From ca9da35aef56003918f74eafc7c3b2b28d6a0389 Mon Sep 17 00:00:00 2001 From: Max Horn Date: Sun, 8 Oct 2023 22:03:23 +0200 Subject: [PATCH] Adjust to renamings in AA --- Project.toml | 4 ++-- docs/src/function_fields/degree_localization.md | 4 ++-- examples/Round2.jl | 10 +++++----- src/FunField/Factor.jl | 4 ++-- src/FunField/HessQR.jl | 2 +- src/FunField/IntClsZx.jl | 6 +++--- src/GenOrd/Auxiliary.jl | 8 ++++---- test/EllCrv/LocalData.jl | 6 +++--- test/EllCrv/MinimalModels.jl | 4 ++-- test/FunField/DegreeLocalization.jl | 2 +- test/FunField/Differential.jl | 2 +- test/FunField/Divisor.jl | 2 +- test/GenOrd/GenOrd.jl | 2 +- test/GenOrd/Ideal.jl | 4 ++-- test/GenOrd/MaximalOrder.jl | 10 +++++----- test/Misc/Poly.jl | 2 +- 16 files changed, 36 insertions(+), 36 deletions(-) diff --git a/Project.toml b/Project.toml index caf9ab40fe..0af48150e2 100644 --- a/Project.toml +++ b/Project.toml @@ -28,9 +28,9 @@ GAPExt = "GAP" PolymakeExt = "Polymake" [compat] -AbstractAlgebra = "^0.32.1" +AbstractAlgebra = "^0.33.0" GAP = "0.9.6" -Nemo = "^0.36.1" +Nemo = "^0.37.0" Polymake = "0.10, 0.11" RandomExtensions = "0.4.3" julia = "1.6" diff --git a/docs/src/function_fields/degree_localization.md b/docs/src/function_fields/degree_localization.md index 57de2a95d7..b100a09dcd 100644 --- a/docs/src/function_fields/degree_localization.md +++ b/docs/src/function_fields/degree_localization.md @@ -36,7 +36,7 @@ localization(K::Generic.RationalFunctionField{T}, ::typeof(degree)) where T <: F ```@repl using Hecke # hide -K, x = RationalFunctionField(FlintQQ, "x"); +K, x = rational_function_field(FlintQQ, "x"); R = localization(K, degree) ``` @@ -51,7 +51,7 @@ the degree localization ```@repl using Hecke # hide -K, x = RationalFunctionField(FlintQQ, "x"); +K, x = rational_function_field(FlintQQ, "x"); R = localization(K, degree) a = R() diff --git a/examples/Round2.jl b/examples/Round2.jl index 23751a82c9..009025c72f 100644 --- a/examples/Round2.jl +++ b/examples/Round2.jl @@ -1057,7 +1057,7 @@ function Nemo.residue_field(a::HessQR, b::HessQRElem) @assert parent(b) == a @assert is_prime(b.c) F = GF(b.c) - Ft, t = RationalFunctionField(F, String(var(a.R)), cached = false) + Ft, t = rational_function_field(F, String(var(a.R)), cached = false) R = parent(numerator(t)) return Ft, MapFromFunc(a, Ft, x->F(x.c)*Ft(map_coefficients(F, x.f, parent = R))//Ft(map_coefficients(F, x.g, parent = R)), @@ -1330,9 +1330,9 @@ Hecke.example("Round2.jl") ?GenericRound2 -Qt, t = RationalFunctionField(QQ, "t") +Qt, t = rational_function_field(QQ, "t") Qtx, x = polynomial_ring(Qt, "x") -F, a = FunctionField(x^6+27*t^2+108*t+108, "a") +F, a = function_field(x^6+27*t^2+108*t+108, "a") integral_closure(parent(denominator(t)), F) integral_closure(localization(Qt, degree), F) integral_closure(Hecke.Globals.Zx, F) @@ -1345,7 +1345,7 @@ integral_closure(localization(ZZ, 2), k) more interesting and MUCH harder: -G, b = FunctionField(x^6 + (140*t - 70)*x^3 + 8788*t^2 - 8788*t + 2197, "b") +G, b = function_field(x^6 + (140*t - 70)*x^3 + 8788*t^2 - 8788*t + 2197, "b") =# @@ -1442,7 +1442,7 @@ function