-
Notifications
You must be signed in to change notification settings - Fork 1
/
conductive_loads.py
584 lines (476 loc) · 18.3 KB
/
conductive_loads.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#!/usr/bin/env python
# encoding: utf-8
"""
conductive_loads.py
Created by Zigmund Kermish on 2014-01-20. Heavily copy/pasted from Jon Gudmundsson's Matlab code, which was based
on Bill Jones' IDL code
"""
import sys
import os
import scipy.integrate as integrate
import numpy as np
from gas_props import *
def ss_low_cv(t_in):
# low temperature conductivity stainless steel 316 in [W/m/K]
# taken from M. Barucci, L. Lolli, L. Risegari, G. Ventura
# Cryogenics 48 (2008) 166ñ168
# see equation 3
# only valid from 220 mK to 4.2 K,
# see article for another fit for the conductivity at 40 - 220 mK
A = 0.0556
n = 1.15
return A * t_in**n
T_SS_high, k_SS_high = np.loadtxt('thermalProp/ss304_cv.txt', unpack = True)
T_SS_low = np.arange(0.2, 3.9, 0.1)
k_SS_low = ss_low_cv(T_SS_low)
T_SS = np.append(T_SS_low, T_SS_high)
k_SS = np.append(k_SS_low, k_SS_high)
T_G10, k_G10 = np.loadtxt('thermalProp/g10_cv_combined.txt', unpack = True)
def llg10warp(t): return -2.64827 + 8.80228*t - 24.8998*t**2 + 41.1625*t**3 - 39.8754*t**4 + 23.1778*t**5 - 7.95635*t**6 + 1.48806*t**7 - .11701*t**8
def llg10norm(t): return -4.1236 + 13.788*t - 26.068*t**2 + 26.272*t**3 - 14.663*t**4 + 4.4954*t**5 - 0.6905*t**6 + 0.0397*t**7
def mfg_k(f):
def g(t):
return 10.0**f(np.log10(t))
return g
g10warpk = mfg_k(llg10warp)
g10normk = mfg_k(llg10norm)
k_G10warp = g10warpk(T_G10)
def ringArea(OD, thickness):
'''return the area of a ring'''
return np.pi * ((OD/2.)**2 - (OD/2.-thickness)**2)
def HeatFlux_G10(T_min, T_max, AoverL, warp=False):
'''Conductivity through G10 material
AoverL: area/length in meters
return in Watts
'''
if T_min == T_max:
return 0
else:
dT = min(T_G10[1:] - T_G10[:-1])
T = np.arange(T_min, T_max, dT/2.)
if warp: K_G10 = k_G10warp
else: K_G10 = k_G10
return AoverL * integrate.trapz(np.interp(T, T_G10, K_G10), T)
def HeatFlux_SS(T_min, T_max, AoverL):
'''Conductivity through stainless steel
AoverL: area/length in meters
return in Watts
'''
if T_min == T_max:
return 0
else:
dT = min(T_SS[1:] - T_SS[:-1])
T = np.arange(T_min, T_max, dT/2.)
return AoverL * integrate.trapz(np.interp(T, T_SS, k_SS), x =T)
def TestLFlexH(T_min, T_max, L, T_G10, k_G10):
'''Conductivity through large test cryostat flexures cross sectional area
of length L'''
t = 0.0009398 #[m] = .037 inches
w = 0.0889 #[m] = 3.5 inches
A = t*w;
if T_min == T_max:
return 0
else:
dT = min(T_G10[1:] - T_G10[:-1])
T = np.arange(T_min, T_max, dT/2.)
return (A/L) * integrate.trapz(np.interp(T, T_G10, k_G10), T)
def TestSFlexH(T_min, T_max, L, T_G10, k_G10):
'''Conductivity through small test cryostat flexures cross sectional area
of length L'''
t = 0.000508 #[m] = .02 inches
w = 0.0762 #[m] = 3 inches
A = t*w;
if T_min == T_max:
return 0
else:
dT = min(T_G10[1:] - T_G10[:-1])
T = np.arange(T_min, T_max, dT/2.)
return (A/L) * integrate.trapz(np.interp(T, T_G10, k_G10), T)
def SFlexH(T_min, T_max, L, T_G10, k_G10):
'''Conductivity through small Theo flexures cross sectional area
of length L'''
t = 0.00076
w = 0.029# 0.01429 why did jon have half??
