diff --git a/src/NumFieldOrd/NfOrd/NfOrd.jl b/src/NumFieldOrd/NfOrd/NfOrd.jl index 6b08093e6c..76ea47bdb0 100644 --- a/src/NumFieldOrd/NfOrd/NfOrd.jl +++ b/src/NumFieldOrd/NfOrd/NfOrd.jl @@ -747,9 +747,8 @@ checked by computing minimal polynomials. If `isbasis` is set, then elements are assumed to form a $\mathbf{Z}$-basis. If `cached` is set, then the constructed order is cached for future use. """ -function Order(::S, a::Vector{T}; check::Bool = true, isbasis::Bool = false, +function Order(K::S, a::Vector{T}; check::Bool = true, isbasis::Bool = false, cached::Bool = false) where {S <: NumField{QQFieldElem}, T <: NumFieldElem{QQFieldElem}} - K = parent(a[1]) @assert all(x->K == parent(x), a) if isbasis if check @@ -769,9 +768,10 @@ end function Order(K, a::Vector; check::Bool = true, isbasis::Bool = false, cached::Bool = true) - local b + local b::Vector{elem_type(K)} try b = map(K, a) + b = convert(Vector{elem_type(K)}, b) catch error("Cannot coerce elements from array into the number field") end @@ -886,11 +886,6 @@ function any_order(K::NfAbsNS) g = gens(K) for i in 1:ngens(K) f = denominator(K.pol[i]) * K.pol[i] - @show f - @show isone(coeff(f, 1)) - @show coeff(f, 1) - @show typeof(f) - @show g[i] if isone(coeff(f, 1)) normalized_gens[i] = g[i] else @@ -898,8 +893,6 @@ function any_order(K::NfAbsNS) end end - @show normalized_gens - b = Vector{NfAbsNSElem}(undef, degree(K)) ind = 1 it = cartesian_product_iterator([1:degrees(K)[i] for i in 1:ngens(K)], inplace = true) @@ -999,114 +992,105 @@ The equation order of the number field. """ equation_order(M::NfAbsOrd) = equation_order(nf(M)) +# Construct the smallest order of K containing the elements in elt. +# If check == true, it is checked whether the given elements in elt are integral +# and whether the constructed order is actually an order. +# Via extends one may supply an order which will then be extended by the elements +# in elt. function _order(K::S, elt::Vector{T}; cached::Bool = true, check::Bool = true, extends = nothing) where {S <: NumField{QQFieldElem}, T} - #= - check == true: the elements are known to be integral - extends !== nothing: then extends is an order, which we are extending - =# + elt = unique(elt) n = degree(K) - extending = false - - local B::FakeFmpqMat = FakeFmpqMat() - if extends !== nothing extended_order::order_type(K) = extends @assert K === nf(extended_order) - extend = true if is_maximal_known_and_maximal(extended_order) || length(elt) == 0 return extended_order end - #in this case we can start with phase 2 directly as we have mult. closed - #module to start with, so set everything up for it... B = basis_matrix(extended_order) bas = basis(extended_order, K) - phase = 2 + full_rank = true + m = det(numerator(B, copy = false)) else + if isempty(elt) + elt = elem_type(K)[one(K)] + end bas = elem_type(K)[one(K)] - phase = 1 + B = basis_matrix(bas, FakeFmpqMat) # trivially in lower-left HNF + full_rank = false end + function in_span_of_B(x::T) + if mod(denominator(B, copy = false), denominator(x)) == 0 + C = basis_matrix(elem_type(K)[x], FakeFmpqMat) + return is_zero_mod_hnf!(div(denominator(B, copy = false), denominator(x))*numerator(C, copy = false), numerator(B, copy = false)) + end + return false + end for e in elt -# @show findall(isequal(e), elt) - if phase == 2 - if denominator(B) % denominator(e) == 0 - C = basis_matrix([e], FakeFmpqMat) - fl, _ = can_solve_with_solution(B.num, div(B.den, denominator(e))*C.num, side = :left) -# fl && println("elt known:", :e) - fl && continue - end - end + # Check if e is already in the multiplicatively closed module generated by + # the previous elements of elt + in_span_of_B(e) && continue + + # Multiply powers of e to the existing basis elements if check f = minpoly(e) - isone(denominator(f)) || error("data does not define an order, $e is non-integral") - df = degree(f)-1 + isone(denominator(f)) || error("The elements do not define an order: $e is non-integral") + df = degree(f) - 1 else - df = n-1 + df = n - 1 end - f = one(K) - for i=1:df - mul!(f, f, e) - if phase == 2 # don't understand this part - if denominator(B) % denominator(f) == 0 - C = basis_matrix(elem_type(K)[f], FakeFmpqMat) - fl = is_zero_mod_hnf!