-
Notifications
You must be signed in to change notification settings - Fork 6
/
test.py
executable file
·447 lines (378 loc) · 21.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import argparse
import json
from torch.utils.data import DataLoader
from models import *
from utils.datasets import *
from utils.utils import *
import numpy as np
import sys
sys.path.append('./cocoapi/PythonAPI/')
sys.path.append('./pdq_evaluation')
from read_files import convert_coco_det_to_rvc_det
def enable_dropout(m):
for each_module in m.modules():
if each_module.__class__.__name__.startswith('Dropout'):
each_module.train()
def change_dropout_rate(m, perc):
for each_module in m.modules():
if each_module.__class__.__name__.startswith('Dropout'):
each_module.p = perc
def get_single_darknet_model(cfg, imgsz, weights, device, dropout_ids, new_drop_rate):
# Initialize model
model = Darknet(cfg, imgsz)
# Load weights
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
loaded_model = torch.load(weights, map_location=device)['model']
if dropout_ids is not None:
change_model_state_dict(loaded_model, dropout_ids=dropout_ids)
model.load_state_dict(loaded_model)
else: # darknet format
load_darknet_weights(model, weights)
if new_drop_rate is not None:
print('Changing default dropout rate...')
change_dropout_rate(m=model, perc=new_drop_rate)
# Fuse
model.fuse()
model.to(device)
return model
def test(cfg,
data,
weights=None,
batch_size=16,
imgsz=416,
conf_thres=0.001,
iou_thres=0.6, # for nms
save_json=False,
single_cls=False,
augment=False,
model=None,
dataloader=None,
multi_label=False,
dropout_ids=None,
name='',
dropout_at_inference=False,
num_samples=1,
corruption_num=None,
severity=None,
get_unknowns=False,
only_inference=False,
new_drop_rate=None,
with_cached_mcdrop=False,
ensemble_main_name=None):
# Change name automatically if there is corruption going on
if corruption_num is not None:
name = name + f'_c{corruption_num}s{severity}'
# Initialize/load model and set device
if model is None:
is_training = False
device = torch_utils.select_device(opt.device, batch_size=batch_size)
verbose = opt.task == 'test'
# Remove previous
for f in glob.glob(f'output/test_batch_{name}_{conf_thres}_{iou_thres}_*.jpg'):
os.remove(f)
if ensemble_main_name is None:
model = get_single_darknet_model(cfg, imgsz, weights, device, dropout_ids, new_drop_rate)
if with_cached_mcdrop:
model_decorator = DecoratorDarknetMCDrop(darknet_model=model)
if device.type != 'cpu' and torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
else:
ensemble_models = []
for i in range(num_samples):
weights_path = f'weights/{ensemble_main_name}_{i + 1}.pt'
model = get_single_darknet_model(cfg, imgsz, weights_path, device, dropout_ids, new_drop_rate)
if device.type != 'cpu' and torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model.eval()
if dropout_at_inference:
enable_dropout(model)
_ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None # run once
ensemble_models.append(model)
print(f'Evaluating on an ensemble of {len(ensemble_models)} models')
else: # called by train.py
is_training = True
device = next(model.parameters()).device # get model device
verbose = False
# Configure run
data = parse_data_cfg(data)
nc = 1 if single_cls else int(data['classes']) # number of classes
path = data['valid'] # path to test images
names = load_classes(data['names']) # class names
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
iouv = iouv[0].view(1) # comment for mAP@0.5:0.95
niou = iouv.numel()
# Dataloader
if dataloader is None:
if corruption_num is not None:
print(f'Dataloader will have corrupted images with number {corruption_num} and severity {severity}')
dataset = LoadImagesAndLabels(path, imgsz, batch_size, rect=True, single_cls=opt.single_cls, pad=0.5,
corruption_num=corruption_num, severity=severity)
batch_size = min(batch_size, len(dataset))
dataloader = DataLoader(dataset,
batch_size=batch_size,
num_workers=min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]),
pin_memory=True,
collate_fn=dataset.collate_fn)
seen = 0
if ensemble_main_name is None:
model.eval()
if dropout_at_inference:
enable_dropout(model)
_ = model(torch.zeros((1, 3, imgsz, imgsz), device=device)) if device.type != 'cpu' else None # run once
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@0.5', 'F1')
p, r, f1, mp, mr, map, mf1, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
loss = torch.zeros(3, device=device)
jdict, stats, ap, ap_class = [], [], [], []
for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
imgs = imgs.to(device).float() / 255.0 # uint8 to float32, 0 - 255 to 0.0 - 1.0
targets = targets.to(device)
nb, _, height, width = imgs.shape # batch size, channels, height, width
whwh = torch.Tensor([width, height, width, height]).to(device)
# Disable gradients
with torch.no_grad():
# Run model
t = torch_utils.time_synchronized()
if num_samples == 1:
inf_out, train_out = model(imgs, augment=augment) # inference and training outputs
# MC-Dropout sampling
elif num_samples > 1:
if with_cached_mcdrop:
infs_all = model_decorator.sample_from_model(imgs, num_samples=num_samples, augment=augment)
else:
infs_all = []
for i in range(num_samples):
# train_out is only for when training
if ensemble_main_name is None:
inf_out_i, _ = model(imgs, augment=augment)
else:
inf_out_i, _ = ensemble_models[i](imgs, augment=augment)
# Appending batch_size X detections X 1 X 85
infs_all.append(inf_out_i.unsqueeze(2))
inf_mean = torch.mean(torch.stack(infs_all), dim=0)
infs_all.insert(0, inf_mean)
# Creating a single tensor with the averaged tensor for calculations, and all the sampled tensors for variability
# batch_size X detections X (mean_tensor + sampled tensors) X 85
inf_out = torch.cat(infs_all, dim=2)
t0 += torch_utils.time_synchronized() - t
# Compute loss
if is_training: # if model has loss hyperparameters
loss += compute_loss(train_out, targets, model)[1][:3] # GIoU, obj, cls
# Run NMS
t = torch_utils.time_synchronized()
output, all_scores, sampled_coords = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, multi_label=multi_label,
max_width=width, max_height=height, get_unknowns=get_unknowns)
t1 += torch_utils.time_synchronized() - t
# Statistics per image
for si, pred in enumerate(output):
labels = targets[targets[:, 0] == si, 1:]
nl = len(labels)
tcls = labels[:, 0].tolist() if nl else [] # target class
seen += 1
if pred is None:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
# Append to text file
# with open('test.txt', 'a') as file:
# [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]
# Clip boxes to image bounds
clip_coords(pred, (height, width))
# Append to pycocotools JSON dictionary
if save_json:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(Path(paths[si]).stem.split('_')[-1])
box = pred[:, :4].clone() # xyxy
scale_coords(imgs[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
box = xyxy2xywh(box) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
# Getting covariances
# The transformations to coordinates follow the ones that are done below here after the if clause
if num_samples > 1:
# output: BS(list) x NUM_DETECTIONS x 6
# sampled_coords : BS(list) x NUM_DETECTIONS x NUM_SAMPLES x 4
# sampled_boxes : NUM_DETECTIONS x NUM_SAMPLES x 4
sampled_boxes = xywh2xyxy(sampled_coords[si].reshape(-1, 4)).reshape(sampled_coords[si].shape)
clip_coords(sampled_boxes.reshape(-1, 4), (height, width))
scale_coords(imgs[si].shape[1:], sampled_boxes.reshape(-1, 4), shapes[si][0], shapes[si][1])
# It will have 2 covariances matrices of 2X2 for each one of the two xy coordinates
covar_batch = torch.zeros(sampled_boxes.shape[0], 2, 2, 2)
for det_id in range(sampled_boxes.shape[0]):
covar_batch[det_id, 0, ...] = cov(sampled_boxes[det_id, :, :2])
covar_batch[det_id, 1, ...] = cov(sampled_boxes[det_id, :, 2:])
# Rounding it for smaller size
covar_batch = np.around(covar_batch.numpy(), 5).tolist()
else:
# Just dummy covars for the json zip() down below
covar_batch = [None] * pred.shape[0]
for p, b, p_all, covar_xyxy in zip(pred.tolist(), box.tolist(), all_scores[si].tolist(), covar_batch):
if covar_xyxy is not None:
# Covariances need to be positive semi-definite, so just transform them here already
for i, covar_tmp in enumerate(covar_xyxy):
covar_tmp = np.array(covar_tmp)
if not is_pos_semidef(covar_tmp):
print('Warning: Converted covar to near PSD')
covar_xyxy[i] = get_near_psd(covar_tmp).tolist()
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])],
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5),
'all_scores': [round(x, 5) for x in p_all],
'covars' : covar_xyxy})
# Assign all predictions as incorrect
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
if nl and not only_inference:
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5]) * whwh
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero().view(-1) # target indices
pi = (cls == pred[:, 5]).nonzero().view(-1) # prediction indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
# Append detections
for j in (ious > iouv[0]).nonzero():
d = ti[i[j]] # detected target
if d not in detected:
detected.append(d)
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
if len(detected) == nl: # all targets already located in image
break
# Append statistics (correct, conf, pcls, tcls)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# Plot images for batch
if batch_i < 1:
if not only_inference:
f = f'output/batch_figures/test_batch_{name}_{conf_thres}_{iou_thres}_%g_gt.jpg' % batch_i # filename
plot_images(imgs, targets, paths=paths, names=names, fname=f, max_subplots=batch_size) # ground truth
f = f'output/batch_figures/test_batch_{name}_{conf_thres}_{iou_thres}_%g_pred.jpg' % batch_i
plot_images(imgs, output_to_target(output, width, height), paths=paths, names=names, fname=f, max_subplots=batch_size) # predictions
if not only_inference:
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
if len(stats):
p, r, ap, f1, ap_class = ap_per_class(*stats)
if niou > 1:
p, r, ap, f1 = p[:, 0], r[:, 0], ap.mean(1), ap[:, 0] # [P, R, AP@0.5:0.95, AP@0.5]
mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%10.3g' * 6 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1))
# Print results per class
if verbose and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))
# Print speeds
if verbose or save_json:
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
# Save JSON
if save_json and len(jdict):
print(f'\nSaving {len(jdict)} detections...')
