-
Notifications
You must be signed in to change notification settings - Fork 39
/
virtual_gen.py
311 lines (241 loc) · 11.6 KB
/
virtual_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from nusc_image_projection import read_file, to_batch_tensor, to_tensor, projectionV2, reverse_view_points, get_obj
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
import argparse
import numpy as np
import torch
import cv2
import os
H=900
W=1600
class PaintDataSet(Dataset):
def __init__(
self,
info_path,
predictor
):
infos = get_obj(info_path)
sweeps = []
paths = set()
for info in infos:
if info['lidar_path'] not in paths:
paths.add(info['lidar_path'])
sweeps.append(info)
for sweep in info['sweeps']:
if sweep['lidar_path'] not in paths:
sweeps.append(sweep)
paths.add(sweep['lidar_path'])
self.sweeps = sweeps
self.predictor = predictor
@torch.no_grad()
def __getitem__(self, index):
info = self.sweeps[index]
tokens = info['lidar_path'].split('/')
output_path = os.path.join(*tokens[:-2], tokens[-2]+"_VIRTUAL", tokens[-1]+'.pkl.npy')
if os.path.isfile(output_path):
return []
all_cams_path = info['all_cams_path']
all_data = [info]
for path in all_cams_path:
original_image = cv2.imread(path)
if self.predictor.input_format == "RGB":
# whether the model expects BGR inputs or RGB
original_image = original_image[:, :, ::-1]
height, width = original_image.shape[:2]
image = self.predictor.aug.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
all_data.append(inputs)
return all_data
def __len__(self):
return len(self.sweeps)
def is_within_mask(points_xyc, masks, H=900, W=1600):
seg_mask = masks[:, :-1].reshape(-1, W, H)
camera_id = masks[:, -1]
points_xyc = points_xyc.long()
valid = seg_mask[:, points_xyc[:, 0], points_xyc[:, 1]] * (camera_id[:, None] == points_xyc[:, -1][None])
return valid.transpose(1, 0)
@torch.no_grad()
def add_virtual_mask(masks, labels, points, raw_points, num_virtual=50, dist_thresh=3000, num_camera=6, intrinsics=None, transforms=None):
points_xyc = points.reshape(-1, 5)[:, [0, 1, 4]] # x, y, z, valid_indicator, camera id
valid = is_within_mask(points_xyc, masks)
valid = valid * points.reshape(-1, 5)[:, 3:4]
# remove camera id from masks
camera_ids = masks[:, -1]
masks = masks[:, :-1]
box_to_label_mapping = torch.argmax(valid.float(), dim=1).reshape(-1, 1).repeat(1, 11)
point_labels = labels.gather(0, box_to_label_mapping)
point_labels *= (valid.sum(dim=1, keepdim=True) > 0 )
foreground_real_point_mask = (valid.sum(dim=1, keepdim=True) > 0 ).reshape(num_camera, -1).sum(dim=0).bool()
offsets = []
for mask in masks:
indices = mask.reshape(W, H).nonzero()
selected_indices = torch.randperm(len(indices), device=masks.device)[:num_virtual]
if len(selected_indices) < num_virtual:
selected_indices = torch.cat([selected_indices, selected_indices[
selected_indices.new_zeros(num_virtual-len(selected_indices))]])
offset = indices[selected_indices]
offsets.append(offset)
offsets = torch.stack(offsets, dim=0)
virtual_point_instance_ids = torch.arange(1, 1+masks.shape[0],
dtype=torch.float32, device='cuda:0').reshape(masks.shape[0], 1, 1).repeat(1, num_virtual, 1)
virtual_points = torch.cat([offsets, virtual_point_instance_ids], dim=-1).reshape(-1, 3)
virtual_point_camera_ids = camera_ids.reshape(-1, 1, 1).repeat(1, num_virtual, 1).reshape(-1, 1)
valid_mask = valid.sum(dim=1)>0
real_point_instance_ids = (torch.argmax(valid.float(), dim=1) + 1)[valid_mask]
