-
Notifications
You must be signed in to change notification settings - Fork 0
/
keccak256.c
245 lines (199 loc) · 7.71 KB
/
keccak256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* sha3 - an implementation of Secure Hash Algorithm 3 (Keccak).
* based on the
* The Keccak SHA-3 submission. Submission to NIST (Round 3), 2011
* by Guido Bertoni, Joan Daemen, Michaël Peeters and Gilles Van Assche
*
* Copyright: 2013 Aleksey Kravchenko <rhash.admin@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. Use this program at your own risk!
*/
#include "keccak256.h"
//#include <avr/pgmspace.h>
#include <string.h>
#include <stdint.h>
#define BLOCK_SIZE ((1600 - 256 * 2) / 8)
#define I64(x) x##LL
#define ROTL64(qword, n) ((qword) << (n) ^ ((qword) >> (64 - (n))))
#define le2me_64(x) (x)
#define IS_ALIGNED_64(p) (0 == (7 & ((const char*)(p) - (const char*)0)))
#define me64_to_le_str(to, from, length) memcpy((to), (from), (length))
/* constants */
//const uint8_t round_constant_info[] PROGMEM = {
//const uint8_t constants[] PROGMEM = {
const uint8_t constants[] = {
1, 26, 94, 112, 31, 33, 121, 85, 14, 12, 53, 38, 63, 79, 93, 83, 82, 72, 22, 102, 121, 88, 33, 116,
//};
//const uint8_t pi_transform[] PROGMEM = {
1, 6, 9, 22, 14, 20, 2, 12, 13, 19, 23, 15, 4, 24, 21, 8, 16, 5, 3, 18, 17, 11, 7, 10,
//};
//const uint8_t rhoTransforms[] PROGMEM = {
1, 62, 28, 27, 36, 44, 6, 55, 20, 3, 10, 43, 25, 39, 41, 45, 15, 21, 8, 18, 2, 61, 56, 14,
};
#define TYPE_ROUND_INFO 0
#define TYPE_PI_TRANSFORM 24
#define TYPE_RHO_TRANSFORM 48
uint8_t getConstant(uint8_t type, uint8_t index) {
return constants[type + index];
//return pgm_read_byte(&constants[type + index]);
}
static uint64_t get_round_constant(uint8_t round) {
uint64_t result = 0;
//uint8_t roundInfo = pgm_read_byte(&round_constant_info[round]);
uint8_t roundInfo = getConstant(TYPE_ROUND_INFO, round);
if (roundInfo & (1 << 6)) { result |= ((uint64_t)1 << 63); }
if (roundInfo & (1 << 5)) { result |= ((uint64_t)1 << 31); }
if (roundInfo & (1 << 4)) { result |= ((uint64_t)1 << 15); }
if (roundInfo & (1 << 3)) { result |= ((uint64_t)1 << 7); }
if (roundInfo & (1 << 2)) { result |= ((uint64_t)1 << 3); }
if (roundInfo & (1 << 1)) { result |= ((uint64_t)1 << 1); }
if (roundInfo & (1 << 0)) { result |= ((uint64_t)1 << 0); }
return result;
}
/* Initializing a sha3 context for given number of output bits */
void keccak_init(SHA3_CTX *ctx) {
/* NB: The Keccak capacity parameter = bits * 2 */
memset(ctx, 0, sizeof(SHA3_CTX));
}
/* Keccak theta() transformation */
static void keccak_theta(uint64_t *A) {
uint64_t C[5], D[5];
for (uint8_t i = 0; i < 5; i++) {
C[i] = A[i];
for (uint8_t j = 5; j < 25; j += 5) { C[i] ^= A[i + j]; }
}
for (uint8_t i = 0; i < 5; i++) {
D[i] = ROTL64(C[(i + 1) % 5], 1) ^ C[(i + 4) % 5];
}
for (uint8_t i = 0; i < 5; i++) {
//for (uint8_t j = 0; j < 25; j += 5) {
for (uint8_t j = 0; j < 25; j += 5) { A[i + j] ^= D[i]; }
}
}
/* Keccak pi() transformation */
static void keccak_pi(uint64_t *A) {
uint64_t A1 = A[1];
//for (uint8_t i = 1; i < sizeof(pi_transform); i++) {
for (uint8_t i = 1; i < 24; i++) {
//A[pgm_read_byte(&pi_transform[i - 1])] = A[pgm_read_byte(&pi_transform[i])];
A[getConstant(TYPE_PI_TRANSFORM, i - 1)] = A[getConstant(TYPE_PI_TRANSFORM, i)];
}
A[10] = A1;
/* note: A[ 0] is left as is */
}
/*
ketch uses 30084 bytes (93%) of program storage space. Maximum is 32256 bytes.
