinGenAbGroupHom

Given a map representing a subgroup of a group G, or a subgroup U of a group G, return either true and an injection of a complement in G, or false.

See also: is_pure

source

is_pure Method
julia
is_pure(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called pure if for all n an element in U that is in the image of the multiplication by n map of G is also a multiple of an element in U.

For finite abelian groups this is equivalent to U having a complement in G. They are also know as isolated subgroups and serving subgroups.

See also: is_neat, has_complement

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
+has_complement(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool, FinGenAbGroupHom

Given a map representing a subgroup of a group G, or a subgroup U of a group G, return either true and an injection of a complement in G, or false.

See also: is_pure

source

is_pure Method
julia
is_pure(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called pure if for all n an element in U that is in the image of the multiplication by n map of G is also a multiple of an element in U.

For finite abelian groups this is equivalent to U having a complement in G. They are also know as isolated subgroups and serving subgroups.

See also: is_neat, has_complement

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
 
 julia> U, _ = sub(G, [G[1]+2*G[2]]);
 
@@ -41,7 +41,7 @@
 true
 
 julia> has_complement(U, G)[1]
-true

source

is_neat Method
julia
is_neat(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called neat if for all primes p an element in U that is in the image of the multiplication by p map of G is also a multiple of an element in U.

See also: is_pure

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
+true

source

is_neat Method
julia
is_neat(U::FinGenAbGroup, G::FinGenAbGroup) -> Bool

A subgroup U of G is called neat if for all primes p an element in U that is in the image of the multiplication by p map of G is also a multiple of an element in U.

See also: is_pure

EXAMPLES

julia
julia> G = abelian_group([2, 8]);
 
 julia> U, _ = sub(G, [G[1] + 2*G[2]]);
 
@@ -49,7 +49,7 @@
 true
 
 julia> is_pure(U, G)
-false

source

saturate Method
julia
saturate(U::FinGenAbGroup, G::FinGenAbGroup) -> FinGenAbGroup

For a subgroup U of G find a minimal overgroup that is pure, and thus has a complement.

See also: is_pure, has_complement

source

A sophisticated algorithm for the enumeration of all (or selected) subgroups of a finite abelian group is available.

psubgroups Method
julia
psubgroups(g::FinGenAbGroup, p::Integer;
+false

source

saturate Method
julia
saturate(U::FinGenAbGroup, G::FinGenAbGroup) -> FinGenAbGroup

For a subgroup U of G find a minimal overgroup that is pure, and thus has a complement.

See also: is_pure, has_complement

source

A sophisticated algorithm for the enumeration of all (or selected) subgroups of a finite abelian group is available.

psubgroups Method
julia
psubgroups(g::FinGenAbGroup, p::Integer;
            subtype = :all,
            quotype = :all,
            index = -1,
@@ -88,8 +88,8 @@
 (U[1], map(U[2], gens(U[1]))) = (Finitely generated abelian group with 3 generators and 3 relations, FinGenAbGroupElem[[0, 3], [0, 4], [2, 0]])
 (U[1], map(U[2], gens(U[1]))) = (Finitely generated abelian group with 4 generators and 4 relations, FinGenAbGroupElem[[3, 6], [0, 6], [0, 4], [2, 0]])
quo Method
julia
quo(G::FinGenAbGroup, s::Vector{FinGenAbGroupElem}) -> FinGenAbGroup, GrpAbfinGemMap

Create the quotient H of G by the subgroup generated by the elements in s, together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, M::ZZMatrix) -> FinGenAbGroup, FinGenAbGroupHom

Create the quotient H of G by the subgroup generated by the elements corresponding to the rows of M, together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, n::Integer}) -> FinGenAbGroup, Map
 quo(G::FinGenAbGroup, n::ZZRingElem}) -> FinGenAbGroup, Map

Returns the quotient H=G/nG together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, n::Integer}) -> FinGenAbGroup, Map
-quo(G::FinGenAbGroup, n::ZZRingElem}) -> FinGenAbGroup, Map

Returns the quotient H=G/nG together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, U::FinGenAbGroup) -> FinGenAbGroup, Map

Create the quotient H of G by U, together with the projection p:GH.

source

For 2 subgroups U and V of the same group G, U+V returns the smallest subgroup of G containing both. Similarly, UV computes the intersection and UV tests for inclusion. The difference between issubset = and is_subgroup is that the inclusion map is also returned in the 2nd call.

intersect Method
julia
intersect(mG::FinGenAbGroupHom, mH::FinGenAbGroupHom) -> FinGenAbGroup, Map

Given two injective maps of abelian groups with the same codomain G, return the intersection of the images as a subgroup of G.

source

Direct Products

direct_product Method
julia
direct_product(G::FinGenAbGroup...) -> FinGenAbGroup, Vector{FinGenAbGroupHom}

Return the direct product D of the (finitely many) abelian groups Gi, together with the projections DGi.

For finite abelian groups, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain D as a direct sum together with the injections DGi, one should call direct_sum(G...). If one wants to obtain D as a biproduct together with the projections and the injections, one should call biproduct(G...).

Otherwise, one could also call canonical_injections(D) or canonical_projections(D) later on.

source

canonical_injection Method
julia
canonical_injection(G::FinGenAbGroup, i::Int) -> FinGenAbGroupHom

Given a group G that was created as a direct product, return the injection from the ith component.

source

canonical_projection Method
julia
canonical_projection(G::FinGenAbGroup, i::Int) -> FinGenAbGroupHom

Given a group G that was created as a direct product, return the projection onto the ith component.

source

flat Method
julia
flat(G::FinGenAbGroup) -> FinGenAbGroupHom

Given a group G that is created using (iterated) direct products, or (iterated) tensor products, return a group isomorphism into a flat product: for G:=(AB)C, it returns the isomorphism GABC (resp. ).

source

Tensor Producs

tensor_product Method
julia
tensor_product(G::FinGenAbGroup...; task::Symbol = :map) -> FinGenAbGroup, Map

Given groups Gi, compute the tensor product G1Gn. If task is set to ":map", a map ϕ is returned that maps tuples in G1××Gn to pure tensors g1gn. The map admits a preimage as well.

source

hom_tensor Method
julia
hom_tensor(G::FinGenAbGroup, H::FinGenAbGroup, A::Vector{ <: Map{FinGenAbGroup, FinGenAbGroup}}) -> Map

Given groups G=G1Gn and H=H1Hn as well as maps ϕi:GiHi, compute the tensor product of the maps.

source

Hom-Group

hom Method
julia
hom(G::FinGenAbGroup, H::FinGenAbGroup; task::Symbol = :map) -> FinGenAbGroup, Map

Computes the group of all homomorpisms from G to H as an abstract group. If task is ":map", then a map ϕ is computed that can be used to obtain actual homomorphisms. This map also allows preimages. Set task to ":none" to not compute the map.

source

- +quo(G::FinGenAbGroup, n::ZZRingElem}) -> FinGenAbGroup, Map

Returns the quotient H=G/nG together with the projection p:GH.

source

quo Method
julia
quo(G::FinGenAbGroup, U::FinGenAbGroup) -> FinGenAbGroup, Map

Create the quotient H of G by U, together with the projection p:GH.

source

For 2 subgroups U and V of the same group G, U+V returns the smallest subgroup of G containing both. Similarly, UV computes the intersection and UV tests for inclusion. The difference between issubset = and is_subgroup is that the inclusion map is also returned in the 2nd call.

intersect Method
julia
intersect(mG::FinGenAbGroupHom, mH::FinGenAbGroupHom) -> FinGenAbGroup, Map

Given two injective maps of abelian groups with the same codomain G, return the intersection of the images as a subgroup of G.

source

Direct Products

direct_product Method
julia
direct_product(G::FinGenAbGroup...) -> FinGenAbGroup, Vector{FinGenAbGroupHom}

Return the direct product D of the (finitely many) abelian groups Gi, together with the projections DGi.

For finite abelian groups, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain D as a direct sum together with the injections DGi, one should call direct_sum(G...). If one wants to obtain D as a biproduct together with the projections and the injections, one should call biproduct(G...).

Otherwise, one could also call canonical_injections(D) or canonical_projections(D) later on.

source

canonical_injection Method
julia
canonical_injection(G::FinGenAbGroup, i::Int) -> FinGenAbGroupHom

Given a group G that was created as a direct product, return the injection from the ith component.

source

canonical_projection Method
julia
canonical_projection(G::FinGenAbGroup, i::Int) -> FinGenAbGroupHom

Given a group G that was created as a direct product, return the projection onto the ith component.

source

flat Method
julia
flat(G::FinGenAbGroup) -> FinGenAbGroupHom

Given a group G that is created using (iterated) direct products, or (iterated) tensor products, return a group isomorphism into a flat product: for G:=(AB)C, it returns the isomorphism GABC (resp. ).

source

Tensor Producs

tensor_product Method
julia
tensor_product(G::FinGenAbGroup...; task::Symbol = :map) -> FinGenAbGroup, Map

Given groups Gi, compute the tensor product G1Gn. If task is set to ":map", a map ϕ is returned that maps tuples in G1××Gn to pure tensors g1gn. The map admits a preimage as well.

source

hom_tensor Method
julia
hom_tensor(G::FinGenAbGroup, H::FinGenAbGroup, A::Vector{ <: Map{FinGenAbGroup, FinGenAbGroup}}) -> Map

Given groups G=G1Gn and H=H1Hn as well as maps ϕi:GiHi, compute the tensor product of the maps.

source

Hom-Group

hom Method
julia
hom(G::FinGenAbGroup, H::FinGenAbGroup; task::Symbol = :map) -> FinGenAbGroup, Map

Computes the group of all homomorpisms from G to H as an abstract group. If task is ":map", then a map ϕ is computed that can be used to obtain actual homomorphisms. This map also allows preimages. Set task to ":none" to not compute the map.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/algebras/basics.html b/v0.34.8/manual/algebras/basics.html index e607459cee..9e19ea4fa8 100644 --- a/v0.34.8/manual/algebras/basics.html +++ b/v0.34.8/manual/algebras/basics.html @@ -6,23 +6,23 @@ Basics | Hecke - - + + - - - - - + + + + + -
Skip to content

Basics

Creation of algebras

See the corresponding sections on structure constant algebras.

zero_algebra Method
julia
zero_algebra([T, ] K::Field) -> AbstractAssociativeAlgebra

Return the zero ring as an algebra over the field K.

The optional first argument determines the type of the algebra, and can be StructureConstantAlgebra (default) or MatrixAlgebra.

Examples

julia
julia> A = zero_algebra(QQ)
-Structure constant algebra of dimension 0 over QQ

source

Basic properties

base_ring Method
julia
base_ring(A::AbstractAssociativeAlgebra) -> Field

Given a K-algebra A, return K.

source

basis Method
julia
basis(A::AbstractAssociativeAlgebra) -> Vector

Given a K-algebra A return the K-basis of A. See also coordinates to get the the coordinates of an element with respect to the bases.

source

Predicates

is_zero Method
julia
is_zero(A::AbstractAssociativeAlgebra) -> Bool

Return whether A is the zero algebra.

source

is_commutative Method
julia
is_commutative(A::AbstractAssociativeAlgebra) -> Bool

Return whether A is commutative.

Examples

julia
julia> A = matrix_algebra(QQ, 2);
+    
Skip to content

Basics

Creation of algebras

See the corresponding sections on structure constant algebras.

zero_algebra Method
julia
zero_algebra([T, ] K::Field) -> AbstractAssociativeAlgebra

Return the zero ring as an algebra over the field K.

The optional first argument determines the type of the algebra, and can be StructureConstantAlgebra (default) or MatrixAlgebra.

Examples

julia
julia> A = zero_algebra(QQ)
+Structure constant algebra of dimension 0 over QQ

source

Basic properties

base_ring Method
julia
base_ring(A::AbstractAssociativeAlgebra) -> Field

Given a K-algebra A, return K.

source

basis Method
julia
basis(A::AbstractAssociativeAlgebra) -> Vector

Given a K-algebra A return the K-basis of A. See also coordinates to get the the coordinates of an element with respect to the bases.

source

Predicates

is_zero Method
julia
is_zero(A::AbstractAssociativeAlgebra) -> Bool

Return whether A is the zero algebra.

source

is_commutative Method
julia
is_commutative(A::AbstractAssociativeAlgebra) -> Bool

Return whether A is commutative.

Examples

julia
julia> A = matrix_algebra(QQ, 2);
 
 julia> is_commutative(A)
-false

source

is_central Method
julia
is_central(A::AbstractAssociativeAlgebra)

Return whether the K-algebra A is central, that is, whether K is the center of A.

source

Generators

gens Method
julia
gens(A::AbstractAssociativeAlgebra; thorough_search::Bool = false) -> Vector

Given a K-algebra A, return a subset of basis(A), which generates A as an algebra over K.

If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.

The gens_with_data function computes additional data for expressing a basis as words in the generators.

Examples

julia
julia> A = matrix_algebra(QQ, 3);
+false

source

is_central Method
julia
is_central(A::AbstractAssociativeAlgebra)

Return whether the K-algebra A is central, that is, whether K is the center of A.

source

Generators

gens Method
julia
gens(A::AbstractAssociativeAlgebra; thorough_search::Bool = false) -> Vector

Given a K-algebra A, return a subset of basis(A), which generates A as an algebra over K.

If thorough_search is true, the number of returned generators is possibly smaller. This will in general increase the runtime. It is not guaranteed that the number of generators is minimal in any case.

The gens_with_data function computes additional data for expressing a basis as words in the generators.

Examples

julia
julia> A = matrix_algebra(QQ, 3);
 
 julia> gens(A; thorough_search = true)
 5-element Vector{MatAlgebraElem{QQFieldElem, QQMatrix}}:
@@ -48,8 +48,8 @@
 1

source

dimension_over_center Method
julia
dimension_over_center(A::AbstractAssociativeAlgebra) -> Int

Given a simple K-algebra with center C, return the C-dimension A.

Examples

julia
julia> A = matrix_algebra(QQ, 2);
 
 julia> dimension_of_center(A)
-1

source

- +1

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/algebras/groupalgebras.html b/v0.34.8/manual/algebras/groupalgebras.html index 7096e008a4..fb1e55de21 100644 --- a/v0.34.8/manual/algebras/groupalgebras.html +++ b/v0.34.8/manual/algebras/groupalgebras.html @@ -6,19 +6,19 @@ Group algebras | Hecke - - + + - - - - - + + + + + -
Skip to content

Group algebras

As is natural, the basis of a group algebra K[G] correspond to the elements of G with respect to some arbitrary ordering.

Creation

group_algebra Method
julia
group_algebra(K::Ring, G::Group; cached::Bool = true) -> GroupAlgebra

Return the group algebra of the group G over the ring R. Shorthand syntax for this construction is R[G].

Examples

julia
julia> QG = group_algebra(QQ, small_group(8, 5))
+    
Skip to content

Group algebras

As is natural, the basis of a group algebra K[G] correspond to the elements of G with respect to some arbitrary ordering.

Creation

group_algebra Method
julia
group_algebra(K::Ring, G::Group; cached::Bool = true) -> GroupAlgebra

Return the group algebra of the group G over the ring R. Shorthand syntax for this construction is R[G].

Examples

julia
julia> QG = group_algebra(QQ, small_group(8, 5))
 Group algebra
   of generic group of order 8 with multiplication table
   over rational field

source

Elements

Given a group algebra A and an element of a group g, the corresponding group algebra element can be constructed using the syntax A(g).

julia
julia> G = abelian_group([2, 2]); a = G([0, 1]);
@@ -31,8 +31,8 @@
 true
 
 julia> QG(Dict(a => 2, zero(G) => 1)) == 2 * QG(a) + 1 * QG(zero(G))
-true
- +true
+ \ No newline at end of file diff --git a/v0.34.8/manual/algebras/intro.html b/v0.34.8/manual/algebras/intro.html index 89775bb8d0..3b128884ff 100644 --- a/v0.34.8/manual/algebras/intro.html +++ b/v0.34.8/manual/algebras/intro.html @@ -6,20 +6,20 @@ Introduction | Hecke - - + + - - - - - + + + + + -
Skip to content

Introduction

Note

The functions described in this section are experimental. While the overall functionality provided will stay the same, names of specific functions or conventions for the return values might change in future versions.

This section describes the functionality for finite-dimensional associative algebras (or just algebras for short). Since different applications have different requirements, the following types of algebras are implemented:

  • structure constant algebras,

  • matrix algebras,

  • group algebras,

  • quaternion algebras.

These share a common interface encompassing a wide range of functions, which is indicated by the use of the type AbstractAssociativeAlgebra in the signature.

- +
Skip to content

Introduction

Note

The functions described in this section are experimental. While the overall functionality provided will stay the same, names of specific functions or conventions for the return values might change in future versions.

This section describes the functionality for finite-dimensional associative algebras (or just algebras for short). Since different applications have different requirements, the following types of algebras are implemented:

  • structure constant algebras,

  • matrix algebras,

  • group algebras,

  • quaternion algebras.

These share a common interface encompassing a wide range of functions, which is indicated by the use of the type AbstractAssociativeAlgebra in the signature.

+ \ No newline at end of file diff --git a/v0.34.8/manual/algebras/structureconstant.html b/v0.34.8/manual/algebras/structureconstant.html index 9d42a13715..2d5607d013 100644 --- a/v0.34.8/manual/algebras/structureconstant.html +++ b/v0.34.8/manual/algebras/structureconstant.html @@ -6,24 +6,24 @@ Structure constant algebras | Hecke - - + + - - - - - + + + + + -
Skip to content

Structure constant algebras

Creation

structure_constant_algebra Method
julia
structure_constant_algebra(R::Ring, sctable::Array{_, 3}; one::Vector = nothing,
+    
Skip to content

Structure constant algebras

Creation

structure_constant_algebra Method
julia
structure_constant_algebra(R::Ring, sctable::Array{_, 3}; one::Vector = nothing,
                                                           check::Bool = true)

Given an array with dimensions (d,d,d) and a ring R, return the d-dimensional structure constant algebra over R. The basis e of R satisfies e[i] * e[j] = sum(sctable[i,j,k] * e[k] for k in 1:d).

Unless check = false, this includes (time consuming) associativity and distributivity checks. If one is given, record the element with the supplied coordinate vector as the one element of the algebra.

Examples

julia
julia> associative_algebra(QQ, reshape([1, 0, 0, 2, 0, 1, 1, 0], (2, 2, 2)))
 Structure constant algebra of dimension 2 over QQ

source

structure_constant_algebra Method
julia
structure_constant_algebra(K::SimpleNumField) -> StructureConstantAlgebra, Map

Given a number field L/K, return L as a K-algebra A together with a K-linear map AL.

Examples

julia
julia> L, = quadratic_field(2);
 
 julia> structure_constant_algebra(L)
-(Structure constant algebra of dimension 2 over QQ, Map: structure constant algebra -> real quadratic field)

source

Structure constant table

structure_constant_table Method
julia
structure_constant_table(A::StructureConstantAlgebra; copy::Bool = true) -> Array{_, 3}

Given an algebra A, return the structure constant table of A. See structure_constant_algebra for the defining property.

Examples

julia
julia> A = associative_algebra(QQ, reshape([1, 0, 0, 2, 0, 1, 1, 0], (2, 2, 2)));
+(Structure constant algebra of dimension 2 over QQ, Map: structure constant algebra -> real quadratic field)

source

Structure constant table

structure_constant_table Method
julia
structure_constant_table(A::StructureConstantAlgebra; copy::Bool = true) -> Array{_, 3}

Given an algebra A, return the structure constant table of A. See structure_constant_algebra for the defining property.

Examples

julia
julia> A = associative_algebra(QQ, reshape([1, 0, 0, 2, 0, 1, 1, 0], (2, 2, 2)));
 
 julia> structure_constant_table(A)
 2×2×2 Array{QQFieldElem, 3}:
@@ -33,8 +33,8 @@
 
 [:, :, 2] =
  0  1
- 1  0

source

- + 1 0

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/developer/documentation.html b/v0.34.8/manual/developer/documentation.html index 8f8a004c1b..386213f090 100644 --- a/v0.34.8/manual/developer/documentation.html +++ b/v0.34.8/manual/developer/documentation.html @@ -6,22 +6,22 @@ Documentation | Hecke - - + + - - - - - + + + + + -
Skip to content

Documentation

The files for the documentation are located in the docs/src/manual/ directory.

Adding files to the documentation

To add files to the documentation edit directly the file docs/src/.vitepress/config.mts.

Building the documentation

  1. Run julia and execute (with Hecke developed in your current environment)
julia
julia> using Hecke
+    
Skip to content

Documentation

The files for the documentation are located in the docs/src/manual/ directory.

Adding files to the documentation

To add files to the documentation edit directly the file docs/src/.vitepress/config.mts.

Building the documentation

  1. Run julia and execute (with Hecke developed in your current environment)
julia
julia> using Hecke
 
-julia> Hecke.build_doc() # or Hecke.build_doc(;doctest = false) to speed things up
  1. In the terminal, navigate to docs/ and run
bash
Hecke/docs> npm run docs:build

(This step takes place outside of julia.)

Note

To speed up the development process, step 1 can be repeated within the same julia session.

- +julia> Hecke.build_doc() # or Hecke.build_doc(;doctest = false) to speed things up
  1. In the terminal, navigate to docs/ and run
bash
Hecke/docs> npm run docs:build

(This step takes place outside of julia.)

Note

To speed up the development process, step 1 can be repeated within the same julia session.

+ \ No newline at end of file diff --git a/v0.34.8/manual/developer/test.html b/v0.34.8/manual/developer/test.html index 7afcf16902..847de095bc 100644 --- a/v0.34.8/manual/developer/test.html +++ b/v0.34.8/manual/developer/test.html @@ -6,19 +6,19 @@ Testing | Hecke - - + + - - - - - + + + + + -
Skip to content

Testing

Structure

The Hecke tests can be found in Hecke/test/ and are organized in such a way that the file hierarchy mirrors the source directory Hecke/src/. For example, here is a subset of the src/QuadForm and the test/QuadForm directories:

├── src
+    
Skip to content

Testing

Structure

The Hecke tests can be found in Hecke/test/ and are organized in such a way that the file hierarchy mirrors the source directory Hecke/src/. For example, here is a subset of the src/QuadForm and the test/QuadForm directories:

├── src
 │   ├── QuadForm
 │   │   ├── Enumeration.jl
 │   │   ├── Herm
@@ -51,8 +51,8 @@
 │   │   │   └── ZLattices.jl
 │   │   ├── QuadBin.jl
 │   │   └── Torsion.jl
-│   ├── QuadForm.jl

Adding tests

  • If one adds functionality to a file, say src/QuadForm/Quad/Genus.jl, a corresponding a test should be added to the corresponding test file. In this case this would be test/QuadForm/Quad/Genus.jl.

  • Assume one adds a new file, say src/QuadForm/New.jl, which is included in src/QuadForm.jl. Then a corresponding file test/QuadForm/Test.jl containing the tests must be added. This new file must then also be included in test/QuadForm.jl.

  • Similar to the above, if a new directory in src/ is added, the same must apply in test/.

Adding long tests

If one knows that running a particular test will take a long time, one can use @long_test instead of @test inside the test suite. When running the test suite, tests annotated with @long_test will not be run, unless specifically asked for (see below). The continuous integration servers will run at least one job including the long tests.

Running the tests

Running all tests

All tests can be run as usual with Pkg.test("Hecke"). The whole test suite can be run in parallel using the following options:

  • Set the environment variable HECKE_TEST_VARIABLE=n, where n is the number of processes.

  • On julia >= 1.3, run Pkg.test("Hecke", test_args = ["-j$(n)"]), where n is the number of processes.

The tests annotated with @long_test can be invoked by setting HECKE_TESTLONG=1 or adding "long" to the test_args keyword argument on julia >= 1.3.

Running a subset of tests

Because the test structure mirrors the source directory, it is easy to run only a subset of tests. For example, to run all the tests in test/QuadForm/Quad/Genus.jl, one can invoke:

julia
julia> Hecke.test_module("QuadForm/Quad/Genus")

This also works on the directory level. If one wants to add run all tests for quadratic forms, one can just run

julia
julia> Hecke.test_module("QuadForm")
- +│   ├── QuadForm.jl

Adding tests

  • If one adds functionality to a file, say src/QuadForm/Quad/Genus.jl, a corresponding a test should be added to the corresponding test file. In this case this would be test/QuadForm/Quad/Genus.jl.

  • Assume one adds a new file, say src/QuadForm/New.jl, which is included in src/QuadForm.jl. Then a corresponding file test/QuadForm/Test.jl containing the tests must be added. This new file must then also be included in test/QuadForm.jl.

  • Similar to the above, if a new directory in src/ is added, the same must apply in test/.

Adding long tests

If one knows that running a particular test will take a long time, one can use @long_test instead of @test inside the test suite. When running the test suite, tests annotated with @long_test will not be run, unless specifically asked for (see below). The continuous integration servers will run at least one job including the long tests.

Running the tests

Running all tests

All tests can be run as usual with Pkg.test("Hecke"). The whole test suite can be run in parallel using the following options:

  • Set the environment variable HECKE_TEST_VARIABLE=n, where n is the number of processes.

  • On julia >= 1.3, run Pkg.test("Hecke", test_args = ["-j$(n)"]), where n is the number of processes.

The tests annotated with @long_test can be invoked by setting HECKE_TESTLONG=1 or adding "long" to the test_args keyword argument on julia >= 1.3.

Running a subset of tests

Because the test structure mirrors the source directory, it is easy to run only a subset of tests. For example, to run all the tests in test/QuadForm/Quad/Genus.jl, one can invoke:

julia
julia> Hecke.test_module("QuadForm/Quad/Genus")

This also works on the directory level. If one wants to add run all tests for quadratic forms, one can just run

julia
julia> Hecke.test_module("QuadForm")
+ \ No newline at end of file diff --git a/v0.34.8/manual/elliptic_curves/basics.html b/v0.34.8/manual/elliptic_curves/basics.html index e4d058fa8c..ee97185277 100644 --- a/v0.34.8/manual/elliptic_curves/basics.html +++ b/v0.34.8/manual/elliptic_curves/basics.html @@ -6,19 +6,19 @@ Basics | Hecke - - + + - - - - - + + + + + -
Skip to content

Basics

Creation

elliptic_curve Function
julia
elliptic_curve([K::Field], x::Vector; check::Bool = true) -> EllipticCurve

Construct an elliptic curve with Weierstrass equation specified by the coefficients in x, which must have either length 2 or 5.

Per default, it is checked whether the discriminant is non-zero. This can be disabled by setting check = false.

Examples

julia
julia> elliptic_curve(QQ, [1, 2, 3, 4, 5])
+    
Skip to content

Basics

Creation

elliptic_curve Function
julia
elliptic_curve([K::Field], x::Vector; check::Bool = true) -> EllipticCurve

Construct an elliptic curve with Weierstrass equation specified by the coefficients in x, which must have either length 2 or 5.

Per default, it is checked whether the discriminant is non-zero. This can be disabled by setting check = false.

Examples

julia
julia> elliptic_curve(QQ, [1, 2, 3, 4, 5])
 Elliptic curve with equation
 y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5
 
@@ -67,8 +67,8 @@
  Point  (0 : 1 : 0)  of Elliptic curve with equation
 y^2 = x^3 + x + 2
  Point  (-1 : 0 : 1)  of Elliptic curve with equation
-y^2 = x^3 + x + 2

source

- +y^2 = x^3 + x + 2

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/elliptic_curves/finite_fields.html b/v0.34.8/manual/elliptic_curves/finite_fields.html index 7cdcfe88e0..fa19770cb9 100644 --- a/v0.34.8/manual/elliptic_curves/finite_fields.html +++ b/v0.34.8/manual/elliptic_curves/finite_fields.html @@ -6,19 +6,19 @@ Elliptic curves over finite fields | Hecke - - + + - - - - - + + + + + -
Skip to content

Elliptic curves over finite fields

Random points

  rand(E::EllipticCurve{<: FinFieldElem})

Return a random point on the elliptic curve E defined over a finite field.

julia
julia> E = elliptic_curve(GF(3), [1, 2]);
+    
Skip to content

Elliptic curves over finite fields

Random points

  rand(E::EllipticCurve{<: FinFieldElem})

Return a random point on the elliptic curve E defined over a finite field.

julia
julia> E = elliptic_curve(GF(3), [1, 2]);
 
 julia> rand(E)
 Point  (2 : 0 : 1)  of Elliptic curve with equation
@@ -72,8 +72,8 @@
 y^2 = x^3 + x + 2
 
 julia> disc_log(P, Q)
-13

source

- +13

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/elliptic_curves/intro.html b/v0.34.8/manual/elliptic_curves/intro.html index b6bee0bcaa..e74d5ea400 100644 --- a/v0.34.8/manual/elliptic_curves/intro.html +++ b/v0.34.8/manual/elliptic_curves/intro.html @@ -6,20 +6,20 @@ Introduction | Hecke - - + + - - - - - + + + + + -
Skip to content

Introduction

This chapter deals with functionality for elliptic curves, which is available over arbitrary fields, with specific features available for curvers over the rationals and number fields, and finite fields.

An elliptic curve E is the projective closure of the curve given by the Weierstrass equation

y2+a1xy+a3y=x3+a2x2+a4x+a6

specified by the list of coefficients [a1, a2, a3, a4, a6]. If a1=a2=a3=0, this simplifies to

y2=x3+a4x+a6

which we refer to as a short Weierstrass equation and which is specified by the two element list [a4, a6].

- +
Skip to content

Introduction

This chapter deals with functionality for elliptic curves, which is available over arbitrary fields, with specific features available for curvers over the rationals and number fields, and finite fields.

An elliptic curve E is the projective closure of the curve given by the Weierstrass equation

y2+a1xy+a3y=x3+a2x2+a4x+a6

specified by the list of coefficients [a1, a2, a3, a4, a6]. If a1=a2=a3=0, this simplifies to

y2=x3+a4x+a6

which we refer to as a short Weierstrass equation and which is specified by the two element list [a4, a6].

+ \ No newline at end of file diff --git a/v0.34.8/manual/elliptic_curves/number_fields.html b/v0.34.8/manual/elliptic_curves/number_fields.html index 8de887726e..2ee1c029fa 100644 --- a/v0.34.8/manual/elliptic_curves/number_fields.html +++ b/v0.34.8/manual/elliptic_curves/number_fields.html @@ -6,20 +6,20 @@ Elliptic curves over rationals and number fields | Hecke - - + + - - - - - + + + + + - - + + \ No newline at end of file diff --git a/v0.34.8/manual/index.html b/v0.34.8/manual/index.html index 2e7721172f..dec02476f3 100644 --- a/v0.34.8/manual/index.html +++ b/v0.34.8/manual/index.html @@ -6,20 +6,20 @@ Manual | Hecke - - + + - - - - - + + + + + - - + + \ No newline at end of file diff --git a/v0.34.8/manual/misc/FacElem.html b/v0.34.8/manual/misc/FacElem.html index a6e6d71dfc..abfdfa7ead 100644 --- a/v0.34.8/manual/misc/FacElem.html +++ b/v0.34.8/manual/misc/FacElem.html @@ -6,27 +6,27 @@ Factored Elements | Hecke - - + + - - - - - + + + + + -
Skip to content

Factored Elements

In many applications in number theory related to the multiplicative structure of number fields, interesting elements, e.g. units, are extremely large when written wrt. to a fxied basis for the field: for the fundamental unit in Q[d] it is known that the coefficients wrt. the canonical basis 1,d can have O(expd) many digits. All currently known, fast methods construct those elements as power products of smaller elements, allowing the computer to handle them.

Mathematically, one can think of factored elements to formally live in the ring Z[K] the group ring of the non-zero field elements. Thus elements are of the form $ \prod a_i^{e_i}$ where ai are elements in K, typically small and the eiZ are frequently large exponents. We refer to the ai as the base and the ei as the exponents of the factored element.

Since K is, in general, no PID, this presentation is non-unique, elements in this form can easily be multiplied, raised to large powers, but in general not compared and not added.

In Hecke, this is caputured more generally by the type FacElem, parametrized by the type of the elements in the base and the type of their parent.

Important special cases are

  • FacElem{ZZRingElem, ZZRing}, factored integers

  • FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, factored algerbaic numbers

  • FacElem{AbsNumFieldOrderIdeal, AbsNumFieldOrderIdealSet}, factored ideals

It should be noted that an object of type `FacElemZZRingElem,ZZRing will, in general, not represent an integer as the exponents can be negative.