(div(B.den, denominator(f))*C.num, B.num) -# fl && println("inner abort: ", :e, " ^ ", i) - fl && break - end - end - if phase == 1 - # [1] -> [1, e] -> [1, e, e, e^2] -> ... otherwise - push!(bas, deepcopy(f)) - else - b = elem_type(K)[e*x for x in bas] - append!(bas, b) + + start = 1 + # We only multiply the elements of index start:length(bas) by e . + # Example: bas = [a_1, ..., a_k] with a_1 = 1. Then + # new_bas := [e, e*a_2, ..., e*a_k] and we append this to bas and set + # start := k + 1. In the next iteration, we then have + # new_bas := [e^2, e^2*a_2, ..., e^2*a_k] (assuming that there was no + # reduction of the basis in between). + for i in 1:df + new_bas = elem_type(K)[] + for j in start:length(bas) + t = e*bas[j] + in_span_of_B(t) && continue + push!(new_bas, t) end + isempty(new_bas) && break + start = length(bas) + 1 + append!(bas, new_bas) + if length(bas) >= n + # HNF reduce the basis we have so far, if B is already of full rank, + # we can do this with the modular algorithm B = basis_matrix(bas, FakeFmpqMat) - if extending - # We are extending extended_order, which has basis matrix M/d - # Thus we know that B.den/d * M \subseteq - # So we can take B.den/d * largest_elementary_divisor(M) as the modulus - B = hnf_modular_eldiv(B, B.den, shape = :lowerleft) + if full_rank + # We have M/d \subseteq B, where M/d is a former incarnation of B. + # So we can use B.den*det(M) as a modulus. + hnf_modular_eldiv!(B, denominator(B, copy = false)*m, shape = :lowerleft) + B = sub(B, nrows(B) - n + 1:nrows(B), 1:n) else hnf!(B) + k = findfirst(k -> !is_zero_row(B, k), nrows(B) - n + 1:nrows(B)) + B = sub(B, nrows(B) - n + k:nrows(B), 1:n) + if nrows(B) == n + full_rank = true + m = det(numerator(B, copy = false)) + end end - rk = nrows(B) - n + 1 - while is_zero_row(B, rk) - rk += 1 - end - B = sub(B, rk:nrows(B), 1:n) - phase = 2 - bas = elem_type(K)[ elem_from_mat_row(K, B.num, i, B.den) for i = 1:nrows(B) ] + bas = elem_type(K)[ elem_from_mat_row(K, numerator(B, copy = false), i, denominator(B, copy = false)) for i = 1:nrows(B) ] + start = 1 if check @assert isone(bas[1]) end end end end - - if length(bas) > n # == n can only happen here after an hnf was computed - # above. Don't quite see how > n can happen here either - B = basis_matrix(bas, FakeFmpqMat) - hnf!(B) - rk = nrows(B) - n + 1 - if is_zero_row(B.num, rk) - error("data does not define an order: dimension to small") - end - B = sub(B, rk:nrows(B), 1:n) - bas = elem_type(K)[ elem_from_mat_row(K, B.num, i, B.den) for i = 1:nrows(B) ] + if length(bas) < n + error("The elements do not define an order: rank too small") end - - if !isdefined(B, :num) - error("data does not define an order: dimension to small") - end - - # Make an explicit check - @hassert :NfOrd 1 defines_order(K, B)[1] - return Order(K, B, cached = cached, check = check) + return Order(K, B, cached = cached, check = check)::order_type(K) end ################################################################################ diff --git a/test/NfOrd/NfOrd.jl b/test/NfOrd/NfOrd.jl index f0a2d2fedc..c3e7da1138 100644 --- a/test/NfOrd/NfOrd.jl +++ b/test/NfOrd/NfOrd.jl @@ -64,7 +64,7 @@ #@test O7 == O77 #@test !(O7 === O77) - O8 = Order(K6, [a1]) + O8 = Order(K1, [a1]) @test O8 == EquationOrder(K1) @test_throws ErrorException Order(K1, [a1, a1, a1], isbasis = true) diff --git a/test/NumFieldOrd/NumFieldOrd.jl b/test/NumFieldOrd/NumFieldOrd.jl index d7ddc37d7f..071fd7fe23 100644 --- a/test/NumFieldOrd/NumFieldOrd.jl +++ b/test/NumFieldOrd/NumFieldOrd.jl @@ -124,5 +124,19 @@ end @test extend(R, []) == R @test extend(R, [1//2 + a//2]) == maximal_order(K) @test extend(maximal_order(R), [a]) == maximal_order(R) + + K, a = number_field(x, "a") + @test Order(K, [1]) == equation_order(K) + @test Order(K, []) == equation_order(K) + + K, a = NumberField(x^4 - 10*x^2 + 1, "a") + x = 1//2*a^3 - 9//2*a # sqrt(2) + y = 1//2*a^3 - 11//2*a # sqrt(3) + O = Order(K, [x, y, x*y]) + @test O == Order(K, [x, y]) + @test O == Order(K, [x, y], check = false) + z = 1//4*a^3 + 1//4*a^2 + 3//4*a + 3//4 + OO = Hecke._order(K, [z], extends = O) + @test is_maximal(OO) end