A = t*w
if T_min == T_max:
return 0
else:
dT = min(T_G10[1:] - T_G10[:-1])
T = np.arange(T_min, T_max, dT/2.)
return (A/L) * integrate.trapz(np.interp(T, T_G10, k_G10), T)
def LFlexH(T_min, T_max, L, T_G10, k_G10):
'''Conductivity through large Theo flexures cross sectional area
of length L'''
t = 0.00159 #[m]
w = 0.127 #0.06513; #[m]
A = t*w
if T_min == T_max:
return 0
else:
dT = min(T_G10[1:] - T_G10[:-1])
T = np.arange(T_min, T_max, dT/2.)
return (A/L) * integrate.trapz(np.interp(T, T_G10, k_G10), T)
def AxFlexH(T_min, T_max, L, T_G10, k_G10):
t = 0.00236; #[m]
w = 0.0127; #[m]
A = t*w;
if T_min == T_max:
return 0
else:
dT = min(T_G10[1:] - T_G10[:-1])
T = np.arange(T_min, T_max, dT/2.)
return (A/L) * integrate.trapz(np.interp(T, T_G10, k_G10), T)
def SFTFlex(T_min, T_max, L, T_G10, k_G10):
t = 0.000787; #[m]
w = 0.03175; #[m]
A = t*w;
if T_min == T_max:
return 0
else:
dT = min(T_G10[1:] - T_G10[:-1])
T = np.arange(T_min, T_max, dT/2.)
return (A/L) * integrate.trapz(np.interp(T, T_G10, k_G10), T)
SSTthick = 2.0*0.000254 #[m]
def SSMTTube(T_min, T_max, L, T_SS, k_SS):
OD = 0.01905 #[m]
t = SSTthick #[m]
rout = OD/2
rin = rout-t
A = np.pi*(rout**2-rin**2) #[m^2]
if T_min == T_max:
return 0.0
else:
dT = min(T_SS[1:] - T_SS[:-1])
T = np.arange(T_min, T_max, dT/2.)
return (A/L) * integrate.trapz(np.interp(T, T_SS, k_SS), x =T)
def SSSFTTube(T_min, T_max, L, T_SS, k_SS):
OD = 0.0127 #[m]
t = SSTthick #0.000254 #[m]
rout = OD/2
rin = rout-t
A = np.pi*(rout**2-rin**2) #[m^2]
if T_min == T_max:
return 0.0
else:
dT = min(T_SS[1:] - T_SS[:-1])
T = np.arange(T_min, T_max, dT/2.)
return (A/L) * integrate.trapz(np.interp(T, T_SS, k_SS), x = T)
def SSMTTubeGas(T_min, T_max, L):
OD = 0.01905 #[m]
t = SSTthick #0.000254 #[m]
ID = OD-2*t
A = np.pi*(ID)**2/4 #[m^2]
if (abs(T_max-T_min) < 2.):
return 0
T = np.arange(T_min,T_max,0.01)
return (A/L)*integrate.trapz(helium_cv_ideal(T), x = T)
def SSSFTTubeGas(T_min, T_max, L):
OD = 0.0127 #[m]
t = SSTthick #0.000254 #[m]
ID = OD-2*t
A = np.pi*(ID)**2/4 #[m^2]
if (abs(T_max-T_min) < 2):
return 0
T = np.arange(T_min,T_max,0.01)
return (A/L)*integrate.trapz(helium_cv_ideal(T), x = T)
def cond_loads(T1,T2,T3,T4,T5,sftPumped,sftEmpty,insNum, config = 'theo', flexFactor=1.0):
'''
--------------------------------------------------------------------------
Notes:
Calculating the conductive load through the vent and fill lines
These calculations include both the conduction through the stainless steel
tubes as well as the conduction through the stationary gas in the np.pipes
that are normally valved off (since we are venting through the vcs vent
line)
The SFT fill and vent line are heat sunk at VCS2 and to some extent on
the MT as well. There is OFHC strain relief on both the SFT fill and vent
line that is roughly 0.6 meters away from the SFT and connected at the
bottom of the main tank. We assume that this strain relief does not
perform as an ideal heat sink and add a 5 K gradient between it and
whatever the temperature of the main tank is. This will increase the load
to the SFT somewhat.