Global variables use 743 bytes (36%) of dynamic memory, leaving 1305 bytes for local variables. Maximum is 2048 bytes.
*/
/* Keccak chi() transformation */
static void keccak_chi(uint64_t *A) {
for (uint8_t i = 0; i < 25; i += 5) {
uint64_t A0 = A[0 + i], A1 = A[1 + i];
A[0 + i] ^= ~A1 & A[2 + i];
A[1 + i] ^= ~A[2 + i] & A[3 + i];
A[2 + i] ^= ~A[3 + i] & A[4 + i];
A[3 + i] ^= ~A[4 + i] & A0;
A[4 + i] ^= ~A0 & A1;
}
}
static void sha3_permutation(uint64_t *state) {
//for (uint8_t round = 0; round < sizeof(round_constant_info); round++) {
for (uint8_t round = 0; round < 24; round++) {
keccak_theta(state);
/* apply Keccak rho() transformation */
for (uint8_t i = 1; i < 25; i++) {
//state[i] = ROTL64(state[i], pgm_read_byte(&rhoTransforms[i - 1]));
state[i] = ROTL64(state[i], getConstant(TYPE_RHO_TRANSFORM, i - 1));
}
keccak_pi(state);
keccak_chi(state);
/* apply iota(state, round) */
*state ^= get_round_constant(round);
}
}
/**
* The core transformation. Process the specified block of data.
*
* @param hash the algorithm state
* @param block the message block to process
* @param block_size the size of the processed block in bytes
*/
static void sha3_process_block(uint64_t hash[25], const uint64_t *block) {
for (uint8_t i = 0; i < 17; i++) {
hash[i] ^= le2me_64(block[i]);
}
/* make a permutation of the hash */
sha3_permutation(hash);
}
//#define SHA3_FINALIZED 0x80000000
//#define SHA3_FINALIZED 0x8000
/**
* Calculate message hash.
* Can be called repeatedly with chunks of the message to be hashed.
*
* @param ctx the algorithm context containing current hashing state
* @param msg message chunk
* @param size length of the message chunk
*/
void keccak_update(SHA3_CTX *ctx, const unsigned char *msg, uint16_t size)
{
uint16_t idx = (uint16_t)ctx->rest;
//if (ctx->rest & SHA3_FINALIZED) return; /* too late for additional input */
ctx->rest = (unsigned)((ctx->rest + size) % BLOCK_SIZE);
/* fill partial block */
if (idx) {
uint16_t left = BLOCK_SIZE - idx;
memcpy((char*)ctx->message + idx, msg, (size < left ? size : left));
if (size < left) return;
/* process partial block */
sha3_process_block(ctx->hash, ctx->message);
msg += left;
size -= left;
}
while (size >= BLOCK_SIZE) {
uint64_t* aligned_message_block;
if (IS_ALIGNED_64(msg)) {
// the most common case is processing of an already aligned message without copying it
aligned_message_block = (uint64_t*)(void*)msg;
} else {
memcpy(ctx->message, msg, BLOCK_SIZE);
aligned_message_block = ctx->message;
}
sha3_process_block(ctx->hash, aligned_message_block);
msg += BLOCK_SIZE;
size -= BLOCK_SIZE;
}
if (size) {
memcpy(ctx->message, msg, size); /* save leftovers */
}
}
/**
* Store calculated hash into the given array.
*
* @param ctx the algorithm context containing current hashing state
* @param result calculated hash in binary form
*/
void keccak_final(SHA3_CTX *ctx, unsigned char* result)
{
uint16_t digest_length = 100 - BLOCK_SIZE / 2;
// if (!(ctx->rest & SHA3_FINALIZED)) {
/* clear the rest of the data queue */
memset((char*)ctx->message + ctx->rest, 0, BLOCK_SIZE - ctx->rest);
((char*)ctx->message)[ctx->rest] |= 0x01;
((char*)ctx->message)[BLOCK_SIZE - 1] |= 0x80;
/* process final block */
sha3_process_block(ctx->hash, ctx->message);
// ctx->rest = SHA3_FINALIZED; /* mark context as finalized */
// }
if (result) {
me64_to_le_str(result, ctx->hash, digest_length);
}
}