real_points = torch.cat([points_xyc[:, :2][valid_mask], real_point_instance_ids[..., None]], dim=-1)
# avoid matching across instances
real_points[:, -1] *= 1e4
virtual_points[:, -1] *= 1e4
if len(real_points) == 0:
return None
dist = torch.norm(virtual_points.unsqueeze(1) - real_points.unsqueeze(0), dim=-1)
nearest_dist, nearest_indices = torch.min(dist, dim=1)
mask = nearest_dist < dist_thresh
indices = valid_mask.nonzero(as_tuple=False).reshape(-1)
nearest_indices = indices[nearest_indices[mask]]
virtual_points = virtual_points[mask]
virtual_point_camera_ids = virtual_point_camera_ids[mask]
all_virtual_points = []
all_real_points = []
all_point_labels = []
for i in range(num_camera):
camera_mask = (virtual_point_camera_ids == i).squeeze()
per_camera_virtual_points = virtual_points[camera_mask]
per_camera_indices = nearest_indices[camera_mask]
per_camera_virtual_points_depth = points.reshape(-1, 5)[per_camera_indices, 2].reshape(1, -1)
per_camera_virtual_points = per_camera_virtual_points[:, :2] # remove instance id
per_camera_virtual_points_padded = torch.cat(
[per_camera_virtual_points.transpose(1, 0).float(),
torch.ones((1, len(per_camera_virtual_points)), device=per_camera_indices.device, dtype=torch.float32)],
dim=0
)
per_camera_virtual_points_3d = reverse_view_points(per_camera_virtual_points_padded, per_camera_virtual_points_depth, intrinsics[i])
per_camera_virtual_points_3d[:3] = torch.matmul(torch.inverse(transforms[i]),
torch.cat([
per_camera_virtual_points_3d[:3, :],
torch.ones(1, per_camera_virtual_points_3d.shape[1], dtype=torch.float32, device=per_camera_indices.device)
], dim=0)
)[:3]
all_virtual_points.append(per_camera_virtual_points_3d.transpose(1, 0))
all_real_points.append(raw_points.reshape(1, -1, 4).repeat(num_camera, 1, 1).reshape(-1,4)[per_camera_indices][:, :3])
all_point_labels.append(point_labels[per_camera_indices])
all_virtual_points = torch.cat(all_virtual_points, dim=0)
all_real_points = torch.cat(all_real_points, dim=0)
all_point_labels = torch.cat(all_point_labels, dim=0)
all_virtual_points = torch.cat([all_virtual_points, all_point_labels], dim=1)
real_point_labels = point_labels.reshape(num_camera, raw_points.shape[0], -1)
real_point_labels = torch.max(real_point_labels, dim=0)[0]
all_real_points = torch.cat([raw_points[foreground_real_point_mask.bool()], real_point_labels[foreground_real_point_mask.bool()]], dim=1)
return all_virtual_points, all_real_points, foreground_real_point_mask.bool().nonzero(as_tuple=False).reshape(-1)
def init_detector(args):
from CenterNet2.train_net import setup
from detectron2.engine import DefaultPredictor
cfg = setup(args)
predictor = DefaultPredictor(cfg)
return predictor
def postprocess(res):
result = res['instances']
labels = result.pred_classes
scores = result.scores
masks = result.pred_masks.reshape(scores.shape[0], 1600*900)
boxes = result.pred_boxes.tensor
# remove empty mask and their scores / labels
empty_mask = masks.sum(dim=1) == 0
labels = labels[~empty_mask]
scores = scores[~empty_mask]
masks = masks[~empty_mask]
boxes = boxes[~empty_mask]
masks = masks.reshape(-1, 900, 1600).permute(0, 2, 1).reshape(-1, 1600*900)
return labels, scores, masks
@torch.no_grad()
def process_one_frame(info, predictor, data, num_camera=6):
all_cams_from_lidar = info['all_cams_from_lidar']
all_cams_intrinsic = info['all_cams_intrinsic']