Construction

In general one can define factored elements by giving 2 arrays, the base and the exponent, or a dictionary containing the pairs:

FacElem Type
julia
FacElem{B, S}

Type for factored elements, that is elements of the form prod a_i^k_i for elements a_i of type B in a ring of type S.

source

FacElem Method
julia
FacElem{B}(R, base::Vector{B}, exp::Vector{ZZRingElem}) -> FacElem{B}

Returns the element biei, un-expanded.

source

julia
FacElem{B}(base::Vector{B}, exp::Vector{ZZRingElem}) -> FacElem{B}

Returns the element biei, un-expanded.

source

julia
FacElem{B}(R, d::Dict{B, ZZRingElem}) -> FacElem{B}
+    
Skip to content

Factored Elements

In many applications in number theory related to the multiplicative structure of number fields, interesting elements, e.g. units, are extremely large when written wrt. to a fxied basis for the field: for the fundamental unit in Q[d] it is known that the coefficients wrt. the canonical basis 1,d can have O(expd) many digits. All currently known, fast methods construct those elements as power products of smaller elements, allowing the computer to handle them.

Mathematically, one can think of factored elements to formally live in the ring Z[K] the group ring of the non-zero field elements. Thus elements are of the form $ \prod a_i^{e_i}$ where ai are elements in K, typically small and the eiZ are frequently large exponents. We refer to the ai as the base and the ei as the exponents of the factored element.

Since K is, in general, no PID, this presentation is non-unique, elements in this form can easily be multiplied, raised to large powers, but in general not compared and not added.

In Hecke, this is caputured more generally by the type FacElem, parametrized by the type of the elements in the base and the type of their parent.

Important special cases are

  • FacElem{ZZRingElem, ZZRing}, factored integers

  • FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, factored algerbaic numbers

  • FacElem{AbsNumFieldOrderIdeal, AbsNumFieldOrderIdealSet}, factored ideals

It should be noted that an object of type `FacElemZZRingElem,ZZRing will, in general, not represent an integer as the exponents can be negative.

Construction

In general one can define factored elements by giving 2 arrays, the base and the exponent, or a dictionary containing the pairs:

FacElem Type
julia
FacElem{B, S}

Type for factored elements, that is elements of the form prod a_i^k_i for elements a_i of type B in a ring of type S.

source

FacElem Method
julia
FacElem{B}(R, base::Vector{B}, exp::Vector{ZZRingElem}) -> FacElem{B}

Returns the element biei, un-expanded.

source

julia
FacElem{B}(base::Vector{B}, exp::Vector{ZZRingElem}) -> FacElem{B}

Returns the element biei, un-expanded.

source

julia
FacElem{B}(R, d::Dict{B, ZZRingElem}) -> FacElem{B}
 FacElem{B}(R, d::Dict{B, Integer}) -> FacElem{B}

Returns the element bd[p], un-expanded.

source

julia
FacElem{B}(d::Dict{B, ZZRingElem}) -> FacElem{B}
 FacElem{B}(d::Dict{B, Integer}) -> FacElem{B}

Returns the element bd[p], un-expanded.

source

ideal Method
julia
 ideal(O::AbsSimpleNumFieldOrder, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField)

The factored fractional ideal aO.

source

Conversion

The process of computing the value defined by a factored element is available as evaluate. Depending on the types involved this can be very efficient.

evaluate Method
julia
evaluate{T}(x::FacElem{T}) -> T

Expands or evaluates the factored element, i.e. actually computes the value. Does "square-and-multiply" on the exponent vectors.

source

evaluate Method
julia
evaluate(x::FacElem{QQFieldElem}) -> QQFieldElem
 evaluate(x::FacElem{ZZRingElem}) -> ZZRingElem

Expands or evaluates the factored element, i.e. actually computes the the element. Works by first obtaining a simplified version of the power product into coprime base elements.

source

evaluate Method
julia
evaluate{T}(x::FacElem{T}) -> T

Expands or evaluates the factored element, i.e. actually computes the value. Does "square-and-multiply" on the exponent vectors.

source

evaluate_naive Method
julia
evaluate_naive{T}(x::FacElem{T}) -> T

Expands or evaluates the factored element, i.e. actually computes the value. Uses the obvious naive algorithm. Faster for input in finite rings.

source

Special functions

In the case where the parent of the base allows for efficient gcd computation, power products can be made unique:

simplify Method
julia
simplify(x::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> FacElem
 simplify(x::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> FacElem

Uses coprime_base to obtain a simplified version of x, ie. in the simplified version all base ideals will be pariwise coprime but not necessarily prime!.

source

simplify Method
julia
simplify(x::FacElem{QQFieldElem}) -> FacElem{QQFieldElem}
 simplify(x::FacElem{ZZRingElem}) -> FacElem{ZZRingElem}

Simplfies the factored element, i.e. arranges for the base to be coprime.

source

The simplified version can then be used further:

isone Method
julia
isone(x::FacElem{QQFieldElem}) -> Bool
 isone(x::FacElem{ZZRingElem}) -> Bool

Tests if x represents 1 without an evaluation.

source

factor_coprime Method
julia
factor_coprime(x::FacElem{ZZRingElem}) -> Fac{ZZRingElem}

Computed a partial factorisation of x, ie. writes x as a product of pariwise coprime integers.

source

factor_coprime Method
julia
factor_coprime(x::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}

Computed a partial factorisation of x, ie. writes x as a product of pariwise coprime integral ideals.

source

factor_coprime Method
julia
factor_coprime(Q::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}

A coprime factorisation of Q: each ideal in Q is split using \code{integral_split} and then a coprime basis is computed. This does {\bf not} use any factorisation.

source

factor_coprime Method
julia
factor_coprime(I::AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, ZZRingElem}

Factors the rincipal ideal generated by a into coprimes by computing a coprime basis from the principal ideals in the factorisation of a.

source

factor Method
julia
 factor(Q::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}

The factorisation of Q, by refining a coprime factorisation.

source

factor Method
julia
factor(I::AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}, a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) -> Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, ZZRingElem}

Factors the principal ideal generated by a by refining a coprime factorisation.

source

For factorised algebraic numbers a unique simplification is not possible, however, this allows still do obtain partial results:

compact_presentation Function
julia
compact_presentation(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, n::Int = 2; decom, arb_prec = 100, short_prec = 1000) -> FacElem

Computes a presentation a=aini where all the exponents ni are powers of n and, the elements ai are "small", generically, they have a norm bounded by dn/2 where d is the discriminant of the maximal order. As the algorithm needs the factorisation of the principal ideal generated by a, it can be passed in in \code{decom}.

source

valuation Method
julia
valuation(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

The valuation of a at P.

source

valuation Method
julia
valuation(A::FacElem{AbsSimpleNumFieldOrderFractionalIdeal, AbsNumFieldOrderFractionalIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})
-valuation(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})

The valuation of A at P.

source

evaluate_mod Method
julia
evaluate_mod(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, B::AbsSimpleNumFieldOrderFractionalIdeal) -> AbsSimpleNumFieldElem

Evaluates a using CRT and small primes. Assumes that the ideal generated by a is in fact B. Useful in cases where a has huge exponents, but the evaluated element is actually "small".

source

reduce_ideal Method
julia
reduce_ideal(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem}

Computes B and α in factored form, such that αB=A.

source

modular_proj Method
julia
modular_proj(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, me::modular_env) -> Vector{fqPolyRepFieldElem}

Given an algebraic number a in factored form and data \code{me} as computed by \code{modular_init}, project a onto the residue class fields.

source

Positivity & Signs

Factored elements can be used instead of number field elements for the functions sign, signs, is_positive, is_negative and is_totally_positive, see Positivity & Signs

Miscellaneous

max_exp Method
julia
max_exp(a::FacElem)

Finds the largest exponent in the factored element a.

source

min_exp Method
julia
min_exp(a::FacElem)

Finds the smallest exponent in the factored element a.

source

maxabs_exp Method
julia
maxabs_exp(a::FacElem)

Finds the largest exponent by absolute value in the factored element a.

source

- +valuation(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, AbsNumFieldOrderIdealSet{AbsSimpleNumField, AbsSimpleNumFieldElem}}, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem})

The valuation of A at P.

source

evaluate_mod Method
julia
evaluate_mod(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, B::AbsSimpleNumFieldOrderFractionalIdeal) -> AbsSimpleNumFieldElem

Evaluates a using CRT and small primes. Assumes that the ideal generated by a is in fact B. Useful in cases where a has huge exponents, but the evaluated element is actually "small".

source

reduce_ideal Method
julia
reduce_ideal(A::FacElem{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, FacElem{AbsSimpleNumFieldElem}

Computes B and α in factored form, such that αB=A.

source

modular_proj Method
julia
modular_proj(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, me::modular_env) -> Vector{fqPolyRepFieldElem}

Given an algebraic number a in factored form and data \code{me} as computed by \code{modular_init}, project a onto the residue class fields.

source

Positivity & Signs

Factored elements can be used instead of number field elements for the functions sign, signs, is_positive, is_negative and is_totally_positive, see Positivity & Signs

Miscellaneous

max_exp Method
julia
max_exp(a::FacElem)

Finds the largest exponent in the factored element a.

source

min_exp Method
julia
min_exp(a::FacElem)

Finds the smallest exponent in the factored element a.

source

maxabs_exp Method
julia
maxabs_exp(a::FacElem)

Finds the largest exponent by absolute value in the factored element a.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/misc/conjugacy.html b/v0.34.8/manual/misc/conjugacy.html index 69e1a9c3d7..247218efa7 100644 --- a/v0.34.8/manual/misc/conjugacy.html +++ b/v0.34.8/manual/misc/conjugacy.html @@ -6,19 +6,19 @@ Conjugacy of integral matrices | Hecke - - + + - - - - - + + + + + -
Skip to content

Conjugacy of integral matrices

is_GLZ_conjugate Method
julia
is_GLZ_conjugate(A::MatElem, B::MatElem) -> Bool, MatElem

Given two integral or rational matrices, determine whether there exists an invertible integral matrix T with TA=BT. If true, the second argument is such a matrix T. Otherwise, the second argument is unspecified.

julia
julia> A = matrix(ZZ, 4, 4, [ 0, 1,  0, 0,
+    
Skip to content

Conjugacy of integral matrices

is_GLZ_conjugate Method
julia
is_GLZ_conjugate(A::MatElem, B::MatElem) -> Bool, MatElem

Given two integral or rational matrices, determine whether there exists an invertible integral matrix T with TA=BT. If true, the second argument is such a matrix T. Otherwise, the second argument is unspecified.

julia
julia> A = matrix(ZZ, 4, 4, [ 0, 1,  0, 0,
                              -4, 0,  0, 0,
                               0, 0,  0, 1,
                               0, 0, -4, 0]);
@@ -31,8 +31,8 @@
 julia> fl, T = is_GLZ_conjugate(A, B);
 
 julia> isone(abs(det(T))) && T * A == B * T
-true

source

- +true

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/misc/mset.html b/v0.34.8/manual/misc/mset.html index f499ddffd8..e5d3e336a1 100644 --- a/v0.34.8/manual/misc/mset.html +++ b/v0.34.8/manual/misc/mset.html @@ -6,19 +6,19 @@ Multi-sets and sub-set iterators | Hecke - - + + - - - - - + + + + + -
Skip to content

Multi-sets and sub-set iterators

Multi-sets

Type and constructors

Objects of type MSet consists of a dictionary whose keys are the elements in the set, and the values are their respective multiplicity.

MSet Type
julia
MSet{T} <: AbstractSet{T}

Type for a multi-set, i.e. a set where elements are not unique, they (can) have a multiplicity. MSets can be created from any finite iterator.

Examples

julia
julia> MSet([1,1,2,3,4,4,5])
+    
Skip to content

Multi-sets and sub-set iterators

Multi-sets

Type and constructors

Objects of type MSet consists of a dictionary whose keys are the elements in the set, and the values are their respective multiplicity.

MSet Type
julia
MSet{T} <: AbstractSet{T}

Type for a multi-set, i.e. a set where elements are not unique, they (can) have a multiplicity. MSets can be created from any finite iterator.

Examples

julia
julia> MSet([1,1,2,3,4,4,5])
 MSet{Int64} with 7 elements:
   5
   4 : 2
@@ -173,8 +173,8 @@
   'y'
   'r'
   ' '
-  'v'

source

Sub-set iterators

Sub-multi-sets

subsets Method
julia
subsets(s::MSet) -> MSubSetIt{T}

Return an iterator on all sub-multi-sets of s.

source

julia
subsets(s::Set) -> SubSetItr{T}

Return an iterator for all sub-sets of s.

source

julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

julia
subsets(v::Vector{T}, k::Int) where T

Return a vector of all ordered k-element sub-vectors of v.

source

Sub-sets

subsets Method
julia
subsets(s::MSet) -> MSubSetIt{T}

Return an iterator on all sub-multi-sets of s.

source

julia
subsets(s::Set) -> SubSetItr{T}

Return an iterator for all sub-sets of s.

source

julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

julia
subsets(v::Vector{T}, k::Int) where T

Return a vector of all ordered k-element sub-vectors of v.

source

Sub-sets of a given size

subsets Method
julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

- + 'v'

source

Sub-set iterators

Sub-multi-sets

subsets Method
julia
subsets(s::MSet) -> MSubSetIt{T}

Return an iterator on all sub-multi-sets of s.

source

julia
subsets(s::Set) -> SubSetItr{T}

Return an iterator for all sub-sets of s.

source

julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

julia
subsets(v::Vector{T}, k::Int) where T

Return a vector of all ordered k-element sub-vectors of v.

source

Sub-sets

subsets Method
julia
subsets(s::MSet) -> MSubSetIt{T}

Return an iterator on all sub-multi-sets of s.

source

julia
subsets(s::Set) -> SubSetItr{T}

Return an iterator for all sub-sets of s.

source

julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

julia
subsets(v::Vector{T}, k::Int) where T

Return a vector of all ordered k-element sub-vectors of v.

source

Sub-sets of a given size

subsets Method
julia
subsets(s::Set, k::Int) -> SubSetSizeItr{T}

Return an iterator on all sub-sets of size k of s.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/misc/pmat.html b/v0.34.8/manual/misc/pmat.html index dd2c2e0746..ca51d22267 100644 --- a/v0.34.8/manual/misc/pmat.html +++ b/v0.34.8/manual/misc/pmat.html @@ -6,20 +6,20 @@ Pseudo-matrices | Hecke - - + + - - - - - + + + + + -
Skip to content

Pseudo-matrices

This chapter deals with pseudo-matrices. We follow the common terminology and conventions introduced in [1], however, we operate on rows, not on columns.

Let R be a Dedekind domain, typically, the maximal order of some number field K, further fix some finite dimensional K-vectorspace V (with some basis), frequently Kn or the K-structure of some extension of K. Since in general R is not a PID, the R-modules in V are usually not free, but still projective.

Any finitely generated R-module MV can be represented as a pseudo-matrix PMat as follows: The structure theory of R-modules gives the existence of (fractional) R-ideals Ai and elements ωiV such that M=Aiωi and the sum is direct.

Following Cohen we call modules of the form Aω for some ideal A and ωV a pseudo element. A system (Ai,ωi) is called a pseudo-generating system for M if Aiωi|i=M. A pseudo-generating system is called a pseudo-basis if the ωi are K-linear independent.

A pseudo-matrix X is a tuple containing a vector of ideals Ai (1ir) and a matrix UKr×n. The i-th row together with the i-th ideal defines a pseudo-element, thus an R-module, all of them together generate a module M.

A pseudo-matrix X=((Ai)i,U) is said to be in pseudo-hnf if U is essentially upper triangular. Similar to the classical hnf, there is an algorithm that transforms any pseudo-matrix into one in pseudo-hnf while maintaining the module.

Creation

In general to create a PMat one has to specify a matrix and a vector of ideals:

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the (row) pseudo matrix representing the Zk-module cimi where ci are the ideals in c and mi the rows of M.

source

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the (row) pseudo matrix representing the Zk-module cimi where ci are the ideals in c and mi the rows of M.

source

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the free (row) pseudo matrix representing the Zk-module Zkmi where mi are the rows of M.

source

(Those functions are also available as pseudo_matrix)

Operations

coefficient_ideals Method
julia
coefficient_ideals(M::PMat)

Returns the vector of coefficient ideals.

source

matrix Method
julia
matrix(M::PMat)

Returns the matrix part of the PMat.

source

base_ring Method
julia
base_ring(M::PMat)

The PMat M defines an R-module for some maximal order R. This function returns the R that was used to defined M.

source

pseudo_hnf Method
julia
pseudo_hnf(P::PMat)

Transforms P into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of P will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module.

A optional second argument can be specified as a symbols, indicating the desired shape of the echelon form. Possible are :upperright (the default) and :lowerleft

source

pseudo_hnf_with_transform Method
julia
pseudo_hnf_with_transform(P::PMat)

Transforms P into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of P will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module. The used transformation is returned as a second return value.

A optional second argument can be specified as a symbol, indicating the desired shape of the echelon form. Possible are :upperright (the default) and :lowerleft

source

Examples

- +
Skip to content

Pseudo-matrices

This chapter deals with pseudo-matrices. We follow the common terminology and conventions introduced in [1], however, we operate on rows, not on columns.

Let R be a Dedekind domain, typically, the maximal order of some number field K, further fix some finite dimensional K-vectorspace V (with some basis), frequently Kn or the K-structure of some extension of K. Since in general R is not a PID, the R-modules in V are usually not free, but still projective.

Any finitely generated R-module MV can be represented as a pseudo-matrix PMat as follows: The structure theory of R-modules gives the existence of (fractional) R-ideals Ai and elements ωiV such that M=Aiωi and the sum is direct.

Following Cohen we call modules of the form Aω for some ideal A and ωV a pseudo element. A system (Ai,ωi) is called a pseudo-generating system for M if Aiωi|i=M. A pseudo-generating system is called a pseudo-basis if the ωi are K-linear independent.

A pseudo-matrix X is a tuple containing a vector of ideals Ai (1ir) and a matrix UKr×n. The i-th row together with the i-th ideal defines a pseudo-element, thus an R-module, all of them together generate a module M.

A pseudo-matrix X=((Ai)i,U) is said to be in pseudo-hnf if U is essentially upper triangular. Similar to the classical hnf, there is an algorithm that transforms any pseudo-matrix into one in pseudo-hnf while maintaining the module.

Creation

In general to create a PMat one has to specify a matrix and a vector of ideals:

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the (row) pseudo matrix representing the Zk-module cimi where ci are the ideals in c and mi the rows of M.

source

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}, c::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the (row) pseudo matrix representing the Zk-module cimi where ci are the ideals in c and mi the rows of M.

source

pseudo_matrix Method
julia
pseudo_matrix(m::Generic.Mat{AbsSimpleNumFieldOrderElem}) -> PMat{AbsSimpleNumFieldElem, AbsSimpleNumFieldOrderFractionalIdeal}

Returns the free (row) pseudo matrix representing the Zk-module Zkmi where mi are the rows of M.

source

(Those functions are also available as pseudo_matrix)

Operations

coefficient_ideals Method
julia
coefficient_ideals(M::PMat)

Returns the vector of coefficient ideals.

source

matrix Method
julia
matrix(M::PMat)

Returns the matrix part of the PMat.

source

base_ring Method
julia
base_ring(M::PMat)

The PMat M defines an R-module for some maximal order R. This function returns the R that was used to defined M.

source

pseudo_hnf Method
julia
pseudo_hnf(P::PMat)

Transforms P into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of P will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module.

A optional second argument can be specified as a symbols, indicating the desired shape of the echelon form. Possible are :upperright (the default) and :lowerleft

source

pseudo_hnf_with_transform Method
julia
pseudo_hnf_with_transform(P::PMat)

Transforms P into pseudo-Hermite form as defined by Cohen. Essentially the matrix part of P will be upper triangular with some technical normalisation for the off-diagonal elements. This operation preserves the module. The used transformation is returned as a second return value.

A optional second argument can be specified as a symbol, indicating the desired shape of the echelon form. Possible are :upperright (the default) and :lowerleft

source

Examples

+ \ No newline at end of file diff --git a/v0.34.8/manual/misc/sparse.html b/v0.34.8/manual/misc/sparse.html index 584be9f804..9af0278d18 100644 --- a/v0.34.8/manual/misc/sparse.html +++ b/v0.34.8/manual/misc/sparse.html @@ -6,23 +6,23 @@ Sparse linear algebra | Hecke - - + + - - - - - + + + + + -
Skip to content

Sparse linear algebra

Introduction

This chapter deals with sparse linear algebra over commutative rings and fields.

Sparse linear algebra, that is, linear algebra with sparse matrices, plays an important role in various algorithms in algebraic number theory. For example, it is one of the key ingredients in the computation of class groups and discrete logarithms using index calculus methods.

Sparse rows

Building blocks for sparse matrices are sparse rows, which are modelled by objects of type SRow. More precisely, the type is of parametrized form SRow{T}, where T is the element type of the base ring R. For example, SRow{ZZRingElem} is the type for sparse rows over the integers.

It is important to note that sparse rows do not have a fixed number of columns, that is, they represent elements of {(xi)iRNxi=0 for almost all i}. In particular any two sparse rows over the same base ring can be added.

Creation

sparse_row Method
julia
sparse_row(R::Ring, J::Vector{Tuple{Int, T}}) -> SRow{T}

Constructs the sparse row (ai)i with aij=xj, where J=(ij,xj)j. The elements xi must belong to the ring R.

source

sparse_row Method
julia
sparse_row(R::Ring, J::Vector{Tuple{Int, Int}}) -> SRow

Constructs the sparse row (ai)i over R with aij=xj, where J=(ij,xj)j.

source

sparse_row Method
julia
sparse_row(R::NCRing, J::Vector{Int}, V::Vector{T}) -> SRow{T}

Constructs the sparse row (ai)i over R with aij=xj, where J=(ij)j and V=(xj)j.

source

Basic operations

Rows support the usual operations:

  • +, -, ==

  • multiplication by scalars

  • div, divexact

getindex Method
julia
getindex(A::SRow, j::Int) -> RingElem

Given a sparse row (ai)i and an index j return aj.

source

add_scaled_row Method
julia
add_scaled_row(A::SRow{T}, B::SRow{T}, c::T) -> SRow{T}

Returns the row cA+B.

source

add_scaled_row Method
julia
add_scaled_row(A::SRow{T}, B::SRow{T}, c::T) -> SRow{T}

Returns the row cA+B.

source

transform_row Method
julia
transform_row(A::SRow{T}, B::SRow{T}, i::Int, j::Int, a::T, b::T, c::T, d::T)

Returns the tuple (aA+bB,cA+dB).

source

length Method
julia
length(A::SRow)

Returns the number of nonzero entries of A.

source

Change of base ring

change_base_ring Method
julia
change_base_ring(R::Ring, A::SRow) -> SRow

Create a new sparse row by coercing all elements into the ring R.

source

Maximum, minimum and 2-norm

maximum Method
julia
maximum(A::SRow{T}) -> T

Returns the largest entry of A.

source

maximum Method
julia
maximum(A::SRow{T}) -> T

Returns the largest entry of A.

source

minimum Method
julia
minimum(A::SRow{T}) -> T

Returns the smallest entry of A.

source

julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
+    
Skip to content

Sparse linear algebra

Introduction

This chapter deals with sparse linear algebra over commutative rings and fields.

Sparse linear algebra, that is, linear algebra with sparse matrices, plays an important role in various algorithms in algebraic number theory. For example, it is one of the key ingredients in the computation of class groups and discrete logarithms using index calculus methods.

Sparse rows

Building blocks for sparse matrices are sparse rows, which are modelled by objects of type SRow. More precisely, the type is of parametrized form SRow{T}, where T is the element type of the base ring R. For example, SRow{ZZRingElem} is the type for sparse rows over the integers.

It is important to note that sparse rows do not have a fixed number of columns, that is, they represent elements of {(xi)iRNxi=0 for almost all i}. In particular any two sparse rows over the same base ring can be added.

Creation

sparse_row Method
julia
sparse_row(R::Ring, J::Vector{Tuple{Int, T}}) -> SRow{T}

Constructs the sparse row (ai)i with aij=xj, where J=(ij,xj)j. The elements xi must belong to the ring R.

source

sparse_row Method
julia
sparse_row(R::Ring, J::Vector{Tuple{Int, Int}}) -> SRow

Constructs the sparse row (ai)i over R with aij=xj, where J=(ij,xj)j.

source

sparse_row Method
julia
sparse_row(R::NCRing, J::Vector{Int}, V::Vector{T}) -> SRow{T}

Constructs the sparse row (ai)i over R with aij=xj, where J=(ij)j and V=(xj)j.

source

Basic operations

Rows support the usual operations:

  • +, -, ==

  • multiplication by scalars

  • div, divexact

getindex Method
julia
getindex(A::SRow, j::Int) -> RingElem

Given a sparse row (ai)i and an index j return aj.

source

add_scaled_row Method
julia
add_scaled_row(A::SRow{T}, B::SRow{T}, c::T) -> SRow{T}

Returns the row cA+B.

source

add_scaled_row Method
julia
add_scaled_row(A::SRow{T}, B::SRow{T}, c::T) -> SRow{T}

Returns the row cA+B.

source

transform_row Method
julia
transform_row(A::SRow{T}, B::SRow{T}, i::Int, j::Int, a::T, b::T, c::T, d::T)

Returns the tuple (aA+bB,cA+dB).

source

length Method
julia
length(A::SRow)

Returns the number of nonzero entries of A.

source

Change of base ring

change_base_ring Method
julia
change_base_ring(R::Ring, A::SRow) -> SRow

Create a new sparse row by coercing all elements into the ring R.

source

Maximum, minimum and 2-norm

maximum Method
julia
maximum(A::SRow{T}) -> T

Returns the largest entry of A.

source

maximum Method
julia
maximum(A::SRow{T}) -> T

Returns the largest entry of A.

source

minimum Method
julia
minimum(A::SRow{T}) -> T

Returns the smallest entry of A.

source

julia
  minimum(A::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}
   minimum(A::RelNumFieldOrderIdeal) -> RelNumFieldOrderIdeal

Returns the ideal AO where O is the maximal order of the coefficient ideals of A.

source

minimum Method
julia
minimum(A::SRow{T}) -> T

Returns the smallest entry of A.

source

norm2 Method
julia
norm2(A::SRow{T} -> T

Returns AAt.

source

Functionality for integral sparse rows

lift Method
julia
lift(A::SRow{zzModRingElem}) -> SRow{ZZRingElem}

Return the sparse row obtained by lifting all entries in A.

source

mod! Method
julia
mod!(A::SRow{ZZRingElem}, n::ZZRingElem) -> SRow{ZZRingElem}

Inplace reduction of all entries of A modulo n to the positive residue system.

source

mod_sym! Method
julia
mod_sym!(A::SRow{ZZRingElem}, n::ZZRingElem) -> SRow{ZZRingElem}

Inplace reduction of all entries of A modulo n to the symmetric residue system.

source

mod_sym! Method
julia
mod_sym!(A::SRow{ZZRingElem}, n::Integer) -> SRow{ZZRingElem}

Inplace reduction of all entries of A modulo n to the symmetric residue system.

source

maximum Method
julia
maximum(abs, A::SRow{ZZRingElem}) -> ZZRingElem

Returns the largest, in absolute value, entry of A.

source

Conversion to/from julia and AbstractAlgebra types

Vector Method
julia
Vector(a::SMat{T}, n::Int) -> Vector{T}

The first n entries of a, as a julia vector.

source

sparse_row Method
julia
sparse_row(A::MatElem)

Convert A to a sparse row. nrows(A) == 1 must hold.

source

dense_row Method
julia
dense_row(r::SRow, n::Int)

Convert r[1:n] to a dense row, that is an AbstractAlgebra matrix.

source

Sparse matrices

Let R be a commutative ring. Sparse matrices with base ring R are modelled by objects of type SMat. More precisely, the type is of parametrized form SRow{T}, where T is the element type of the base ring. For example, SMat{ZZRingElem} is the type for sparse matrices over the integers.

In contrast to sparse rows, sparse matrices have a fixed number of rows and columns, that is, they represent elements of the matrices space Matn×m(R). Internally, sparse matrices are implemented as an array of sparse rows. As a consequence, unlike their dense counterparts, sparse matrices have a mutable number of rows and it is very performant to add additional rows.

Construction

sparse_matrix Method
julia
sparse_matrix(R::Ring) -> SMat

Return an empty sparse matrix with base ring R.

source

sparse_matrix Method
julia
sparse_matrix(R::Ring, n::Int, m::Int) -> SMat

Return a sparse n times m zero matrix over R.

source

Sparse matrices can also be created from dense matrices as well as from julia arrays:

sparse_matrix Method
julia
sparse_matrix(A::MatElem; keepzrows::Bool = true)

Constructs the sparse matrix corresponding to the dense matrix A. If keepzrows is false, then the constructor will drop any zero row of A.

source

sparse_matrix Method
julia
sparse_matrix(R::Ring, A::Matrix{T}) -> SMat

Constructs the sparse matrix over R corresponding to A.

source

sparse_matrix Method
julia
sparse_matrix(R::Ring, A::Matrix{T}) -> SMat

Constructs the sparse matrix over R corresponding to A.

source

The normal way however, is to add rows:

push! Method
julia
push!(A::SMat{T}, B::SRow{T}) where T

Appends the sparse row B to A.

source

Sparse matrices can also be concatenated to form larger ones:

vcat! Method
julia
vcat!(A::SMat, B::SMat) -> SMat

Vertically joins A and B inplace, that is, the rows of B are appended to A.

source

vcat Method
julia
vcat(A::SMat, B::SMat) -> SMat

Vertically joins A and B.

source

hcat! Method
julia
hcat!(A::SMat, B::SMat) -> SMat

Horizontally concatenates A and B, inplace, changing A.

source

hcat Method
julia
hcat(A::SMat, B::SMat) -> SMat

Horizontally concatenates A and B.

source

(Normal julia cat is also supported)

There are special constructors:

identity_matrix Method
julia
identity_matrix(::Type{SMat}, R::Ring, n::Int)

Return a sparse n times n identity matrix over R.

source

zero_matrix Method
julia
zero_matrix(::Type{SMat}, R::Ring, n::Int)

Return a sparse n times n zero matrix over R.

source

zero_matrix Method
julia
zero_matrix(::Type{SMat}, R::Ring, n::Int, m::Int)

Return a sparse n times m zero matrix over R.

source

block_diagonal_matrix Method
julia
block_diagonal_matrix(xs::Vector{SMat})

Return the block diagonal matrix with the matrices in xs on the diagonal. Requires all blocks to have the same base ring.

source

Slices:

sub Method
julia
sub(A::SMat, r::AbstractUnitRange, c::AbstractUnitRange) -> SMat

Return the submatrix of A, where the rows correspond to r and the columns correspond to c.

source

Transpose:

transpose Method
julia
transpose(A::SMat) -> SMat

Returns the transpose of A.

source

Elementary Properties

sparsity Method
julia
sparsity(A::SMat) -> Float64

Return the sparsity of A, that is, the number of zero-valued elements divided by the number of all elements.

source

density Method
julia
density(A::SMat) -> Float64

Return the density of A, that is, the number of nonzero-valued elements divided by the number of all elements.

source

nnz Method
julia
nnz(A::SMat) -> Int

Return the number of non-zero entries of A.

source

number_of_rows Method
julia
number_of_rows(A::SMat) -> Int

Return the number of rows of A.

source

number_of_columns Method
julia
number_of_columns(A::SMat) -> Int

Return the number of columns of A.

source

isone Method
julia
isone(A::SMat)

Tests if A is an identity matrix.

source

iszero Method
julia
iszero(A::SMat)

Tests if A is a zero matrix.

source

is_upper_triangular Method
julia
is_upper_triangular(A::SMat)

Returns true if and only if A is upper (right) triangular.

source

maximum Method
julia
maximum(A::SMat{T}) -> T

Finds the largest entry of A.

source

minimum Method
julia
minimum(A::SMat{T}) -> T

Finds the smallest entry of A.

source

maximum Method
julia
maximum(abs, A::SMat{ZZRingElem}) -> ZZRingElem

Finds the largest, in absolute value, entry of A.

source

elementary_divisors Method
julia
elementary_divisors(A::SMat{ZZRingElem}) -> Vector{ZZRingElem}

The elementary divisors of A, i.e. the diagonal elements of the Smith normal form of A.

source

solve_dixon_sf Method
julia
solve_dixon_sf(A::SMat{ZZRingElem}, b::SRow{ZZRingElem}, is_int::Bool = false) -> SRow{ZZRingElem}, ZZRingElem
 solve_dixon_sf(A::SMat{ZZRingElem}, B::SMat{ZZRingElem}, is_int::Bool = false) -> SMat{ZZRingElem}, ZZRingElem

For a sparse square matrix A of full rank and a sparse matrix (row), find a sparse matrix (row) x and an integer d s.th. xA=bd holds. The algorithm is a Dixon-based linear p-adic lifting method. If \code{is_int} is given, then d is assumed to be 1. In this case rational reconstruction is avoided.

source

hadamard_bound2 Method
julia
hadamard_bound2(A::SMat{T}) -> T

The square of the product of the norms of the rows of A.

source

echelon_with_transform Method
julia
echelon_with_transform(A::SMat{zzModRingElem}) -> SMat, SMat

Find a unimodular matrix T and an upper-triangular E s.th. TA=E holds.

source

reduce_full Method
julia
reduce_full(A::SMat{ZZRingElem}, g::SRow{ZZRingElem},
-                      with_transform = Val(false)) -> SRow{ZZRingElem}, Vector{Int}

Reduces g modulo A and assumes that A is upper triangular.

