diff --git a/examples/NFDB.jl b/examples/NFDB.jl index 0bd5b8f448..1bb5cf61a0 100644 --- a/examples/NFDB.jl +++ b/examples/NFDB.jl @@ -1196,7 +1196,7 @@ function _p_adic_regulator_coates(K::AbsSimpleNumField, p::IntegerUnion) while true (prec > 2^12 || working_prec > 2^12) && error("Something wrong") imK =[QadicRingElem{PadicField, PadicFieldElem}[] for i in 1:degK] - Qp = PadicField(p, prec, cached = false) + Qp = padic_field(p, precision = prec, cached = false) Zp = ring_of_integers(Qp) dK = discriminant(OK) r = maximum([ramification_index(P) for P in dp]) @@ -1443,7 +1443,7 @@ mutable struct NFDBGeneric{T, S} return z end end - + function NFDBGeneric(L::Vector{RelSimpleNumField{AbsSimpleNumFieldElem}}) res = NFDBGeneric{1, eltype(L)}() for K in L diff --git a/examples/Plesken.jl b/examples/Plesken.jl index e2a57049fc..b9c8936cb9 100644 --- a/examples/Plesken.jl +++ b/examples/Plesken.jl @@ -183,7 +183,7 @@ function primitive_root_r_div_qm1(R, r::Int) end function get_f(r::Int, p::ZZRingElem, s::Int) - R = PadicField(r, s) + R = padic_field(r, precision = s) return lift(teichmuller(R(p))) end # plan diff --git a/examples/Tropics.jl b/examples/Tropics.jl index 161774ad88..35c14f291f 100644 --- a/examples/Tropics.jl +++ b/examples/Tropics.jl @@ -84,7 +84,7 @@ lp[1].gen_two*lp[2].gen_two^2 ma = representation_matrix(a) mb = representation_matrix(k(ans)) @assert iszero(ma*mb - mb*ma) -Qp = PadicField(7, 10) +Qp = padic_field(7, precision = 10) Main.TropicalModule.simultaneous_diagonalization([map_entries(Qp, ma), map_entries(Qp, mb)]) =# diff --git a/src/HeckeTypes.jl b/src/HeckeTypes.jl index 1c9a61b0b6..9dfd102e07 100644 --- a/src/HeckeTypes.jl +++ b/src/HeckeTypes.jl @@ -2239,11 +2239,11 @@ mutable struct qAdicRootCtx lf = Hecke.factor_mod_pk(Array, H, 1) if splitting_field d = lcm([degree(y[1]) for y = lf]) - R = QadicField(p, d, 1)[1] + R = qadic_field(p, d, precision = 1)[1] Q = [R] r.is_splitting = true else - Q = [QadicField(p, x, 1)[1] for x = Set(degree(y[1]) for y = lf)] + Q = [qadic_field(p, x, precision = 1)[1] for x = Set(degree(y[1]) for y = lf)] r.is_splitting = false end @assert all(x->isone(x[2]), lf) diff --git a/src/LocalField/Completions.jl b/src/LocalField/Completions.jl index e9860bbfea..438c041c71 100644 --- a/src/LocalField/Completions.jl +++ b/src/LocalField/Completions.jl @@ -190,7 +190,7 @@ function completion(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{AbsSimpleNumF e = ramification_index(P) prec_padics = div(precision+e-1, e) if isnothing(Qp) - Qp = PadicField(minimum(P), prec_padics, cached = false) + Qp = padic_field(minimum(P), precision = prec_padics, cached = false) end Zp = maximal_order(Qp) Qq, gQq = unramified_extension(Qp, f, precision = prec_padics, cached = false) @@ -383,7 +383,7 @@ function totally_ramified_completion(K::AbsSimpleNumField, P::AbsNumFieldOrderId @assert nf(OK) == K @assert isone(degree(P)) e = ramification_index(P) - Qp = PadicField(minimum(P), precision) + Qp = padic_field(minimum(P), precision = precision) Zp = maximal_order(Qp) Zx = FlintZZ["x"][1] Qpx = polynomial_ring(Qp, "x")[1] @@ -442,7 +442,7 @@ function setprecision!