-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathstart.py
254 lines (234 loc) · 8.56 KB
/
start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import argparse
import logging
import os
import sys
import json
import random
import numpy as np
import torch
from torch.utils.data import DataLoader
from utils.tools import ConfigWrapper
from dataset.dataset import SVCDataset
from modules.FastSVC import SVCNN
from modules.discriminator import MelGANMultiScaleDiscriminator
from optimizers.scheduler import StepLRScheduler
from loss.adversarial_loss import GeneratorAdversarialLoss
from loss.adversarial_loss import DiscriminatorAdversarialLoss
from loss.stft_loss import MultiResolutionSTFTLoss
from trainer import Trainer
def main():
"""Run training process."""
parser = argparse.ArgumentParser(
description="Train the FastSVC model."
)
parser.add_argument(
"--data_root",
type=str,
required=True,
help="dataset root path.",
)
parser.add_argument(
"--config",
type=str,
required=True,
help="configuration file path.",
)
parser.add_argument(
"--cp_path",
required=True,
type=str,
nargs="?",
help='checkpoint file path.',
)
parser.add_argument(
"--pretrain",
default="",
type=str,
nargs="?",
help='checkpoint file path to load pretrained params. (default="")',
)
parser.add_argument(
"--resume",
default=False,
type=bool,
nargs="?",
help='whether to resume training from a certain checkpoint.',
)
parser.add_argument(
"--seed",
default=0,
type=int,
help="random seed.",
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
args = parser.parse_args()
local_rank = 0
args.distributed = False
if not torch.cuda.is_available():
device = torch.device("cpu")
else:
device = torch.device("cuda")
# effective when using fixed size inputs
# see https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936
torch.backends.cudnn.benchmark = True
# setup for distributed training
# see example: https://github.com/NVIDIA/apex/tree/master/examples/simple/distributed
args.world_size = torch.cuda.device_count()
args.distributed = args.world_size > 1
if args.distributed:
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
print('Using multi-GPUs for training. n_GPU=%d.' %(args.world_size))
torch.distributed.init_process_group(backend="nccl")
# random seed
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
# suppress logging for distributed training
if local_rank != 0:
sys.stdout = open(os.devnull, "w")
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
stream=sys.stdout,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# load and save config
with open(args.config) as f:
config = ConfigWrapper(**json.load(f))
config.training_config.rank = local_rank
config.training_config.distributed = args.distributed
config.interval_config.out_dir = args.cp_path
# get dataset
train_set = SVCDataset(args.data_root, config.data_config.n_samples, config.data_config.sampling_rate, config.data_config.hop_size, 'train')
valid_set = SVCDataset(args.data_root, config.data_config.n_samples, config.data_config.sampling_rate, config.data_config.hop_size, 'valid')
dataset = {
"train": train_set,
"dev": valid_set,
}
# get data loader
sampler = {"train": None, "dev": None}
if args.distributed:
# setup sampler for distributed training
from torch.utils.data.distributed import DistributedSampler
sampler["train"] = DistributedSampler(
dataset=dataset["train"],
num_replicas=args.world_size,
rank=local_rank,
shuffle=True,
)
data_loader = {
"train": DataLoader(
dataset=dataset["train"],
shuffle=False if args.distributed else True,
batch_size=config.data_config.batch_size,
num_workers=config.data_config.num_workers,
sampler=sampler["train"],
pin_memory=config.data_config.pin_memory,
drop_last=True,
),
"dev": DataLoader(
dataset=dataset["dev"],
shuffle=False,
batch_size=config.data_config.batch_size,
num_workers=config.data_config.num_workers,
sampler=sampler["dev"],
pin_memory=config.data_config.pin_memory,
),
}
# define models
svc_mdl = SVCNN(config).to(device)
discriminator = MelGANMultiScaleDiscriminator().to(device)
model = {
"generator": svc_mdl,
"discriminator": discriminator,
}
# define criterions
criterion = {
"gen_adv": GeneratorAdversarialLoss(
# keep compatibility
**config.loss_config.generator_adv_loss_params
).to(device),
"dis_adv": DiscriminatorAdversarialLoss(
# keep compatibility
**config.loss_config.discriminator_adv_loss_params
).to(device),
}
criterion["stft"] = MultiResolutionSTFTLoss(
**config.loss_config.stft,
).to(device)
# define optimizers and schedulers
optimizer = {
"generator": torch.optim.Adam(model["generator"].parameters(), lr=config.optimizer_config.lr),
"discriminator": torch.optim.Adam(model["discriminator"].parameters(), lr=config.optimizer_config.lr),
}
scheduler = {
"generator": StepLRScheduler(optimizer["generator"], step_size=config.optimizer_config.scheduler_step_size, gamma=config.optimizer_config.scheduler_gamma),
"discriminator": StepLRScheduler(optimizer["discriminator"], step_size=config.optimizer_config.scheduler_step_size, gamma=config.optimizer_config.scheduler_gamma),
}
if args.distributed:
from torch.nn.parallel import DistributedDataParallel
model["generator"] = DistributedDataParallel(model["generator"])
model["discriminator"] = DistributedDataParallel(model["discriminator"])
# define trainer
trainer = Trainer(
steps=0,
epochs=0,
data_loader=data_loader,
sampler=sampler,
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
config=config,
device=device,
)
# load pretrained parameters from checkpoint
if args.resume:
if args.pretrain != "":
trainer.load_checkpoint(args.pretrain, load_only_params=False, dst_train=args.distributed)
logging.info(f"Successfully load parameters from {args.pretrain}.")
else:
if os.path.isdir(args.cp_path):
dir_files = os.listdir(args.cp_path)
cp_files = [fname for fname in dir_files if fname[:11] == 'checkpoint-']
if len(cp_files) == 0:
logging.info(f'No pretrained checkpoints. Training from scratch...')
else:
cp_files.sort(key=lambda fname: os.path.getmtime(f'{args.cp_path}/{fname}'))
latest_cp = f'{args.cp_path}/{cp_files[-1]}'
trainer.load_checkpoint(latest_cp, load_only_params=False, dst_train=args.distributed)
logging.info(f'No pretrain dir specified, use the latest one instead. Successfully load parameters from {latest_cp}.')
else:
logging.info(f'No pretrain dir specified. Training from scratch...')
# run training loop
try:
trainer.run()
finally:
trainer.save_checkpoint(
os.path.join(config.interval_config.out_dir, f"checkpoint-{trainer.steps}steps.pkl"), args.distributed
)
logging.info(f"Successfully saved checkpoint @ {trainer.steps}steps.")
if __name__ == "__main__":
main()