--------------------------------------------------------------------------
'''
L_MTFill_24 = 1.1
L_MTFill_45 = 1.7
L_MTVent_24 = 1.5
L_MTVent_45 = 1.2
L_SFTFill_12 = 0.8
L_SFTFill_24 = 1.27
L_SFTFill_45 = 1.524
L_SFTVent_12 = 0.8
L_SFTVent_24 = 1.27
L_SFTVent_45 = 1.524
#tubes are heat sunk to VCS2 (T4)
MTFill24 = SSMTTube(T2,T4,L_MTFill_24,T_SS,k_SS)
#print('MTFill metal tube: %1.4f' % MTFill24)
MTFill24 += SSMTTubeGas(T2,T4,L_MTFill_24)
#print('MTFill metal tube w/gas: %1.4f' % MTFill24)
MTFill45 = SSMTTube(T4,T5,L_MTFill_45,T_SS,k_SS)
MTFill45 += SSMTTubeGas(T4,T5,L_MTFill_45)
MTVent24 = SSMTTube(T2,T4,L_MTVent_24,T_SS,k_SS)
#print('MTVent metal tube: %1.4f' % MTVent24)
MTVent24 += SSMTTubeGas(T2,T4,L_MTVent_24)
#print('MTVent metal tube w/ gas: %1.4f' % MTVent24)
MTVent45 = SSMTTube(T4,T5,L_MTVent_45,T_SS,k_SS)
MTVent45 += SSMTTubeGas(T4,T5,L_MTVent_45)
SFTFill12 = SSSFTTube(T1,T2,L_SFTFill_12,T_SS,k_SS)
SFTVent12 = SSSFTTube(T1,T2,L_SFTVent_12,T_SS,k_SS)
if sftPumped and not sftEmpty:
# If the SFT is pumped and not empty we assume that the loading through
# the stainless steel tubing will be conducted into the SFT rather than
# intercepted by the main tank. The theory being that the superfluid will
# creep up into the plumbing and intercept the heat...
SFTFill12 = SFTFill12 + SSSFTTube(T2,T4,L_SFTFill_24,T_SS,k_SS)
SFTVent12 = SFTVent12 + SSSFTTube(T2,T4,L_SFTVent_24,T_SS,k_SS)
SFTFill24 = 0
SFTVent24 = 0
else:
# If the SFT is pumped but empty or not pumped and at 4.2 K we expect the
# copper strain relief to catch sftr of the heat load
sftr = 0.5
SFTFill24 = sftr*SSSFTTube(T2,T4,L_SFTFill_24,T_SS,k_SS)
SFTVent24 = sftr*SSSFTTube(T2,T4,L_SFTVent_24,T_SS,k_SS)
SFTFill12 = SFTFill12 + (1-sftr)*SSSFTTube(T2,T4,L_SFTFill_24,T_SS,k_SS)
SFTVent12 = SFTVent12 + (1-sftr)*SSSFTTube(T2,T4,L_SFTVent_24,T_SS,k_SS)
SFTFill45 = SSSFTTube(T4,T5,L_SFTFill_45,T_SS,k_SS)
SFTVent45 = SSSFTTube(T4,T5,L_SFTVent_45,T_SS,k_SS)
if not sftPumped:
SFTFill12 = SFTFill12 + SSSFTTubeGas(T1,T2,L_SFTFill_12)
SFTVent12 = SFTVent12 + SSSFTTubeGas(T1,T2,L_SFTVent_12)
SFTFill24 = SFTFill24 + SSSFTTubeGas(T2,T4,L_SFTFill_24)
SFTVent24 = SFTVent24 + SSSFTTubeGas(T2,T4,L_SFTVent_24)
SFTFill45 = SFTFill45 + SSSFTTubeGas(T4,T5,L_SFTFill_45)