Hecke.splitting_field(f::Generic.Poly{<:Generic.RationalFunctionFieldEl end while true - G, b = FunctionField(lf[1], "b", cached = false) + G, b = function_field(lf[1], "b", cached = false) if length(lf) == 1 && degree(G) < 3 return G end diff --git a/src/FunField/Factor.jl b/src/FunField/Factor.jl index 8f7c5f1e87..3fca1cdbbf 100644 --- a/src/FunField/Factor.jl +++ b/src/FunField/Factor.jl @@ -54,7 +54,7 @@ function Hecke.factor_absolute(f::Generic.Poly{<:Generic.RationalFunctionFieldEl g = gh[1] h = gh[2] k = base_ring(g) - kt, t = RationalFunctionField(k, base_ring(Pf).S, cached = false) + kt, t = rational_function_field(k, base_ring(Pf).S, cached = false) ktx, x = polynomial_ring(kt, symbols(Pf)[1], cached = false) push!(la, [from_mpoly(g, ktx), from_mpoly(h, ktx)]=>v) end @@ -121,7 +121,7 @@ function Hecke.splitting_field(f::Generic.Poly{<:Generic.RationalFunctionFieldEl end while true - G, b = FunctionField(lf[1], "b", cached = false) + G, b = function_field(lf[1], "b", cached = false) if length(lf) == 1 && degree(G) < 3 return G end diff --git a/src/FunField/HessQR.jl b/src/FunField/HessQR.jl index e6316338dc..9058ef8c23 100644 --- a/src/FunField/HessQR.jl +++ b/src/FunField/HessQR.jl @@ -335,7 +335,7 @@ function Nemo.residue_field(a::HessQR, b::HessQRElem) @assert parent(b) == a @assert is_prime(b.c) F = GF(b.c) - Ft, t = RationalFunctionField(F, String(var(a.R)), cached = false) + Ft, t = rational_function_field(F, String(var(a.R)), cached = false) R = parent(numerator(t)) return Ft, MapFromFunc(a, Ft, x->F(x.c)*Ft(map_coefficients(F, x.f, parent = R))//Ft(map_coefficients(F, x.g, parent = R)), diff --git a/src/FunField/IntClsZx.jl b/src/FunField/IntClsZx.jl index b6878de583..3591747057 100644 --- a/src/FunField/IntClsZx.jl +++ b/src/FunField/IntClsZx.jl @@ -213,9 +213,9 @@ using .HessMain #= this should work: -Qt, t = RationalFunctionField(QQ, "t") +Qt, t = rational_function_field(QQ, "t") Qtx, x = polynomial_ring(Qt, "x") -F, a = FunctionField(x^6+27*t^2+108*t+108, "a") +F, a = function_field(x^6+27*t^2+108*t+108, "a") integral_closure(parent(denominator(t)), F) integral_closure(localization(Qt, degree), F) integral_closure(Hecke.Globals.Zx, F) @@ -228,6 +228,6 @@ integral_closure(localization(ZZ, 2), k) more interesting and MUCH harder: -G, b = FunctionField(x^6 + (140*t - 70)*x^3 + 8788*t^2 - 8788*t + 2197, "b") +G, b = function_field(x^6 + (140*t - 70)*x^3 + 8788*t^2 - 8788*t + 2197, "b") =# diff --git a/src/GenOrd/Auxiliary.jl b/src/GenOrd/Auxiliary.jl index 5582b3f1ff..d2ff8e4733 100644 --- a/src/GenOrd/Auxiliary.jl +++ b/src/GenOrd/Auxiliary.jl @@ -73,19 +73,19 @@ function hnf_modular(M::MatElem{T}, d::T, is_prime::Bool = false) where {T} end function function_field(f::PolyElem{<:Generic.RationalFunctionFieldElem}, s::String = "_a"; check::Bool = true, cached::Bool = false) - return FunctionField(f, s, cached = cached) + return function_field(f, s, cached = cached) end function function_field(f::PolyElem{<:Generic.RationalFunctionFieldElem}, s::Symbol; check::Bool = true, cached::Bool = false) - return FunctionField(f, s, cached = cached) + return function_field(f, s, cached = cached) end function extension_field(f::PolyElem{<:Generic.RationalFunctionFieldElem}, s::String = "_a"; check::Bool = true, cached::Bool = false) - return FunctionField(f, s, cached = cached) + return function_field(f, s, cached = cached) end function extension_field(f::PolyElem{<:Generic.RationalFunctionFieldElem}, s::Symbol; check::Bool = true, cached::Bool = false) - return FunctionField(f, s, cached = cached) + return function_field(f, s, cached = cached) end function Hecke.basis(F::Generic.FunctionField) diff --git a/test/EllCrv/LocalData.jl b/test/EllCrv/LocalData.jl index 8d9c6857a8..134030d7b4 100644 --- a/test/EllCrv/LocalData.jl +++ b/test/EllCrv/LocalData.jl @@ -316,7 +316,7 @@ @test @inferred kodaira_symbol(E, P) == "I0" # rational function field - QQt, t = RationalFunctionField(QQ, "t") + QQt, t = rational_function_field(QQ, "t") E = elliptic_curve_from_j_invariant(t) _, K, f, c, s = tates_algorithm_local(E, 1//t) @test K == "I1" @@ -356,7 +356,7 @@ @test s == true k, a = quadratic_field(2) - kt, t = RationalFunctionField(k, "t") + kt, t = rational_function_field(k, "t") E = elliptic_curve_from_j_invariant(1//(t^2 + t + a)) _, K, f, c, s = tates_algorithm_local(E, 1//t) @@ -377,7 +377,7 @@ @test c == 1 @test s == true - kt, t = RationalFunctionField(GF(2), "t") + kt, t = rational_function_field(GF(2), "t") E = elliptic_curve_from_j_invariant(t^3/(t^2 + t + 1)) _, K, f, c, s = tates_algorithm_local(E, t^2 + t + 1) @test K == "I1" diff --git a/test/EllCrv/MinimalModels.jl b/test/EllCrv/MinimalModels.jl index 3c4e85e95c..8efb5d4a5f 100644 --- a/test/EllCrv/MinimalModels.jl +++ b/test/EllCrv/MinimalModels.jl @@ -54,7 +54,7 @@ end # _minimize and integral model - Kt, t = RationalFunctionField(QQ, "t") + Kt, t = rational_function_field(QQ, "t") E = EllipticCurve(Kt.([0, t^21, 1//216, -7//1296, 1//t])) EE, = integral_model(E) @test all(p -> is_one(denominator(p)) && is_one(denominator(numerator(p))), a_invars(EE)) @@ -63,7 +63,7 @@ Qx, x = QQ["x"] K, z = number_field(x^2 + 1, "z", cached = false) - Kt, t = RationalFunctionField(K, "t") + Kt, t = rational_function_field(K, "t") E = EllipticCurve(Kt.([0, t^21, (z + 1)//216, -7//1296, (z + 3)//t])) EE, = integral_model(E) EE = Hecke.reduce_model(E) diff --git a/test/FunField/DegreeLocalization.jl b/test/FunField/DegreeLocalization.jl index bcbd514deb..ccb8b4a7c0 100644 --- a/test/FunField/DegreeLocalization.jl +++ b/test/FunField/DegreeLocalization.jl @@ -1,5 +1,5 @@ -R, x = RationalFunctionField(QQ, "x") +R, x = rational_function_field(QQ, "x") L = localization(R, degree) @testset "DegreeLocalization" begin diff --git a/test/FunField/Differential.jl b/test/FunField/Differential.jl index 2713aa889b..63c71fa606 100644 --- a/test/FunField/Differential.jl +++ b/test/FunField/Differential.jl @@ -3,7 +3,7 @@ import Hecke: divisor flds = [QQ, rationals_as_number_field()[1]] @testset "Differentials" for k in flds - kx, x = RationalFunctionField(k, "x") + kx, x = rational_function_field(k, "x") kt = parent(numerator(x)) ky, y = polynomial_ring(kx, "y") diff --git a/test/FunField/Divisor.jl b/test/FunField/Divisor.jl index 94a8458ec6..f25b1cbae5 100644 --- a/test/FunField/Divisor.jl +++ b/test/FunField/Divisor.jl @@ -1,5 +1,5 @@ k = QQ -kx, x = RationalFunctionField(k, "x") +kx, x = rational_function_field(k, "x") kt = parent(numerator(x)) ky, y = polynomial_ring(kx, "y") diff --git a/test/GenOrd/GenOrd.jl b/test/GenOrd/GenOrd.jl index 724359614d..86206d9aca 100644 --- a/test/GenOrd/GenOrd.jl +++ b/test/GenOrd/GenOrd.jl @@ -12,7 +12,7 @@ end test_Ring_interface(O) k = GF(5) - kx, x = RationalFunctionField(k, "x") + kx, x = rational_function_field(k, "x") kt = parent(numerator(x)) ky, y = polynomial_ring(kx, "y") F, a = function_field(y^3+(4*x^3 + 4*x^2 + 2*x +2)*y^2 + (3*x+3)*y +2) diff --git a/test/GenOrd/Ideal.jl b/test/GenOrd/Ideal.jl index fd3fdc3965..9d8e7e2db9 100644 --- a/test/GenOrd/Ideal.jl +++ b/test/GenOrd/Ideal.jl @@ -1,7 +1,7 @@ @testset "Ideals for orders over function fields" begin k = GF(7) - kx, x = RationalFunctionField(k, "x") + kx, x = rational_function_field(k, "x") kt = parent(numerator(x)) ky, y = polynomial_ring(kx, "y") F, a = function_field(y^2+x) @@ -26,7 +26,7 @@ k = QQ - kx, x = RationalFunctionField(k, "x") + kx, x = rational_function_field(k, "x") kt = parent(numerator(x)) ky, y = polynomial_ring(kx, "y") F, a = function_field(y^2+x*y+x^3+y^3) diff --git a/test/GenOrd/MaximalOrder.jl b/test/GenOrd/MaximalOrder.jl index 7d9b9e2c55..117d2d648b 100644 --- a/test/GenOrd/MaximalOrder.jl +++ b/test/GenOrd/MaximalOrder.jl @@ -1,8 +1,8 @@ @testset "Qt" begin - qt, t = RationalFunctionField(QQ, "t") + qt, t = rational_function_field(QQ, "t") qtx, x = polynomial_ring(qt, "x") f = x^4 + t*x^3 - 6*x^2 - t*x + 1 - F, a = FunctionField(f, "a") + F, a = function_field(f, "a") O = integral_closure(Hecke.localization(qt, degree), F) b = basis(O, F) mp = map(minpoly, b) @@ -24,16 +24,16 @@ end @testset "FldFin" begin for q = [GF(17), GF(next_prime(ZZRingElem(10)^30)), finite_field(5, 2)[1], finite_field(next_prime(ZZRingElem(10)^25), 2, "a", cached = false)[1]] - qt, t = RationalFunctionField(q, "t", cached = false) + qt, t = rational_function_field(q, "t", cached = false) qtx, x = polynomial_ring(qt, cached = false) f = x^3+(t+1)^5*(x+1)+(t^2+t+1)^7 - F, a = FunctionField(f, "a", cached = false) + F, a = function_field(f, "a", cached = false) integral_closure(parent(numerator(t)), F) integral_closure(localization(qt, degree), F) end k = GF(5) - kx, x = RationalFunctionField(k, "x") + kx, x = rational_function_field(k, "x") kt = parent(numerator(x)) ky, y = polynomial_ring(kx, "y") F, a = function_field(y^3+(4*x^3 + 4*x^2 + 2*x +2)*y^2 + (3*x+3)*y +2) diff --git a/test/Misc/Poly.jl b/test/Misc/Poly.jl index a4e2439adb..7a809fc8e5 100644 --- a/test/Misc/Poly.jl +++ b/test/Misc/Poly.jl @@ -116,7 +116,7 @@ end @test @inferred is_squarefree(x * (x + 1)) @test @inferred !is_squarefree(x * (x + 1)^2) - F, a = RationalFunctionField(GF(3), "a") + F, a = rational_function_field(GF(3), "a") Fx, x = F["x"] @test @inferred is_squarefree(x) @test @inferred is_squarefree(2*x^0)