forked from phuongdo/catboost-go
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.go
208 lines (185 loc) · 5.55 KB
/
model.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
package catboost
/*
#cgo linux CFLAGS: -Iheaders
#cgo darwin CFLAGS: -Iheaders
#cgo linux LDFLAGS: -L. -lcatboostmodel
#cgo darwin LDFLAGS: -L. -lcatboostmodel
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <model_calcer_wrapper.h>
static char** makeCharArray(int size)
{
return calloc(sizeof(char*), size);
}
static void setArrayString(char **a, char *s, int n)
{
a[n] = s;
}
static void freeCharArray(char **a, int size)
{
int i;
for (i = 0; i < size; i++)
free(a[i]);
free(a);
}
*/
import "C"
import (
"fmt"
"unsafe"
)
func getError() error {
messageC := C.GetErrorString()
message := C.GoString(messageC)
return fmt.Errorf(message)
}
func makeCStringArrayPointer(array []string) **C.char {
cargs := C.makeCharArray(C.int(len(array)))
for i, s := range array {
C.setArrayString(cargs, C.CString(s), C.int(i))
}
return cargs
}
// Model is a wrapper over ModelCalcerHandler in c_api.h
type Model struct {
Handler unsafe.Pointer
}
// GetFloatFeaturesCount returns a number of float features used for training
func (model *Model) GetFloatFeaturesCount() int {
return int(C.GetFloatFeaturesCount(model.Handler))
}
// GetCatFeaturesCount returns a number of categorical features used for training
func (model *Model) GetCatFeaturesCount() int {
return int(C.GetCatFeaturesCount(model.Handler))
}
// Close deletes model handler
func (model *Model) Close() {
C.ModelCalcerDelete(model.Handler)
}
// LoadFullModelFromFile loads model from file
func LoadFullModelFromFile(filename string) (*Model, error) {
model := &Model{}
model.Handler = C.ModelCalcerCreate()
if !C.LoadFullModelFromFile(model.Handler, C.CString(filename)) {
return nil, getError()
}
return model, nil
}
// CalcModelPrediction returns raw predictions for specified data points
// see CalcModelPrediction in c_api.h
func (model *Model) CalcModelPrediction(floats [][]float32, floatLength int, cats [][]string, catLength int) ([]float64, error) {
nSamples := len(floats)
results := make([]float64, nSamples)
floatsC := make([]*C.float, nSamples)
for i, v := range floats {
floatsC[i] = (*C.float)(C.calloc(C.sizeof_float, C.size_t(len(v))))
C.memcpy(unsafe.Pointer(floatsC[i]), unsafe.Pointer(&v[0]), C.size_t(len(v))*C.sizeof_float)
defer C.free(unsafe.Pointer(floatsC[i]))
}
catsC := make([]**C.char, nSamples)
for i, v := range cats {
pointer := makeCStringArrayPointer(v)
defer C.freeCharArray(pointer, C.int(len(v)))
catsC[i] = pointer
}
if !C.CalcModelPrediction(
model.Handler,
C.size_t(nSamples),
(**C.float)(&floatsC[0]),
C.size_t(floatLength),
(***C.char)(&catsC[0]),
C.size_t(catLength),
(*C.double)(&results[0]),
C.size_t(nSamples),
) {
return nil, getError()
}
return results, nil
}
// CalcModelPrediction returns raw predictions for specified data points
// see CalcModelPredictionText in c_api.h
func (model *Model) CalcModelPredictionTextAndEmbeddings(
floats [][]float32, floatLength int,
cats [][]string, catLength int,
texts [][]string, textLength int,
embeddings [][][]float32, embeddingDimensions []int, embeddingFeaturesSize int,
) ([]float64, error) {
var nSamples int
if l := len(floats); l > 0 {
nSamples = l
} else if l := len(cats); l > 0 {
nSamples = l
} else if l := len(texts); l > 0 {
nSamples = l
} else if l := len(embeddings); l > 0 {
nSamples = l
} else {
// no sample
return nil, nil
}
results := make([]float64, nSamples)
floatsC := make([]*C.float, nSamples)
for i, v := range floats {
if len(v) != floatLength {
return nil, fmt.Errorf("float feature length is not equal to floatLength")
}
if len(v) > 0 {
floatsC[i] = (*C.float)(C.calloc(C.sizeof_float, C.size_t(len(v))))
C.memcpy(unsafe.Pointer(floatsC[i]), unsafe.Pointer(&v[0]), C.size_t(len(v))*C.sizeof_float)
defer C.free(unsafe.Pointer(floatsC[i]))
}
}
catsC := make([]**C.char, nSamples)
for i, v := range cats {
pointer := makeCStringArrayPointer(v)
defer C.freeCharArray(pointer, C.int(len(v)))
catsC[i] = pointer
}
textsC := make([]**C.char, nSamples)
for i, v := range texts {
pointer := makeCStringArrayPointer(v)
defer C.freeCharArray(pointer, C.int(len(v)))
textsC[i] = pointer
}
var cSizeOfFloatPointer = C.size_t(unsafe.Sizeof((*C.float)(nil)))
embeddingsC := make([]**C.float, nSamples)
for i, v := range embeddings {
cArray2D := (**C.float)(C.malloc(C.size_t(len(v)) * cSizeOfFloatPointer))
defer C.free(unsafe.Pointer(cArray2D))
for j, w := range v {
var embeddingsCij = (*C.float)(C.calloc(C.sizeof_float, C.size_t(len(w))))
C.memcpy(unsafe.Pointer(embeddingsCij), unsafe.Pointer(&w[0]), C.size_t(len(w))*C.sizeof_float)
defer C.free(unsafe.Pointer(embeddingsCij))
// set cArray2D[j] to embeddingsCij
*(*unsafe.Pointer)(unsafe.Pointer(uintptr(unsafe.Pointer(cArray2D)) + uintptr(j)*uintptr(cSizeOfFloatPointer))) = unsafe.Pointer(embeddingsCij)
}
embeddingsC[i] = cArray2D
}
var embeddingDimensionsC *C.size_t = nil
if len(embeddingDimensions) > 0 {
c := make([]C.size_t, len(embeddingDimensions))
for i, v := range embeddingDimensions {
c[i] = C.size_t(v)
}
embeddingDimensionsC = (*C.size_t)(&c[0])
}
if !C.CalcModelPredictionTextAndEmbeddings(
model.Handler,
C.size_t(nSamples),
(**C.float)(&floatsC[0]),
C.size_t(floatLength),
(***C.char)(&catsC[0]),
C.size_t(catLength),
(***C.char)(&textsC[0]),
C.size_t(textLength),
(***C.float)(&embeddingsC[0]),
embeddingDimensionsC,
C.size_t(embeddingFeaturesSize),
(*C.double)(&results[0]),
C.size_t(nSamples),
) {
return nil, getError()
}
return results, nil
}