(f::CompletionMap{LocalField{PadicFieldElem, EisensteinLoc if r > 0 ex += 1 end - Qp = PadicField(prime(Kp), div(new_prec, e)+1) + Qp = padic_field(prime(Kp), precision = div(new_prec, e)+1) Zp = maximal_order(Qp) Qpx, _ = polynomial_ring(Qp, "x") pows_u = powers(u, e-1) @@ -494,8 +494,8 @@ function unramified_completion(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{Ab @assert isone(ramification_index(P)) f = degree(P) p = minimum(P) - Qq, gQq = QadicField(p, f, precision) - Qp = PadicField(p, precision) + Qq, gQq = qadic_field(p, f, precision = precision) + Qp = padic_field(p, precision = precision) Zp = maximal_order(Qp) q, mq = residue_field(Qq) F, mF = residue_field(OK, P) diff --git a/src/LocalField/LocalField.jl b/src/LocalField/LocalField.jl index f1f45c3b9f..7523301586 100644 --- a/src/LocalField/LocalField.jl +++ b/src/LocalField/LocalField.jl @@ -351,7 +351,7 @@ end function local_field(f::QQPolyRingElem, p::Int, precision::Int, s::VarName, ::Type{T} = GenericLocalField; check::Bool = true, cached::Bool = true) where T <: LocalFieldParameter @assert is_prime(p) - K = PadicField(p, precision) + K = padic_field(p, precision = precision) fK = map_coefficients(K, f, cached = false) return local_field(fK, s, T, cached = cached, check = check) end diff --git a/src/LocalField/Poly.jl b/src/LocalField/Poly.jl index 0a2d1c974b..afcec16730 100644 --- a/src/LocalField/Poly.jl +++ b/src/LocalField/Poly.jl @@ -49,7 +49,7 @@ function setcoeff!(c::Generic.Poly{T}, n::Int, a::T) where {T <: Union{PadicFiel end #TODO: find better crossover points -# qp = PadicField(3, 10); +# qp = padic_field(3, precision = 10); # qpt, t = qp["t"] # E = eisenstein_extension(cyclotomic(3, gen(Hecke.Globals.Zx))(t+1))[1] # Es, s = E["s"] @@ -748,7 +748,7 @@ function characteristic_polynomial(f::Generic.Poly{T}, g::Generic.Poly{T}) where error("Not yet implemented") end d1 = clog(ZZRingElem(degree(f)+1), p) - L = QadicField(p, d1, min(precision(f), precision(g))) + L = qadic_field(p, d1, precision = min(precision(f), precision(g))) Lt = polynomial_ring(L, "t")[1] fL = change_base_ring(f, L, Lt) gL = change_base_ring(g, L, Lt) diff --git a/src/LocalField/qAdic.jl b/src/LocalField/qAdic.jl index d6501f5d9a..5cc8e1e38c 100644 --- a/src/LocalField/qAdic.jl +++ b/src/LocalField/qAdic.jl @@ -101,5 +101,5 @@ end # TODO: this should be in Nemo @attr PadicField function base_field(K::QadicField) - return PadicField(prime(K), precision(K), cached = false) + return padic_field(prime(K), precision = precision(K), cached = false) end diff --git a/src/Misc/UnitsModM.jl b/src/Misc/UnitsModM.jl index 71dba4df9d..7e5af4678f 100644 --- a/src/Misc/UnitsModM.jl +++ b/src/Misc/UnitsModM.jl @@ -280,7 +280,7 @@ function disc_log_mod(a::ZZRingElem, b::ZZRingElem, M::ZZRingElem) @assert (b-1) % 8 == 0 @assert (a^2-1) % 8 == 0 if fM[p] > 3 - F = PadicField(p, fM[p], cached = false) + F = padic_field(p, precision = fM[p], cached = false) g += 2*lift(divexact(log(F(b)), log(F(a^2)))) end return g diff --git a/src/NumField/NfAbs/MPolyAbsFact.jl b/src/NumField/NfAbs/MPolyAbsFact.jl index 7f75b0defe..253dd93db6 100644 --- a/src/NumField/NfAbs/MPolyAbsFact.jl +++ b/src/NumField/NfAbs/MPolyAbsFact.jl @@ -865,7 +865,7 @@ function field(RC::RootCtx, m::MatElem) @vprintln :AbsFact 1 "target field has (local) degree $k" - Qq = QadicField(characteristic(F), k, 1, cached = false)[1] + Qq = qadic_field(characteristic(F), k, precision = 1, cached = false)[1] Qqt = polynomial_ring(Qq, cached = false)[1] k, mk = residue_field(Qq) diff --git a/src/QuadForm/Quad/NormalForm.jl b/src/QuadForm/Quad/NormalForm.jl index f8f38f38ab..19c71b4dfb 100644 --- a/src/QuadForm/Quad/NormalForm.jl +++ b/src/QuadForm/Quad/NormalForm.jl @@ -208,7 +208,7 @@ function _padic_normal_form(G::QQMatrix, p::ZZRingElem; prec::Int = -1, partial: n = ncols(Gmod) - Qp = PadicField(p, prec, cached = false) + Qp = padic_field(p, precision = prec, cached = false) if n == 0 return (zero_matrix(FlintQQ, n, n), zero_matrix(FlintQQ, n, n))::Tuple{QQMatrix, QQMatrix} diff --git a/test/LocalField/LocalField.jl b/test/LocalField/LocalField.jl index aa692ef5c4..0404ff7170 100644 --- a/test/LocalField/LocalField.jl +++ b/test/LocalField/LocalField.jl @@ -17,7 +17,7 @@ @test absolute_degree(L) == 4 @test prime(L) == 2 - Q2 = PadicField(2, 10) + Q2 = padic_field(2, precision = 10) Q2s, s = polynomial_ring(Q2, "s") f = s^2+s+1 Ku, c = local_field(f, "s", Hecke.UnramifiedLocalField, check = false) @@ -39,7 +39,7 @@ end @testset "Norm" begin - K = QadicField(3, 4, 10)[1] + K = qadic_field(3, 4, precision = 10)[1] Kx, x = polynomial_ring(K, "x") L = eisenstein_extension(x^20+3)[1] b = @inferred basis(L) @@ -125,7 +125,7 @@ @testset "Exp and Log" begin - K = PadicField(2, 100) + K = padic_field(2, precision = 100) Kx, x = polynomial_ring(K, "x", cached = false) L, b = eisenstein_extension(x^7+2, :a) pi = uniformizer(L) @@ -140,7 +140,7 @@ @test iszero(logexp - el) || valuation(logexp - el) > 80 #need improving end - KK, a = QadicField(2, 2, 16) + KK, a = qadic_field(2, 2, precision = 16) KKx, x = KK["x"] f = x + 2^1 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^10 + 2^11 + 2^12 + 2^13 + 2^14 + 2^15 L, b = eisenstein_extension(f, "b"); @@ -150,7 +150,7 @@ @testset "Maps" begin # QadicField -> QadicField - Qq, a = QadicField(2, 3, 100) + Qq, a = qadic_field(2, 3, precision = 100) rt = roots(map_coefficients(Qq, defining_polynomial(Qq))) i = findfirst(x -> x == a, rt) @@ -200,7 +200,7 @@ @test f(z) == L(-2) # LocalField -> QadicField - Qp = PadicField(2, 100) + Qp = padic_field(2, precision = 100) Qpx, x = polynomial_ring(Qp) K, a = unramified_extension(x^2+x+1) Qq, gQq = unramified_extension(Qp, 2, precision = 100) @@ -216,11 +216,11 @@ end @testset "Automorphisms" begin - K = PadicField(2, 200) + K = padic_field(2, precision = 200) Kt, t = polynomial_ring(K) L, b = eisenstein_extension(t^2+2, "a") @test length(automorphism_list(L)) == 2 - Qq, a = QadicField(2, 2, 100) + Qq, a = qadic_field(2, 2, precision = 100) @test length(automorphism_list(Qq)) == 2 Qqx, x = polynomial_ring(Qq) L, b = eisenstein_extension(x^3+2, "a") @@ -260,7 +260,7 @@ end @testset "extend extend extend" begin - K, = QadicField(5, 2, 10) + K, = qadic_field(5, 2, precision = 10) L, = unramified_extension(K, 3) M, = unramified_extension(L, 3) end @@ -274,7 +274,7 @@ @test length(automorphism_list(k3)) == 3 @testset "image of one units under log" begin - Qp = PadicField(3, 10) + Qp = padic_field(3, precision = 10) Qpt, t = Qp["t"] E, a = eisenstein_extension(t^2 - 3) n, x = Hecke.image_of_logarithm_one_units(E) diff --git a/test/LocalField/Poly.jl b/test/LocalField/Poly.jl index ef0495eae3..a9c7a3b96e 100644 --- a/test/LocalField/Poly.jl +++ b/test/LocalField/Poly.jl @@ -1,6 +1,6 @@ @testset "Poly" begin - K = PadicField(2, 100) + K = padic_field(2, precision = 100) Kx, x = polynomial_ring(K, "x") L, gL = eisenstein_extension(x^2+2, "a") @@ -80,7 +80,7 @@ end @testset "Roots" begin - _, t = PadicField(3, 10)["t"] + _, t = padic_field(3, precision = 10)["t"] f = ((t-1+81)*(t-1+2*81)) rt = roots(f) @test length(rt) == 2 @@ -89,7 +89,7 @@ end @testset "Resultant" begin - R, x = polynomial_ring(PadicField(853, 2), "x") + R, x = polynomial_ring(padic_field(853, precision = 2), "x") a = 4*x^5 + x^4 + 256*x^3 + 192*x^2 + 48*x + 4 b = derivative(a) rab = @inferred resultant(a, b)