The dataset configs are located within tools/cfgs/dataset_configs, and the model configs are located within tools/cfgs for different datasets.
Currently we provide the dataloader of KITTI dataset and NuScenes dataset, and the supporting of more datasets are on the way.
- Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes could be downloaded from [road plane], which are optional for data augmentation in the training):
- If you would like to train CaDDN, download the precomputed depth maps for the KITTI training set
- NOTE: if you already have the data infos from
pcdet v0.1
, you can choose to use the old infos and set the DATABASE_WITH_FAKELIDAR option in tools/cfgs/dataset_configs/kitti_dataset.yaml as True. The second choice is that you can create the infos and gt database again and leave the config unchanged.
OpenPCDet
├── data
│ ├── kitti
│ │ │── ImageSets
│ │ │── training
│ │ │ ├──calib & velodyne & label_2 & image_2 & (optional: planes) & (optional: depth_2)
│ │ │── testing
│ │ │ ├──calib & velodyne & image_2
├── pcdet
├── tools
- Generate the data infos by running the following command:
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml
- Please download the official NuScenes 3D object detection dataset and organize the downloaded files as follows:
OpenPCDet
├── data
│ ├── nuscenes
│ │ │── v1.0-trainval (or v1.0-mini if you use mini)
│ │ │ │── samples
│ │ │ │── sweeps
│ │ │ │── maps
│ │ │ │── v1.0-trainval
├── pcdet
├── tools
- Install the
nuscenes-devkit
with version1.0.5
by running the following command:
pip install nuscenes-devkit==1.0.5
- Generate the data infos by running the following command (it may take several hours):
python -m pcdet.datasets.nuscenes.nuscenes_dataset --func create_nuscenes_infos \
--cfg_file tools/cfgs/dataset_configs/nuscenes_dataset.yaml \
--version v1.0-trainval
- Please download the official Waymo Open Dataset,
including the training data
training_0000.tar~training_0031.tar
and the validation datavalidation_0000.tar~validation_0007.tar
. - Unzip all the above
xxxx.tar
files to the directory ofdata/waymo/raw_data
as follows (You could get 798 train tfrecord and 202 val tfrecord ):
OpenPCDet
├── data
│ ├── waymo
│ │ │── ImageSets
│ │ │── raw_data
│ │ │ │── segment-xxxxxxxx.tfrecord
| | | |── ...
| | |── waymo_processed_data
│ │ │ │── segment-xxxxxxxx/
| | | |── ...
│ │ │── pcdet_gt_database_train_sampled_xx/
│ │ │── pcdet_waymo_dbinfos_train_sampled_xx.pkl
├── pcdet
├── tools
- Install the official
waymo-open-dataset
by running the following command:
pip3 install --upgrade pip
# tf 2.0.0
pip3 install waymo-open-dataset-tf-2-0-0==1.2.0 --user
- Extract point cloud data from tfrecord and generate data infos by running the following command (it takes several hours,
and you could refer to
data/waymo/waymo_processed_data
to see how many records that have been processed):
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos \
--cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml
Note that you do not need to install waymo-open-dataset
if you have already processed the data before and do not need to evaluate with official Waymo Metrics.
If you would like to train CaDDN, download the pretrained DeepLabV3 model and place within the checkpoints
directory
OpenPCDet
├── checkpoints
│ ├── deeplabv3_resnet101_coco-586e9e4e.pth
├── data
├── pcdet
├── tools
- Test with a pretrained model:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --ckpt ${CKPT}
- To test all the saved checkpoints of a specific training setting and draw the performance curve on the Tensorboard, add the
--eval_all
argument:
python test.py --cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE} --eval_all
- To test with multiple GPUs:
sh scripts/dist_test.sh ${NUM_GPUS} \
--cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}
# or
sh scripts/slurm_test_mgpu.sh ${PARTITION} ${NUM_GPUS} \
--cfg_file ${CONFIG_FILE} --batch_size ${BATCH_SIZE}
You could optionally add extra command line parameters --batch_size ${BATCH_SIZE}
and --epochs ${EPOCHS}
to specify your preferred parameters.
- Train with multiple GPUs or multiple machines
sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
# or
sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} ${NUM_GPUS} --cfg_file ${CONFIG_FILE}
- Train with a single GPU:
python train.py --cfg_file ${CONFIG_FILE}