SFTVent45 = SFTVent45 + SSSFTTubeGas(T4,T5,L_SFTVent_45)
#--------------------------------------------------------------------------
# SFT specific
#--------------------------------------------------------------------------
if not sftEmpty and sftPumped:
insLoading = 300e-6 # Loading from 4K to the 1.5 K stage
else:
insLoading = 0
#--------------------------------------------------------------------------
# Calculating the conductive load through all sorts of flexures
#--------------------------------------------------------------------------
#Calculating the total conductive load to MT, VCS1 and VCS2 from flexures
if config == 'theo':
# Relevant lengths in meters
L_MTLargeFlex = 0.0127 #0.5 inches
L_VCS1LargeFlex = 0.0508 #2 inches
L_VCS2LargeFlex = 0.0203 # 0.8 inches
L_MTSmallFlex = 0.0330 #1.3 inches
L_VCS2SmallFlex = 0.0330 # 1.3 inches
L_MTAxFlex = 0.09015
L_SFTFLex = 0.03937
# Calculating heat loads for each junction
#T1 = SFT, T2 = 4k, T3 = VCS1, T4 = VCS2, T5 = 300K
LFlexToMT = LFlexH(T2,T3,L_MTLargeFlex,T_G10,k_G10) #MT -> VCS1
SFlexToMT = SFlexH(T2,T3,L_MTSmallFlex,T_G10,k_G10) #MT-VCS1
LFlexToVCS1 = LFlexH(T3,T4,L_VCS1LargeFlex,T_G10,k_G10) #VCS1->VCS2
LFlexToVCS2 = LFlexH(T4,T5,L_VCS2LargeFlex,T_G10,k_G10) #VCS2->VV
SFlexToVCS2 = SFlexH(T4,T5,L_VCS2SmallFlex,T_G10,k_G10) #VCS2-VV
MTAxFlextoVCS1 = AxFlexH(T2,T3,L_MTAxFlex,T_G10,k_G10)
if (T1 != T2):
SFTFlexToMT = SFTFlex(T1,T2,L_SFTFLex,T_G10,k_G10)
else:
SFTFlexToMT = 0
flexCondLoad1 = 7*SFTFlexToMT+insLoading*insNum
flexCondLoad2in = 6*(LFlexToMT+SFlexToMT)+3*MTAxFlextoVCS1
flexCondLoad2out = -7*SFTFlexToMT \
-(SFTVent12+SFTFill12)
flexCondLoad3in = 6*(LFlexToVCS1)
flexCondLoad3out = -6*(LFlexToMT+SFlexToMT)-3*MTAxFlextoVCS1
flexCondLoad4in = 6*(SFlexToVCS2+LFlexToVCS2)
flexCondLoad4out = -6*LFlexToVCS1
elif config == 'lloro':
#vcs 1 intercept only
# Relevant lengths in meters
length = -0.03
L_MTLargeFlex = 0.07874 + length #full length to shell, no VCS intercepts
L_VCS1LargeFlex = 0.0203 - length
L_VCS2LargeFlex = 1e-4
L_MTSmallFlex = 0.0330 #1.3 inches
L_VCS2SmallFlex = 0.0330 # 1.3 inches
L_MTAxFlex = 0.09015
L_SFTFLex = 0.03937
# Calculating heat loads for each junction
#T1 = SFT, T2 = 4k, T3 = VCS1, T4 = VCS2, T5 = 300K
LFlexToMT = LFlexH(T2,T3,L_MTLargeFlex,T_G10,k_G10)