The second return value is the array of pivot elements of A that changed.

If with_transform is set to Val(true), then additionally an array of transformations is returned.

source

hnf! Method
julia
hnf!(A::SMat{ZZRingElem})

Inplace transform of A into upper right Hermite normal form.

source

hnf Method
julia
hnf(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Return the upper right Hermite normal form of A.

source

snf Method
julia
snf(A::SMat{ZZRingElem})

The Smith normal form (snf) of A.

source

hnf_extend! Method
julia
hnf_extend!(A::SMat{ZZRingElem}, b::SMat{ZZRingElem}, offset::Int = 0) -> SMat{ZZRingElem}

Given a matrix A in HNF, extend this to get the HNF of the concatenation with b.

source

is_diagonal Method
julia
is_diagonal(A::SMat) -> Bool

True iff only the i-th entry in the i-th row is non-zero.

source

det Method
julia
det(A::SMat{ZZRingElem})

The determinant of A using a modular algorithm. Uses the dense (zzModMatrix) determinant on A for various primes p.

source

det_mc Method
julia
det_mc(A::SMat{ZZRingElem})

Computes the determinant of A using a LasVegas style algorithm, i.e. the result is not proven to be correct. Uses the dense (zzModMatrix) determinant on A for various primes p.

source

valence_mc Method
julia
valence_mc{T}(A::SMat{T}; extra_prime = 2, trans = Vector{SMatSLP_add_row{T}}()) -> T

Uses a Monte-Carlo algorithm to compute the valence of A. The valence is the valence of the minimal polynomial f of transpose(A)A, thus the last non-zero coefficient, typically f(0).

The valence is computed modulo various primes until the computation stabilises for extra_prime many.

trans, if given, is a SLP (straight-line-program) in GL(n, Z). Then the valence of trans * A is computed instead.

source

saturate Method
julia
saturate(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Computes the saturation of A, that is, a basis for QMZn, where M is the row span of A and n the number of rows of A.

Equivalently, return TA for an invertible rational matrix T, such that TA is integral and the elementary divisors of TA are all trivial.

source

hnf_kannan_bachem Method
julia
hnf_kannan_bachem(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Compute the Hermite normal form of A using the Kannan-Bachem algorithm.

source

diagonal_form Method
julia
diagonal_form(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

A matrix D that is diagonal and obtained via unimodular row and column operations. Like a snf without the divisibility condition.

source

Manipulation/ Access

getindex Method
julia
getindex(A::SMat, i::Int, j::Int)

Given a sparse matrix A=(aij)i,j, return the entry aij.

source

getindex Method
julia
getindex(A::SMat, i::Int) -> SRow

Given a sparse matrix A and an index i, return the i-th row of A.

source

setindex! Method
julia
setindex!(A::SMat, b::SRow, i::Int)

Given a sparse matrix A, a sparse row b and an index i, set the i-th row of A equal to b.

source

swap_rows! Method
julia
swap_rows!(A::SMat{T}, i::Int, j::Int)

Swap the i-th and j-th row of A inplace.

source

swap_cols! Method
julia
swap_cols!(A::SMat, i::Int, j::Int)

Swap the i-th and j-th column of A inplace.

source

scale_row! Method
julia
scale_row!(A::SMat{T}, i::Int, c::T)

Multiply the i-th row of A by c inplace.

source

add_scaled_col! Method
julia
add_scaled_col!(A::SMat{T}, i::Int, j::Int, c::T)

Add c times the i-th column to the j-th column of A inplace, that is, AjAj+cAi, where (Ai)i denote the columns of A.

source

add_scaled_row! Method
julia
add_scaled_row!(A::SMat{T}, i::Int, j::Int, c::T)

Add c times the i-th row to the j-th row of A inplace, that is, AjAj+cAi, where (Ai)i denote the rows of A.

source

transform_row! Method
julia
transform_row!(A::SMat{T}, i::Int, j::Int, a::T, b::T, c::T, d::T)

Applies the transformation (Ai,Aj)(aAi+bAj,cAi+dAj) to A, where (Ai)i are the rows of A.

source

diagonal Method
julia
diagonal(A::SMat) -> ZZRingElem[]

The diagonal elements of A in an array.

source

reverse_rows! Method
julia
reverse_rows!(A::SMat)

Inplace inversion of the rows of A.

source

mod_sym! Method
julia
mod_sym!(A::SMat{ZZRingElem}, n::ZZRingElem)

Inplace reduction of all entries of A modulo n to the symmetric residue system.

source

find_row_starting_with Method
julia
find_row_starting_with(A::SMat, p::Int) -> Int

Tries to find the index i such that Ai,p0 and Ai,pj=0 for all j>1. It is assumed that A is upper triangular. If such an index does not exist, find the smallest index larger.

source

reduce Method
julia
reduce(A::SMat{ZZRingElem}, g::SRow{ZZRingElem}, m::ZZRingElem) -> SRow{ZZRingElem}

Given an upper triangular matrix A over the integers, a sparse row g and an integer m, this function reduces g modulo A and returns g modulo m with respect to the symmetric residue system.

source

reduce Method
julia
reduce(A::SMat{ZZRingElem}, g::SRow{ZZRingElem}) -> SRow{ZZRingElem}

Given an upper triangular matrix A over a field and a sparse row g, this function reduces g modulo A.

source

reduce Method
julia
reduce(A::SMat{T}, g::SRow{T}) -> SRow{T}

Given an upper triangular matrix A over a field and a sparse row g, this function reduces g modulo A.

source

rand_row Method
julia
rand_row(A::SMat) -> SRow

Return a random row of the sparse matrix A.

source

Changing of the ring:

map_entries Method
julia
map_entries(f, A::SMat) -> SMat

Given a sparse matrix A and a callable object f, this function will construct a new sparse matrix by applying f to all elements of A.

source

change_base_ring Method
julia
change_base_ring(R::Ring, A::SMat)

Create a new sparse matrix by coercing all elements into the ring R.

source

Arithmetic

Matrices support the usual operations as well

  • +, -, ==

  • div, divexact by scalars

  • multiplication by scalars

Various products:

* Method
julia
*(A::SMat{T}, b::AbstractVector{T}) -> Vector{T}

Return the product Ab as a dense vector.

source

* Method
julia
*(A::SMat{T}, b::AbstractMatrix{T}) -> Matrix{T}

Return the product Ab as a dense array.

source

* Method
julia
*(A::SMat{T}, b::MatElem{T}) -> MatElem

Return the product Ab as a dense matrix.

source

* Method
julia
*(A::SRow, B::SMat) -> SRow

Return the product AB as a sparse row.

source

dot Method
julia
dot(x::SRow{T}, A::SMat{T}, y::SRow{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

dot Method
julia
dot(x::MatrixElem{T}, A::SMat{T}, y::MatrixElem{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

dot Method
julia
dot(x::AbstractVector{T}, A::SMat{T}, y::AbstractVector{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

Other:

sparse Method
julia
sparse(A::SMat) -> SparseMatrixCSC

The same matrix, but as a sparse matrix of julia type SparseMatrixCSC.

source

ZZMatrix Method
julia
ZZMatrix(A::SMat{ZZRingElem})

The same matrix A, but as an ZZMatrix.

source

ZZMatrix Method
julia
ZZMatrix(A::SMat{T}) where {T <: Integer}

The same matrix A, but as an ZZMatrix. Requires a conversion from the base ring of A to ZZ.

source

Matrix Method
julia
Matrix(A::SMat{T}) -> Matrix{T}

The same matrix, but as a julia matrix.

source

Array Method
julia
Array(A::SMat{T}) -> Matrix{T}

The same matrix, but as a two-dimensional julia array.

source

- + with_transform = Val(false)) -> SRow{ZZRingElem}, Vector{Int}

Reduces g modulo A and assumes that A is upper triangular.

The second return value is the array of pivot elements of A that changed.

If with_transform is set to Val(true), then additionally an array of transformations is returned.

source

hnf! Method
julia
hnf!(A::SMat{ZZRingElem})

Inplace transform of A into upper right Hermite normal form.

source

hnf Method
julia
hnf(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Return the upper right Hermite normal form of A.

source

snf Method
julia
snf(A::SMat{ZZRingElem})

The Smith normal form (snf) of A.

source

hnf_extend! Method
julia
hnf_extend!(A::SMat{ZZRingElem}, b::SMat{ZZRingElem}, offset::Int = 0) -> SMat{ZZRingElem}

Given a matrix A in HNF, extend this to get the HNF of the concatenation with b.

source

is_diagonal Method
julia
is_diagonal(A::SMat) -> Bool

True iff only the i-th entry in the i-th row is non-zero.

source

det Method
julia
det(A::SMat{ZZRingElem})

The determinant of A using a modular algorithm. Uses the dense (zzModMatrix) determinant on A for various primes p.

source

det_mc Method
julia
det_mc(A::SMat{ZZRingElem})

Computes the determinant of A using a LasVegas style algorithm, i.e. the result is not proven to be correct. Uses the dense (zzModMatrix) determinant on A for various primes p.

source

valence_mc Method
julia
valence_mc{T}(A::SMat{T}; extra_prime = 2, trans = Vector{SMatSLP_add_row{T}}()) -> T

Uses a Monte-Carlo algorithm to compute the valence of A. The valence is the valence of the minimal polynomial f of transpose(A)A, thus the last non-zero coefficient, typically f(0).

The valence is computed modulo various primes until the computation stabilises for extra_prime many.

trans, if given, is a SLP (straight-line-program) in GL(n, Z). Then the valence of trans * A is computed instead.

source

saturate Method
julia
saturate(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Computes the saturation of A, that is, a basis for QMZn, where M is the row span of A and n the number of rows of A.

Equivalently, return TA for an invertible rational matrix T, such that TA is integral and the elementary divisors of TA are all trivial.

source

hnf_kannan_bachem Method
julia
hnf_kannan_bachem(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

Compute the Hermite normal form of A using the Kannan-Bachem algorithm.

source

diagonal_form Method
julia
diagonal_form(A::SMat{ZZRingElem}) -> SMat{ZZRingElem}

A matrix D that is diagonal and obtained via unimodular row and column operations. Like a snf without the divisibility condition.

source

Manipulation/ Access

getindex Method
julia
getindex(A::SMat, i::Int, j::Int)

Given a sparse matrix A=(aij)i,j, return the entry aij.

source

getindex Method
julia
getindex(A::SMat, i::Int) -> SRow

Given a sparse matrix A and an index i, return the i-th row of A.

source

setindex! Method
julia
setindex!(A::SMat, b::SRow, i::Int)

Given a sparse matrix A, a sparse row b and an index i, set the i-th row of A equal to b.

source

swap_rows! Method
julia
swap_rows!(A::SMat{T}, i::Int, j::Int)

Swap the i-th and j-th row of A inplace.

source

swap_cols! Method
julia
swap_cols!(A::SMat, i::Int, j::Int)

Swap the i-th and j-th column of A inplace.

source

scale_row! Method
julia
scale_row!(A::SMat{T}, i::Int, c::T)

Multiply the i-th row of A by c inplace.

source

add_scaled_col! Method
julia
add_scaled_col!(A::SMat{T}, i::Int, j::Int, c::T)

Add c times the i-th column to the j-th column of A inplace, that is, AjAj+cAi, where (Ai)i denote the columns of A.

source

add_scaled_row! Method
julia
add_scaled_row!(A::SMat{T}, i::Int, j::Int, c::T)

Add c times the i-th row to the j-th row of A inplace, that is, AjAj+cAi, where (Ai)i denote the rows of A.

source

transform_row! Method
julia
transform_row!(A::SMat{T}, i::Int, j::Int, a::T, b::T, c::T, d::T)

Applies the transformation (Ai,Aj)(aAi+bAj,cAi+dAj) to A, where (Ai)i are the rows of A.

source

diagonal Method
julia
diagonal(A::SMat) -> ZZRingElem[]

The diagonal elements of A in an array.

source

reverse_rows! Method
julia
reverse_rows!(A::SMat)

Inplace inversion of the rows of A.

source

mod_sym! Method
julia
mod_sym!(A::SMat{ZZRingElem}, n::ZZRingElem)

Inplace reduction of all entries of A modulo n to the symmetric residue system.

source

find_row_starting_with Method
julia
find_row_starting_with(A::SMat, p::Int) -> Int

Tries to find the index i such that Ai,p0 and Ai,pj=0 for all j>1. It is assumed that A is upper triangular. If such an index does not exist, find the smallest index larger.

source

reduce Method
julia
reduce(A::SMat{ZZRingElem}, g::SRow{ZZRingElem}, m::ZZRingElem) -> SRow{ZZRingElem}

Given an upper triangular matrix A over the integers, a sparse row g and an integer m, this function reduces g modulo A and returns g modulo m with respect to the symmetric residue system.

source

reduce Method
julia
reduce(A::SMat{ZZRingElem}, g::SRow{ZZRingElem}) -> SRow{ZZRingElem}

Given an upper triangular matrix A over a field and a sparse row g, this function reduces g modulo A.

source

reduce Method
julia
reduce(A::SMat{T}, g::SRow{T}) -> SRow{T}

Given an upper triangular matrix A over a field and a sparse row g, this function reduces g modulo A.

source

rand_row Method
julia
rand_row(A::SMat) -> SRow

Return a random row of the sparse matrix A.

source

Changing of the ring:

map_entries Method
julia
map_entries(f, A::SMat) -> SMat

Given a sparse matrix A and a callable object f, this function will construct a new sparse matrix by applying f to all elements of A.

source

change_base_ring Method
julia
change_base_ring(R::Ring, A::SMat)

Create a new sparse matrix by coercing all elements into the ring R.

source

Arithmetic

Matrices support the usual operations as well

  • +, -, ==

  • div, divexact by scalars

  • multiplication by scalars

Various products:

* Method
julia
*(A::SMat{T}, b::AbstractVector{T}) -> Vector{T}

Return the product Ab as a dense vector.

source

* Method
julia
*(A::SMat{T}, b::AbstractMatrix{T}) -> Matrix{T}

Return the product Ab as a dense array.

source

* Method
julia
*(A::SMat{T}, b::MatElem{T}) -> MatElem

Return the product Ab as a dense matrix.

source

* Method
julia
*(A::SRow, B::SMat) -> SRow

Return the product AB as a sparse row.

source

dot Method
julia
dot(x::SRow{T}, A::SMat{T}, y::SRow{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

dot Method
julia
dot(x::MatrixElem{T}, A::SMat{T}, y::MatrixElem{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

dot Method
julia
dot(x::AbstractVector{T}, A::SMat{T}, y::AbstractVector{T}) where T -> T

Return the generalized dot product dot(x, A*y).

source

Other:

sparse Method
julia
sparse(A::SMat) -> SparseMatrixCSC

The same matrix, but as a sparse matrix of julia type SparseMatrixCSC.

source

ZZMatrix Method
julia
ZZMatrix(A::SMat{ZZRingElem})

The same matrix A, but as an ZZMatrix.

source

ZZMatrix Method
julia
ZZMatrix(A::SMat{T}) where {T <: Integer}

The same matrix A, but as an ZZMatrix. Requires a conversion from the base ring of A to ZZ.

source

Matrix Method
julia
Matrix(A::SMat{T}) -> Matrix{T}

The same matrix, but as a julia matrix.

source

Array Method
julia
Array(A::SMat{T}) -> Matrix{T}

The same matrix, but as a two-dimensional julia array.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/number_fields/class_fields.html b/v0.34.8/manual/number_fields/class_fields.html index 042a598e39..e68642330a 100644 --- a/v0.34.8/manual/number_fields/class_fields.html +++ b/v0.34.8/manual/number_fields/class_fields.html @@ -6,19 +6,19 @@ Class Field Theory | Hecke - - + + - - - - - + + + + + -
Skip to content

Class Field Theory

Introduction

This chapter deals with abelian extensions of number fields and the rational numbers.

Class Field Theory, here specifically, class field theory of global number fields, deals with abelian extension, ie. fields where the group of automorphisms is abelian. For extensions of Q, the famous Kronnecker-Weber theorem classifies all such fields: a field is abelian if and only if it is contained in some cyclotomic field. For general number fields this is more involved and even for extensions of Q is is not practical.

In Hecke, abelian extensions are parametrized by quotients of so called ray class groups. The language of ray class groups while dated is more applicable to algorithms than the modern language of idel class groups and quotients.

Ray Class Groups

Given an integral ideal m0ZK and a list of real places m, the ray class group modulo (m0,m), C(m) is defined as the group of ideals coprime to m0 modulo the elements aK s.th. vp(a1)vp(m0) and for all vm, a(v)>0. This is a finite abelian group. For m0=ZK and m={} we get C() is the class group, if m contains all real places, we obtain the narrow class group, or strict class group.

ray_class_group Method
julia
ray_class_group(m::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, inf_plc::Vector{InfPlc}; n_quo::Int, lp::Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}) -> FinGenAbGroup, MapRayClassGrp

Given an ideal m and a set of infinite places of K, this function returns the corresponding ray class group as an abstract group Clm and a map going from the group into the group of ideals of K that are coprime to m. If n_quo is set, it will return the group modulo n_quo. The factorization of m can be given with the keyword argument lp.

source

class_group Method
julia
class_group(K::AbsSimpleNumField) -> FinGenAbGroup, Map

Shortcut for class_group(maximal_order(K)): returns the class group as an abelian group and a map from this group to the set of ideals of the maximal order.

source

norm_group Method
julia
norm_group(f::Nemo.PolyRingElem, mR::Hecke.MapRayClassGrp, is_abelian::Bool = true; of_closure::Bool = false) -> Hecke.FinGenGrpAb, Hecke.FinGenGrpAbMap
+    
Skip to content

Class Field Theory

Introduction

This chapter deals with abelian extensions of number fields and the rational numbers.

Class Field Theory, here specifically, class field theory of global number fields, deals with abelian extension, ie. fields where the group of automorphisms is abelian. For extensions of Q, the famous Kronnecker-Weber theorem classifies all such fields: a field is abelian if and only if it is contained in some cyclotomic field. For general number fields this is more involved and even for extensions of Q is is not practical.

In Hecke, abelian extensions are parametrized by quotients of so called ray class groups. The language of ray class groups while dated is more applicable to algorithms than the modern language of idel class groups and quotients.

Ray Class Groups

Given an integral ideal m0ZK and a list of real places m, the ray class group modulo (m0,m), C(m) is defined as the group of ideals coprime to m0 modulo the elements aK s.th. vp(a1)vp(m0) and for all vm, a(v)>0. This is a finite abelian group. For m0=ZK and m={} we get C() is the class group, if m contains all real places, we obtain the narrow class group, or strict class group.

ray_class_group Method
julia
ray_class_group(m::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, inf_plc::Vector{InfPlc}; n_quo::Int, lp::Dict{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Int}) -> FinGenAbGroup, MapRayClassGrp

Given an ideal m and a set of infinite places of K, this function returns the corresponding ray class group as an abstract group Clm and a map going from the group into the group of ideals of K that are coprime to m. If n_quo is set, it will return the group modulo n_quo. The factorization of m can be given with the keyword argument lp.

source

class_group Method
julia
class_group(K::AbsSimpleNumField) -> FinGenAbGroup, Map

Shortcut for class_group(maximal_order(K)): returns the class group as an abelian group and a map from this group to the set of ideals of the maximal order.

source

norm_group Method
julia
norm_group(f::Nemo.PolyRingElem, mR::Hecke.MapRayClassGrp, is_abelian::Bool = true; of_closure::Bool = false) -> Hecke.FinGenGrpAb, Hecke.FinGenGrpAbMap
 
 norm_group(f::Array{PolyRingElem{AbsSimpleNumFieldElem}}, mR::Hecke.MapRayClassGrp, is_abelian::Bool = true; of_closure::Bool = false) -> Hecke.FinGenGrpAb, Hecke.FinGenGrpAbMap

Computes the subgroup of the Ray Class Group R given by the norm of the extension generated by a/the roots of f. If is_abelian is set to true, then the code assumes the field to be abelian, hence the algorithm stops when the quotient by the norm group has the correct order. Even though the algorithm is probabilistic by nature, in this case the result is guaranteed. If of_closure is given, then the norm group of the splitting field of the polynomial(s) is computed. It is the callers responsibility to ensure that the ray class group passed in is large enough.

source

norm_group Method
julia
norm_group(K::RelSimpleNumField{AbsSimpleNumFieldElem}, mR::Hecke.MapRayClassGrp) -> Hecke.FinGenGrpAb, Hecke.FinGenGrpAbMap
 
@@ -57,8 +57,8 @@
 
 julia> isone(discriminant(ZK))
 true
ray_class_field Method
julia
ray_class_field(K::RelSimpleNumField{AbsSimpleNumFieldElem}) -> ClassField
-ray_class_field(K::AbsSimpleNumField) -> ClassField

For a (relative) abelian extension, compute an abstract representation as a class field.

source

genus_field Method
julia
genus_field(A::ClassField, k::AbsSimpleNumField) -> ClassField

The maximal extension contained in A that is the compositum of K with an abelian extension of k.

source

maximal_abelian_subfield Method
julia
maximal_abelian_subfield(A::ClassField, k::AbsSimpleNumField) -> ClassField

The maximal abelian extension of k contained in A. k must be a subfield of the base field of A.

source

maximal_abelian_subfield Method
julia
maximal_abelian_subfield(K::RelSimpleNumField{AbsSimpleNumFieldElem}; of_closure::Bool = false) -> ClassField

Using a probabilistic algorithm for the norm group computation, determine the maximal abelian subfield in K over its base field. If of_closure is set to true, then the algorithm is applied to the normal closure of K (without computing it).

source

Invariants

degree Method
julia
degree(A::ClassField)

The degree of A over its base field, i.e. the size of the defining ideal group.

source

base_ring Method
julia
base_ring(A::ClassField)

The maximal order of the field that A is defined over.

source

base_field Method
julia
base_field(A::ClassField)

The number field that A is defined over.

source

discriminant Method
julia
discriminant(C::ClassField) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Using the conductor-discriminant formula, compute the (relative) discriminant of C. This does not use the defining equations.

source

conductor Method
julia
conductor(C::ClassField) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Vector{InfPlc}

Return the conductor of the abelian extension corresponding to C.

source

defining_modulus Method
julia
defining_modulus(CF::ClassField)

The modulus, i.e. an ideal of the set of real places, used to create the class field.

source

is_cyclic Method
julia
is_cyclic(C::ClassField)

Tests if the (relative) automorphism group of C is cyclic (by checking the defining ideal group).

source

is_conductor Method
julia
is_conductor(C::Hecke.ClassField, m::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, inf_plc::Vector{InfPlc}=InfPlc[]; check) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Vector{InfPlc}

Checks if (m, inf_plc) is the conductor of the abelian extension corresponding to C. If check is false, it assumes that the given modulus is a multiple of the conductor. This is usually faster than computing the conductor.

source

is_normal Method
julia
is_normal(C::ClassField) -> Bool

For a class field C defined over a normal base field k, decide if C is normal over Q.

source

is_central Method
julia
is_central(C::ClassField) -> Bool

For a class field C defined over a normal base field k, decide if C is central over Q.

source

Operations

* Method
julia
*(A::ClassField, B::ClassField) -> ClassField

The compositum of a and b as a (formal) class field.

source

compositum Method
julia
compositum(a::ClassField, b::ClassField) -> ClassField

The compositum of a and b as a (formal) class field.

source

== Method
julia
==(a::ClassField, b::ClassField)

Tests if a and b are equal.

source

intersect Method
julia
intersect(a::ClassField, b::ClassField) -> ClassField

The intersection of a and b as a class field.

source

prime_decomposition_type Method
julia
prime_decomposition_type(C::ClassField, p::AbsNumFieldOrderIdeal) -> (Int, Int, Int)

For a prime p in the base ring of r, determine the splitting type of p in r. ie. the tuple (e,f,g) giving the ramification degree, the inertia and the number of primes above p.

source

is_subfield Method
julia
is_subfield(a::ClassField, b::ClassField) -> Bool

Determines if a is a subfield of b.

source

is_local_norm Method
julia
is_local_norm(r::ClassField, a::AbsNumFieldOrderElem) -> Bool

Tests if a is a local norm at all finite places in the extension implicitly given by r.

source

is_local_norm Method
julia
is_local_norm(r::ClassField, a::AbsNumFieldOrderElem, p::AbsNumFieldOrderIdeal) -> Bool

Tests if a is a local norm at p in the extension implicitly given by r. Currently the conductor cannot have infinite places.

source

normal_closure Method
julia
normal_closure(C::ClassField) -> ClassField

For a ray class field C extending a normal base field k, compute the normal closure over Q.

source

subfields Method
julia
subfields(C::ClassField; degree::Int, is_normal, type) -> Vector{ClassField}

Find all subfields of C over the base field.

If the optional keyword argument degree is positive, then only those with prescribed degree will be returned.

If the optional keyword is_normal is given, then only those that are normal over the field fixed by the automorphisms is returned. For normal base fields, this amounts to extensions that are normal over Q.

If the optional keyword is_normal is set to a list of automorphisms, then only those wil be considered.

type can be set to the desired relative Galois group, given as a vector of integers descibing the structure.

Note

This will not find all subfields over Q, but only the ones sharing the same base field.

source

- +ray_class_field(K::AbsSimpleNumField) -> ClassField

For a (relative) abelian extension, compute an abstract representation as a class field.

source

genus_field Method
julia
genus_field(A::ClassField, k::AbsSimpleNumField) -> ClassField

The maximal extension contained in A that is the compositum of K with an abelian extension of k.

source

maximal_abelian_subfield Method
julia
maximal_abelian_subfield(A::ClassField, k::AbsSimpleNumField) -> ClassField

The maximal abelian extension of k contained in A. k must be a subfield of the base field of A.

source

maximal_abelian_subfield Method
julia
maximal_abelian_subfield(K::RelSimpleNumField{AbsSimpleNumFieldElem}; of_closure::Bool = false) -> ClassField

Using a probabilistic algorithm for the norm group computation, determine the maximal abelian subfield in K over its base field. If of_closure is set to true, then the algorithm is applied to the normal closure of K (without computing it).

source

Invariants

degree Method
julia
degree(A::ClassField)

The degree of A over its base field, i.e. the size of the defining ideal group.

source

base_ring Method
julia
base_ring(A::ClassField)

The maximal order of the field that A is defined over.

source

base_field Method
julia
base_field(A::ClassField)

The number field that A is defined over.

source

discriminant Method
julia
discriminant(C::ClassField) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Using the conductor-discriminant formula, compute the (relative) discriminant of C. This does not use the defining equations.

source

conductor Method
julia
conductor(C::ClassField) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Vector{InfPlc}

Return the conductor of the abelian extension corresponding to C.

source

defining_modulus Method
julia
defining_modulus(CF::ClassField)

The modulus, i.e. an ideal of the set of real places, used to create the class field.

source

is_cyclic Method
julia
is_cyclic(C::ClassField)

Tests if the (relative) automorphism group of C is cyclic (by checking the defining ideal group).

source

is_conductor Method
julia
is_conductor(C::Hecke.ClassField, m::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, inf_plc::Vector{InfPlc}=InfPlc[]; check) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, Vector{InfPlc}

Checks if (m, inf_plc) is the conductor of the abelian extension corresponding to C. If check is false, it assumes that the given modulus is a multiple of the conductor. This is usually faster than computing the conductor.

source

is_normal Method
julia
is_normal(C::ClassField) -> Bool

For a class field C defined over a normal base field k, decide if C is normal over Q.

source

is_central Method
julia
is_central(C::ClassField) -> Bool

For a class field C defined over a normal base field k, decide if C is central over Q.

source

Operations

* Method
julia
*(A::ClassField, B::ClassField) -> ClassField

The compositum of a and b as a (formal) class field.

source

compositum Method
julia
compositum(a::ClassField, b::ClassField) -> ClassField

The compositum of a and b as a (formal) class field.

source

== Method
julia
==(a::ClassField, b::ClassField)

Tests if a and b are equal.

source

intersect Method
julia
intersect(a::ClassField, b::ClassField) -> ClassField

The intersection of a and b as a class field.

source

prime_decomposition_type Method
julia
prime_decomposition_type(C::ClassField, p::AbsNumFieldOrderIdeal) -> (Int, Int, Int)

For a prime p in the base ring of r, determine the splitting type of p in r. ie. the tuple (e,f,g) giving the ramification degree, the inertia and the number of primes above p.

source

is_subfield Method
julia
is_subfield(a::ClassField, b::ClassField) -> Bool

Determines if a is a subfield of b.

source

is_local_norm Method
julia
is_local_norm(r::ClassField, a::AbsNumFieldOrderElem) -> Bool

Tests if a is a local norm at all finite places in the extension implicitly given by r.

source

is_local_norm Method
julia
is_local_norm(r::ClassField, a::AbsNumFieldOrderElem, p::AbsNumFieldOrderIdeal) -> Bool

Tests if a is a local norm at p in the extension implicitly given by r. Currently the conductor cannot have infinite places.

source

normal_closure Method
julia
normal_closure(C::ClassField) -> ClassField

For a ray class field C extending a normal base field k, compute the normal closure over Q.

source

subfields Method
julia
subfields(C::ClassField; degree::Int, is_normal, type) -> Vector{ClassField}

Find all subfields of C over the base field.

If the optional keyword argument degree is positive, then only those with prescribed degree will be returned.

If the optional keyword is_normal is given, then only those that are normal over the field fixed by the automorphisms is returned. For normal base fields, this amounts to extensions that are normal over Q.

If the optional keyword is_normal is set to a list of automorphisms, then only those wil be considered.

type can be set to the desired relative Galois group, given as a vector of integers descibing the structure.

Note

This will not find all subfields over Q, but only the ones sharing the same base field.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/number_fields/complex_embeddings.html b/v0.34.8/manual/number_fields/complex_embeddings.html index 977900dc49..ea6cf10ae3 100644 --- a/v0.34.8/manual/number_fields/complex_embeddings.html +++ b/v0.34.8/manual/number_fields/complex_embeddings.html @@ -6,19 +6,19 @@ Complex embedding | Hecke - - + + - - - - - + + + + + -
Skip to content

Complex embedding

We describe functionality for complex embeddings of arbitrary number fields. Note that a complex embeddding of a number field L is a morphism ι:LC. Such an embedding is called real if im(ι)R and imaginary otherwise.

Construction of complex embeddings

complex_embeddings Method
julia
complex_embeddings(K::NumField; conjugates::Bool = true) -> Vector{NumFieldEmb}

Return the complex embeddings of K. If conjugates is false, only one imaginary embedding per conjugated pairs is returned.

Examples

julia
julia> K, a = quadratic_field(-3);
+    
Skip to content

Complex embedding

We describe functionality for complex embeddings of arbitrary number fields. Note that a complex embeddding of a number field L is a morphism ι:LC. Such an embedding is called real if im(ι)R and imaginary otherwise.

Construction of complex embeddings

complex_embeddings Method
julia
complex_embeddings(K::NumField; conjugates::Bool = true) -> Vector{NumFieldEmb}

Return the complex embeddings of K. If conjugates is false, only one imaginary embedding per conjugated pairs is returned.

Examples

julia
julia> K, a = quadratic_field(-3);
 
 julia> complex_embeddings(K)
 2-element Vector{AbsSimpleNumFieldEmbedding}:
@@ -147,8 +147,8 @@
 
 julia> restrict(emb[3], i)
 Complex embedding corresponding to -1.00 * i
-  of imaginary quadratic field defined by x^2 + 1
- + of imaginary quadratic field defined by x^2 + 1
+ \ No newline at end of file diff --git a/v0.34.8/manual/number_fields/conventions.html b/v0.34.8/manual/number_fields/conventions.html index 94be8479b7..93460c6186 100644 --- a/v0.34.8/manual/number_fields/conventions.html +++ b/v0.34.8/manual/number_fields/conventions.html @@ -6,20 +6,20 @@ Conventions | Hecke - - + + - - - - - + + + + + -
Skip to content

Conventions

By an absolute number field we mean finite extensions of Q, which is of type AbsSimpleNumField and whose elements are of type AbsSimpleNumFieldElem. Such an absolute number field K is always given in the form K=Q(α)=Q[X]/(f), where fQ[X] is an irreducible polynomial. See here for more information on the different types of fields supported.

We call (1,α,α2,,αd1), where d is the degree [K:Q] the power basis of K. If β is any element of K, then the representation matrix of β is the matrix representing KK,γβγ with respect to the power basis, that is,

β(1,α,,αd1)=Mα(1,α,,αd1).

Let (r,s) be the signature of K, that is, K has r real embeddings σi:KR, 1ir, and 2s complex embeddings σi:KC, 1i2s. In Hecke the complex embeddings are always ordered such that σi=σi+s for r+1ir+s. The Q-linear function

KRdα(σ1(α),,σr(α),2Re(σr+1(α)),2Im(σr+1(α)),,2Re(σr+s(α)),2Im(σr+s(α)))

is called the Minkowski map (or Minkowski embedding).