lidar_points = read_file(info['lidar_path'])
one_hot_labels = []
for i in range(10):
one_hot_label = torch.zeros(10, device='cuda:0', dtype=torch.float32)
one_hot_label[i] = 1
one_hot_labels.append(one_hot_label)
one_hot_labels = torch.stack(one_hot_labels, dim=0)
masks = []
labels = []
camera_ids = torch.arange(6, dtype=torch.float32, device='cuda:0').reshape(6, 1, 1)
result = predictor.model(data[1:])
for camera_id in range(num_camera):
pred_label, score, pred_mask = postprocess(result[camera_id])
camera_id = torch.tensor(camera_id, dtype=torch.float32, device='cuda:0').reshape(1,1).repeat(pred_mask.shape[0], 1)
pred_mask = torch.cat([pred_mask, camera_id], dim=1)
transformed_labels = one_hot_labels.gather(0, pred_label.reshape(-1, 1).repeat(1, 10))
transformed_labels = torch.cat([transformed_labels, score.unsqueeze(-1)], dim=1)
masks.append(pred_mask)
labels.append(transformed_labels)
masks = torch.cat(masks, dim=0)
labels = torch.cat(labels, dim=0)
P = projectionV2(to_tensor(lidar_points), to_batch_tensor(all_cams_from_lidar), to_batch_tensor(all_cams_intrinsic))
camera_ids = torch.arange(6, dtype=torch.float32, device='cuda:0').reshape(6, 1, 1).repeat(1, P.shape[1], 1)
P = torch.cat([P, camera_ids], dim=-1)
if len(masks) == 0:
res = None
else:
res = add_virtual_mask(masks, labels, P, to_tensor(lidar_points),
intrinsics=to_batch_tensor(all_cams_intrinsic), transforms=to_batch_tensor(all_cams_from_lidar))
if res is not None:
virtual_points, foreground_real_points, foreground_indices = res
return virtual_points.cpu().numpy(), foreground_real_points.cpu().numpy(), foreground_indices.cpu().numpy()
else:
return None
def simple_collate(batch_list):
assert len(batch_list)==1
batch_list = batch_list[0]
return batch_list
def main(args):
predictor = init_detector(args)
data_loader = DataLoader(
PaintDataSet(args.info_path, predictor),
batch_size=1,
num_workers=8,
collate_fn=simple_collate,
pin_memory=False,
shuffle=False
)
for idx, data in tqdm(enumerate(data_loader), total=len(data_loader.dataset)):
if len(data) == 0:
continue
info = data[0]
tokens = info['lidar_path'].split('/')
output_path = os.path.join(*tokens[:-2], tokens[-2]+"_VIRTUAL", tokens[-1]+'.pkl.npy')
res = process_one_frame(info, predictor, data)
if res is not None:
virtual_points, real_points, indices = res
else:
virtual_points = np.zeros([0, 14])
real_points = np.zeros([0, 15])
indices = np.zeros(0)
data_dict = {
'virtual_points': virtual_points,
'real_points': real_points,
'real_points_indice': indices
}
np.save(output_path, data_dict)
# torch.cuda.empty_cache() if you get OOM error
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description="CenterPoint")
parser.add_argument('--info_path', type=str, required=True)
parser.add_argument('--config-file', type=str, default='c2_config/nuImages_CenterNet2_DLA_640_8x.yaml')
parser.add_argument(
"opts",
help="Modify config options by adding 'KEY VALUE' pairs at the end of the command. "
"See config references at "
"https://detectron2.readthedocs.io/modules/config.html#config-references",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
if not os.path.isdir('data/nuScenes/samples/LIDAR_TOP_VIRTUAL'):
os.mkdir('data/nuScenes/samples/LIDAR_TOP_VIRTUAL')
if not os.path.isdir('data/nuScenes/sweeps/LIDAR_TOP_VIRTUAL'):
os.mkdir('data/nuScenes/sweeps/LIDAR_TOP_VIRTUAL')
main(args)