SFlexToMT = SFlexH(T2,T3,L_MTSmallFlex,T_G10,k_G10)
LFlexToVCS1 = LFlexH(T3,T5,L_VCS1LargeFlex,T_G10,k_G10)
#LFlexToVCS2 = LFlexH(T4,T5,L_VCS2LargeFlex,T_G10,k_G10)
SFlexToVCS2 = SFlexH(T4,T5,L_VCS2SmallFlex,T_G10,k_G10)
MTAxFlextoVCS1 = AxFlexH(T2,T3,L_MTAxFlex,T_G10,k_G10)
if (T1 != T2):
SFTFlexToMT = SFTFlex(T1,T2,L_SFTFLex,T_G10,k_G10)
else:
SFTFlexToMT = 0
flexCondLoad1 = 7*SFTFlexToMT+insLoading*insNum
flexCondLoad2in = 6*(LFlexToMT+SFlexToMT)+3*MTAxFlextoVCS1
flexCondLoad2out = -7*SFTFlexToMT \
-(SFTVent12+SFTFill12)
flexCondLoad3in = 6*(LFlexToVCS1)
flexCondLoad3out = -6*(LFlexToMT+ SFlexToMT)-3*MTAxFlextoVCS1
flexCondLoad4in = 6*(SFlexToVCS2)
flexCondLoad4out = -6*(LFlexToVCS1)
elif config == 'theo2':
#VCS2 intercept only
# Relevant lengths in meters
length = .00
L_MTLargeFlex = 0.07874 + length #full length to shell, no VCS intercepts
#L_MTLargeFlex = 0.11 #4.5 inches, full length from MT -> VV
L_VCS1LargeFlex = 1e-4
#L_VCS2LargeFlex = 1e-4
L_VCS2LargeFlex = 0.0203 - length
L_MTSmallFlex = 0.0330 #1.3 inches
L_VCS2SmallFlex = 0.0330 # 1.3 inches
L_MTAxFlex = 0.09015
L_SFTFLex = 0.03937
# Calculating heat loads for each junction
#T1 = SFT, T2 = 4k, T3 = VCS1, T4 = VCS2, T5 = 300K
#LFlexToMT = LFlexH(T2,T5,L_MTLargeFlex,T_G10,k_G10)
LFlexToMT = LFlexH(T2,T4,L_MTLargeFlex,T_G10,k_G10)
SFlexToMT = SFlexH(T2,T3,L_MTSmallFlex,T_G10,k_G10)
LFlexToVCS1 = 0.0*LFlexH(T3,T4,L_VCS1LargeFlex,T_G10,k_G10)
LFlexToVCS2 = LFlexH(T4,T5,L_VCS2LargeFlex,T_G10,k_G10)
SFlexToVCS2 = SFlexH(T4,T5,L_VCS2SmallFlex,T_G10,k_G10)
MTAxFlextoVCS1 = AxFlexH(T2,T3,L_MTAxFlex,T_G10,k_G10)
if (T1 != T2):
SFTFlexToMT = SFTFlex(T1,T2,L_SFTFLex,T_G10,k_G10)
else:
SFTFlexToMT = 0
flexCondLoad1 = 7*SFTFlexToMT+insLoading*insNum
flexCondLoad2in = 6*(LFlexToMT+SFlexToMT)+3*MTAxFlextoVCS1
flexCondLoad2out = -7*SFTFlexToMT \
-(SFTVent12+SFTFill12)
flexCondLoad3in = 0.0*(LFlexToVCS1)
flexCondLoad3out = -6*(SFlexToMT)-3*MTAxFlextoVCS1
flexCondLoad4in = 6*(SFlexToVCS2 + LFlexToVCS2)
flexCondLoad4out = -6*(LFlexToMT)
elif config == 'theo_alt1':
#use as-built dimensions, but disconnect VCS2 flexure
# Relevant lengths in meters
L_MTLargeFlex = 0.0127 #0.5 inches MT -> VCS1
L_VCS1LargeFlex = 0.0508 #2 inches VCS1 -> VCS2
L_VCS2LargeFlex = 0.0203 # 0.8 inches
