-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
268 lines (225 loc) · 9.97 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import torch
from diffusers.models.attention_processor import Attention
import numpy as np
import thop
import torch.nn as nn
from thop.profile import *
def count_flops_attn(m: Attention, i, kwargs, o):
hidden_states = i[0]
encoder_hidden_states = None
if len(i) > 1:
encoder_hidden_states = i[1]
if len(i) > 2:
attention_mask = i[2]
assert attention_mask is None
if kwargs.get("encoder_hidden_states", None) is not None:
encoder_hidden_states = kwargs["encoder_hidden_states"]
if kwargs.get("attention_mask", None) is not None:
attention_mask = kwargs["attention_mask"]
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, q_seq_len, dim = hidden_states.size()
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif m.norm_cross:
encoder_hidden_states = m.norm_encoder_hidden_states(encoder_hidden_states)
batch_size, kv_seq_len, dim = encoder_hidden_states.size()
ops_qk = q_seq_len * kv_seq_len * m.heads * batch_size * dim // m.heads
ops_kv = q_seq_len * dim * batch_size * kv_seq_len
if not hasattr(m, "printed_shape"):
print(
f"Attention input shape is {hidden_states.shape}, encoder_hidden_states shape is {encoder_hidden_states.shape}"
)
m.printed_shape = True
if m.processor.__class__.__name__ == "FastAttnProcessor":
processor = m.processor
method = processor.steps_method[m.stepi - 1]
ws = processor.window_size[1] - processor.window_size[0]
if method == "full_attn" or method == "":
if processor.need_compute_residual[m.stepi - 1]:
ops_qk *= 1 + ws / kv_seq_len
ops_kv *= 1 + ws / kv_seq_len
elif method == "full_attn+cfg_attn_share":
ops_qk /= 2
ops_kv /= 2
if processor.need_compute_residual[m.stepi - 1]:
ops_qk *= 1 + ws / kv_seq_len
ops_kv *= 1 + ws / kv_seq_len
elif method == "residual_window_attn":
ops_qk *= ws / kv_seq_len
ops_kv *= ws / kv_seq_len
elif method == "residual_window_attn+cfg_attn_share":
ops_qk *= ws / kv_seq_len / 2
ops_kv *= ws / kv_seq_len / 2
elif method == "output_share":
ops_qk = 0
ops_kv = 0
elif method == "residual_window_attn+without_residual":
ops_qk *= ws / kv_seq_len
ops_kv *= ws / kv_seq_len
else:
raise NotImplementedError(f"method {method} not implemented")
matmul_ops = ops_qk + ops_kv
assert matmul_ops >= 0
if not hasattr(m, "total_ops"):
m.total_ops = torch.DoubleTensor([matmul_ops])
else:
m.total_ops += torch.DoubleTensor([matmul_ops])
def set_profile_transformer_block_hook(block, verbose=False, report_missing=False):
custom_ops = {Attention: count_flops_attn}
handler_collection = {}
types_collection = set()
def add_hooks(m: nn.Module):
m.register_buffer("total_ops", torch.zeros(1, dtype=torch.float64))
m.register_buffer("total_params", torch.zeros(1, dtype=torch.float64))
# for p in m.parameters():
# m.total_params += torch.DoubleTensor([p.numel()])
m_type = type(m)
fn = None
if m_type in custom_ops:
# if defined both op maps, use custom_ops to overwrite.
fn = custom_ops[m_type]
if m_type not in types_collection and verbose:
print("[INFO] Customize rule %s() %s." % (fn.__qualname__, m_type))
elif m_type in register_hooks:
fn = register_hooks[m_type]
if m_type not in types_collection and verbose:
print("[INFO] Register %s() for %s." % (fn.__qualname__, m_type))
else:
if m_type not in types_collection and report_missing:
prRed("[WARN] Cannot find rule for %s. Treat it as zero Macs and zero Params." % m_type)
if fn is not None:
handler_collection[m] = (
m.register_forward_hook(fn),
m.register_forward_hook(count_parameters),
)
types_collection.add(m_type)
block.apply(add_hooks)
return handler_collection
def process_profile_transformer_block(block, handler_collection, ret_layer_info=False):
def dfs_count(module: nn.Module, prefix="\t"):
total_ops, total_params = module.total_ops.item(), 0
ret_dict = {}
for n, m in module.named_children():
# if not hasattr(m, "total_ops") and not hasattr(m, "total_params"): # and len(list(m.children())) > 0:
# m_ops, m_params = dfs_count(m, prefix=prefix + "\t")
# else:
# m_ops, m_params = m.total_ops, m.total_params
next_dict = {}
if m in handler_collection and not isinstance(m, (nn.Sequential, nn.ModuleList, Attention)):
m_ops, m_params = m.total_ops.item(), m.total_params.item()
else:
m_ops, m_params, next_dict = dfs_count(m, prefix=prefix + "\t")
ret_dict[n] = (m_ops, m_params, next_dict)
total_ops += m_ops
total_params += m_params
# print(prefix, module._get_name(), (total_ops, total_params))
return total_ops, total_params, ret_dict
total_ops, total_params, ret_dict = dfs_count(block)
# reset model to original status
for m, (op_handler, params_handler) in handler_collection.items():
op_handler.remove()
params_handler.remove()
m._buffers.pop("total_ops")
m._buffers.pop("total_params")
if ret_layer_info:
return total_ops, total_params, ret_dict
return total_ops, total_params
def profile_pipe_transformer(
pipe,
inputs,
kwargs,
custom_ops=None,
verbose=True,
ret_layer_info=False,
report_missing=False,
):
model: nn.Module = pipe.transformer
handler_collection = {}
types_collection = set()
if custom_ops is None:
custom_ops = {}
if report_missing:
# overwrite `verbose` option when enable report_missing
verbose = True
def add_hooks(m: nn.Module):
m.register_buffer("total_ops", torch.zeros(1, dtype=torch.float64))
m.register_buffer("total_params", torch.zeros(1, dtype=torch.float64))
# for p in m.parameters():
# m.total_params += torch.DoubleTensor([p.numel()])
m_type = type(m)
fn = None
with_kwargs = False
if m_type in custom_ops:
# if defined both op maps, use custom_ops to overwrite.
fn = custom_ops[m_type]
if m_type not in types_collection and verbose:
print("[INFO] Customize rule %s() %s." % (fn.__qualname__, m_type))
with_kwargs = True
elif m_type in register_hooks:
fn = register_hooks[m_type]
if m_type not in types_collection and verbose:
print("[INFO] Register %s() for %s." % (fn.__qualname__, m_type))
else:
if m_type not in types_collection and report_missing:
prRed("[WARN] Cannot find rule for %s. Treat it as zero Macs and zero Params." % m_type)
if fn is not None:
handler_collection[m] = (
m.register_forward_hook(fn, with_kwargs=with_kwargs),
m.register_forward_hook(count_parameters),
)
types_collection.add(m_type)
prev_training_status = model.training
model.eval()
model.apply(add_hooks)
with torch.no_grad():
pipe(*inputs, **kwargs)
attn_ops = 0
attn2_ops = 0
def dfs_count(module: nn.Module, prefix="\t"):
total_ops, total_params = module.total_ops.item(), 0
ret_dict = {}
for n, m in module.named_children():
# if not hasattr(m, "total_ops") and not hasattr(m, "total_params"): # and len(list(m.children())) > 0:
# m_ops, m_params = dfs_count(m, prefix=prefix + "\t")
# else:
# m_ops, m_params = m.total_ops, m.total_params
next_dict = {}
if m in handler_collection and not isinstance(m, (nn.Sequential, nn.ModuleList, Attention)):
m_ops, m_params = m.total_ops.item(), m.total_params.item()
else:
m_ops, m_params, next_dict = dfs_count(m, prefix=prefix + "\t")
ret_dict[n] = (m_ops, m_params, next_dict)
total_ops += m_ops
total_params += m_params
# print(prefix, module._get_name(), (total_ops, total_params))
return total_ops, total_params, ret_dict
total_ops, total_params, ret_dict = dfs_count(model)
for name, module in model.named_modules():
if module.__class__.__name__ == "Attention" and ("attn1" in name or "attn" in name):
attn_ops += module.total_ops.item()
# print(f"attn1 {name} ops is {module.total_ops.item()}")
if module.__class__.__name__ == "Attention" and ("attn2" in name or "cross_attn" in name):
attn2_ops += module.total_ops.item()
# print(f"attn2 {name} ops is {module.total_ops.item()}")
# reset model to original status
model.train(prev_training_status)
for m, (op_handler, params_handler) in handler_collection.items():
op_handler.remove()
params_handler.remove()
m._buffers.pop("total_ops")
m._buffers.pop("total_params")
return total_ops, total_params, attn_ops, attn2_ops
def calculate_flops(pipe, x, n_steps):
macs, params, attn_ops, attn2_ops = profile_pipe_transformer(
pipe,
inputs=(x,),
kwargs={"num_inference_steps": n_steps},
custom_ops={Attention: count_flops_attn},
verbose=0,
ret_layer_info=True,
)
print(f"macs is {macs/1e9} G, attn is {(attn_ops)/1e9} G, attn2_ops is {(attn2_ops)/1e9} G")
return macs / 1e9, attn_ops / 1e9