If K=Q(α) is an absolute number field, then an order O of K is a subring of the ring of integers OK, which is free of rank [K:Q] as a Z-module. The natural order Z[α] is called the equation order of K. In Hecke orders of absolute number fields are constructed (implicitly) by specifying a Z-basis, which is referred to as the basis of O. If (ω1,,ωd) is the basis of O, then the matrix BMatd×d(Q) with

is called the basis matrix of O. We call det(B) the generalized index of O. In case Z[α]O, the determinant det(B)1 is in fact equal to [O:Z[α]] and is called the index of O. The matrix

(σ1(ω1)σr(ω1)2Re(σr+1(ω1))2Im(σr+1(ω1))2Im(σr+s(ω1))σ1(ω2)σr(ω2)2Re(σr+1(ω2))2Im(σr+1(ω2))2Im(σr+s(ω2))σ1(ωd)σr(ωd)2Re(σr+1(ωd))2Im(σr+2(ωd))2Im(σr+s(ωd)))Matd×d(R).

is called the Minkowski matrix of O.

- +
Skip to content

Conventions

By an absolute number field we mean finite extensions of Q, which is of type AbsSimpleNumField and whose elements are of type AbsSimpleNumFieldElem. Such an absolute number field K is always given in the form K=Q(α)=Q[X]/(f), where fQ[X] is an irreducible polynomial. See here for more information on the different types of fields supported.

We call (1,α,α2,,αd1), where d is the degree [K:Q] the power basis of K. If β is any element of K, then the representation matrix of β is the matrix representing KK,γβγ with respect to the power basis, that is,

β(1,α,,αd1)=Mα(1,α,,αd1).

Let (r,s) be the signature of K, that is, K has r real embeddings σi:KR, 1ir, and 2s complex embeddings σi:KC, 1i2s. In Hecke the complex embeddings are always ordered such that σi=σi+s for r+1ir+s. The Q-linear function

KRdα(σ1(α),,σr(α),2Re(σr+1(α)),2Im(σr+1(α)),,2Re(σr+s(α)),2Im(σr+s(α)))

is called the Minkowski map (or Minkowski embedding).

If K=Q(α) is an absolute number field, then an order O of K is a subring of the ring of integers OK, which is free of rank [K:Q] as a Z-module. The natural order Z[α] is called the equation order of K. In Hecke orders of absolute number fields are constructed (implicitly) by specifying a Z-basis, which is referred to as the basis of O. If (ω1,,ωd) is the basis of O, then the matrix BMatd×d(Q) with

is called the basis matrix of O. We call det(B) the generalized index of O. In case Z[α]O, the determinant det(B)1 is in fact equal to [O:Z[α]] and is called the index of O. The matrix

(σ1(ω1)σr(ω1)2Re(σr+1(ω1))2Im(σr+1(ω1))2Im(σr+s(ω1))σ1(ω2)σr(ω2)2Re(σr+1(ω2))2Im(σr+1(ω2))2Im(σr+s(ω2))σ1(ωd)σr(ωd)2Re(σr+1(ωd))2Im(σr+2(ωd))2Im(σr+s(ωd)))Matd×d(R).

is called the Minkowski matrix of O.

+ \ No newline at end of file diff --git a/v0.34.8/manual/number_fields/elements.html b/v0.34.8/manual/number_fields/elements.html index 3ddcc88a7d..45df06a403 100644 --- a/v0.34.8/manual/number_fields/elements.html +++ b/v0.34.8/manual/number_fields/elements.html @@ -6,19 +6,19 @@ Element operations | Hecke - - + + - - - - - + + + + + -
Skip to content

Element operations

Creation

gen Method
julia
gen(L::SimpleNumField) -> NumFieldElem

Given a simple number field L=K[x]/(f) over K, this functions returns the class of x, which is the canonical primitive element of L over K.

source

gens Method
julia
gens(L::NonSimpleNumField) -> Vector{NumFieldElem}

Given a non-simple number field L=K[x1,,xn]/(f1,,fn) over K, this functions returns the list x¯1,,x¯n.

source

Elements can also be created by specifying the coordinates with respect to the basis of the number field:

julia
    (L::number_field)(c::Vector{NumFieldElem}) -> NumFieldElem

Given a number field L/K of degree d and a vector c length d, this constructs the element a with coordinates(a) == c.

julia
julia> Qx, x = QQ["x"];
+    
Skip to content

Element operations

Creation

gen Method
julia
gen(L::SimpleNumField) -> NumFieldElem

Given a simple number field L=K[x]/(f) over K, this functions returns the class of x, which is the canonical primitive element of L over K.

source

gens Method
julia
gens(L::NonSimpleNumField) -> Vector{NumFieldElem}

Given a non-simple number field L=K[x1,,xn]/(f1,,fn) over K, this functions returns the list x¯1,,x¯n.

source

Elements can also be created by specifying the coordinates with respect to the basis of the number field:

julia
    (L::number_field)(c::Vector{NumFieldElem}) -> NumFieldElem

Given a number field L/K of degree d and a vector c length d, this constructs the element a with coordinates(a) == c.

julia
julia> Qx, x = QQ["x"];
 
 julia> K, a = number_field(x^2 - 2, "a");
 
@@ -29,9 +29,9 @@
 (Relative number field of degree 3 over number field, b)
 
 julia> L([a, 1, 1//2])
-1//2*b^2 + b + a
quadratic_defect Method
julia
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}

Returns the valuation of the quadratic defect of the element a at p, which can either be prime object or an infinite place of the parent of a.

source

hilbert_symbol Method
julia
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int

Returns the local Hilbert symbol (a,b)p.

source

representation_matrix Method
julia
representation_matrix(a::NumFieldElem) -> MatElem

Returns the representation matrix of a, that is, the matrix representing multiplication with a with respect to the canonical basis of the parent of a.

source

basis_matrix Method
julia
basis_matrix(v::Vector{NumFieldElem}) -> Mat

Given a vector v of n elements of a number field K of degree d, this function returns an n×d matrix with entries in the base field of K, where row i contains the coefficients of v[i] with respect of the canonical basis of K.

source

coefficients Method
julia
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}

Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.

source

coordinates Method
julia
coordinates(x::NumFieldElem{T}) -> Vector{T}

Given an element x in a number field K, this function returns the coordinates of x with respect to the basis of K (the output of the 'basis' function).

source

absolute_coordinates Method
julia
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}

Given an element x in a number field K, this function returns the coordinates of x with respect to the basis of K over the rationals (the output of the absolute_basis function).

source

coeff Method
julia
coeff(a::SimpleNumFieldElem, i::Int) -> FieldElem

Given a number field element a of a simple number field extension L/K, this function returns the i-th coefficient of a, when expanded in the canonical power basis of L. The result is an element of K.

source

valuation Method
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

Computes the p-adic valuation of a, that is, the largest i such that a is contained in pi.

source

torsion_unit_order Method
julia
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)

Given a torsion unit x together with a multiple n of its order, compute the order of x, that is, the smallest kZ1 such that xk=1.

It is not checked whether x is a torsion unit.

source

tr Method
julia
tr(a::NumFieldElem) -> NumFieldElem

Returns the trace of an element a of a number field extension L/K. This will be an element of K.

source

absolute_tr Method
julia
absolute_tr(a::NumFieldElem) -> QQFieldElem

Given a number field element a, returns the absolute trace of a.

source

algebraic_split Method
julia
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElem

Writes the input as a quotient of two "small" algebraic integers.

source

Conjugates

conjugates Method
julia
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Let p be the precision of C, then every entry y of the vector returned satisfies radius(real(y)) < 2^-p and radius(imag(y)) < 2^-p respectively.

source

conjugates Method
julia
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Every entry y of the vector returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol respectively.

source

conjugates_log Method
julia
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the elements (log(|σ1(x)|),,log(|σr(x)|),,2log(|σr+1(x)|),,2log(|σr+s(x)|)) as elements of type ArbFieldElem with radius less then 2^-abs_tol.

source

conjugates_real Method
julia
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Compute the real conjugates of x as elements of type ArbFieldElem.

Every entry y of the array returned satisfies radius(y) < 2^-abs_tol.

source

conjugates_complex Method
julia
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the complex conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Every entry y of the array returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol.

source

conjugates_arb_log_normalise Method
julia
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
-conjugates_arb_log_normalise(x::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, p::Int = 10)

The "normalised" logarithms, i.e. the array cilog|x(i)|1/nlog|N(x)|, so the (weighted) sum adds up to zero.

source

minkowski_map Method
julia
minkowski_map(a::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the image of a under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^(-abs_tol).

source

Predicates

is_integral Method
julia
is_integral(a::NumFieldElem) -> Bool

Returns whether a is integral, that is, whether the minimal polynomial of a has integral coefficients.

source

is_torsion_unit Method
julia
is_torsion_unit(x::AbsSimpleNumFieldElem, checkisunit::Bool = false) -> Bool

Returns whether x is a torsion unit, that is, whether there exists n such that xn=1.

If checkisunit is true, it is first checked whether x is a unit of the maximal order of the number field x is lying in.

source

is_local_norm Method
julia
is_local_norm(L::NumField, a::NumFieldElem, P)

Given a number field L/K, an element aK and a prime ideal P of K, returns whether a is a local norm at P.

The number field L/K must be a simple extension of degree 2.

source

is_norm_divisible Method
julia
is_norm_divisible(a::AbsSimpleNumFieldElem, n::ZZRingElem) -> Bool

Checks if the norm of a is divisible by n, assuming that the norm of a is an integer.

source

is_norm Method
julia
is_norm(K::AbsSimpleNumField, a::ZZRingElem; extra::Vector{ZZRingElem}) -> Bool, AbsSimpleNumFieldElem

For a ZZRingElem a, try to find TK s.th. N(T)=a holds. If successful, return true and T, otherwise false and some element. In \testtt{extra} one can pass in additional prime numbers that are allowed to occur in the solution. This will then be supplemented. The element will be returned in factored form.

source

Invariants

norm Method
julia
norm(a::NumFieldElem) -> NumFieldElem

Returns the norm of an element a of a number field extension L/K. This will be an element of K.

source

absolute_norm Method
julia
absolute_norm(a::NumFieldElem) -> QQFieldElem

Given a number field element a, returns the absolute norm of a.

source

minpoly Method
julia
minpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the minimal polynomial of a over the base field of K.

source

absolute_minpoly Method
julia
absolute_minpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the minimal polynomial of a over the rationals Q.

source

charpoly Method
julia
charpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the characteristic polynomial of a over the base field of K.

source

absolute_charpoly Method
julia
absolute_charpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the characteristic polynomial of a over the rationals Q.

source

norm Method
julia
norm(a::NumFieldElem, k::NumField) -> NumFieldElem

Returns the norm of an element a of a number field L with respect to a subfield k of L. This will be an element of k.

source

- +1//2*b^2 + b + a
quadratic_defect Method
julia
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}

Returns the valuation of the quadratic defect of the element a at p, which can either be prime object or an infinite place of the parent of a.

source

hilbert_symbol Method
julia
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> Int

Returns the local Hilbert symbol (a,b)p.

source

representation_matrix Method
julia
representation_matrix(a::NumFieldElem) -> MatElem

Returns the representation matrix of a, that is, the matrix representing multiplication with a with respect to the canonical basis of the parent of a.

source

basis_matrix Method
julia
basis_matrix(v::Vector{NumFieldElem}) -> Mat

Given a vector v of n elements of a number field K of degree d, this function returns an n×d matrix with entries in the base field of K, where row i contains the coefficients of v[i] with respect of the canonical basis of K.

source

coefficients Method
julia
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}

Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.

source

coordinates Method
julia
coordinates(x::NumFieldElem{T}) -> Vector{T}

Given an element x in a number field K, this function returns the coordinates of x with respect to the basis of K (the output of the 'basis' function).

source

absolute_coordinates Method
julia
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}

Given an element x in a number field K, this function returns the coordinates of x with respect to the basis of K over the rationals (the output of the absolute_basis function).

source

coeff Method
julia
coeff(a::SimpleNumFieldElem, i::Int) -> FieldElem

Given a number field element a of a simple number field extension L/K, this function returns the i-th coefficient of a, when expanded in the canonical power basis of L. The result is an element of K.

source

valuation Method
julia
valuation(a::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

Computes the p-adic valuation of a, that is, the largest i such that a is contained in pi.

source

torsion_unit_order Method
julia
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)

Given a torsion unit x together with a multiple n of its order, compute the order of x, that is, the smallest kZ1 such that xk=1.

It is not checked whether x is a torsion unit.

source

tr Method
julia
tr(a::NumFieldElem) -> NumFieldElem

Returns the trace of an element a of a number field extension L/K. This will be an element of K.

source

absolute_tr Method
julia
absolute_tr(a::NumFieldElem) -> QQFieldElem

Given a number field element a, returns the absolute trace of a.

source

algebraic_split Method
julia
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElem

Writes the input as a quotient of two "small" algebraic integers.

source

Conjugates

conjugates Method
julia
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Let p be the precision of C, then every entry y of the vector returned satisfies radius(real(y)) < 2^-p and radius(imag(y)) < 2^-p respectively.

source

conjugates Method
julia
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Every entry y of the vector returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol respectively.

source

conjugates_log Method
julia
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the elements (log(|σ1(x)|),,log(|σr(x)|),,2log(|σr+1(x)|),,2log(|σr+s(x)|)) as elements of type ArbFieldElem with radius less then 2^-abs_tol.

source

conjugates_real Method
julia
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Compute the real conjugates of x as elements of type ArbFieldElem.

Every entry y of the array returned satisfies radius(y) < 2^-abs_tol.

source

conjugates_complex Method
julia
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the complex conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+1ir+s.

Every entry y of the array returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol.

source

conjugates_arb_log_normalise Method
julia
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
+conjugates_arb_log_normalise(x::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, p::Int = 10)

The "normalised" logarithms, i.e. the array cilog|x(i)|1/nlog|N(x)|, so the (weighted) sum adds up to zero.

source

minkowski_map Method
julia
minkowski_map(a::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the image of a under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^(-abs_tol).

source

Predicates

is_integral Method
julia
is_integral(a::NumFieldElem) -> Bool

Returns whether a is integral, that is, whether the minimal polynomial of a has integral coefficients.

source

is_torsion_unit Method
julia
is_torsion_unit(x::AbsSimpleNumFieldElem, checkisunit::Bool = false) -> Bool

Returns whether x is a torsion unit, that is, whether there exists n such that xn=1.

If checkisunit is true, it is first checked whether x is a unit of the maximal order of the number field x is lying in.

source

is_local_norm Method
julia
is_local_norm(L::NumField, a::NumFieldElem, P)

Given a number field L/K, an element aK and a prime ideal P of K, returns whether a is a local norm at P.

The number field L/K must be a simple extension of degree 2.

source

is_norm_divisible Method
julia
is_norm_divisible(a::AbsSimpleNumFieldElem, n::ZZRingElem) -> Bool

Checks if the norm of a is divisible by n, assuming that the norm of a is an integer.

source

is_norm Method
julia
is_norm(K::AbsSimpleNumField, a::ZZRingElem; extra::Vector{ZZRingElem}) -> Bool, AbsSimpleNumFieldElem

For a ZZRingElem a, try to find TK s.th. N(T)=a holds. If successful, return true and T, otherwise false and some element. In \testtt{extra} one can pass in additional prime numbers that are allowed to occur in the solution. This will then be supplemented. The element will be returned in factored form.

source

Invariants

norm Method
julia
norm(a::NumFieldElem) -> NumFieldElem

Returns the norm of an element a of a number field extension L/K. This will be an element of K.

source

absolute_norm Method
julia
absolute_norm(a::NumFieldElem) -> QQFieldElem

Given a number field element a, returns the absolute norm of a.

source

minpoly Method
julia
minpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the minimal polynomial of a over the base field of K.

source

absolute_minpoly Method
julia
absolute_minpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the minimal polynomial of a over the rationals Q.

source

charpoly Method
julia
charpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the characteristic polynomial of a over the base field of K.

source

absolute_charpoly Method
julia
absolute_charpoly(a::NumFieldElem) -> PolyRingElem

Given a number field element a of a number field K, this function returns the characteristic polynomial of a over the rationals Q.

source

norm Method
julia
norm(a::NumFieldElem, k::NumField) -> NumFieldElem

Returns the norm of an element a of a number field L with respect to a subfield k of L. This will be an element of k.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/number_fields/fields.html b/v0.34.8/manual/number_fields/fields.html index 5501acfcfc..479b12a0b1 100644 --- a/v0.34.8/manual/number_fields/fields.html +++ b/v0.34.8/manual/number_fields/fields.html @@ -6,19 +6,19 @@ Number field operations | Hecke - - + + - - - - - + + + + + -
Skip to content

Number field operations

Creation of number fields

General number fields can be created using the function number_field. To create a simple number field given by a defining polynomial or a non-simple number field given by defining polynomials, the following functions can be used.

number_field Method
julia
number_field(f::Poly{NumFieldElem}, s::VarName;
+    
Skip to content

Number field operations

Creation of number fields

General number fields can be created using the function number_field. To create a simple number field given by a defining polynomial or a non-simple number field given by defining polynomials, the following functions can be used.

number_field Method
julia
number_field(f::Poly{NumFieldElem}, s::VarName;
             cached::Bool = false, check::Bool = false) -> NumField, NumFieldElem

Given an irreducible polynomial fK[x] over some number field K, this function creates the simple number field L=K[x]/(f) and returns (L,b), where b is the class of x in L. The string s is used only for printing the primitive element b.

  • check: Controls whether irreducibility of f is checked.

  • cached: Controls whether the result is cached.

Examples

julia
julia> K, a = quadratic_field(5);
 
 julia> Kt, t = K["t"];
@@ -80,8 +80,8 @@
 
 julia> complex_places(K)
 1-element Vector{InfPlc{AbsSimpleNumField, AbsSimpleNumFieldEmbedding}}:
- Infinite place corresponding to (Complex embedding corresponding to 0.00 + 2.24 * i of imaginary quadratic field)

source

isreal Method
julia
isreal(P::Plc)

Return whether the embedding into C defined by P is real or not.

source

is_complex Method
julia
is_complex(P::Plc) -> Bool

Return whether the embedding into C defined by P is complex or not.

source

Miscellaneous

norm_equation Method
julia
norm_equation(K::AnticNumerField, a) -> AbsSimpleNumFieldElem

For a an integer or rational, try to find TK s.th. N(T)=a. Raises an error if unsuccessful.

source

lorenz_module Method
julia
lorenz_module(k::AbsSimpleNumField, n::Int) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Finds an ideal A s.th. for all positive units e=1modA we have that e is an n-th power. Uses Lorenz, number theory, 9.3.1. If containing is set, it has to be an integral ideal. The resulting ideal will be a multiple of this.

source

kummer_failure Method
julia
kummer_failure(x::AbsSimpleNumFieldElem, M::Int, N::Int) -> Int

Computes the quotient of N and [K(ζM,(Nx)):K(ζM)], where K is the field containing x and N divides M.

source

is_defining_polynomial_nice Method
julia
is_defining_polynomial_nice(K::AbsSimpleNumField)

Tests if the defining polynomial of K is integral and monic.

source

- + Infinite place corresponding to (Complex embedding corresponding to 0.00 + 2.24 * i of imaginary quadratic field)

source

isreal Method
julia
isreal(P::Plc)

Return whether the embedding into C defined by P is real or not.

source

is_complex Method
julia
is_complex(P::Plc) -> Bool

Return whether the embedding into C defined by P is complex or not.

source

Miscellaneous

norm_equation Method
julia
norm_equation(K::AnticNumerField, a) -> AbsSimpleNumFieldElem

For a an integer or rational, try to find TK s.th. N(T)=a. Raises an error if unsuccessful.

source

lorenz_module Method
julia
lorenz_module(k::AbsSimpleNumField, n::Int) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Finds an ideal A s.th. for all positive units e=1modA we have that e is an n-th power. Uses Lorenz, number theory, 9.3.1. If containing is set, it has to be an integral ideal. The resulting ideal will be a multiple of this.

source

kummer_failure Method
julia
kummer_failure(x::AbsSimpleNumFieldElem, M::Int, N::Int) -> Int

Computes the quotient of N and [K(ζM,(Nx)):K(ζM)], where K is the field containing x and N divides M.

source

is_defining_polynomial_nice Method
julia
is_defining_polynomial_nice(K::AbsSimpleNumField)

Tests if the defining polynomial of K is integral and monic.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/number_fields/internal.html b/v0.34.8/manual/number_fields/internal.html index 8cda09c476..0862e4540a 100644 --- a/v0.34.8/manual/number_fields/internal.html +++ b/v0.34.8/manual/number_fields/internal.html @@ -6,20 +6,20 @@ Internals | Hecke - - + + - - - - - + + + + + -
Skip to content

Internals

Types of number fields

Number fields, in Hecke, come in several different types:

  • AbsSimpleNumField: a finite simple extension of the rational numbers Q

  • AbsNonSimpleNumField: a finite extension of Q given by several polynomials. We will refer to this as a non-simple field - even though mathematically we can find a primitive elements.

  • RelSimpleNumField: a finite simple extension of a number field. This is actually parametried by the (element) type of the coefficient field. The complete type of an extension of an absolute field (AbsSimpleNumField) is RelSimpleNumField{AbsSimpleNumFieldElem}. The next extension thus will be RelSimpleNumField{RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}.

  • RelNonSimpleNumField: extensions of number fields given by several polynomials. This too will be referred to as a non-simple field.

The simple types AbsSimpleNumField and RelSimpleNumField are also called simple fields in the rest of this document, RelSimpleNumField and RelNonSimpleNumField are referred to as relative extensions while AbsSimpleNumField and AbsNonSimpleNumField are called absolute.

Internally, simple fields are essentially just (univariate) polynomial quotients in a dense representation, while non-simple fields are multivariate quotient rings, thus have a sparse presentation. In general, simple fields allow much faster arithmetic, while the non-simple fields give easy access to large degree fields.

Absolute simple fields

The most basic number field type is that of AbsSimpleNumField. Internally this is essentially represented as a unvariate quotient with the arithmetic provided by the C-library antic with the binding provided by Nemo.

- +
Skip to content

Internals

Types of number fields

Number fields, in Hecke, come in several different types:

  • AbsSimpleNumField: a finite simple extension of the rational numbers Q

  • AbsNonSimpleNumField: a finite extension of Q given by several polynomials. We will refer to this as a non-simple field - even though mathematically we can find a primitive elements.

  • RelSimpleNumField: a finite simple extension of a number field. This is actually parametried by the (element) type of the coefficient field. The complete type of an extension of an absolute field (AbsSimpleNumField) is RelSimpleNumField{AbsSimpleNumFieldElem}. The next extension thus will be RelSimpleNumField{RelSimpleNumFieldElem{AbsSimpleNumFieldElem}}.

  • RelNonSimpleNumField: extensions of number fields given by several polynomials. This too will be referred to as a non-simple field.

The simple types AbsSimpleNumField and RelSimpleNumField are also called simple fields in the rest of this document, RelSimpleNumField and RelNonSimpleNumField are referred to as relative extensions while AbsSimpleNumField and AbsNonSimpleNumField are called absolute.

Internally, simple fields are essentially just (univariate) polynomial quotients in a dense representation, while non-simple fields are multivariate quotient rings, thus have a sparse presentation. In general, simple fields allow much faster arithmetic, while the non-simple fields give easy access to large degree fields.

Absolute simple fields

The most basic number field type is that of AbsSimpleNumField. Internally this is essentially represented as a unvariate quotient with the arithmetic provided by the C-library antic with the binding provided by Nemo.

+ \ No newline at end of file diff --git a/v0.34.8/manual/number_fields/intro.html b/v0.34.8/manual/number_fields/intro.html index 1d375c4686..3f9ff13ca7 100644 --- a/v0.34.8/manual/number_fields/intro.html +++ b/v0.34.8/manual/number_fields/intro.html @@ -6,20 +6,20 @@ Introduction | Hecke - - + + - - - - - + + + + + -
Skip to content

Introduction

By definition, mathematically a number field is just a finite extension of the rational Q. In Hecke, a number field L is recursively defined as being the field of rational numbers Q or a finite extension of a number field K. In the second case, the extension can be defined in the one of the following two ways:

  • We have L=K[x]/(f), where fK[x] is an irreducible polynomial (simple extension), or

  • We have L=K[x1,,xn]/(f1(x1),,fn(xn)), where f1,,fnK[x] are univariate polynomials (non-simple extension).

In both cases we refer to K as the base field of the number field L. Another useful dichotomy comes from the type of the base field. We call L an absolute number field, if the base field is equal to the rational numbers Q.

- +
Skip to content

Introduction

By definition, mathematically a number field is just a finite extension of the rational Q. In Hecke, a number field L is recursively defined as being the field of rational numbers Q or a finite extension of a number field K. In the second case, the extension can be defined in the one of the following two ways:

  • We have L=K[x]/(f), where fK[x] is an irreducible polynomial (simple extension), or

  • We have L=K[x1,,xn]/(f1(x1),,fn(xn)), where f1,,fnK[x] are univariate polynomials (non-simple extension).

In both cases we refer to K as the base field of the number field L. Another useful dichotomy comes from the type of the base field. We call L an absolute number field, if the base field is equal to the rational numbers Q.

+ \ No newline at end of file diff --git a/v0.34.8/manual/orders/elements.html b/v0.34.8/manual/orders/elements.html index 6108537637..fa6eedd59f 100644 --- a/v0.34.8/manual/orders/elements.html +++ b/v0.34.8/manual/orders/elements.html @@ -6,21 +6,21 @@ Elements | Hecke - - + + - - - - - + + + + + -
Skip to content

Elements

Elements in orders have two representations: they can be viewed as elements in the Zn giving the coefficients wrt to the order basis where they are elements in. On the other hand, as every order is in a field, they also have a representation as number field elements. Since, asymptotically, operations are more efficient in the field (due to fast polynomial arithmetic) than in the order, the primary representation is that as a field element.

Creation

Elements are constructed either as linear combinations of basis elements or via explicit coercion. Elements will be of type AbsNumFieldOrderElem, the type if actually parametrized by the type of the surrounding field and the type of the field elements. E.g. the type of any element in any order of an absolute simple field will be AbsSimpleNumFieldOrderElem

AbsNumFieldOrder Type
julia
  (O::NumFieldOrder)(a::NumFieldElem, check::Bool = true) -> NumFieldOrderElem

Given an element a of the ambient number field of O, this function coerces the element into O. It will be checked that a is contained in O if and only if check is true.

source

julia
  (O::NumFieldOrder)(a::NumFieldOrderElem, check::Bool = true) -> NumFieldOrderElem

Given an element a of some order in the ambient number field of O, this function coerces the element into O. It will be checked that a is contained in O if and only if check is true.

source

julia
  (O::NumFieldOrder)(a::IntegerUnion) -> NumFieldOrderElem

Given an element a of type ZZRingElem or Integer, this function coerces the element into O.

source

julia
  (O::AbsNumFieldOrder)(arr::Vector{ZZRingElem})

Returns the element of O with coefficient vector arr.

source

julia
  (O::AbsNumFieldOrder)(arr::Vector{Integer})

Returns the element of O with coefficient vector arr.

source

Basic properties

parent Method
julia
parent(a::NumFieldOrderElem) -> NumFieldOrder

Returns the order of which a is an element.

source

elem_in_nf Method
julia
elem_in_nf(a::NumFieldOrderElem) -> NumFieldElem

Returns the element a considered as an element of the ambient number field.

source

coordinates Method
julia
coordinates(a::AbsNumFieldOrderElem) -> Vector{ZZRingElem}

Returns the coefficient vector of a with respect to the basis of the order.

source

discriminant Method
julia
discriminant(B::Vector{NumFieldOrderElem})

Returns the discriminant of the family B of algebraic numbers, i.e. det((tr(B[i]B[j]))i,j)2.

source

julia
discriminant(E::EllipticCurve) -> FieldElem

Return the discriminant of E.

source

julia
discriminant(C::HypellCrv{T}) -> T

Compute the discriminant of C.

source

julia
discriminant(O::AlgssRelOrd)

Returns the discriminant of O.

source

== Method
julia
==(x::NumFieldOrderElem, y::NumFieldOrderElem) -> Bool

Returns whether x and y are equal.

source

Arithmetic

All the usual arithmetic operatinos are defined:

  • -(::NUmFieldOrdElem)

  • +(::NumFieldOrderElem, ::NumFieldOrderElem)

  • -(::NumFieldOrderElem, ::NumFieldOrderElem)

  • *(::NumFieldOrderElem, ::NumFieldOrderElem)

  • ^(::NumFieldOrderElem, ::Int)

  • mod(::AbsNumFieldOrderElem, ::Int)

  • mod_sym(::NumFieldOrderElem, ::ZZRingElem)

  • powermod(::AbsNumFieldOrderElem, ::ZZRingElem, ::Int)

Miscellaneous

representation_matrix Method
julia
representation_matrix(a::AbsNumFieldOrderElem) -> ZZMatrix

Returns the representation matrix of the element a.

source

representation_matrix Method
julia
representation_matrix(a::AbsNumFieldOrderElem, K::AbsSimpleNumField) -> FakeFmpqMat

Returns the representation matrix of the element a considered as an element of the ambient number field K. It is assumed that K is the ambient number field of the order of a.

source

tr Method
julia
tr(a::NumFieldOrderElem)

Returns the trace of a as an element of the base ring.

source

norm Method
julia
norm(a::NumFieldOrderElem)

Returns the norm of a as an element in the base ring.

source

absolute_norm Method
julia
absolute_norm(a::NumFieldOrderElem) -> ZZRingElem

Return the absolute norm as an integer.

source

absolute_tr Method
julia
absolute_tr(a::NumFieldOrderElem) -> ZZRingElem

Return the absolute trace as an integer.

source

rand Method
julia
rand(O::AbsSimpleNumFieldOrder, n::IntegerUnion) -> AbsNumFieldOrderElem

Computes a coefficient vector with entries uniformly distributed in {n,,1,0,1,,n} and returns the corresponding element of the order O.

source

minkowski_map Method
julia
minkowski_map(a::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the image of a under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^-abs_tol.

source

conjugates_arb Method
julia
conjugates_arb(x::NumFieldOrderElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+2ir+s.

Every entry y of the array returned satisfies radius(real(y)) < 2^-abs_tol, radius(imag(y)) < 2^-abs_tol respectively.

source

conjugates_arb_log Method
julia
conjugates_arb_log(x::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the elements (log(|σ1(x)|),,log(|σr(x)|),,2log(|σr+1(x)|),,2log(|σr+s(x)|)) as elements of type ArbFieldElem radius less then 2^-abs_tol.

source

t2 Method
julia
t2(x::NumFieldOrderElem, abs_tol::Int = 32) -> ArbFieldElem

Return the T2-norm of x. The radius of the result will be less than 2^-abs_tol.

source

minpoly Method
julia
minpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem

The minimal polynomial of a.

source

charpoly Method
julia
charpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem
-charpoly(a::AbsNumFieldOrderElem, ZZ) -> ZZPolyRingElem

The characteristic polynomial of a.

source

factor Method
julia
factor(a::AbsSimpleNumFieldOrderElem) -> Fac{AbsSimpleNumFieldOrderElem}

Computes a factorization of a into irreducible elements. The return value is a factorization fac, which satisfies a = unit(fac) * prod(p^e for (p, e) in fac).

The function requires that a is non-zero and that all prime ideals containing a are principal, which is for example satisfied if class group of the order of a is trivial.

source

denominator Method
julia
denominator(a::NumFieldElem, O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the smallest positive integer k such that ka is contained in O.

source

discriminant Method
julia
discriminant(B::Vector{NumFieldOrderElem})

Returns the discriminant of the family B of algebraic numbers, i.e. det((tr(B[i]B[j]))i,j)2.

source

julia
discriminant(E::EllipticCurve) -> FieldElem

Return the discriminant of E.

source

julia
discriminant(C::HypellCrv{T}) -> T

Compute the discriminant of C.

source

julia
discriminant(O::AlgssRelOrd)

Returns the discriminant of O.

source

- +
Skip to content

Elements

Elements in orders have two representations: they can be viewed as elements in the Zn giving the coefficients wrt to the order basis where they are elements in. On the other hand, as every order is in a field, they also have a representation as number field elements. Since, asymptotically, operations are more efficient in the field (due to fast polynomial arithmetic) than in the order, the primary representation is that as a field element.