L_VCS1LargeFlex += L_VCS2LargeFlex #add VCS2 length to VCS1 flexure, VCS1-> VV
L_MTSmallFlex = 0.0330 #1.3 inches
L_VCS2SmallFlex = 0.0330 # 1.3 inches
L_MTAxFlex = 0.09015
L_SFTFLex = 0.03937
# Calculating heat loads for each junction
#T1 = SFT, T2 = 4k, T3 = VCS1, T4 = VCS2, T5 = 300K
LFlexToMT = LFlexH(T2,T3,L_MTLargeFlex,T_G10,k_G10) #MT -> VCS1
SFlexToMT = SFlexH(T2,T3,L_MTSmallFlex,T_G10,k_G10) #MT-VCS1
LFlexToVCS1 = LFlexH(T3,T5,L_VCS1LargeFlex,T_G10,k_G10) #VCS1->VCS2
#LFlexToVCS2 = LFlexH(T4,T5,L_VCS2LargeFlex,T_G10,k_G10) #VCS2->VV
SFlexToVCS2 = SFlexH(T4,T5,L_VCS2SmallFlex,T_G10,k_G10) #VCS2-VV
MTAxFlextoVCS1 = AxFlexH(T2,T3,L_MTAxFlex,T_G10,k_G10)
if (T1 != T2):
SFTFlexToMT = SFTFlex(T1,T2,L_SFTFLex,T_G10,k_G10)
else:
SFTFlexToMT = 0
flexCondLoad1 = 7*SFTFlexToMT+insLoading*insNum
flexCondLoad2in = 6*(LFlexToMT+SFlexToMT)+3*MTAxFlextoVCS1
flexCondLoad2out = -7*SFTFlexToMT \
-(SFTVent12+SFTFill12)
flexCondLoad3in = 6*(LFlexToVCS1) #goes to VV
flexCondLoad3out = -6*(LFlexToMT+SFlexToMT)-3*MTAxFlextoVCS1
flexCondLoad4in = 6*(SFlexToVCS2)
flexCondLoad4out = 0.0
elif config == 'ULDB':
# Relevant lengths in meters
L_VCS2toMTFlex = 0.03429 #1.35 inches
L_VCS2Flex = 0.02921 # 1.15 inches
L_VCS2toVCS1 = 0.0508 # 2 inches
L_SFTFLex = 0.03937 #using theo SFT $s for now.
# Calculating heat loads for each junction
#T1 = SFT, T2 = 4k, T3 = VCS1, T4 = VCS2, T5 = 300K
FlexToMT = TestLFlexH(T2,T4,L_VCS2toMTFlex,T_G10,k_G10) #MT -> VCS2
FlexToVCS1 = TestSFlexH(T3,T4,L_VCS2toVCS1,T_G10,k_G10) #VCS1 -> VCS2
FlexToVCS2 = TestLFlexH(T4,T5,L_VCS2Flex,T_G10,k_G10) #VCS2->VV
if (T1 != T2):
SFTFlexToMT = SFTFlex(T1,T2,L_SFTFLex,T_G10,k_G10)
else:
SFTFlexToMT = 0
flexCondLoad1 = 3*SFTFlexToMT+insLoading*insNum
flexCondLoad2in = 4*FlexToMT
flexCondLoad2out = -3*SFTFlexToMT \
-(SFTVent12+SFTFill12)
flexCondLoad2in /= flexFactor #playing with improved flexures
flexCondLoad3in = 4*FlexToVCS1
flexCondLoad3out = 0 #VCS1 not conductively connected to any colder stages
flexCondLoad4in = 4*FlexToVCS2
flexCondLoad4out = -4*FlexToMT #VCS 2 -> MT connection
elif config == 'ULDB2':
# Relevant lengths in meters
L_VCS1toMTFlex = 0.03429 #1.35 inches
L_VCS2Flex = 0.02921 # 1.15 inches
L_VCS2toVCS1 = 0.0508 # 2 inches
L_SFTFLex = 0.03937 #using theo SFT $s for now.