Creation

Elements are constructed either as linear combinations of basis elements or via explicit coercion. Elements will be of type AbsNumFieldOrderElem, the type if actually parametrized by the type of the surrounding field and the type of the field elements. E.g. the type of any element in any order of an absolute simple field will be AbsSimpleNumFieldOrderElem

AbsNumFieldOrder Type
julia
  (O::NumFieldOrder)(a::NumFieldElem, check::Bool = true) -> NumFieldOrderElem

Given an element a of the ambient number field of O, this function coerces the element into O. It will be checked that a is contained in O if and only if check is true.

source

julia
  (O::NumFieldOrder)(a::NumFieldOrderElem, check::Bool = true) -> NumFieldOrderElem

Given an element a of some order in the ambient number field of O, this function coerces the element into O. It will be checked that a is contained in O if and only if check is true.

source

julia
  (O::NumFieldOrder)(a::IntegerUnion) -> NumFieldOrderElem

Given an element a of type ZZRingElem or Integer, this function coerces the element into O.

source

julia
  (O::AbsNumFieldOrder)(arr::Vector{ZZRingElem})

Returns the element of O with coefficient vector arr.

source

julia
  (O::AbsNumFieldOrder)(arr::Vector{Integer})

Returns the element of O with coefficient vector arr.

source

Basic properties

parent Method
julia
parent(a::NumFieldOrderElem) -> NumFieldOrder

Returns the order of which a is an element.

source

elem_in_nf Method
julia
elem_in_nf(a::NumFieldOrderElem) -> NumFieldElem

Returns the element a considered as an element of the ambient number field.

source

coordinates Method
julia
coordinates(a::AbsNumFieldOrderElem) -> Vector{ZZRingElem}

Returns the coefficient vector of a with respect to the basis of the order.

source

discriminant Method
julia
discriminant(B::Vector{NumFieldOrderElem})

Returns the discriminant of the family B of algebraic numbers, i.e. det((tr(B[i]B[j]))i,j)2.

source

julia
discriminant(E::EllipticCurve) -> FieldElem

Return the discriminant of E.

source

julia
discriminant(C::HypellCrv{T}) -> T

Compute the discriminant of C.

source

julia
discriminant(O::AlgssRelOrd)

Returns the discriminant of O.

source

== Method
julia
==(x::NumFieldOrderElem, y::NumFieldOrderElem) -> Bool

Returns whether x and y are equal.

source

Arithmetic

All the usual arithmetic operatinos are defined:

  • -(::NUmFieldOrdElem)

  • +(::NumFieldOrderElem, ::NumFieldOrderElem)

  • -(::NumFieldOrderElem, ::NumFieldOrderElem)

  • *(::NumFieldOrderElem, ::NumFieldOrderElem)

  • ^(::NumFieldOrderElem, ::Int)

  • mod(::AbsNumFieldOrderElem, ::Int)

  • mod_sym(::NumFieldOrderElem, ::ZZRingElem)

  • powermod(::AbsNumFieldOrderElem, ::ZZRingElem, ::Int)

Miscellaneous

representation_matrix Method
julia
representation_matrix(a::AbsNumFieldOrderElem) -> ZZMatrix

Returns the representation matrix of the element a.

source

representation_matrix Method
julia
representation_matrix(a::AbsNumFieldOrderElem, K::AbsSimpleNumField) -> FakeFmpqMat

Returns the representation matrix of the element a considered as an element of the ambient number field K. It is assumed that K is the ambient number field of the order of a.

source

tr Method
julia
tr(a::NumFieldOrderElem)

Returns the trace of a as an element of the base ring.

source

norm Method
julia
norm(a::NumFieldOrderElem)

Returns the norm of a as an element in the base ring.

source

absolute_norm Method
julia
absolute_norm(a::NumFieldOrderElem) -> ZZRingElem

Return the absolute norm as an integer.

source

absolute_tr Method
julia
absolute_tr(a::NumFieldOrderElem) -> ZZRingElem

Return the absolute trace as an integer.

source

rand Method
julia
rand(O::AbsSimpleNumFieldOrder, n::IntegerUnion) -> AbsNumFieldOrderElem

Computes a coefficient vector with entries uniformly distributed in {n,,1,0,1,,n} and returns the corresponding element of the order O.

source

minkowski_map Method
julia
minkowski_map(a::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the image of a under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^-abs_tol.

source

conjugates_arb Method
julia
conjugates_arb(x::NumFieldOrderElem, abs_tol::Int) -> Vector{AcbFieldElem}

Compute the conjugates of x as elements of type AcbFieldElem. Recall that we order the complex conjugates σr+1(x),...,σr+2s(x) such that σi(x)=σi+s(x) for r+2ir+s.

Every entry y of the array returned satisfies radius(real(y)) < 2^-abs_tol, radius(imag(y)) < 2^-abs_tol respectively.

source

conjugates_arb_log Method
julia
conjugates_arb_log(x::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}

Returns the elements (log(|σ1(x)|),,log(|σr(x)|),,2log(|σr+1(x)|),,2log(|σr+s(x)|)) as elements of type ArbFieldElem radius less then 2^-abs_tol.

source

t2 Method
julia
t2(x::NumFieldOrderElem, abs_tol::Int = 32) -> ArbFieldElem

Return the T2-norm of x. The radius of the result will be less than 2^-abs_tol.

source

minpoly Method
julia
minpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem

The minimal polynomial of a.

source

charpoly Method
julia
charpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem
+charpoly(a::AbsNumFieldOrderElem, ZZ) -> ZZPolyRingElem

The characteristic polynomial of a.

source

factor Method
julia
factor(a::AbsSimpleNumFieldOrderElem) -> Fac{AbsSimpleNumFieldOrderElem}

Computes a factorization of a into irreducible elements. The return value is a factorization fac, which satisfies a = unit(fac) * prod(p^e for (p, e) in fac).

The function requires that a is non-zero and that all prime ideals containing a are principal, which is for example satisfied if class group of the order of a is trivial.

source

denominator Method
julia
denominator(a::NumFieldElem, O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the smallest positive integer k such that ka is contained in O.

source

discriminant Method
julia
discriminant(B::Vector{NumFieldOrderElem})

Returns the discriminant of the family B of algebraic numbers, i.e. det((tr(B[i]B[j]))i,j)2.

source

julia
discriminant(E::EllipticCurve) -> FieldElem

Return the discriminant of E.

source

julia
discriminant(C::HypellCrv{T}) -> T

Compute the discriminant of C.

source

julia
discriminant(O::AlgssRelOrd)

Returns the discriminant of O.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/orders/frac_ideals.html b/v0.34.8/manual/orders/frac_ideals.html index ad36421903..97e9ae7235 100644 --- a/v0.34.8/manual/orders/frac_ideals.html +++ b/v0.34.8/manual/orders/frac_ideals.html @@ -6,21 +6,21 @@ Fractional ideals | Hecke - - + + - - - - - + + + + + -
Skip to content

Fractional ideals

A fractional ideal in the number field K is a ZK-module A such that there exists an integer d>0 which dA is an (integral) ideal in ZK. Due to the Dedekind property of ZK, the ideals for a multiplicative group.

Fractional ideals are represented as an integral ideal and an additional denominator. They are of type AbsSimpleNumFieldOrderFractionalIdeal.

Creation

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O with basis matrix M/b. If M_in_hnf is set, then it is assumed that A is already in lower left HNF.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O with basis matrix M/b. If M_in_hnf is set, then it is assumed that A is already in lower left HNF.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::QQMatrix) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O generated by the elements corresponding to the rows of M.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal

The fractional ideal of O generated by a Z-basis of I.

source

julia
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrderFractionalIdeal

Turns the ideal I into a fractional ideal of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal, b::ZZRingElem) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal I/b of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, a::AbsSimpleNumFieldElem) -> AbsNumFieldOrderFractionalIdeal

Creates the principal fractional ideal (a) of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, a::AbsNumFieldOrderElem) -> AbsNumFieldOrderFractionalIdeal

Creates the principal fractional ideal (a) of O.

source

inv Method
julia
inv(A::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal

Computes the inverse of A, that is, the fractional ideal B such that AB=OK.

source

Arithmetic

All the normal operations are provided as well.

inv Method
julia
inv(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderFractionalIdeal

Returns the fractional ideal B such that AB=O.

source

integral_split Method
julia
integral_split(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderIdeal, AbsNumFieldOrderIdeal

Computes the unique coprime integral ideals N and D s.th. A=ND1

source

numerator Method
julia
numerator(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrderIdeal

Returns the ideal da where d is the denominator of a.

source

denominator Method
julia
denominator(a::RelNumFieldOrderFractionalIdeal) -> ZZRingElem

Returns the smallest positive integer d such that da is contained in the order of a.

source

Miscaellenous

order Method
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder

The order that was used to define the ideal a.

source

basis_matrix Method
julia
basis_matrix(I::AbsNumFieldOrderFractionalIdeal) -> FakeFmpqMat

Returns the basis matrix of I with respect to the basis of the order.

source

basis_mat_inv Method
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat

Return the inverse of the basis matrix of A.

source

basis Method
julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}

Returns the Z-basis of I.

source

norm Method
julia
norm(I::AbsNumFieldOrderFractionalIdeal) -> QQFieldElem

Returns the norm of I.

source

julia
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Returns the norm of a.

source

julia
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> S

Returns the norm of a.

source

julia
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElem

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

julia
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
-  where { S, T, U } -> T

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

- +
Skip to content

Fractional ideals

A fractional ideal in the number field K is a ZK-module A such that there exists an integer d>0 which dA is an (integral) ideal in ZK. Due to the Dedekind property of ZK, the ideals for a multiplicative group.

Fractional ideals are represented as an integral ideal and an additional denominator. They are of type AbsSimpleNumFieldOrderFractionalIdeal.

Creation

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O with basis matrix M/b. If M_in_hnf is set, then it is assumed that A is already in lower left HNF.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::ZZMatrix, b::ZZRingElem; M_in_hnf::Bool = false) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O with basis matrix M/b. If M_in_hnf is set, then it is assumed that A is already in lower left HNF.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, M::QQMatrix) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal of O generated by the elements corresponding to the rows of M.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal

The fractional ideal of O generated by a Z-basis of I.

source

julia
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrderFractionalIdeal

Turns the ideal I into a fractional ideal of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, I::AbsNumFieldOrderIdeal, b::ZZRingElem) -> AbsNumFieldOrderFractionalIdeal

Creates the fractional ideal I/b of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, a::AbsSimpleNumFieldElem) -> AbsNumFieldOrderFractionalIdeal

Creates the principal fractional ideal (a) of O.

source

fractional_ideal Method
julia
fractional_ideal(O::AbsNumFieldOrder, a::AbsNumFieldOrderElem) -> AbsNumFieldOrderFractionalIdeal

Creates the principal fractional ideal (a) of O.

source

inv Method
julia
inv(A::AbsNumFieldOrderIdeal) -> AbsSimpleNumFieldOrderFractionalIdeal

Computes the inverse of A, that is, the fractional ideal B such that AB=OK.

source

Arithmetic

All the normal operations are provided as well.

inv Method
julia
inv(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderFractionalIdeal

Returns the fractional ideal B such that AB=O.

source

integral_split Method
julia
integral_split(A::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrderIdeal, AbsNumFieldOrderIdeal

Computes the unique coprime integral ideals N and D s.th. A=ND1

source

numerator Method
julia
numerator(a::RelNumFieldOrderFractionalIdeal) -> RelNumFieldOrderIdeal

Returns the ideal da where d is the denominator of a.

source

denominator Method
julia
denominator(a::RelNumFieldOrderFractionalIdeal) -> ZZRingElem

Returns the smallest positive integer d such that da is contained in the order of a.

source

Miscaellenous

order Method
julia
order(a::AbsNumFieldOrderFractionalIdeal) -> AbsNumFieldOrder

The order that was used to define the ideal a.

source

basis_matrix Method
julia
basis_matrix(I::AbsNumFieldOrderFractionalIdeal) -> FakeFmpqMat

Returns the basis matrix of I with respect to the basis of the order.

source

basis_mat_inv Method
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat

Return the inverse of the basis matrix of A.

source

basis Method
julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}

Returns the Z-basis of I.

source

norm Method
julia
norm(I::AbsNumFieldOrderFractionalIdeal) -> QQFieldElem

Returns the norm of I.

source

julia
norm(a::RelNumFieldOrderIdeal) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

Returns the norm of a.

source

julia
norm(a::RelNumFieldOrderFractionalIdeal{T, S}) -> S

Returns the norm of a.

source

julia
norm(a::AlgAssAbsOrdIdl, O::AlgAssAbsOrd; copy::Bool = true) -> QQFieldElem

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

julia
norm(a::AlgAssRelOrdIdl{S, T, U}, O::AlgAssRelOrd{S, T, U}; copy::Bool = true)
+  where { S, T, U } -> T

Returns the norm of a considered as an (possibly fractional) ideal of O.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/orders/ideals.html b/v0.34.8/manual/orders/ideals.html index 9729b9e681..fc46ab7823 100644 --- a/v0.34.8/manual/orders/ideals.html +++ b/v0.34.8/manual/orders/ideals.html @@ -6,19 +6,19 @@ Ideals | Hecke - - + + - - - - - + + + + + -
Skip to content

Ideals

(Integral) ideals in orders are always free Z-module of the same rank as the order, hence have a representation via a Z-basis. This can be made unique by normalising the corresponding matrix to be in reduced row echelon form (HNF).

For ideals in maximal orders ZK, we also have a second presentation coming from the ZK module structure and the fact that ZK is a Dedekind ring: ideals can be generated by 2 elements, one of which can be any non-zero element in the ideal.

For efficiency, we will choose the 1st generator to be an integer.

Ideals here are of type AbsNumFieldOrderIdeal, which is, similar to the elements above, also indexed by the type of the field and their elements: AbsNumFieldOrderIdeal{AbsSimpleNumField,AbsSimpleNumFieldElem} for ideals in simple absolute fields.

Different to elements, the parentof an ideal is the set of all ideals in the ring, of type AbsNumFieldOrderIdealSet.

Creation

ideal Method
julia
ideal(O::AbsSimpleNumFieldOrder, a::ZZRingElem) -> AbsNumFieldOrderIdeal
+    
Skip to content

Ideals

(Integral) ideals in orders are always free Z-module of the same rank as the order, hence have a representation via a Z-basis. This can be made unique by normalising the corresponding matrix to be in reduced row echelon form (HNF).

For ideals in maximal orders ZK, we also have a second presentation coming from the ZK module structure and the fact that ZK is a Dedekind ring: ideals can be generated by 2 elements, one of which can be any non-zero element in the ideal.

For efficiency, we will choose the 1st generator to be an integer.

Ideals here are of type AbsNumFieldOrderIdeal, which is, similar to the elements above, also indexed by the type of the field and their elements: AbsNumFieldOrderIdeal{AbsSimpleNumField,AbsSimpleNumFieldElem} for ideals in simple absolute fields.

Different to elements, the parentof an ideal is the set of all ideals in the ring, of type AbsNumFieldOrderIdealSet.

Creation

ideal Method
julia
ideal(O::AbsSimpleNumFieldOrder, a::ZZRingElem) -> AbsNumFieldOrderIdeal
 ideal(O::AbsSimpleNumFieldOrder, a::Integer) -> AbsNumFieldOrderIdeal

Returns the ideal of O which is generated by a.

source

ideal Method
julia
ideal(O::AbsSimpleNumFieldOrder, M::ZZMatrix; check::Bool = false, M_in_hnf::Bool = false) -> AbsNumFieldOrderIdeal

Creates the ideal of O with basis matrix M. If check is set, then it is checked whether M defines an ideal (expensive). If M_in_hnf is set, then it is assumed that M is already in lower left HNF.

source

ideal Method
julia
ideal(O::AbsSimpleNumFieldOrder, x::AbsSimpleNumFieldOrderElem) -> AbsNumFieldOrderIdeal

Creates the principal ideal (x) of O.

source

ideal Method
julia
ideal(O::AbsSimpleNumFieldOrder, x::ZZRingElem, y::AbsSimpleNumFieldOrderElem) -> AbsNumFieldOrderIdeal
 ideal(O::AbsSimpleNumFieldOrder, x::Integer, y::AbsSimpleNumFieldOrderElem) -> AbsNumFieldOrderIdeal

Creates the ideal (x,y) of O.

source

ideal Method
julia
ideal(O::AbsSimpleNumFieldOrder, x::ZZRingElem, y::AbsSimpleNumFieldOrderElem) -> AbsNumFieldOrderIdeal
 ideal(O::AbsSimpleNumFieldOrder, x::Integer, y::AbsSimpleNumFieldOrderElem) -> AbsNumFieldOrderIdeal

Creates the ideal (x,y) of O.

source

ideal Method
julia
ideal(O::AbsSimpleNumFieldOrder, a::ZZRingElem) -> AbsNumFieldOrderIdeal
@@ -166,8 +166,8 @@
 valuation(a::ZZRingElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

Computes the p-adic valuation of a, that is, the largest i such that a is contained in pi.

source

valuation Method
julia
valuation(A::AbsNumFieldOrderFractionalIdeal, p::AbsNumFieldOrderIdeal)

The valuation of A at p.

source

idempotents Method
julia
idempotents(x::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, y::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem, AbsSimpleNumFieldOrderElem

Returns a tuple (e, f) consisting of elements e in x, f in y such that 1 = e + f.

If the ideals are not coprime, an error is raised.

source

Quotient Rings

quo Method
julia
quo(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderQuoRing, Map
 quo(O::AlgAssAbsOrd, I::AlgAssAbsOrdIdl) -> AbsOrdQuoRing, Map

The quotient ring O/I as a ring together with the section M:O/IO. The pointwise inverse of M is the canonical projection OO/I.

source

residue_ring Method
julia
residue_ring(O::AbsSimpleNumFieldOrder, I::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderQuoRing
 residue_ring(O::AlgAssAbsOrd, I::AlgAssAbsOrdIdl) -> AbsOrdQuoRing

The quotient ring O modulo I as a new ring.

source

residue_field Method
julia
residue_field(O::AbsSimpleNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, check::Bool = true) -> Field, Map

Returns the residue field of the prime ideal P together with the projection map. If check is true, the ideal is checked for being prime.

source

mod Method
julia
mod(x::AbsSimpleNumFieldOrderElem, I::AbsNumFieldOrderIdeal)

Returns the unique element y of the ambient order of x with xymodI and the following property: If a1,,adZ1 are the diagonal entries of the unique HNF basis matrix of I and (b1,,bd) is the coefficient vector of y, then 0bi<ai for 1id.

source

crt Method
julia
crt(r1::AbsSimpleNumFieldOrderElem, i1::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, r2::AbsSimpleNumFieldOrderElem, i2::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> AbsSimpleNumFieldOrderElem

Find x such that xr1modi1 and xr2modi2 using idempotents.

source

euler_phi Method
julia
euler_phi(A::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> ZZRingElem

The ideal version of the totient function returns the size of the unit group of the residue ring modulo the ideal.

source

multiplicative_group Method
julia
multiplicative_group(Q::AbsSimpleNumFieldOrderQuoRing) -> FinGenAbGroup, Map{FinGenAbGroup, AbsSimpleNumFieldOrderQuoRing}
-unit_group(Q::AbsSimpleNumFieldOrderQuoRing) -> FinGenAbGroup, Map{FinGenAbGroup, AbsSimpleNumFieldOrderQuoRing}

Returns the unit group of Q as an abstract group A and an isomorphism map f:AQ×.

source

multiplicative_group_generators Method
julia
multiplicative_group_generators(Q::AbsSimpleNumFieldOrderQuoRing) -> Vector{AbsSimpleNumFieldOrderQuoRingElem}

Return a set of generators for Q×.

source

- +unit_group(Q::AbsSimpleNumFieldOrderQuoRing) -> FinGenAbGroup, Map{FinGenAbGroup, AbsSimpleNumFieldOrderQuoRing}

Returns the unit group of Q as an abstract group A and an isomorphism map f:AQ×.

source

multiplicative_group_generators Method
julia
multiplicative_group_generators(Q::AbsSimpleNumFieldOrderQuoRing) -> Vector{AbsSimpleNumFieldOrderQuoRingElem}

Return a set of generators for Q×.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/orders/introduction.html b/v0.34.8/manual/orders/introduction.html index eae98185cc..88e6a5bd47 100644 --- a/v0.34.8/manual/orders/introduction.html +++ b/v0.34.8/manual/orders/introduction.html @@ -6,19 +6,19 @@ Introduction | Hecke - - + + - - - - - + + + + + -
Skip to content

Introduction

This chapter deals with number fields and orders there of. We follow the common terminology and conventions as e.g. used in [2], [1], [3] or [4].

If K is a number field, then an order O of K is a subring of the ring of integers OK of K, which is free of rank [K:Q] as a Z-module. Depending on whether K is an absolute field or relative field, orders are treated differently. As far as possible, the interaction and the interface for orders of absolute number fields and of relative number fields is the same.

Orders of absolute number fields

Assume that K is defined as an absolute field. An order O of such a field are constructed (implicitly) by specifying a Z-basis, which is referred to as the basis of O. If (ω1,,ωd) is the basis of O and (α1,,αd) the basis of K, then the matrix BMatd×d(Q) with

(ω1ωd)=B(α1αd)

is the basis matrix of K. If K=Q(α)=Q[x]/(f) is simple with fZ[x], then natural order Z[α]=Z[x]/(f) is called the equation order of K.

Orders of relative number fields

Orders in non-absolute number fields, that is, relative extensions, are represented differently. Let L/K be a finite extension of number fields, then currently we require any order in L to contain OK, the ring of integers of K. In this case, an order O in L is a finitly generated torsion-free module over the Dedekind domain OK. As a ring, the order O is unitary and has L as a fraction field. Due to OK in general not being a principal ideal domain, the module structure is more complicated and requires so called pseudo-matrices. See here for details on pseudo-matrices, or [1], Chapter 1 for an introduction.

In short, O is represented as aiωi with fractional OK ideals aiK and K-linear independent elements ωiL. In general it is impossible to have both ai integral and ωiO, thus coefficients will not be integral and/or generators not in the structure.

Examples

Usually, to create an order, one starts with a field (or a polynomial):

julia

+    
Skip to content

Introduction

This chapter deals with number fields and orders there of. We follow the common terminology and conventions as e.g. used in [2], [1], [3] or [4].

If K is a number field, then an order O of K is a subring of the ring of integers OK of K, which is free of rank [K:Q] as a Z-module. Depending on whether K is an absolute field or relative field, orders are treated differently. As far as possible, the interaction and the interface for orders of absolute number fields and of relative number fields is the same.

Orders of absolute number fields

Assume that K is defined as an absolute field. An order O of such a field are constructed (implicitly) by specifying a Z-basis, which is referred to as the basis of O. If (ω1,,ωd) is the basis of O and (α1,,αd) the basis of K, then the matrix BMatd×d(Q) with

(ω1ωd)=B(α1αd)

is the basis matrix of K. If K=Q(α)=Q[x]/(f) is simple with fZ[x], then natural order Z[α]=Z[x]/(f) is called the equation order of K.

Orders of relative number fields

Orders in non-absolute number fields, that is, relative extensions, are represented differently. Let L/K be a finite extension of number fields, then currently we require any order in L to contain OK, the ring of integers of K. In this case, an order O in L is a finitly generated torsion-free module over the Dedekind domain OK. As a ring, the order O is unitary and has L as a fraction field. Due to OK in general not being a principal ideal domain, the module structure is more complicated and requires so called pseudo-matrices. See here for details on pseudo-matrices, or [1], Chapter 1 for an introduction.

In short, O is represented as aiωi with fractional OK ideals aiK and K-linear independent elements ωiL. In general it is impossible to have both ai integral and ωiO, thus coefficients will not be integral and/or generators not in the structure.

Examples

Usually, to create an order, one starts with a field (or a polynomial):

julia

 julia> Qx, x = polynomial_ring(QQ, "x");
 
 julia> K, a = number_field(x^2 - 10, "a");
@@ -64,8 +64,8 @@
 julia> [ mFp(x) for x = basis(Z_K)]
 2-element Vector{FqFieldElem}:
  1
- 0
- + 0
+ \ No newline at end of file diff --git a/v0.34.8/manual/orders/orders.html b/v0.34.8/manual/orders/orders.html index b0851b976e..624c0166b8 100644 --- a/v0.34.8/manual/orders/orders.html +++ b/v0.34.8/manual/orders/orders.html @@ -6,19 +6,19 @@ Orders | Hecke - - + + - - - - - + + + + + -
Skip to content

Orders

Orders, that is, unitary subrings that are free Z-modules of rank equal to the degree of the number field, are at the core of the arithmetic of number fields. In Hecke, orders are always represented using the module structure, be it the Z-module structure for orders of absolute numbers fields, or the structure as a module over the maximal order of the base field in the case of relative number fields. In this chapter we mainly deal with orders of absolute fields. However, many functions apply in same way to relative extensions. There are more general definitions of orders in number fields available, but those are (currently) not implemented in Hecke.

Among all orders in a fixed field, there is a unique maximal order, called the maximal order, or ring of integers of the number field. It is well known that this is the only order that is a Dedekind domain, hence has a rich ideal structure as well. The maximal order is also the integral closure of Z in the number field and can also be interpreted as a normalization of any other order.

Creation and basic properties

Order Method
julia
Order(a::Vector{AbsSimpleNumFieldElem}; check::Bool = true, cached::Bool = true, isbasis::Bool = false) -> AbsSimpleNumFieldOrder
+    
Skip to content

Orders

Orders, that is, unitary subrings that are free Z-modules of rank equal to the degree of the number field, are at the core of the arithmetic of number fields. In Hecke, orders are always represented using the module structure, be it the Z-module structure for orders of absolute numbers fields, or the structure as a module over the maximal order of the base field in the case of relative number fields. In this chapter we mainly deal with orders of absolute fields. However, many functions apply in same way to relative extensions. There are more general definitions of orders in number fields available, but those are (currently) not implemented in Hecke.

Among all orders in a fixed field, there is a unique maximal order, called the maximal order, or ring of integers of the number field. It is well known that this is the only order that is a Dedekind domain, hence has a rich ideal structure as well. The maximal order is also the integral closure of Z in the number field and can also be interpreted as a normalization of any other order.

Creation and basic properties

Order Method
julia
Order(a::Vector{AbsSimpleNumFieldElem}; check::Bool = true, cached::Bool = true, isbasis::Bool = false) -> AbsSimpleNumFieldOrder
 Order(K::AbsSimpleNumField, a::Vector{AbsSimpleNumFieldElem}; check::Bool = true, cached::Bool = true, isbasis::Bool = false) -> AbsSimpleNumFieldOrder

Returns the order generated by a. If check is set, it is checked whether a defines an order, in particular the integrality of the elements is checked by computing minimal polynomials. If isbasis is set, then elements are assumed to form a Z-basis. If cached is set, then the constructed order is cached for future use.

source

Order Method
julia
Order(K::AbsSimpleNumField, A::QQMatrix; check::Bool = true) -> AbsSimpleNumFieldOrder

Returns the order which has basis matrix A with respect to the power basis of K. If check is set, it is checked whether A defines an order.

source

julia
Order(K::AbsSimpleNumField, A::QQMatrix; check::Bool = true) -> AbsSimpleNumFieldOrder

Returns the order which has basis matrix A with respect to the power basis of K. If check is set, it is checked whether A defines an order.

source

Order Method
julia
Order(K::AbsSimpleNumField, A::ZZMatrix, check::Bool = true) -> AbsSimpleNumFieldOrder

Returns the order which has basis matrix A with respect to the power basis of K. If check is set, it is checked whether A defines an order.

source

julia
Order(A::AbstractAssociativeAlgebra{<: NumFieldElem}, M::PMat{<: NumFieldElem, T})
   -> AlgAssRelOrd

Returns the order of A with basis pseudo-matrix M.

source

EquationOrder Method
julia
EquationOrder(K::number_field) -> NumFieldOrder
 equation_order(K::number_field) -> NumFieldOrder

Returns the equation order of the number field K.

source

MaximalOrder Method
julia
MaximalOrder(K::NumField{QQFieldElem}; discriminant::ZZRingElem, ramified_primes::Vector{ZZRingElem}) -> AbsNumFieldOrder

Returns the maximal order of K. Additional information can be supplied if they are already known, as the ramified primes or the discriminant of the maximal order.

Example

julia
julia> Qx, x = QQ["x"];
@@ -33,8 +33,8 @@
 with Z-basis AbsSimpleNumFieldOrderElem[1, a]
parent Method
julia
parent(O::AbsNumFieldOrder) -> AbsNumFieldOrderSet

Returns the parent of O, that is, the set of orders of the ambient number field.

source

signature Method
julia
signature(O::NumFieldOrder) -> Tuple{Int, Int}

Returns the signature of the ambient number field of O.

source

nf Method
julia
nf(O::NumFieldOrder) -> NumField

Returns the ambient number field of O.

source

basis Method
julia
basis(O::AbsNumFieldOrder) -> Vector{AbsNumFieldOrderElem}

Returns the Z-basis of O.

source

julia
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}

Returns the Z-basis of I.

source

lll_basis Method
julia
lll_basis(M::NumFieldOrder) -> Vector{NumFieldElem}

A basis for M that is reduced using the LLL algorithm for the Minkowski metric.

source

basis Method
julia
basis(O::AbsSimpleNumFieldOrder, K::AbsSimpleNumField) -> Vector{AbsSimpleNumFieldElem}

Returns the Z-basis elements of O as elements of the ambient number field.

source

pseudo_basis Method
julia
  pseudo_basis(O::RelNumFieldOrder{T, S}) -> Vector{Tuple{NumFieldElem{T}, S}}

Returns the pseudo-basis of O.

source

basis_pmatrix Method
julia
  basis_pmatrix(O::RelNumFieldOrder) -> PMat

Returns the basis pseudo-matrix of O with respect to the power basis of the ambient number field.

source

basis_nf Method
julia
  basis_nf(O::RelNumFieldOrder) -> Vector{NumFieldElem}

Returns the elements of the pseudo-basis of O as elements of the ambient number field.

source

inv_coeff_ideals Method
julia
  inv_coeff_ideals(O::RelNumFieldOrder{T, S}) -> Vector{S}

Returns the inverses of the coefficient ideals of the pseudo basis of O.

source

basis_matrix Method
julia
basis_matrix(O::AbsNumFieldOrder) -> QQMatrix

Returns the basis matrix of O with respect to the basis of the ambient number field.

source

basis_mat_inv Method
julia
basis_mat_inv(A::GenOrdIdl) -> FakeFracFldMat

Return the inverse of the basis matrix of A.

source

gen_index Method
julia
gen_index(O::AbsSimpleNumFieldOrder) -> QQFieldElem

Returns the generalized index of O with respect to the equation order of the ambient number field.

source

is_index_divisor Method
julia
is_index_divisor(O::AbsSimpleNumFieldOrder, d::ZZRingElem) -> Bool
 is_index_divisor(O::AbsSimpleNumFieldOrder, d::Int) -> Bool

Returns whether d is a divisor of the index of O. It is assumed that O contains the equation order of the ambient number field.

source

minkowski_matrix Method
julia
minkowski_matrix(O::AbsNumFieldOrder, abs_tol::Int = 64) -> ArbMatrix

Returns the Minkowski matrix of O. Thus if O has degree d, then the result is a matrix in Matd×d(R). The entries of the matrix are real balls of type ArbFieldElem with radius less then 2^-abs_tol.

source

in Method
julia
in(a::NumFieldElem, O::NumFieldOrder) -> Bool

Checks whether a lies in O.

source

norm_change_const Method
julia
norm_change_const(O::AbsSimpleNumFieldOrder) -> (Float64, Float64)

Returns (c1,c2)R>02 such that for all x=i=1dxiωiO we have T2(x)c1idxi2 and idxi2c2T2(x), where (ωi)i is the Z-basis of O.

source

trace_matrix Method
julia
trace_matrix(O::AbsNumFieldOrder) -> ZZMatrix

Returns the trace matrix of O, that is, the matrix (trK/Q(bibj))1i,jd.

source

+ Method
julia
+(R::AbsSimpleNumFieldOrder, S::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrder

Given two orders R, S of K, this function returns the smallest order containing both R and S. It is assumed that R, S contain the ambient equation order and have coprime index.

source

poverorder Method
julia
poverorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
 poverorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder

This function tries to find an order that is locally larger than O at the prime p: If p divides the index [OK:O], this function will return an order R such that vp([OK:R])<vp([OK:O]). Otherwise O is returned.

source

poverorders Method
julia
poverorders(O, p) -> Vector{Ord}

Returns all p-overorders of O, that is all overorders M, such that the index of O in M is a p-power.

source

pmaximal_overorder Method
julia
pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
-pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder

This function finds a p-maximal order R containing O. That is, the index [OK:R] is not divisible by p.

source

pradical Method
julia
pradical(O::AbsSimpleNumFieldOrder, p::{ZZRingElem|Integer}) -> AbsNumFieldOrderIdeal

Given a prime number p, this function returns the p-radical pO of O, which is just {xOkZ0:xkpO}. It is not checked that p is prime.

source

pradical Method
julia
  pradical(O::RelNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> RelNumFieldOrderIdeal

Given a prime ideal P, this function returns the P-radical PO of O, which is just {xOkZ0:xkPO}. It is not checked that P is prime.

source

ring_of_multipliers Method
julia
ring_of_multipliers(I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrder

Computes the order (I:I), which is the set of all xK with xII.

source

Invariants

discriminant Method
julia
discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the discriminant of O.

source

reduced_discriminant Method
julia
reduced_discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the reduced discriminant, that is, the largest elementary divisor of the trace matrix of O.

source

degree Method
julia
degree(O::NumFieldOrder) -> Int

Returns the degree of O.

source

index Method
julia
index(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Assuming that the order O contains the equation order Z[α] of the ambient number field, this function returns the index [O:Z].

source

different Method
julia
different(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal

The different ideal of R, that is, the ideal generated by all differents of elements in R. For Gorenstein orders, this is also the inverse ideal of the co-different.

source

codifferent Method
julia
codifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

The codifferent ideal of R, i.e. the trace-dual of R.

source

is_gorenstein Method
julia
is_gorenstein(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \mathcal{O} is Gorenstein.

source

is_bass Method
julia
is_bass(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \mathcal{O} is Bass.

source

is_equation_order Method
julia
is_equation_order(O::NumFieldOrder) -> Bool

Returns whether O is the equation order of the ambient number field K.

source

zeta_log_residue Method
julia
zeta_log_residue(O::AbsSimpleNumFieldOrder, error::Float64) -> ArbFieldElem

Computes the residue of the zeta function of O at 1. The output will be an element of type ArbFieldElem with radius less then error.

source

ramified_primes Method
julia
ramified_primes(O::AbsNumFieldOrder) -> Vector{ZZRingElem}

Returns the list of prime numbers that divide disc(O).

source

Arithmetic

Progress and intermediate results of the functions mentioned here can be obtained via verbose_level, supported are

  • ClassGroup

  • UnitGroup

All of the functions have a very similar interface: they return an abelian group and a map converting elements of the group into the objects required. The maps also allow a point-wise inverse to server as the discrete logarithm map. For more information on abelian groups, see here, for ideals, here.