# Calculating heat loads for each junction
#T1 = SFT, T2 = 4k, T3 = VCS1, T4 = VCS2, T5 = 300K
FlexToMT = TestLFlexH(T2,T3,L_VCS1toMTFlex,T_G10,k_G10) #MT ->VCS1
FlexToVCS1 = TestLFlexH(T3,T4,L_VCS2toVCS1,T_G10,k_G10) #VCS1 ->VCS2
FlexToVCS2 = TestLFlexH(T4,T5,L_VCS2Flex,T_G10,k_G10)
if (T1 != T2):
SFTFlexToMT = SFTFlex(T1,T2,L_SFTFLex,T_G10,k_G10)
else:
SFTFlexToMT = 0
flexCondLoad1 = 3*SFTFlexToMT+insLoading*insNum
flexCondLoad2in = 4*FlexToMT
flexCondLoad2out = -3*SFTFlexToMT \
-(SFTVent12+SFTFill12)
flexCondLoad2in /= flexFactor #playing with improved flexures
flexCondLoad3in = 4*FlexToVCS1
flexCondLoad3out = -4*FlexToMT #VCS1->MT
flexCondLoad4in = 4*FlexToVCS2
flexCondLoad4out = -4*FlexToVCS1 #VCS 2 -> VCS1 connection
elif config == 'TNG':
# Relevant lengths and areas in meters, from BLAST excel
L_ShelltoVCS2 = 27.3125 * 0.0254
A_ShelltoVCS2 = ringArea(35.625*0.0254, 0.0625*0.0254)
L_VCS2toVCS1 = 12.625 * 0.0254
A_VCS2toVCS1 = ringArea(32.125*0.0254, 0.0625*0.0254)
L_VCS1toMT = 15.375 * 0.0254
A_VCS1toMT = ringArea(30.63*0.0254, 0.04*0.0254)
L_MTtoSFT = 3.8 * 0.0254
A_MTtoSFT = ringArea(3.24*0.0254, 0.02*0.0254)
# Calculating heat loads for each junction
# T1 = SFT, T2 = 4k, T3 = VCS1, T4 = VCS2, T5 = 300K
warp = True
FluxToVCS2 = HeatFlux_G10(T4, T5, A_ShelltoVCS2/L_ShelltoVCS2, warp=warp)
FluxToVCS1 = HeatFlux_G10(T3,T4,A_VCS2toVCS1/L_VCS2toVCS1, warp=warp) #VCS1 ->VCS2
FluxToMT = HeatFlux_G10(T2,T3,A_VCS1toMT/L_VCS1toMT, warp=warp) #MT ->VCS1
if (T1 != T2):
FluxToSFT = HeatFlux_G10(T1,T2, A_MTtoSFT/L_MTtoSFT, warp=warp)
else:
FluxToSFT = 0
# SFT
flexCondLoad1 = FluxToSFT
# MT
flexCondLoad2in = FluxToMT
flexCondLoad2out = -1*FluxToSFT -(SFTVent12+SFTFill12)
# flexCondLoad2in /= flexFactor #playing with improved flexures
# VCS1
flexCondLoad3in = FluxToVCS1
flexCondLoad3out = -1*FluxToMT #VCS1->MT
# VCS2
flexCondLoad4in = FluxToVCS2
flexCondLoad4out = -1*FluxToVCS1 #VCS 2 -> VCS1 connection
#--------------------------------------------------------------------------
# Making the final calculations
#--------------------------------------------------------------------------
#Adding load from tubing
tubeCondLoad1 = (SFTFill12 + SFTVent12)
tubeCondLoad2 = (MTFill24 + MTVent24)+(SFTFill24 + SFTVent24)
tubeCondLoad4out = -1*tubeCondLoad2
tubeCondLoad4in = MTFill45 + MTVent45 + SFTFill45 + SFTVent45
return (tubeCondLoad1, tubeCondLoad2, tubeCondLoad4in, tubeCondLoad4out,
flexCondLoad1, flexCondLoad2in, flexCondLoad2out, flexCondLoad3in,
flexCondLoad3out, flexCondLoad4in, flexCondLoad4out)
#--------------------------------------------------------------------------
def main():
pass
if __name__ == '__main__':
main()