For the processing of units, there are a couple of helper functions also available:

is_independent Function
julia
is_independent{T}(x::Vector{T})

Given an array of non-zero units in a number field, returns whether they are multiplicatively independent.

source

Predicates

is_contained Method
julia
is_contained(R::AbsNumFieldOrder, S::AbsNumFieldOrder) -> Bool

Checks if R is contained in S.

source

is_maximal Method
julia
is_maximal(R::AbsNumFieldOrder) -> Bool

Tests if the order R is maximal. This might trigger the computation of the maximal order.

source

- +pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrder

This function finds a p-maximal order R containing O. That is, the index [OK:R] is not divisible by p.

source

pradical Method
julia
pradical(O::AbsSimpleNumFieldOrder, p::{ZZRingElem|Integer}) -> AbsNumFieldOrderIdeal

Given a prime number p, this function returns the p-radical pO of O, which is just {xOkZ0:xkpO}. It is not checked that p is prime.

source

pradical Method
julia
  pradical(O::RelNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> RelNumFieldOrderIdeal

Given a prime ideal P, this function returns the P-radical PO of O, which is just {xOkZ0:xkPO}. It is not checked that P is prime.

source

ring_of_multipliers Method
julia
ring_of_multipliers(I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrder

Computes the order (I:I), which is the set of all xK with xII.

source

Invariants

discriminant Method
julia
discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the discriminant of O.

source

reduced_discriminant Method
julia
reduced_discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Returns the reduced discriminant, that is, the largest elementary divisor of the trace matrix of O.

source

degree Method
julia
degree(O::NumFieldOrder) -> Int

Returns the degree of O.

source

index Method
julia
index(O::AbsSimpleNumFieldOrder) -> ZZRingElem

Assuming that the order O contains the equation order Z[α] of the ambient number field, this function returns the index [O:Z].

source

different Method
julia
different(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal

The different ideal of R, that is, the ideal generated by all differents of elements in R. For Gorenstein orders, this is also the inverse ideal of the co-different.

source

codifferent Method
julia
codifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}

The codifferent ideal of R, i.e. the trace-dual of R.

source

is_gorenstein Method
julia
is_gorenstein(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \mathcal{O} is Gorenstein.

source

is_bass Method
julia
is_bass(O::AbsSimpleNumFieldOrder) -> Bool

Return whether the order \mathcal{O} is Bass.

source

is_equation_order Method
julia
is_equation_order(O::NumFieldOrder) -> Bool

Returns whether O is the equation order of the ambient number field K.

source

zeta_log_residue Method
julia
zeta_log_residue(O::AbsSimpleNumFieldOrder, error::Float64) -> ArbFieldElem

Computes the residue of the zeta function of O at 1. The output will be an element of type ArbFieldElem with radius less then error.

source

ramified_primes Method
julia
ramified_primes(O::AbsNumFieldOrder) -> Vector{ZZRingElem}

Returns the list of prime numbers that divide disc(O).

source

Arithmetic

Progress and intermediate results of the functions mentioned here can be obtained via verbose_level, supported are

  • ClassGroup

  • UnitGroup

All of the functions have a very similar interface: they return an abelian group and a map converting elements of the group into the objects required. The maps also allow a point-wise inverse to server as the discrete logarithm map. For more information on abelian groups, see here, for ideals, here.

For the processing of units, there are a couple of helper functions also available:

is_independent Function
julia
is_independent{T}(x::Vector{T})

Given an array of non-zero units in a number field, returns whether they are multiplicatively independent.

source

Predicates

is_contained Method
julia
is_contained(R::AbsNumFieldOrder, S::AbsNumFieldOrder) -> Bool

Checks if R is contained in S.

source

is_maximal Method
julia
is_maximal(R::AbsNumFieldOrder) -> Bool

Tests if the order R is maximal. This might trigger the computation of the maximal order.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/quad_forms/Zgenera.html b/v0.34.8/manual/quad_forms/Zgenera.html index 1fa2e6d891..2850b978c7 100644 --- a/v0.34.8/manual/quad_forms/Zgenera.html +++ b/v0.34.8/manual/quad_forms/Zgenera.html @@ -6,23 +6,23 @@ Genera of Integer Lattices | Hecke - - + + - - - - - + + + + + -
Skip to content

Genera of Integer Lattices

Two Z-lattices M and N are said to be in the same genus if their completions MZp and NZp are isometric for all prime numbers p as well as MRNR.

The genus of a Z-lattice is encoded in its Conway-Sloane genus symbol. The genus symbol itself is a collection of its local genus symbols. See [5] Chapter 15 for the definitions. Note that genera for non-integral lattices are supported.

The class ZZGenus supports genera of Z-lattices.

ZZGenus Type
julia
ZZGenus

A collection of local genus symbols (at primes) and a signature pair. Together they represent the genus of a non-degenerate integer_lattice.

source

Creation of Genera

From an integral Lattice

genus Method
julia
genus(L::ZZLat) -> ZZGenus

Return the genus of the lattice L.

source

From a gram matrix

genus Method
julia
genus(A::MatElem) -> ZZGenus

Return the genus of a Z-lattice with gram matrix A.

source

Enumeration of genus symbols

integer_genera Method
julia
integer_genera(sig_pair::Vector{Int}, determinant::RationalUnion;
+    
Skip to content

Genera of Integer Lattices

Two Z-lattices M and N are said to be in the same genus if their completions MZp and NZp are isometric for all prime numbers p as well as MRNR.

The genus of a Z-lattice is encoded in its Conway-Sloane genus symbol. The genus symbol itself is a collection of its local genus symbols. See [5] Chapter 15 for the definitions. Note that genera for non-integral lattices are supported.

The class ZZGenus supports genera of Z-lattices.

ZZGenus Type
julia
ZZGenus

A collection of local genus symbols (at primes) and a signature pair. Together they represent the genus of a non-degenerate integer_lattice.

source

Creation of Genera

From an integral Lattice

genus Method
julia
genus(L::ZZLat) -> ZZGenus

Return the genus of the lattice L.

source

From a gram matrix

genus Method
julia
genus(A::MatElem) -> ZZGenus

Return the genus of a Z-lattice with gram matrix A.

source

Enumeration of genus symbols

integer_genera Method
julia
integer_genera(sig_pair::Vector{Int}, determinant::RationalUnion;
        min_scale::RationalUnion = min(one(QQ), QQ(abs(determinant))),
        max_scale::RationalUnion = max(one(QQ), QQ(abs(determinant))),
-       even=false)                                         -> Vector{ZZGenus}

Return a list of all genera with the given conditions. Genera of non-integral Z-lattices are also supported.

Arguments

  • sig_pair: a pair of non-negative integers giving the signature

  • determinant: a rational number; the sign is ignored

  • min_scale: a rational number; return only genera whose scale is an integer multiple of min_scale (default: min(one(QQ), QQ(abs(determinant))))

  • max_scale: a rational number; return only genera such that max_scale is an integer multiple of the scale (default: max(one(QQ), QQ(abs(determinant))))

  • even: boolean; if set to true, return only the even genera (default: false)

source

From other genus symbols

direct_sum Method
julia
direct_sum(G1::ZZGenus, G2::ZZGenus) -> ZZGenus

Return the genus of the direct sum of G1 and G2.

The direct sum is defined via representatives.

source

Attributes of the genus

dim Method
julia
dim(G::ZZGenus) -> Int

Return the dimension of this genus.

source

rank Method
julia
rank(G::ZZGenus) -> Int

Return the rank of a (representative of) the genus G.

source

signature Method
julia
signature(G::ZZGenus) -> Int

Return the signature of this genus.

The signature is p - n where p is the number of positive eigenvalues and n the number of negative eigenvalues.

source

det Method
julia
det(G::ZZGenus) -> QQFieldElem

Return the determinant of this genus.

source

iseven Method
julia
iseven(G::ZZGenus) -> Bool

Return if this genus is even.

source

is_definite Method
julia
is_definite(G::ZZGenus) -> Bool

Return if this genus is definite.

source

level Method
julia
level(G::ZZGenus) -> QQFieldElem

Return the level of this genus.

This is the denominator of the inverse gram matrix of a representative.

source

scale Method
julia
scale(G::ZZGenus) -> QQFieldElem

Return the scale of this genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

norm Method
julia
norm(G::ZZGenus) -> QQFieldElem

Return the norm of this genus.

Let L be a lattice with bilinear form b. The norm of (L,b) is defined as the ideal generated by {b(x,x)|xL}.

source

primes Method
julia
primes(G::ZZGenus) -> Vector{ZZRingElem}

Return the list of primes of the local symbols of G.

Note that 2 is always in the output since the 2-adic symbol of a ZZGenus is, by convention, always defined.

source

is_integral Method
julia
is_integral(G::ZZGenus) -> Bool

Return whether G is a genus of integral Z-lattices.

source

Discriminant group

discriminant_group(::ZZGenus)

Primary genera

is_primary_with_prime Method
julia
is_primary_with_prime(G::ZZGenus) -> Bool, ZZRingElem

Given a genus of Z-lattices G, return whether it is primary, that is whether the bilinear form is integral and the associated discriminant form (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular genera, this function returns (true, 1). If the genus is not primary, the second return value is -1 by default.

source

is_primary Method
julia
is_primary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool

Given a genus of integral Z-lattices G and a prime number p, return whether G is p-primary, that is whether the associated discriminant form (see discriminant_group) is a p-group.

source

is_elementary_with_prime Method
julia
is_elementary_with_prime(G::ZZGenus) -> Bool, ZZRingElem

Given a genus of Z-lattices G, return whether it is elementary, that is whether the bilinear form is inegtral and the associated discriminant form (see discriminant_group) is an elementary p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular genera, this function returns (true, 1). If the genus is not elementary, the second return value is -1 by default.

source

is_elementary Method
julia
is_elementary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool

Given a genus of integral Z-lattices G and a prime number p, return whether G is p-elementary, that is whether its associated discriminant form (see discriminant_group) is an elementary p-group.

source

local Symbol

local_symbol Method
julia
local_symbol(G::ZZGenus, p) -> ZZLocalGenus

Return the local symbol at p.

source

Representative(s)

quadratic_space Method
julia
quadratic_space(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

rational_representative Method
julia
rational_representative(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

representative Method
julia
representative(G::ZZGenus) -> ZZLat

Compute a representative of this genus && cache it.

source

representatives Method
julia
representatives(G::ZZGenus) -> Vector{ZZLat}

Return a list of representatives of the isometry classes in this genus.

source

mass Method
julia
mass(G::ZZGenus) -> QQFieldElem

Return the mass of this genus.

The genus must be definite. Let L_1, ... L_n be a complete list of representatives of the isometry classes in this genus. Its mass is defined as i=1n1|O(Li)|.

source

rescale Method
julia
rescale(G::ZZGenus, a::RationalUnion) -> ZZGenus

Given a genus symbol G of Z-lattices, return the genus symbol of any representative of G rescaled by a.

source

Embeddings and Representations

represents Method
julia
represents(G1::ZZGenus, G2::ZZGenus) -> Bool

Return if G1 represents G2. That is if some element in the genus of G1 represents some element in the genus of G2.

source

Local genus Symbols

ZZLocalGenus Type
julia
ZZLocalGenus

Local genus symbol over a p-adic ring.

The genus symbol of a component p^m A for odd prime = p is of the form (m,n,d), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) \in \{1,u\} for a normalized quadratic non-residue u.

The genus symbol of a component 2^m A is of the form (m, n, s, d, o), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) in {1,3,5,7}

  • s = 0 (or 1) if even (or odd)

  • o = oddity of A (= 0 if s = 0) in Z/8Z = the trace of the diagonalization of A

The genus symbol is a list of such symbols (ordered by m) for each of the Jordan blocks A_1,...,A_t.

Reference: [5] Chapter 15, Section 7.

Arguments

  • prime: a prime number

  • symbol: the list of invariants for Jordan blocks A_t,...,A_t given as a list of lists of integers

source

Creation

genus Method
julia
genus(L::ZZLat, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of L at the prime p.

source

genus Method
julia
genus(A::QQMatrix, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of a Z-lattice with gram matrix A at the prime p.

source

Attributes

prime Method
julia
prime(S::ZZLocalGenus) -> ZZRingElem

Return the prime p of this p-adic genus.

source

iseven Method
julia
iseven(S::ZZLocalGenus) -> Bool

Return if the underlying p-adic lattice is even.

If p is odd, every lattice is even.

source

symbol Method
julia
symbol(S::ZZLocalGenus, scale::Int) -> Vector{Int}

Return the underlying lists of integers for the Jordan block of the given scale

source

hasse_invariant Method
julia
hasse_invariant(S::ZZLocalGenus) -> Int

Return the Hasse invariant of a representative. If the representative is diagonal (a_1, ... , a_n) Then the Hasse invariant is

i<j(ai,aj)p

.

source

det Method
julia
det(S::ZZLocalGenus) -> QQFieldElem

Return an rational representing the determinant of this genus.

source

dim Method
julia
dim(S::ZZLocalGenus) -> Int

Return the dimension of this genus.

source

rank Method
julia
rank(S::ZZLocalGenus) -> Int

Return the rank of (a representative of) S.

source

excess Method
julia
excess(S::ZZLocalGenus) -> zzModRingElem

Return the p-excess of the quadratic form whose Hessian matrix is the symmetric matrix A.

When p = 2 the p-excess is called the oddity. The p-excess is always even && is divisible by 4 if p is congruent 1 mod 4.

Reference

[5] pp 370-371.

source

signature Method
julia
signature(S::ZZLocalGenus) -> zzModRingElem

Return the p-signature of this p-adic form.

source

oddity Method
julia
oddity(S::ZZLocalGenus) -> zzModRingElem

Return the oddity of this even form. The oddity is also called the 2-signature

source

scale Method
julia
scale(S::ZZLocalGenus) -> QQFieldElem

Return the scale of this local genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

norm Method
julia
norm(S::ZZLocalGenus) -> QQFieldElem

Return the norm of this local genus.

Let L be a lattice with bilinear form b. The norm of (L,b) is defined as the ideal generated by {b(x,x)|xL}.

source

level Method
julia
level(S::ZZLocalGenus) -> QQFieldElem

Return the maximal scale of a jordan component.

source

Representative

representative Method
julia
representative(S::ZZLocalGenus) -> ZZLat

Return an integer lattice which represents this local genus.

source

gram_matrix Method
julia
gram_matrix(S::ZZLocalGenus) -> MatElem

Return a gram matrix of some representative of this local genus.

source

rescale Method
julia
rescale(G::ZZLocalGenus, a::RationalUnion) -> ZZLocalGenus

Given a local genus symbol G of Z-lattices, return the local genus symbol of any representative of G rescaled by a.

source

Direct sums

direct_sum Method
julia
direct_sum(S1::ZZLocalGenus, S2::ZZLocalGenus) -> ZZLocalGenus

Return the local genus of the direct sum of two representatives.

source

Embeddings/Representations

represents Method
julia
represents(g1::ZZLocalGenus, g2::ZZLocalGenus) -> Bool

Return whether g1 represents g2.

Based on O'Meara Integral Representations of Quadratic Forms Over Local Fields Note that for p == 2 there is a typo in O'Meara Theorem 3 (V). The correct statement is (V) 2i(1+4ω)Li+1/l[i].

source

- + even=false) -> Vector{ZZGenus}

Return a list of all genera with the given conditions. Genera of non-integral Z-lattices are also supported.

Arguments

  • sig_pair: a pair of non-negative integers giving the signature

  • determinant: a rational number; the sign is ignored

  • min_scale: a rational number; return only genera whose scale is an integer multiple of min_scale (default: min(one(QQ), QQ(abs(determinant))))

  • max_scale: a rational number; return only genera such that max_scale is an integer multiple of the scale (default: max(one(QQ), QQ(abs(determinant))))

  • even: boolean; if set to true, return only the even genera (default: false)

source

From other genus symbols

direct_sum Method
julia
direct_sum(G1::ZZGenus, G2::ZZGenus) -> ZZGenus

Return the genus of the direct sum of G1 and G2.

The direct sum is defined via representatives.

source

Attributes of the genus

dim Method
julia
dim(G::ZZGenus) -> Int

Return the dimension of this genus.

source

rank Method
julia
rank(G::ZZGenus) -> Int

Return the rank of a (representative of) the genus G.

source

signature Method
julia
signature(G::ZZGenus) -> Int

Return the signature of this genus.

The signature is p - n where p is the number of positive eigenvalues and n the number of negative eigenvalues.

source

det Method
julia
det(G::ZZGenus) -> QQFieldElem

Return the determinant of this genus.

source

iseven Method
julia
iseven(G::ZZGenus) -> Bool

Return if this genus is even.

source

is_definite Method
julia
is_definite(G::ZZGenus) -> Bool

Return if this genus is definite.

source

level Method
julia
level(G::ZZGenus) -> QQFieldElem

Return the level of this genus.

This is the denominator of the inverse gram matrix of a representative.

source

scale Method
julia
scale(G::ZZGenus) -> QQFieldElem

Return the scale of this genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

norm Method
julia
norm(G::ZZGenus) -> QQFieldElem

Return the norm of this genus.

Let L be a lattice with bilinear form b. The norm of (L,b) is defined as the ideal generated by {b(x,x)|xL}.

source

primes Method
julia
primes(G::ZZGenus) -> Vector{ZZRingElem}

Return the list of primes of the local symbols of G.

Note that 2 is always in the output since the 2-adic symbol of a ZZGenus is, by convention, always defined.

source

is_integral Method
julia
is_integral(G::ZZGenus) -> Bool

Return whether G is a genus of integral Z-lattices.

source

Discriminant group

discriminant_group(::ZZGenus)

Primary genera

is_primary_with_prime Method
julia
is_primary_with_prime(G::ZZGenus) -> Bool, ZZRingElem

Given a genus of Z-lattices G, return whether it is primary, that is whether the bilinear form is integral and the associated discriminant form (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular genera, this function returns (true, 1). If the genus is not primary, the second return value is -1 by default.

source

is_primary Method
julia
is_primary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool

Given a genus of integral Z-lattices G and a prime number p, return whether G is p-primary, that is whether the associated discriminant form (see discriminant_group) is a p-group.

source

is_elementary_with_prime Method
julia
is_elementary_with_prime(G::ZZGenus) -> Bool, ZZRingElem

Given a genus of Z-lattices G, return whether it is elementary, that is whether the bilinear form is inegtral and the associated discriminant form (see discriminant_group) is an elementary p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular genera, this function returns (true, 1). If the genus is not elementary, the second return value is -1 by default.

source

is_elementary Method
julia
is_elementary(G::ZZGenus, p::Union{Integer, ZZRingElem}) -> Bool

Given a genus of integral Z-lattices G and a prime number p, return whether G is p-elementary, that is whether its associated discriminant form (see discriminant_group) is an elementary p-group.

source

local Symbol

local_symbol Method
julia
local_symbol(G::ZZGenus, p) -> ZZLocalGenus

Return the local symbol at p.

source

Representative(s)

quadratic_space Method
julia
quadratic_space(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

rational_representative Method
julia
rational_representative(G::ZZGenus) -> QuadSpace{QQField, QQMatrix}

Return the quadratic space defined by this genus.

source

representative Method
julia
representative(G::ZZGenus) -> ZZLat

Compute a representative of this genus && cache it.

source

representatives Method
julia
representatives(G::ZZGenus) -> Vector{ZZLat}

Return a list of representatives of the isometry classes in this genus.

source

mass Method
julia
mass(G::ZZGenus) -> QQFieldElem

Return the mass of this genus.

The genus must be definite. Let L_1, ... L_n be a complete list of representatives of the isometry classes in this genus. Its mass is defined as i=1n1|O(Li)|.

source

rescale Method
julia
rescale(G::ZZGenus, a::RationalUnion) -> ZZGenus

Given a genus symbol G of Z-lattices, return the genus symbol of any representative of G rescaled by a.

source

Embeddings and Representations

represents Method
julia
represents(G1::ZZGenus, G2::ZZGenus) -> Bool

Return if G1 represents G2. That is if some element in the genus of G1 represents some element in the genus of G2.

source

Local genus Symbols

ZZLocalGenus Type
julia
ZZLocalGenus

Local genus symbol over a p-adic ring.

The genus symbol of a component p^m A for odd prime = p is of the form (m,n,d), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) \in \{1,u\} for a normalized quadratic non-residue u.

The genus symbol of a component 2^m A is of the form (m, n, s, d, o), where

  • m = valuation of the component

  • n = rank of A

  • d = det(A) in {1,3,5,7}

  • s = 0 (or 1) if even (or odd)

  • o = oddity of A (= 0 if s = 0) in Z/8Z = the trace of the diagonalization of A

The genus symbol is a list of such symbols (ordered by m) for each of the Jordan blocks A_1,...,A_t.

Reference: [5] Chapter 15, Section 7.

Arguments

  • prime: a prime number

  • symbol: the list of invariants for Jordan blocks A_t,...,A_t given as a list of lists of integers

source

Creation

genus Method
julia
genus(L::ZZLat, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of L at the prime p.

source

genus Method
julia
genus(A::QQMatrix, p::IntegerUnion) -> ZZLocalGenus

Return the local genus symbol of a Z-lattice with gram matrix A at the prime p.

source

Attributes

prime Method
julia
prime(S::ZZLocalGenus) -> ZZRingElem

Return the prime p of this p-adic genus.

source

iseven Method
julia
iseven(S::ZZLocalGenus) -> Bool

Return if the underlying p-adic lattice is even.

If p is odd, every lattice is even.

source

symbol Method
julia
symbol(S::ZZLocalGenus, scale::Int) -> Vector{Int}

Return the underlying lists of integers for the Jordan block of the given scale

source

hasse_invariant Method
julia
hasse_invariant(S::ZZLocalGenus) -> Int

Return the Hasse invariant of a representative. If the representative is diagonal (a_1, ... , a_n) Then the Hasse invariant is

i<j(ai,aj)p

.

source

det Method
julia
det(S::ZZLocalGenus) -> QQFieldElem

Return an rational representing the determinant of this genus.

source

dim Method
julia
dim(S::ZZLocalGenus) -> Int

Return the dimension of this genus.

source

rank Method
julia
rank(S::ZZLocalGenus) -> Int

Return the rank of (a representative of) S.

source

excess Method
julia
excess(S::ZZLocalGenus) -> zzModRingElem

Return the p-excess of the quadratic form whose Hessian matrix is the symmetric matrix A.

When p = 2 the p-excess is called the oddity. The p-excess is always even && is divisible by 4 if p is congruent 1 mod 4.

Reference

[5] pp 370-371.

source

signature Method
julia
signature(S::ZZLocalGenus) -> zzModRingElem

Return the p-signature of this p-adic form.

source

oddity Method
julia
oddity(S::ZZLocalGenus) -> zzModRingElem

Return the oddity of this even form. The oddity is also called the 2-signature

source

scale Method
julia
scale(S::ZZLocalGenus) -> QQFieldElem

Return the scale of this local genus.

Let L be a lattice with bilinear form b. The scale of (L,b) is defined as the ideal b(L,L).

source

norm Method
julia
norm(S::ZZLocalGenus) -> QQFieldElem

Return the norm of this local genus.

Let L be a lattice with bilinear form b. The norm of (L,b) is defined as the ideal generated by {b(x,x)|xL}.

source

level Method
julia
level(S::ZZLocalGenus) -> QQFieldElem

Return the maximal scale of a jordan component.

source

Representative

representative Method
julia
representative(S::ZZLocalGenus) -> ZZLat

Return an integer lattice which represents this local genus.

source

gram_matrix Method
julia
gram_matrix(S::ZZLocalGenus) -> MatElem

Return a gram matrix of some representative of this local genus.

source

rescale Method
julia
rescale(G::ZZLocalGenus, a::RationalUnion) -> ZZLocalGenus

Given a local genus symbol G of Z-lattices, return the local genus symbol of any representative of G rescaled by a.

source

Direct sums

direct_sum Method
julia
direct_sum(S1::ZZLocalGenus, S2::ZZLocalGenus) -> ZZLocalGenus

Return the local genus of the direct sum of two representatives.

source

Embeddings/Representations

represents Method
julia
represents(g1::ZZLocalGenus, g2::ZZLocalGenus) -> Bool

Return whether g1 represents g2.

Based on O'Meara Integral Representations of Quadratic Forms Over Local Fields Note that for p == 2 there is a typo in O'Meara Theorem 3 (V). The correct statement is (V) 2i(1+4ω)Li+1/l[i].

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/quad_forms/basics.html b/v0.34.8/manual/quad_forms/basics.html index 1642970750..d5da069919 100644 --- a/v0.34.8/manual/quad_forms/basics.html +++ b/v0.34.8/manual/quad_forms/basics.html @@ -6,19 +6,19 @@ Spaces | Hecke - - + + - - - - - + + + + + -
Skip to content

Spaces

Creation of spaces

quadratic_space Method
julia
quadratic_space(K::NumField, n::Int; cached::Bool = true) -> QuadSpace

Create the quadratic space over K with dimension n and Gram matrix equals to the identity matrix.

source

hermitian_space Method
julia
hermitian_space(E::NumField, n::Int; cached::Bool = true) -> HermSpace

Create the hermitian space over E with dimension n and Gram matrix equals to the identity matrix. The number field E must be a quadratic extension, that is, degree(E)==2 must hold.

source

quadratic_space Method
julia
quadratic_space(K::NumField, G::MatElem; cached::Bool = true) -> QuadSpace

Create the quadratic space over K with Gram matrix G. The matrix G must be square and symmetric.

source

hermitian_space Method
julia
hermitian_space(E::NumField, gram::MatElem; cached::Bool = true) -> HermSpace

Create the hermitian space over E with Gram matrix equals to gram. The matrix gram must be square and hermitian with respect to the non-trivial automorphism of E. The number field E must be a quadratic extension, that is, degree(E)==2 must hold.

source

Examples

Here are easy examples to see how these constructors work. We will keep the two following spaces for the rest of this section:

julia

+    
Skip to content

Spaces

Creation of spaces

quadratic_space Method
julia
quadratic_space(K::NumField, n::Int; cached::Bool = true) -> QuadSpace

Create the quadratic space over K with dimension n and Gram matrix equals to the identity matrix.

source

hermitian_space Method
julia
hermitian_space(E::NumField, n::Int; cached::Bool = true) -> HermSpace

Create the hermitian space over E with dimension n and Gram matrix equals to the identity matrix. The number field E must be a quadratic extension, that is, degree(E)==2 must hold.

source

quadratic_space Method
julia
quadratic_space(K::NumField, G::MatElem; cached::Bool = true) -> QuadSpace

Create the quadratic space over K with Gram matrix G. The matrix G must be square and symmetric.

source

hermitian_space Method
julia
hermitian_space(E::NumField, gram::MatElem; cached::Bool = true) -> HermSpace

Create the hermitian space over E with Gram matrix equals to gram. The matrix gram must be square and hermitian with respect to the non-trivial automorphism of E. The number field E must be a quadratic extension, that is, degree(E)==2 must hold.

source

Examples

Here are easy examples to see how these constructors work. We will keep the two following spaces for the rest of this section:

julia

 julia> K, a = cyclotomic_real_subfield(7);
 
 julia> Kt, t = K["t"];
@@ -230,8 +230,8 @@
 julia> p = prime_decomposition(OK, 7)[1][1];
 
 julia> is_locally_hyperbolic(H, p)
-false
- +false
+ \ No newline at end of file diff --git a/v0.34.8/manual/quad_forms/discriminant_group.html b/v0.34.8/manual/quad_forms/discriminant_group.html index 55f32b07ef..7e2c5a190d 100644 --- a/v0.34.8/manual/quad_forms/discriminant_group.html +++ b/v0.34.8/manual/quad_forms/discriminant_group.html @@ -6,19 +6,19 @@ Discriminant Groups | Hecke - - + + - - - - - + + + + + -
Skip to content

Discriminant Groups

Torsion Quadratic Modules

A torsion quadratic module is the quotient M/N of two quadratic integer lattices NM in the quadratic space (V,Φ). It inherits a bilinear form

b:M/N×M/NQ/nZ

as well as a quadratic form

q:M/NQ/mZ.

where nZ=Φ(M,N) and mZ=2nZ+xNZΦ(x,x).

torsion_quadratic_module Method
julia
torsion_quadratic_module(M::ZZLat, N::ZZLat; gens::Union{Nothing, Vector{<:Vector}} = nothing,
+    
Skip to content

Discriminant Groups

Torsion Quadratic Modules

A torsion quadratic module is the quotient M/N of two quadratic integer lattices NM in the quadratic space (V,Φ). It inherits a bilinear form

b:M/N×M/NQ/nZ

as well as a quadratic form

q:M/NQ/mZ.

where nZ=Φ(M,N) and mZ=2nZ+xNZΦ(x,x).

torsion_quadratic_module Method
julia
torsion_quadratic_module(M::ZZLat, N::ZZLat; gens::Union{Nothing, Vector{<:Vector}} = nothing,
                                              snf::Bool = true,
                                              modulus::RationalUnion = QQFieldElem(0),
                                              modulus_qf::RationalUnion = QQFieldElem(0),
@@ -55,7 +55,7 @@
  1
  3//2
  1

N.B. Since there are no elements of Z-lattices, we think of elements of M as elements of the ambient vector space. Thus if v::Vector is such an element then the coordinates with respec to the basis of M are given by solve(basis_matrix(M), v; side = :left).

source

Most of the functionality mirrors that of AbGrp its elements and homomorphisms. Here we display the part that is specific to elements of torsion quadratic modules.

Attributes

abelian_group Method
julia
abelian_group(T::TorQuadModule) -> FinGenAbGroup

Return the underlying abelian group of T.

source

cover Method
julia
cover(T::TorQuadModule) -> ZZLat

For T=M/N this returns M.

source

relations Method
julia
relations(T::TorQuadModule) -> ZZLat

For T=M/N this returns N.

source

value_module Method
julia
value_module(T::TorQuadModule) -> QmodnZ

Return the value module Q/nZ of the bilinear form of T.

source

value_module_quadratic_form Method
julia
value_module_quadratic_form(T::TorQuadModule) -> QmodnZ

Return the value module Q/mZ of the quadratic form of T.

source

gram_matrix_bilinear Method
julia
gram_matrix_bilinear(T::TorQuadModule) -> QQMatrix

Return the gram matrix of the bilinear form of T.

source

gram_matrix_quadratic Method
julia
gram_matrix_quadratic(T::TorQuadModule) -> QQMatrix

Return the 'gram matrix' of the quadratic form of T.

The off diagonal entries are given by the bilinear form whereas the diagonal entries are given by the quadratic form.

source

modulus_bilinear_form Method
julia
modulus_bilinear_form(T::TorQuadModule) -> QQFieldElem

Return the modulus of the value module of the bilinear form ofT.

source

modulus_quadratic_form Method
julia
modulus_quadratic_form(T::TorQuadModule) -> QQFieldElem

Return the modulus of the value module of the quadratic form of T.

source

Elements

quadratic_product Method
julia
quadratic_product(a::TorQuadModuleElem) -> QmodnZElem

Return the quadratic product of a.

It is defined in terms of a representative: for b+MM/N=T, this returns Φ(b,b)+nZ.

source

inner_product Method
julia
inner_product(a::TorQuadModuleElem, b::TorQuadModuleElem) -> QmodnZElem

Return the inner product of a and b.

source

Lift to the cover

lift Method
julia
lift(a::TorQuadModuleElem) -> Vector{QQFieldElem}

Lift a to the ambient space of cover(parent(a)).

For a+NM/N this returns the representative a.

source

representative Method
julia
representative(a::TorQuadModuleElem) -> Vector{QQFieldElem}

For a+NM/N this returns the representative a. An alias for lift(a).

source

Orthogonal submodules

orthogonal_submodule Method
julia
orthogonal_submodule(T::TorQuadModule, S::TorQuadModule)-> TorQuadModule

Return the orthogonal submodule to the submodule S of T.

source

Isometry

is_isometric_with_isometry Method
julia
is_isometric_with_isometry(T::TorQuadModule, U::TorQuadModule)
-                                               -> Bool, TorQuadModuleMap

Return whether the torsion quadratic modules T and U are isometric. If yes, it also returns an isometry TU.

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[2//3 2//3    0    0    0;
+                                               -> Bool, TorQuadModuleMap

Return whether the torsion quadratic modules T and U are isometric. If yes, it also returns an isometry TU.

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[2//3 2//3    0    0    0;
                                        2//3 2//3 2//3    0 2//3;
                                           0 2//3 2//3 2//3    0;
                                           0    0 2//3 2//3    0;
@@ -106,7 +106,7 @@
 
 julia> is_bijective(phi)
 true

source

is_anti_isometric_with_anti_isometry Method
julia
is_anti_isometric_with_anti_isometry(T::TorQuadModule, U::TorQuadModule)
-                                                 -> Bool, TorQuadModuleMap

Return whether there exists an anti-isometry between the torsion quadratic modules T and U. If yes, it returns such an anti-isometry TU.

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[4//5;])
+                                                 -> Bool, TorQuadModuleMap

Return whether there exists an anti-isometry between the torsion quadratic modules T and U. If yes, it returns such an anti-isometry TU.

If T and U are not semi-regular it requires that they both split into a direct sum of their respective quadratic radical (see radical_quadratic).

It requires that both T and U have modulus 1: in case one of them do not, they should be rescaled (see rescale).

Examples

julia
julia> T = torsion_quadratic_module(QQ[4//5;])
 Finite quadratic module
   over integer ring
 Abelian group: Z/5
@@ -166,7 +166,7 @@
 julia> a = gens(T)[1];
 
 julia> a*a == -phi(a)*phi(a)
-true

source

Primary and elementary modules

is_primary_with_prime Method
julia
is_primary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not primary, the second return value is -1 by default.

source

is_primary Method
julia
is_primary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group.

source

is_elementary_with_prime Method
julia
is_elementary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group, for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not elementary, the second return value is -1 by default.

source

is_elementary Method
julia
is_elementary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group.

source

Smith normal form

snf Method
julia
snf(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Given a torsion quadratic module T, return a torsion quadratic module S, isometric to T, such that the underlying abelian group of S is in canonical Smith normal form. It comes with an isometry f:ST.

source

is_snf Method
julia
is_snf(T::TorQuadModule) -> Bool

Given a torsion quadratic module T, return whether its underlying abelian group is in Smith normal form.

source

Discriminant Groups

See [6] for the general theory of discriminant groups. They are particularly useful to work with primitive embeddings of integral integer quadratic lattices.

From a lattice

discriminant_group Method
julia
discriminant_group(L::ZZLat) -> TorQuadModule

Return the discriminant group of L.

The discriminant group of an integral lattice L is the finite abelian group D = dual(L)/L.

It comes equipped with the discriminant bilinear form

D×DQ/Z(x,y)Φ(x,y)+Z.

If L is even, then the discriminant group is equipped with the discriminant quadratic form DQ/2Z,xΦ(x,x)+2Z.

source

From a matrix

torsion_quadratic_module Method
julia
torsion_quadratic_module(q::QQMatrix) -> TorQuadModule

Return a torsion quadratic module with gram matrix given by q and value module Q/Z. If all the diagonal entries of q have: either even numerator or even denominator, then the value module of the quadratic form is Q/2Z

Example

julia
julia> torsion_quadratic_module(QQ[1//6;])
+true

source

Primary and elementary modules

is_primary_with_prime Method
julia
is_primary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not primary, the second return value is -1 by default.

source

is_primary Method
julia
is_primary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is a p-group.

source

is_elementary_with_prime Method
julia
is_elementary_with_prime(T::TorQuadModule) -> Bool, ZZRingElem

Given a torsion quadratic module T, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group, for some prime number p. In case it is, p is also returned as second output.

Note that in the case of trivial groups, this function returns (true, 1). If T is not elementary, the second return value is -1 by default.

source

is_elementary Method
julia
is_elementary(T::TorQuadModule, p::Union{Integer, ZZRingElem}) -> Bool

Given a torsion quadratic module T and a prime number p, return whether the underlying (finite) abelian group of T (see abelian_group) is an elementary p-group.

source

Smith normal form

snf Method
julia
snf(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Given a torsion quadratic module T, return a torsion quadratic module S, isometric to T, such that the underlying abelian group of S is in canonical Smith normal form. It comes with an isometry f:ST.

source

is_snf Method
julia
is_snf(T::TorQuadModule) -> Bool

Given a torsion quadratic module T, return whether its underlying abelian group is in Smith normal form.

source

Discriminant Groups

See [6] for the general theory of discriminant groups. They are particularly useful to work with primitive embeddings of integral integer quadratic lattices.

From a lattice

discriminant_group Method
julia
discriminant_group(L::ZZLat) -> TorQuadModule

Return the discriminant group of L.

The discriminant group of an integral lattice L is the finite abelian group D = dual(L)/L.

It comes equipped with the discriminant bilinear form

D×DQ/Z(x,y)Φ(x,y)+Z.

If L is even, then the discriminant group is equipped with the discriminant quadratic form DQ/2Z,xΦ(x,x)+2Z.

source

From a matrix

torsion_quadratic_module Method
julia
torsion_quadratic_module(q::QQMatrix) -> TorQuadModule

Return a torsion quadratic module with gram matrix given by q and value module Q/Z. If all the diagonal entries of q have: either even numerator or even denominator, then the value module of the quadratic form is Q/2Z

Example

julia
julia> torsion_quadratic_module(QQ[1//6;])
 Finite quadratic module
   over integer ring
 Abelian group: Z/6
@@ -200,9 +200,9 @@
 Bilinear value module: Q/Z
 Quadratic value module: Q/Z
 Gram matrix quadratic form:
-[1//3]

source

Rescaling the form

rescale Method
julia
rescale(T::TorQuadModule, k::RingElement) -> TorQuadModule

Return the torsion quadratic module with quadratic form scaled by k, where k is a non-zero rational number. If the old form was defined modulo n, then the new form is defined modulo n k.

source

Invariants

is_degenerate Method
julia
is_degenerate(T::TorQuadModule) -> Bool

Return true if the underlying bilinear form is degenerate.

source

is_semi_regular Method
julia
is_semi_regular(T::TorQuadModule) -> Bool

Return whether T is semi-regular, that is its quadratic radical is trivial (see radical_quadratic).

source

radical_bilinear Method
julia
radical_bilinear(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \{x \in T | b(x,T) = 0\} of the bilinear form b on T.

source

radical_quadratic Method
julia
radical_quadratic(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \{x \in T | b(x,T) = 0 and q(x)=0\} of the quadratic form q on T.

source

normal_form Method
julia
normal_form(T::TorQuadModule; partial=false) -> TorQuadModule, TorQuadModuleMap

Return the normal form N of the given torsion quadratic module T along with the projection T -> N.

Let K be the radical of the quadratic form of T. Then N = T/K is half-regular. Two half-regular torsion quadratic modules are isometric if and only if they have equal normal forms.

source

Genus

genus Method
julia
genus(T::TorQuadModule, signature_pair::Tuple{Int, Int};
+[1//3]

source

Rescaling the form

rescale Method
julia
rescale(T::TorQuadModule, k::RingElement) -> TorQuadModule

Return the torsion quadratic module with quadratic form scaled by k, where k is a non-zero rational number. If the old form was defined modulo n, then the new form is defined modulo n k.

source

Invariants

is_degenerate Method
julia
is_degenerate(T::TorQuadModule) -> Bool

Return true if the underlying bilinear form is degenerate.

source

is_semi_regular Method
julia
is_semi_regular(T::TorQuadModule) -> Bool

Return whether T is semi-regular, that is its quadratic radical is trivial (see radical_quadratic).

source

radical_bilinear Method
julia
radical_bilinear(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \{x \in T | b(x,T) = 0\} of the bilinear form b on T.

source

radical_quadratic Method
julia
radical_quadratic(T::TorQuadModule) -> TorQuadModule, TorQuadModuleMap

Return the radical \{x \in T | b(x,T) = 0 and q(x)=0\} of the quadratic form q on T.

source

normal_form Method
julia
normal_form(T::TorQuadModule; partial=false) -> TorQuadModule, TorQuadModuleMap

Return the normal form N of the given torsion quadratic module T along with the projection T -> N.

Let K be the radical of the quadratic form of T. Then N = T/K is half-regular. Two half-regular torsion quadratic modules are isometric if and only if they have equal normal forms.

source

Genus

genus Method
julia
genus(T::TorQuadModule, signature_pair::Tuple{Int, Int};
                         parity::RationalUnion = modulus_quadratic_form(T))
-                                                                -> ZZGenus

Return the genus of an integer lattice whose discriminant group has the bilinear form of T, the given signature_pair and the given parity.

The argument parity is one of the following: either parity == 1 for genera of odd lattices, or parity == 2 for even lattices. By default, parity is set to be as the parity of the quadratic form on T

If no such genus exists, raise an error.

Reference

[6] Corollary 1.9.4 and 1.16.3.

source

brown_invariant Method
julia
brown_invariant(self::TorQuadModule) -> Nemo.zzModRingElem

Return the Brown invariant of this torsion quadratic form.

Let (D,q) be a torsion quadratic module with values in Q / 2Z. The Brown invariant Br(D,q) in Z/8Z is defined by the equation

exp(2πi8Br(q))=1DxDexp(iπq(x)).

The Brown invariant is additive with respect to direct sums of torsion quadratic modules.

Examples

julia
julia> L = integer_lattice(gram=matrix(ZZ, [[2,-1,0,0],[-1,2,-1,-1],[0,-1,2,0],[0,-1,0,2]]));
+                                                                -> ZZGenus

Return the genus of an integer lattice whose discriminant group has the bilinear form of T, the given signature_pair and the given parity.

The argument parity is one of the following: either parity == 1 for genera of odd lattices, or parity == 2 for even lattices. By default, parity is set to be as the parity of the quadratic form on T

If no such genus exists, raise an error.

Reference

[6] Corollary 1.9.4 and 1.16.3.

source

brown_invariant Method
julia
brown_invariant(self::TorQuadModule) -> Nemo.zzModRingElem

Return the Brown invariant of this torsion quadratic form.

Let (D,q) be a torsion quadratic module with values in Q / 2Z. The Brown invariant Br(D,q) in Z/8Z is defined by the equation

exp(2πi8Br(q))=1DxDexp(iπq(x)).

The Brown invariant is additive with respect to direct sums of torsion quadratic modules.

Examples

julia
julia> L = integer_lattice(gram=matrix(ZZ, [[2,-1,0,0],[-1,2,-1,-1],[0,-1,2,0],[0,-1,0,2]]));
 
 julia> T = Hecke.discriminant_group(L);
 
@@ -211,8 +211,8 @@
                            parity::RationalUnion = modulus_quadratic_form(T)) -> Bool

Return if there is an integral lattice whose discriminant form has the bilinear form of T, whose signatures match signature_pair and which is of parity parity.

The argument parity is one of the following: either parity == 1 for genera of odd lattices, or parity == 2 for even lattices. By default, parity is set to be as the parity of the quadratic form on T

source

Categorical constructions

direct_sum Method
julia
direct_sum(x::Vararg{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}
 direct_sum(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}

Given a collection of torsion quadratic modules T1,,Tn, return their direct sum T:=T1Tn, together with the injections TiT.

For objects of type TorQuadModule, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T as a direct product with the projections TTi, one should call direct_product(x). If one wants to obtain T as a biproduct with the injections TiT and the projections TTi, one should call biproduct(x).

source

direct_product Method
julia
direct_product(x::Vararg{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}
 direct_product(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}

Given a collection of torsion quadratic modules T1,,Tn, return their direct product T:=T1××Tn, together with the projections TTi.

For objects of type TorQuadModule, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T as a direct sum with the inctions TiT, one should call direct_sum(x). If one wants to obtain T as a biproduct with the injections TiT and the projections TTi, one should call biproduct(x).

source

biproduct Method
julia
biproduct(x::Vararg{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}, Vector{TorQuadModuleMap}
-biproduct(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}, Vector{TorQuadModuleMap}

Given a collection of torsion quadratic modules T1,,Tn, return their biproduct T:=T1Tn, together with the injections TiT and the projections TTi.

For objects of type TorQuadModule, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T as a direct sum with the inctions TiT, one should call direct_sum(x). If one wants to obtain T as a direct product with the projections TTi, one should call direct_product(x).

source

Submodules

submodules Method
julia
submodules(T::TorQuadModule; kw...)

Return the submodules of T as an iterator. Possible keyword arguments to restrict the submodules:

  • order::Int: only submodules of order order,

  • index::Int: only submodules of index index,

  • subtype::Vector{Int}: only submodules which are isomorphic as an abelian group to abelian_group(subtype),

  • quotype::Vector{Int}: only submodules whose quotient are isomorphic as an abelian to abelian_group(quotype).

source

stable_submodules Method
julia
stable_submodules(T::TorQuadModule, act::Vector{TorQuadModuleMap}; kw...)

Return the submodules of T stable under the endomorphisms in act as an iterator. Possible keyword arguments to restrict the submodules:

  • quotype::Vector{Int}: only submodules whose quotient are isomorphic as an abelian group to abelian_group(quotype).

source

- +biproduct(x::Vector{TorQuadModule}) -> TorQuadModule, Vector{TorQuadModuleMap}, Vector{TorQuadModuleMap}

Given a collection of torsion quadratic modules T1,,Tn, return their biproduct T:=T1Tn, together with the injections TiT and the projections TTi.

For objects of type TorQuadModule, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain T as a direct sum with the inctions TiT, one should call direct_sum(x). If one wants to obtain T as a direct product with the projections TTi, one should call direct_product(x).

source

Submodules

submodules Method
julia
submodules(T::TorQuadModule; kw...)

Return the submodules of T as an iterator. Possible keyword arguments to restrict the submodules:

  • order::Int: only submodules of order order,

  • index::Int: only submodules of index index,

  • subtype::Vector{Int}: only submodules which are isomorphic as an abelian group to abelian_group(subtype),

  • quotype::Vector{Int}: only submodules whose quotient are isomorphic as an abelian to abelian_group(quotype).

source

stable_submodules Method
julia
stable_submodules(T::TorQuadModule, act::Vector{TorQuadModuleMap}; kw...)

Return the submodules of T stable under the endomorphisms in act as an iterator. Possible keyword arguments to restrict the submodules:

  • quotype::Vector{Int}: only submodules whose quotient are isomorphic as an abelian group to abelian_group(quotype).

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/quad_forms/genusherm.html b/v0.34.8/manual/quad_forms/genusherm.html index a358dce4e9..001fbb31e7 100644 --- a/v0.34.8/manual/quad_forms/genusherm.html +++ b/v0.34.8/manual/quad_forms/genusherm.html @@ -6,19 +6,19 @@ Genera for hermitian lattices | Hecke - - + + - - - - - + + + + + -
Skip to content

Genera for hermitian lattices

Local genus symbols

Definition 8.3.1 ([Kir16]) Let L be a hermitian lattice over E/K and let p be a prime ideal of OK. Let P be the largest ideal of OE over p being invariant under the involution of E. We suppose that we are given a Jordan decomposition

Lp=i=1tLi

where the Jordan block Li is Psi-modular for 1it, for a strictly increasing sequence of integers s1<<st. In particular, s(Li)=Psi. Then, the local genus symbol g(L,p) of Lp is defined to be:

  • if p is good, i.e. non ramified and non dyadic,
g(L,p):=[(s1,r1,d1),,(st,rt,dt)]

where di=1 if the determinant (resp. discriminant) of Li is a norm in Kp×, and di=1 otherwise, and ri:=rank(Li) for all i;

  • if p is bad,
g(L,p):=[(s1,r1,d1,n1),,(st,rt,dt,nt)]

where for all i, ni:=ordp(n(Li))

Note that we define the scale and the norm of the lattice Li (1in) defined over the extension of local fields EP/Kp similarly to the ones of L, by extending by continuity the sesquilinear form of the ambient space of L to the completion. Regarding the determinant (resp. discriminant), it is defined as the determinant of the Gram matrix associated to a basis of Li relatively to the extension of the sesquilinear form (resp. (1)(m(m1)/2 times the determinant, where m is the rank of Li).

We call any tuple in g:=g(L,p)=[g1,,gt] a Jordan block of g since it corresponds to invariants of a Jordan block of the completion of the lattice L at p. For any such block gi, we call respectively si,ri,di,ni the scale, the rank, the determinant class (resp. discriminant class) and the norm of gi. Note that the norm is necessary only when the prime ideal is bad.

We say that two hermitian lattices L and L over E/K are in the same local genus at p if g(L,p)=g(L,p).

Creation of local genus symbols

There are two ways of creating a local genus symbol for hermitian lattices:

  • either abstractly, by choosing the extension E/K, the prime ideal p of OK, the Jordan blocks data and the type of the di's (either determinant class :det or discriminant class :disc);
julia
   genus(HermLat, E::NumField, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, data::Vector; type::Symbol = :det,
+    
Skip to content

Genera for hermitian lattices

Local genus symbols

Definition 8.3.1 ([Kir16]) Let L be a hermitian lattice over E/K and let p be a prime ideal of OK. Let P be the largest ideal of OE over p being invariant under the involution of E. We suppose that we are given a Jordan decomposition

Lp=i=1tLi

where the Jordan block Li is Psi-modular for 1it, for a strictly increasing sequence of integers s1<<st. In particular, s(Li)=Psi. Then, the local genus symbol g(L,p) of Lp is defined to be:

  • if p is good, i.e. non ramified and non dyadic,
g(L,p):=[(s1,r1,d1),,(st,rt,dt)]

where di=1 if the determinant (resp. discriminant) of Li is a norm in Kp×, and di=1 otherwise, and ri:=rank(Li) for all i;

  • if p is bad,
g(L,p):=[(s1,r1,d1,n1),,(st,rt,dt,nt)]

where for all i, ni:=ordp(n(Li))

Note that we define the scale and the norm of the lattice Li (1in) defined over the extension of local fields EP/Kp similarly to the ones of L, by extending by continuity the sesquilinear form of the ambient space of L to the completion. Regarding the determinant (resp. discriminant), it is defined as the determinant of the Gram matrix associated to a basis of Li relatively to the extension of the sesquilinear form (resp. (1)(m(m1)/2 times the determinant, where m is the rank of Li).

We call any tuple in g:=g(L,p)=[g1,,gt] a Jordan block of g since it corresponds to invariants of a Jordan block of the completion of the lattice L at p. For any such block gi, we call respectively si,ri,di,ni the scale, the rank, the determinant class (resp. discriminant class) and the norm of gi. Note that the norm is necessary only when the prime ideal is bad.

We say that two hermitian lattices L and L over E/K are in the same local genus at p if g(L,p)=g(L,p).

Creation of local genus symbols

There are two ways of creating a local genus symbol for hermitian lattices:

  • either abstractly, by choosing the extension E/K, the prime ideal p of OK, the Jordan blocks data and the type of the di's (either determinant class :det or discriminant class :disc);
julia
   genus(HermLat, E::NumField, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, data::Vector; type::Symbol = :det,
                                                           check::Bool = false)
                                                              -> HermLocalGenus
  • or by constructing the local genus symbol of the completion of a hermitian lattice L over E/K at a prime ideal p of OK.
julia
   genus(L::HermLat, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> HermLocalGenus

Examples

We will construct two examples for the rest of this section. Note that the prime chosen here is bad.

julia

 julia> Qx, x = QQ["x"];
@@ -478,8 +478,8 @@
 with pseudo-basis
 (1, 1//1 * <1, 1>)
 (_$, 1//1 * <1, 1>)

Rescaling

rescale Method
julia
rescale(g::HermLocalGenus, a::Union{FieldElem, RationalUnion})
-                                                          -> HermLocalGenus

Given a local genus symbol G of hermitian lattices and an element a lying in the base field E of g, return the local genus symbol at the prime ideal p associated to g of any representative of g rescaled by a.

source

rescale Method
julia
rescale(G::HermGenus, a::Union{FieldElem, RationalUnion}) -> HermGenus

Given a global genus symbol G of hermitian lattices and an element a lying in the base field E of G, return the global genus symbol of any representative of G rescaled by a.

source

- + -> HermLocalGenus

Given a local genus symbol G of hermitian lattices and an element a lying in the base field E of g, return the local genus symbol at the prime ideal p associated to g of any representative of g rescaled by a.

source

rescale Method
julia
rescale(G::HermGenus, a::Union{FieldElem, RationalUnion}) -> HermGenus

Given a global genus symbol G of hermitian lattices and an element a lying in the base field E of G, return the global genus symbol of any representative of G rescaled by a.

source

+ \ No newline at end of file diff --git a/v0.34.8/manual/quad_forms/integer_lattices.html b/v0.34.8/manual/quad_forms/integer_lattices.html index 60dfd3edf9..f8db338319 100644 --- a/v0.34.8/manual/quad_forms/integer_lattices.html +++ b/v0.34.8/manual/quad_forms/integer_lattices.html @@ -6,19 +6,19 @@ Integer Lattices | Hecke - - + + - - - - - + + + + + -
Skip to content

Integer Lattices

An integer lattice L is a finitely generated Z-submodule of a quadratic vector space V=Qn over the rational numbers. Integer lattices are also known as quadratic forms over the integers. We will refer to them as Z-lattices.

A Z-lattice L has the type ZZLat. It is given in terms of its ambient quadratic space V together with a basis matrix B whose rows span L, i.e. L=ZrB where r is the (Z-module) rank of L.

To access V and B see ambient_space(L::ZZLat) and basis_matrix(L::ZZLat).

Creation of integer lattices

From a gram matrix

integer_lattice Method
julia
integer_lattice([B::MatElem]; gram) -> ZZLat

Return the Z-lattice with basis matrix B inside the quadratic space with Gram matrix gram.

If the keyword gram is not specified, the Gram matrix is the identity matrix. If B is not specified, the basis matrix is the identity matrix.

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1//2, 0, 0, 2]));
+    
Skip to content

Integer Lattices

An integer lattice L is a finitely generated Z-submodule of a quadratic vector space V=Qn over the rational numbers. Integer lattices are also known as quadratic forms over the integers. We will refer to them as Z-lattices.

A Z-lattice L has the type ZZLat. It is given in terms of its ambient quadratic space V together with a basis matrix B whose rows span L, i.e. L=ZrB where r is the (Z-module) rank of L.

To access V and B see ambient_space(L::ZZLat) and basis_matrix(L::ZZLat).

Creation of integer lattices

From a gram matrix

integer_lattice Method
julia
integer_lattice([B::MatElem]; gram) -> ZZLat

Return the Z-lattice with basis matrix B inside the quadratic space with Gram matrix gram.

If the keyword gram is not specified, the Gram matrix is the identity matrix. If B is not specified, the basis matrix is the identity matrix.

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1//2, 0, 0, 2]));
 
 julia> gram_matrix(L) == matrix(QQ, 2, 2, [1//4, 0, 0, 4])
 true
@@ -36,7 +36,7 @@
 
 julia> gram_matrix(L)
 [  0   -13]
-[-13     0]

source

integer_lattice Method
julia
integer_lattice(S::Symbol, n::RationalUnion = 1) -> ZZlat

Given S = :H or S = :U, return a Z-lattice admitting nJ2 as Gram matrix in some basis, where J2 is the 2-by-2 matrix with 0's on the main diagonal and 1's elsewhere.

source

leech_lattice Function
julia
leech_lattice() -> ZZLat

Return the Leech lattice.

source

julia
leech_lattice(niemeier_lattice::ZZLat) -> ZZLat, QQMatrix, Int

Return a triple L, v, h where L is the Leech lattice.

L is an h-neighbor of the Niemeier lattice N with respect to v. This means that L / L ∩ N ≅ ℤ / h ℤ. Here h is the Coxeter number of the Niemeier lattice.

This implements the 23 holy constructions of the Leech lattice in [5].

Examples

julia
julia> R = integer_lattice(gram=2 * identity_matrix(ZZ, 24));
+[-13     0]

source

integer_lattice Method
julia
integer_lattice(S::Symbol, n::RationalUnion = 1) -> ZZlat

Given S = :H or S = :U, return a Z-lattice admitting nJ2 as Gram matrix in some basis, where J2 is the 2-by-2 matrix with 0's on the main diagonal and 1's elsewhere.

source

leech_lattice Function
julia
leech_lattice() -> ZZLat

Return the Leech lattice.

source

julia
leech_lattice(niemeier_lattice::ZZLat) -> ZZLat, QQMatrix, Int

Return a triple L, v, h where L is the Leech lattice.

L is an h-neighbor of the Niemeier lattice N with respect to v. This means that L / L ∩ N ≅ ℤ / h ℤ. Here h is the Coxeter number of the Niemeier lattice.

This implements the 23 holy constructions of the Leech lattice in [5].

Examples

julia
julia> R = integer_lattice(gram=2 * identity_matrix(ZZ, 24));
 
 julia> N = maximal_even_lattice(R) # Some Niemeier lattice
 Integer lattice of rank 24 and degree 24
@@ -169,7 +169,7 @@
 Genus symbol for integer lattices
 Signatures: (3, 0, 20)
 Local symbol:
-  Local genus symbol at 2: 1^22 4^1_7

source

From a genus

Integer lattices can be created as representatives of a genus. See (representative(L::ZZGenus))

Rescaling the Quadratic Form

rescale Method
julia
rescale(L::ZZLat, r::RationalUnion) -> ZZLat

Return the lattice L in the quadratic space with form r \Phi.

Examples

This can be useful to apply methods intended for positive definite lattices.

julia
julia> L = integer_lattice(gram=ZZ[-1 0; 0 -1])
+  Local genus symbol at 2: 1^22 4^1_7

source

From a genus

Integer lattices can be created as representatives of a genus. See (representative(L::ZZGenus))

Rescaling the Quadratic Form

rescale Method
julia
rescale(L::ZZLat, r::RationalUnion) -> ZZLat

Return the lattice L in the quadratic space with form r \Phi.

Examples

This can be useful to apply methods intended for positive definite lattices.

julia
julia> L = integer_lattice(gram=ZZ[-1 0; 0 -1])
 Integer lattice of rank 2 and degree 2
 with gram matrix
 [-1    0]
@@ -189,9 +189,9 @@
   over rational field
 with gram matrix
 [ 4   -2]
-[-2    5]

source

Invariants

rank Method
julia
rank(L::AbstractLat) -> Int

Return the rank of the underlying module of the lattice L.

source

det Method
julia
det(L::ZZLat) -> QQFieldElem

Return the determinant of the gram matrix of L.

source

scale Method
julia
scale(L::ZZLat) -> QQFieldElem

Return the scale of L.

The scale of L is defined as the positive generator of the Z-ideal generated by {Φ(x,y):x,yL}.

source

norm Method
julia
norm(L::ZZLat) -> QQFieldElem

Return the norm of L.

The norm of L is defined as the positive generator of the Z- ideal generated by {Φ(x,x):xL}.

source

iseven Method
julia
iseven(L::ZZLat) -> Bool

Return whether L is even.

An integer lattice L in the rational quadratic space (V,Φ) is called even if Φ(x,x)2Z for all xinL.

source

is_integral Method
julia
is_integral(L::AbstractLat) -> Bool

Return whether the lattice L is integral.

source

is_primary_with_prime Method
julia
is_primary_with_prime(L::ZZLat) -> Bool, ZZRingElem

Given a Z-lattice L, return whether L is primary, that is whether L is integral and its discriminant group (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular lattices, this function returns (true, 1). If the lattice is not primary, the second return value is -1 by default.

source

is_primary Method
julia
is_primary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool

Given an integral Z-lattice L and a prime number p, return whether L is p-primary, that is whether its discriminant group (see discriminant_group) is a p-group.

source

is_elementary_with_prime Method
julia
is_elementary_with_prime(L::ZZLat) -> Bool, ZZRingElem

Given a Z-lattice L, return whether L is elementary, that is whether L is integral and its discriminant group (see discriminant_group) is an elemenentary p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular lattices, this function returns (true, 1). If the lattice is not elementary, the second return value is -1 by default.

source

is_elementary Method
julia
is_elementary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool

Given an integral Z-lattice L and a prime number p, return whether L is p-elementary, that is whether its discriminant group (see discriminant_group) is an elementary p-group.

source

The Genus

For an integral lattice The genus of an integer lattice collects its local invariants. genus(::ZZLat)

mass Method
julia
mass(L::ZZLat) -> QQFieldElem

Return the mass of the genus of L.

source

genus_representatives Method
julia
genus_representatives(L::ZZLat) -> Vector{ZZLat}

Return representatives for the isometry classes in the genus of L.

source

Real invariants

signature_tuple Method
julia
signature_tuple(L::ZZLat) -> Tuple{Int,Int,Int}

Return the number of (positive, zero, negative) inertia of L.

source

is_positive_definite Method
julia
is_positive_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is positive definite.

source

is_negative_definite Method
julia
is_negative_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is negative definite.

source

is_definite Method
julia
is_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is definite.

source

Isometries

automorphism_group_generators Method
julia
automorphism_group_generators(E::EllipticCurve) -> Vector{EllCrvIso}

Return generators of the automorphism group of E.

source

julia
automorphism_group_generators(L::AbstractLat; ambient_representation::Bool = true,
+[-2    5]

source

Invariants

rank Method
julia
rank(L::AbstractLat) -> Int

Return the rank of the underlying module of the lattice L.

source

det Method
julia
det(L::ZZLat) -> QQFieldElem

Return the determinant of the gram matrix of L.

source

scale Method
julia
scale(L::ZZLat) -> QQFieldElem

Return the scale of L.

The scale of L is defined as the positive generator of the Z-ideal generated by {Φ(x,y):x,yL}.

source

norm Method
julia
norm(L::ZZLat) -> QQFieldElem

Return the norm of L.

The norm of L is defined as the positive generator of the Z- ideal generated by {Φ(x,x):xL}.

source

iseven Method
julia
iseven(L::ZZLat) -> Bool

Return whether L is even.

An integer lattice L in the rational quadratic space (V,Φ) is called even if Φ(x,x)2Z for all xinL.

source

is_integral Method
julia
is_integral(L::AbstractLat) -> Bool

Return whether the lattice L is integral.

source

is_primary_with_prime Method
julia
is_primary_with_prime(L::ZZLat) -> Bool, ZZRingElem

Given a Z-lattice L, return whether L is primary, that is whether L is integral and its discriminant group (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular lattices, this function returns (true, 1). If the lattice is not primary, the second return value is -1 by default.

source

is_primary Method
julia
is_primary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool

Given an integral Z-lattice L and a prime number p, return whether L is p-primary, that is whether its discriminant group (see discriminant_group) is a p-group.

source

is_elementary_with_prime Method
julia
is_elementary_with_prime(L::ZZLat) -> Bool, ZZRingElem

Given a Z-lattice L, return whether L is elementary, that is whether L is integral and its discriminant group (see discriminant_group) is an elemenentary p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular lattices, this function returns (true, 1). If the lattice is not elementary, the second return value is -1 by default.

source

is_elementary Method
julia
is_elementary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool

Given an integral Z-lattice L and a prime number p, return whether L is p-elementary, that is whether its discriminant group (see discriminant_group) is an elementary p-group.

source

The Genus

For an integral lattice The genus of an integer lattice collects its local invariants. genus(::ZZLat)

mass Method
julia
mass(L::ZZLat) -> QQFieldElem

Return the mass of the genus of L.

source

genus_representatives Method
julia
genus_representatives(L::ZZLat) -> Vector{ZZLat}

Return representatives for the isometry classes in the genus of L.

source

Real invariants

signature_tuple Method
julia
signature_tuple(L::ZZLat) -> Tuple{Int,Int,Int}

Return the number of (positive, zero, negative) inertia of L.

source

is_positive_definite Method
julia
is_positive_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is positive definite.

source

is_negative_definite Method
julia
is_negative_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is negative definite.

source

is_definite Method
julia
is_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is definite.

source

Isometries

automorphism_group_generators Method
julia
automorphism_group_generators(E::EllipticCurve) -> Vector{EllCrvIso}

Return generators of the automorphism group of E.

source

julia
automorphism_group_generators(L::AbstractLat; ambient_representation::Bool = true,
                                               depth::Int = -1, bacher_depth::Int = 0)
-                                                      -> Vector{MatElem}

Given a definite lattice L, return generators for the automorphism group of L. If ambient_representation == true (the default), the transformations are represented with respect to the ambient space of L. Otherwise, the transformations are represented with respect to the (pseudo-)basis of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

automorphism_group_order Method
julia
automorphism_group_order(L::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Int

Given a definite lattice L, return the order of the automorphism group of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

is_isometric Method
julia
is_isometric(L::AbstractLat, M::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Bool

Return whether the lattices L and M are isometric.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

is_locally_isometric Method
julia
is_locally_isometric(L::ZZLat, M::ZZLat, p::Int) -> Bool

Return whether L and M are isometric over the p-adic integers.

i.e. whether LZpMZp.

source

Root lattices

root_lattice_recognition Method
julia
root_lattice_recognition(L::ZZLat)

Return the ADE type of the root sublattice of L.

The root sublattice is the lattice spanned by the vectors of squared length 1 and 2. The odd lattice of rank 1 and determinant 1 is denoted by (:I, 1).

Input:

L – a definite and integral Z-lattice.

Output:

Two lists, the first one containing the ADE types and the second one the irreducible root sublattices.

For more recognizable gram matrices use root_lattice_recognition_fundamental.

Examples

julia
julia> L = integer_lattice(gram=ZZ[4  0 0  0 3  0 3  0;
+                                                      -> Vector{MatElem}

Given a definite lattice L, return generators for the automorphism group of L. If ambient_representation == true (the default), the transformations are represented with respect to the ambient space of L. Otherwise, the transformations are represented with respect to the (pseudo-)basis of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

automorphism_group_order Method
julia
automorphism_group_order(L::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Int

Given a definite lattice L, return the order of the automorphism group of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

is_isometric Method
julia
is_isometric(L::AbstractLat, M::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Bool

Return whether the lattices L and M are isometric.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source

is_locally_isometric Method
julia
is_locally_isometric(L::ZZLat, M::ZZLat, p::Int) -> Bool

Return whether L and M are isometric over the p-adic integers.

i.e. whether LZpMZp.

source

Root lattices

root_lattice_recognition Method
julia
root_lattice_recognition(L::ZZLat)

Return the ADE type of the root sublattice of L.

The root sublattice is the lattice spanned by the vectors of squared length 1 and 2. The odd lattice of rank 1 and determinant 1 is denoted by (:I, 1).

Input:

L – a definite and integral Z-lattice.

Output:

Two lists, the first one containing the ADE types and the second one the irreducible root sublattices.

For more recognizable gram matrices use root_lattice_recognition_fundamental.

Examples

julia
julia> L = integer_lattice(gram=ZZ[4  0 0  0 3  0 3  0;
                             0 16 8 12 2 12 6 10;
                             0  8 8  6 2  8 4  5;
                             0 12 6 10 2  9 5  8;
@@ -253,7 +253,7 @@
 [0   -1   -1    2   -1    0    0]
 [0    0    0   -1    2   -1    0]
 [0    0    0    0   -1    2   -1]
-[0    0    0    0    0   -1    2]

source

ADE_type Method
julia
ADE_type(G::MatrixElem) -> Tuple{Symbol,Int64}

Return the type of the irreducible root lattice with gram matrix G.

See also root_lattice_recognition.

Examples

julia
julia> Hecke.ADE_type(gram_matrix(root_lattice(:A,3)))
+[0    0    0    0    0   -1    2]

source

ADE_type Method
julia
ADE_type(G::MatrixElem) -> Tuple{Symbol,Int64}

Return the type of the irreducible root lattice with gram matrix G.

See also root_lattice_recognition.

Examples

julia
julia> Hecke.ADE_type(gram_matrix(root_lattice(:A,3)))
 (:A, 3)

source

coxeter_number Method
julia
coxeter_number(ADE::Symbol, n) -> Int

Return the Coxeter number of the corresponding ADE root lattice.

If L is a root lattice and R its set of roots, then the Coxeter number h is |R|/n where n is the rank of L.

Examples

julia
julia> coxeter_number(:D, 4)
 6

source

highest_root Method
julia
highest_root(ADE::Symbol, n) -> ZZMatrix

Return coordinates of the highest root of root_lattice(ADE, n).

Examples

julia
julia> highest_root(:E, 6)
 [1   2   3   2   1   2]

source

Module operations

Most module operations assume that the lattices live in the same ambient space. For instance only lattices in the same ambient space compare.

== Method

Return true if both lattices have the same ambient quadratic space and the same underlying module.

source

is_sublattice Method
julia
is_sublattice(L::AbstractLat, M::AbstractLat) -> Bool

Return whether M is a sublattice of the lattice L.

source

is_sublattice_with_relations Method
julia
is_sublattice_with_relations(M::ZZLat, N::ZZLat) -> Bool, QQMatrix

Returns whether N is a sublattice of M. In this case, the second return value is a matrix B such that BBM=BN, where BM and BN are the basis matrices of M and N respectively.

source

+ Method
julia
+(L::AbstractLat, M::AbstractLat) -> AbstractLat

Return the sum of the lattices L and M.

The lattices L and M must have the same ambient space.

source

* Method
julia
*(a::RationalUnion, L::ZZLat) -> ZZLat

Return the lattice aM inside the ambient space of M.

source

intersect Method
julia
intersect(L::AbstractLat, M::AbstractLat) -> AbstractLat

Return the intersection of the lattices L and M.

The lattices L and M must have the same ambient space.

source

in Method
julia
Base.in(v::Vector, L::ZZLat) -> Bool

Return whether the vector v lies in the lattice L.

source

in Method
julia
Base.in(v::QQMatrix, L::ZZLat) -> Bool

Return whether the row span of v lies in the lattice L.

source

primitive_closure Method
julia
primitive_closure(M::ZZLat, N::ZZLat) -> ZZLat

Given two Z-lattices M and N with NQM, return the primitive closure MQN of N in M.

Examples

julia
julia> M = root_lattice(:D, 6);
@@ -302,7 +302,7 @@
 true

source

is_primitive Method
julia
is_primitive(L::ZZLat, v::Union{Vector, QQMatrix}) -> Bool

Return whether the vector v is primitive in L.

A vector v in a Z-lattice L is called primitive if for all w in L such that v=dw for some integer d, then d=±1.

source

divisibility Method
julia
divisibility(L::ZZLat, v::Union{Vector, QQMatrix}) -> QQFieldElem

Return the divisibility of v with respect to L.

For a vector v in the ambient quadratic space (V,Φ) of L, we call the divisibility of v with the respect to L the non-negative generator of the fractional Z-ideal Φ(v,L).

source

Embeddings

Categorical constructions

direct_sum Method
julia
direct_sum(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
 direct_sum(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}

Given a collection of Z-lattices L1,,Ln, return their direct sum L:=L1Ln, together with the injections LiL. (seen as maps between the corresponding ambient spaces).

For objects of type ZZLat, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L as a direct product with the projections LLi, one should call direct_product(x). If one wants to obtain L as a biproduct with the injections LiL and the projections LLi, one should call biproduct(x).

source

direct_product Method
julia
direct_product(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
 direct_product(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}

Given a collection of Z-lattices L1,,Ln, return their direct product L:=L1××Ln, together with the projections LLi. (seen as maps between the corresponding ambient spaces).

For objects of type ZZLat, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L as a direct sum with the injections LiL, one should call direct_sum(x). If one wants to obtain L as a biproduct with the injections LiL and the projections LLi, one should call biproduct(x).

source

biproduct Method
julia
biproduct(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
-biproduct(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}

Given a collection of Z-lattices L1,,Ln, return their biproduct L:=L1Ln, together with the injections LiL and the projections LLi. (seen as maps between the corresponding ambient spaces).

For objects of type ZZLat, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L as a direct sum with the injections LiL, one should call direct_sum(x). If one wants to obtain L as a direct product with the projections LLi, one should call direct_product(x).

source

Orthogonal sublattices

orthogonal_submodule Method
julia
orthogonal_submodule(L::ZZLat, S::ZZLat) -> ZZLat

Return the largest submodule of L orthogonal to S.

source

irreducible_components Method
julia
irreducible_components(L::ZZLat) -> Vector{ZZLat}

Return the irreducible components Li of the positive definite lattice L.

This yields a maximal orthogonal splitting of L as

L=iLi.

source

Dual lattice

dual Method
julia
dual(L::AbstractLat) -> AbstractLat

Return the dual lattice of the lattice L.

source

Discriminant group

See discriminant_group(L::ZZLat).

Overlattices

glue_map Method
julia
glue_map(L::ZZLat, S::ZZLat, R::ZZLat; check=true)
+biproduct(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}

Given a collection of Z-lattices L1,,Ln, return their biproduct L:=L1Ln, together with the injections LiL and the projections LLi. (seen as maps between the corresponding ambient spaces).

For objects of type ZZLat, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L as a direct sum with the injections LiL, one should call direct_sum(x). If one wants to obtain L as a direct product with the projections LLi, one should call direct_product(x).

source

Orthogonal sublattices

orthogonal_submodule Method
julia
orthogonal_submodule(L::ZZLat, S::ZZLat) -> ZZLat

Return the largest submodule of L orthogonal to S.

source

irreducible_components Method
julia
irreducible_components(L::ZZLat) -> Vector{ZZLat}

Return the irreducible components Li of the positive definite lattice L.

This yields a maximal orthogonal splitting of L as

L=iLi.

source

Dual lattice

dual Method
julia
dual(L::AbstractLat) -> AbstractLat

Return the dual lattice of the lattice L.

source

Discriminant group

See discriminant_group(L::ZZLat).

Overlattices

glue_map Method
julia
glue_map(L::ZZLat, S::ZZLat, R::ZZLat; check=true)
                        -> Tuple{TorQuadModuleMap, TorQuadModuleMap, TorQuadModuleMap}

Given three integral Z-lattices L, S and R, with S and R primitive sublattices of L and such that the sum of the ranks of S and R is equal to the rank of L, return the glue map γ of the primitive extension S+RL, as well as the inclusion maps of the domain and codomain of γ into the respective discriminant groups of S and R.

Example

julia
julia> M = root_lattice(:E,8);
 
 julia> f = matrix(QQ, 8, 8, [-1 -1  0  0  0  0  0  0;
@@ -371,7 +371,7 @@
                   ambient_representation::Bool = true) -> ZZLat

Given a Z-lattice L and a list of matrices G inducing endomorphisms of L (or just one matrix G), return the lattice LG, consisting on elements fixed by G.

If ambient_representation is true (the default), the endomorphism is represented with respect to the ambient space of L. Otherwise, the endomorphism is represented with respect to the basis of L.

source

coinvariant_lattice Method
julia
coinvariant_lattice(L::ZZLat, G::Vector{MatElem};
                     ambient_representation::Bool = true) -> ZZLat
 coinvariant_lattice(L::ZZLat, G::MatElem;
-                    ambient_representation::Bool = true) -> ZZLat

Given a Z-lattice L and a list of matrices G inducing endomorphisms of L (or just one matrix G), return the orthogonal complement LG in L of the fixed lattice LG (see invariant_lattice).

If ambient_representation is true (the default), the endomorphism is represented with respect to the ambient space of L. Otherwise, the endomorphism is represented with respect to the basis of L.

source

Computing embeddings

embed Method
julia
embed(S::ZZLat, G::Genus, primitive::Bool=true) -> Bool, embedding

Return a (primitive) embedding of the integral lattice S into some lattice in the genus of G.

julia
julia> G = integer_genera((8,0), 1, even=true)[1];
+                    ambient_representation::Bool = true) -> ZZLat

Given a Z-lattice L and a list of matrices G inducing endomorphisms of L (or just one matrix G), return the orthogonal complement LG in L of the fixed lattice LG (see invariant_lattice).

If ambient_representation is true (the default), the endomorphism is represented with respect to the ambient space of L. Otherwise, the endomorphism is represented with respect to the basis of L.

source

Computing embeddings

embed Method
julia
embed(S::ZZLat, G::Genus, primitive::Bool=true) -> Bool, embedding

Return a (primitive) embedding of the integral lattice S into some lattice in the genus of G.

julia
julia> G = integer_genera((8,0), 1, even=true)[1];
 
 julia> L, S, i = embed(root_lattice(:A,5), G);

source

embed_in_unimodular Method
julia
embed_in_unimodular(S::ZZLat, pos::Int, neg::Int, primitive=true, even=true) -> Bool, L, S', iS, iR

Return a (primitive) embedding of the integral lattice S into some (even) unimodular lattice of signature (pos, neg).

For now this works only for even lattices.

julia
julia> NS = direct_sum(integer_lattice(:U), rescale(root_lattice(:A, 16), -1))[1];
 
@@ -407,10 +407,10 @@
 
 julia> is_primitive(LK3, iNS)
 true

source

LLL, Short and Close Vectors

LLL and indefinite LLL

lll Method
julia
lll(L::ZZLat, same_ambient::Bool = true) -> ZZLat

Given an integral Z-lattice L with basis matrix B, compute a basis C of L such that the gram matrix GC of L with respect to C is LLL-reduced.

By default, it creates the lattice in the same ambient space as L. This can be disabled by setting same_ambient = false. Works with both definite and indefinite lattices.

source

Short Vectors

short_vectors Function
julia
short_vectors(L::ZZLat, [lb = 0], ub, [elem_type = ZZRingElem]; check::Bool = true)
-                                   -> Vector{Tuple{Vector{elem_type}, QQFieldElem}}

Return all tuples (v, n) such that n=|vGvt| satisfies lb <= n <= ub, where G is the Gram matrix of L and v is non-zero.

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors_iterator for an iterator version.

source

shortest_vectors Function
julia
shortest_vectors(L::ZZLat, [elem_type = ZZRingElem]; check::Bool = true)
-                                           -> QQFieldElem, Vector{elem_type}, QQFieldElem}

Return the list of shortest non-zero vectors in absolute value. Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also minimum.

source

short_vectors_iterator Function
julia
short_vectors_iterator(L::ZZLat, [lb = 0], ub,
+                                   -> Vector{Tuple{Vector{elem_type}, QQFieldElem}}

Return all tuples (v, n) such that n=|vGvt| satisfies lb <= n <= ub, where G is the Gram matrix of L and v is non-zero.

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors_iterator for an iterator version.

source

shortest_vectors Function
julia
shortest_vectors(L::ZZLat, [elem_type = ZZRingElem]; check::Bool = true)
+                                           -> QQFieldElem, Vector{elem_type}, QQFieldElem}

Return the list of shortest non-zero vectors in absolute value. Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also minimum.

source

short_vectors_iterator Function
julia
short_vectors_iterator(L::ZZLat, [lb = 0], ub,
                        [elem_type = ZZRingElem]; check::Bool = true)
-                                -> Tuple{Vector{elem_type}, QQFieldElem} (iterator)

Return an iterator for all tuples (v, n) such that n=|vGvt| satisfies lb <= n <= ub, where G is the Gram matrix of L and v is non-zero.

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors.

source

minimum Method
julia
minimum(L::ZZLat) -> QQFieldElem

Return the minimum absolute squared length among the non-zero vectors in L.

source

kissing_number Method
julia
kissing_number(L::ZZLat) -> Int

Return the Kissing number of the sphere packing defined by L.

This is the number of non-overlapping spheres touching any other given sphere.

source

Close Vectors

close_vectors Method
julia
close_vectors(L:ZZLat, v:Vector, [lb,], ub; check::Bool = false)
+                                -> Tuple{Vector{elem_type}, QQFieldElem} (iterator)

Return an iterator for all tuples (v, n) such that n=|vGvt| satisfies lb <= n <= ub, where G is the Gram matrix of L and v is non-zero.

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors.

source

minimum Method
julia
minimum(L::ZZLat) -> QQFieldElem

Return the minimum absolute squared length among the non-zero vectors in L.

source

kissing_number Method
julia
kissing_number(L::ZZLat) -> Int

Return the Kissing number of the sphere packing defined by L.

This is the number of non-overlapping spheres touching any other given sphere.

source

Close Vectors

close_vectors Method
julia
close_vectors(L:ZZLat, v:Vector, [lb,], ub; check::Bool = false)
                                         -> Vector{Tuple{Vector{Int}}, QQFieldElem}

Return all tuples (x, d) where x is an element of L such that d = b(v - x, v - x) <= ub. If lb is provided, then also lb <= d.

If filter is not nothing, then only those x with filter(x) evaluating to true are returned.

By default, it will be checked whether L is positive definite. This can be disabled setting check = false.

Both input and output are with respect to the basis matrix of L.

Examples

julia
julia> L = integer_lattice(matrix(QQ, 2, 2, [1, 0, 0, 2]));
 
 julia> close_vectors(L, [1, 1], 1)
@@ -422,8 +422,8 @@
 julia> close_vectors(L, [1, 1], 1, 1)
 2-element Vector{Tuple{Vector{ZZRingElem}, QQFieldElem}}:
  ([2, 1], 1)
- ([0, 1], 1)

source


- + ([0, 1], 1)

source


+ \ No newline at end of file diff --git a/v0.34.8/manual/quad_forms/introduction.html b/v0.34.8/manual/quad_forms/introduction.html index e2b744ba0f..3c34aac9bf 100644 --- a/v0.34.8/manual/quad_forms/introduction.html +++ b/v0.34.8/manual/quad_forms/introduction.html @@ -6,20 +6,20 @@ Introduction | Hecke - - + + - - - - - + + + + + -
Skip to content

Introduction

This chapter deals with quadratic and hermitian spaces, and lattices there of. Note that even though quadratic spaces/lattices are theoretically a special case of hermitian spaces/lattices, a particular distinction is made here. As a note for knowledgeable users, only methods regarding hermitian spaces/lattices over degree 1 and degree 2 extensions of number fields are implemented up to now.

Definitions and vocabulary

We begin by collecting the necessary definitions and vocabulary. The terminology follows mainly [Kir16]

Quadratic and hermitian spaces

Let K be a number field and let E be a finitely generated etale algebra over K of dimension 1 or 2, i.e. E=K or E is a separable extension of K of degree 2. In both cases, E/K is endowed with an K-linear involution x:EE for which K is the fixed field (in the case E=K, this is simply the identity of K).

A hermitian space V over E/K is a finite-dimensional E-vector space, together with a sesquilinear (with respect to the involution of E/K) morphism Φ:V×VE. In the trivial case E=K, Φ is therefore a K-bilinear morphism and we called (V,Φ) a quadratic hermitian space over K.

We will always work with an implicit canonical basis e1,,en of V. In view of this, hermitian spaces over E/K are in bijection with hermitian matrices with entries in E, with respect to the involution x. In particular, there is a bijection between quadratic hermitian spaces over K and symmetric matrices with entries in K. For any basis B=(v1,,vn) of (V,Φ), we call the matrix GB=(Φ(vi,vj))1i,jnEn×n the Gram matrix of (V,Φ) associated to B. If B is the implicit fixed canonical basis of (V,Φ), we simply talk about the Gram matrix of (V,Φ).

For a hermitian space V, we refer to the field E as the base ring of V and to x as the involution of V. Meanwhile, the field K is referred to as the fixed field of V.

By abuse of language, non-quadratic hermitian spaces are sometimes simply called hermitian spaces and, in contrast, quadratic hermitian spaces are called quadratic spaces. In a general context, an arbitrary space (quadratic or hermitian) is referred to as a space throughout this chapter.

Quadratic and hermitian lattices

Let V be a space over E/K. A finitely generated OE-submodule L of V is called a hermitian lattice. By extension of vocabulary if V is quadratic (i.e. E=K), L is called a quadratic hermitian lattice. We call V the ambient space of L and LOEE the rational span of L.

For a hermitian lattice L, we refer to E as the base field of L and to the ring OE as the base ring of L. We also call x:EE the involution of L. Finally, we refer to the field K fixed by this involution as the fixed field of L and to OK as the fixed ring of L.

Once again by abuse of language, non-quadratic hermitian lattices are sometimes simply called hermitian lattices and quadratic lattices refer to quadratic hermitian lattices. Therefore, in a general context, an arbitrary lattice is referred to as a lattice in this chapter.

References

Many of the implemented algorithms for computing with quadratic and hermitian lattices over number fields are based on the Magma implementation of Markus Kirschmer, which can be found here.

Most of the definitions and results are taken from:

[Kir16] : Definite quadratic and hermitian forms with small class number. Habilitationsschrift. RWTH Aachen University, 2016. pdf

[Kir19] : Determinant groups of hermitian lattices over local fields, Archiv der Mathematik, 113 (2019), no. 4, 337–347. pdf

- +
Skip to content

Introduction

This chapter deals with quadratic and hermitian spaces, and lattices there of. Note that even though quadratic spaces/lattices are theoretically a special case of hermitian spaces/lattices, a particular distinction is made here. As a note for knowledgeable users, only methods regarding hermitian spaces/lattices over degree 1 and degree 2 extensions of number fields are implemented up to now.

Definitions and vocabulary

We begin by collecting the necessary definitions and vocabulary. The terminology follows mainly [Kir16]

Quadratic and hermitian spaces

Let K be a number field and let E be a finitely generated etale algebra over K of dimension 1 or 2, i.e. E=K or E is a separable extension of K of degree 2. In both cases, E/K is endowed with an K-linear involution x:EE for which K is the fixed field (in the case E=K, this is simply the identity of K).

A hermitian space V over E/K is a finite-dimensional E-vector space, together with a sesquilinear (with respect to the involution of E/K) morphism Φ:V×VE. In the trivial case E=K, Φ is therefore a K-bilinear morphism and we called (V,Φ) a quadratic hermitian space over K.

We will always work with an implicit canonical basis e1,,en of V. In view of this, hermitian spaces over E/K are in bijection with hermitian matrices with entries in E, with respect to the involution x. In particular, there is a bijection between quadratic hermitian spaces over K and symmetric matrices with entries in K. For any basis B=(v1,,vn) of (V,Φ), we call the matrix GB=(Φ(vi,vj))1i,jnEn×n the Gram matrix of (V,Φ) associated to B. If B is the implicit fixed canonical basis of (V,Φ), we simply talk about the Gram matrix of (V,Φ).

For a hermitian space V, we refer to the field E as the base ring of V and to x as the involution of V. Meanwhile, the field K is referred to as the fixed field of V.

By abuse of language, non-quadratic hermitian spaces are sometimes simply called hermitian spaces and, in contrast, quadratic hermitian spaces are called quadratic spaces. In a general context, an arbitrary space (quadratic or hermitian) is referred to as a space throughout this chapter.

Quadratic and hermitian lattices

Let V be a space over E/K. A finitely generated OE-submodule L of V is called a hermitian lattice. By extension of vocabulary if V is quadratic (i.e. E=K), L is called a quadratic hermitian lattice. We call V the ambient space of L and LOEE the rational span of L.

For a hermitian lattice L, we refer to E as the base field of L and to the ring OE as the base ring of L. We also call x:EE the involution of L. Finally, we refer to the field K fixed by this involution as the fixed field of L and to OK as the fixed ring of L.

Once again by abuse of language, non-quadratic hermitian lattices are sometimes simply called hermitian lattices and quadratic lattices refer to quadratic hermitian lattices. Therefore, in a general context, an arbitrary lattice is referred to as a lattice in this chapter.

References

Many of the implemented algorithms for computing with quadratic and hermitian lattices over number fields are based on the Magma implementation of Markus Kirschmer, which can be found here.

Most of the definitions and results are taken from:

[Kir16] : Definite quadratic and hermitian forms with small class number. Habilitationsschrift. RWTH Aachen University, 2016. pdf

[Kir19] : Determinant groups of hermitian lattices over local fields, Archiv der Mathematik, 113 (2019), no. 4, 337–347. pdf

+ \ No newline at end of file diff --git a/v0.34.8/manual/quad_forms/lattices.html b/v0.34.8/manual/quad_forms/lattices.html index 8f20b1ba6c..7b21c4910e 100644 --- a/v0.34.8/manual/quad_forms/lattices.html +++ b/v0.34.8/manual/quad_forms/lattices.html @@ -6,19 +6,19 @@ Lattices | Hecke - - + + - - - - - + + + + + -
Skip to content

Lattices

Creation of lattices

Inside a given ambient space

lattice Method
julia
lattice(V::AbstractSpace) -> AbstractLat

Given an ambient space V, return the lattice with the standard basis matrix. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

source

lattice Method
julia
lattice(V::AbstractSpace, B::PMat ; check::Bool = true) -> AbstractLat

Given an ambient space V and a pseudo-matrix B, return the lattice spanned by the pseudo-matrix B inside V. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

By default, B is checked to be of full rank. This test can be disabled by setting check to false.

source

lattice Method
julia
lattice(V::AbstractSpace, basis::MatElem ; check::Bool = true) -> AbstractLat

Given an ambient space V and a matrix basis, return the lattice spanned by the rows of basis inside V. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

By default, basis is checked to be of full rank. This test can be disabled by setting check to false.

source

lattice Method
julia
lattice(V::AbstractSpace, gens::Vector) -> AbstractLat

Given an ambient space V and a list of generators gens, return the lattice spanned by gens in V. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

If gens is empty, the function returns the zero lattice in V.

source

Quadratic lattice over a number field

quadratic_lattice Method
julia
quadratic_lattice(K::Field ; gram::MatElem) -> Union{ZZLat, QuadLat}

Given a matrix gram and a field K, return the free quadratic lattice inside the quadratic space over K with Gram matrix gram.

If K=Q, then the output lattice is of type ZZLat, seen as a lattice over the ring Z.

source

quadratic_lattice Method
julia
quadratic_lattice(K::Field, B::PMat ; gram = nothing,
+    
Skip to content

Lattices

Creation of lattices

Inside a given ambient space

lattice Method
julia
lattice(V::AbstractSpace) -> AbstractLat

Given an ambient space V, return the lattice with the standard basis matrix. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

source

lattice Method
julia
lattice(V::AbstractSpace, B::PMat ; check::Bool = true) -> AbstractLat

Given an ambient space V and a pseudo-matrix B, return the lattice spanned by the pseudo-matrix B inside V. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

By default, B is checked to be of full rank. This test can be disabled by setting check to false.

source

lattice Method
julia
lattice(V::AbstractSpace, basis::MatElem ; check::Bool = true) -> AbstractLat

Given an ambient space V and a matrix basis, return the lattice spanned by the rows of basis inside V. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

By default, basis is checked to be of full rank. This test can be disabled by setting check to false.

source

lattice Method
julia
lattice(V::AbstractSpace, gens::Vector) -> AbstractLat

Given an ambient space V and a list of generators gens, return the lattice spanned by gens in V. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

If gens is empty, the function returns the zero lattice in V.

source

Quadratic lattice over a number field

quadratic_lattice Method
julia
quadratic_lattice(K::Field ; gram::MatElem) -> Union{ZZLat, QuadLat}

Given a matrix gram and a field K, return the free quadratic lattice inside the quadratic space over K with Gram matrix gram.

If K=Q, then the output lattice is of type ZZLat, seen as a lattice over the ring Z.

source

quadratic_lattice Method
julia
quadratic_lattice(K::Field, B::PMat ; gram = nothing,
                                       check:::Bool = true) -> QuadLat

Given a pseudo-matrix B with entries in a field K return the quadratic lattice spanned by the pseudo-matrix B inside the quadratic space over K with Gram matrix gram.

If gram is not supplied, the Gram matrix of the ambient space will be the identity matrix over K of size the number of columns of B.

By default, B is checked to be of full rank. This test can be disabled by setting check to false.

source

quadratic_lattice Method
julia
quadratic_lattice(K::Field, basis::MatElem ; gram = nothing,
                                              check::Bool = true)
                                                       -> Union{ZZLat, QuadLat}

Given a matrix basis and a field K, return the quadratic lattice spanned by the rows of basis inside the quadratic space over K with Gram matrix gram.

If gram is not supplied, the Gram matrix of the ambient space will be the identity matrix over K of size the number of columns of basis.

By default, basis is checked to be of full rank. This test can be disabled by setting check to false.

If K=Q, then the output lattice is of type ZZLat, seen as a lattice over the ring Z.

source

quadratic_lattice Method
julia
quadratic_lattice(K::Field, gens::Vector ; gram = nothing) -> Union{ZZLat, QuadLat}

Given a list of vectors gens and a field K, return the quadratic lattice spanned by the elements of gens inside the quadratic space over K with Gram matrix gram.

If gram is not supplied, the Gram matrix of the ambient space will be the identity matrix over K of size the length of the elements of gens.

If gens is empty, gram must be supplied and the function returns the zero lattice in the quadratic space over K with gram matrix gram.

If K=Q, then the output lattice is of type ZZLat, seen as a lattice over the ring Z.

source

Hermitian lattice over a degree 2 extension

hermitian_lattice Method
julia
hermitian_lattice(E::NumField; gram::MatElem) -> HermLat

Given a matrix gram and a number field E of degree 2, return the free hermitian lattice inside the hermitian space over E with Gram matrix gram.

source

hermitian_lattice Method
julia
hermitian_lattice(E::NumField, B::PMat; gram = nothing,
@@ -627,8 +627,8 @@
 Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b + 1) * 1//2 * <1, 1>
 with basis pseudo-matrix
 (1//1 * <1, 1>) * [1 0]
-(1//14 * <1, 1>) * [6 1])
- +(1//14 * <1, 1>) * [6 1])
+ \ No newline at end of file diff --git a/v0.34.8/references.html b/v0.34.8/references.html index 6926a0327f..53f7dbeb6d 100644 --- a/v0.34.8/references.html +++ b/v0.34.8/references.html @@ -6,20 +6,20 @@ Bibliography | Hecke - - + + - - - - - + + + + + -
Skip to content

Bibliography

  1. H. Cohen. Advanced topics in computational number theory. Vol. 193 of Graduate Texts in Mathematics (Springer-Verlag, New York, 2000); p. xvi+578.

  2. H. Cohen. A course in computational algebraic number theory. Vol. 138 of Graduate Texts in Mathematics (Springer-Verlag, Berlin, 1993); p. xii+534.

  3. M. Pohst and H. Zassenhaus. Algorithmic algebraic number theory. Vol. 30 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1997); p. xiv+499.

  4. D. A. Marcus. Number fields. Universitext (Springer, Cham, 2018); p. xviii+203.

  5. J. H. Conway and N. J. Sloane. Sphere packings, lattices and groups. Third Edition, Vol. 290 of Grundlehren der mathematischen Wissenschaften (Springer-Verlag, New York, 1999); p. lxxiv+703.

  6. V. V. Nikulin. Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43, 111–177, 238 (1979).

- +
Skip to content

Bibliography

  1. H. Cohen. Advanced topics in computational number theory. Vol. 193 of Graduate Texts in Mathematics (Springer-Verlag, New York, 2000); p. xvi+578.

  2. H. Cohen. A course in computational algebraic number theory. Vol. 138 of Graduate Texts in Mathematics (Springer-Verlag, Berlin, 1993); p. xii+534.

  3. M. Pohst and H. Zassenhaus. Algorithmic algebraic number theory. Vol. 30 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 1997); p. xiv+499.

  4. D. A. Marcus. Number fields. Universitext (Springer, Cham, 2018); p. xviii+203.

  5. J. H. Conway and N. J. Sloane. Sphere packings, lattices and groups. Third Edition, Vol. 290 of Grundlehren der mathematischen Wissenschaften (Springer-Verlag, New York, 1999); p. lxxiv+703.

  6. V. V. Nikulin. Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43, 111–177, 238 (1979).

+ \ No newline at end of file diff --git a/v0.34.8/start/index.html b/v0.34.8/start/index.html index 6723e1ed0a..d304d30723 100644 --- a/v0.34.8/start/index.html +++ b/v0.34.8/start/index.html @@ -6,19 +6,19 @@ Getting started | Hecke - - + + - - - - - + + + + + -
Skip to content

Getting started

To use Hecke, a julia version of 1.0 is necessary (the latest stable julia version will do). Please see https://julialang.org/downloads/ for instructions on how to obtain julia for your system. Once a suitable julia version is installed, use the following steps at the julia prompt to install Hecke:

julia
julia> using Pkg
+    
Skip to content

Getting started

To use Hecke, a julia version of 1.0 is necessary (the latest stable julia version will do). Please see https://julialang.org/downloads/ for instructions on how to obtain julia for your system. Once a suitable julia version is installed, use the following steps at the julia prompt to install Hecke:

julia
julia> using Pkg
 
 julia> Pkg.add("Hecke")

Here is a quick example of using Hecke to define a number field and compute its class group::

julia
julia> using Hecke
 
@@ -34,7 +34,7 @@
 
 julia> C
 (Z/2)^2
- + \ No newline at end of file diff --git a/v0.34.8/tutorials/index.html b/v0.34.8/tutorials/index.html index 89e4c204b9..3a6c4bb74c 100644 --- a/v0.34.8/tutorials/index.html +++ b/v0.34.8/tutorials/index.html @@ -6,20 +6,20 @@ Tutorials | Hecke - - + + - - - - - + + + + + -
Skip to content
- +
Skip to content
+ \ No newline at end of file