print('\nCOCO mAP with pycocotools...')
imgIds = [int(Path(x).stem.split('_')[-1]) for x in dataloader.dataset.img_files]
with open(f'output/dets_{name}_{conf_thres}_{iou_thres}.json', 'w') as file:
json.dump(jdict, file)
'''
No need for this part as it will be evaluated later
try:
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
cocoGt = COCO(glob.glob(data['instances_path'])[0]) # initialize COCO ground truth api
cocoDt = cocoGt.loadRes(f'output/dets_{name}_{conf_thres}_{iou_thres}.json') # initialize COCO pred api
cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
cocoEval.params.imgIds = imgIds # [:32] # only evaluate these images
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
# mf1, map = cocoEval.stats[:2] # update to pycocotools results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
print(e)
print('WARNING: pycocotools must be installed with numpy==1.17 to run correctly. '
'See https://github.com/cocodataset/cocoapi/issues/356')
'''
del jdict
print('Converting to RVC1 format...')
convert_coco_det_to_rvc_det(det_filename=f'output/dets_{name}_{conf_thres}_{iou_thres}.json',
gt_filename=glob.glob(data['instances_path'])[0],
save_filename=f'output/dets_converted_{name}_{conf_thres}_{iou_thres}.json')
# Return results
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
return (mp, mr, map, mf1, *(loss.cpu() / len(dataloader)).tolist()), maps
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path')
parser.add_argument('--data', type=str, default='data/coco2014.data', help='*.data path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path')
parser.add_argument('--batch-size', type=int, default=16, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--save-json', action='store_true', default=True, help='save a cocoapi-compatible JSON results file')
parser.add_argument('--task', default='test', help="'test', 'study', 'benchmark'")
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--dropout_ids', nargs='*', type=int, help='when weights file is from a non-dropout model, and cfg is a dropout model, this indicates what are the dropout layers IDs starting from 0')
parser.add_argument('--name', default='', help='renames resulting files in this script using this name')
parser.add_argument('--dropout_at_inference', action='store_true', help='Activate dropout at inference time')
parser.add_argument('--num_samples', type=int, default=1, help='How many times to sample if doing MC-Dropout')
parser.add_argument('--corruption_num', type=int, help='which corruption number to use from imagecorruptions')
parser.add_argument('--severity', type=int, help='which severity to use for the corruption in --corruption_num')
parser.add_argument('--get_unknowns', action='store_true', help='get bboxes of unknowns conf_labels < 0.5 and threshold > 0.1')
parser.add_argument('--only_inference', action='store_true', help='to indicate that the info in --data does not have valid ground truths or to not calculate some evaluations')
parser.add_argument('--new_drop_rate', type=float, help='change the dropout rate of Dropout layers to this, regardless of the values in .cfg file')
parser.add_argument('--with_cached_mcdrop', action='store_true', help='Use the cached version of MCDropout sampling. Note this will not use DataParallel for GPU type')
parser.add_argument('--ensemble_main_name', type=str, help='the main name of the ensemble model in which --num_samples will be sampled from. This takes precendence on other options. This considers pretrained models will be in weights/ folder.')
opt = parser.parse_args()
opt.save_json = opt.save_json or any([x in opt.data for x in ['coco.data', 'coco2014.data', 'coco2017.data', 'coco2017_sampled.data']])
opt.cfg = check_file(opt.cfg) # check file
opt.data = check_file(opt.data) # check file
print(opt)
if opt.new_drop_rate is not None and (opt.new_drop_rate < 0 or opt.new_drop_rate > 1):
sys.exit('Wrong format for --new_drop_rate. It needs to be between [0, 1]')
if opt.with_cached_mcdrop and (opt.ensemble_main_name is not None):
sys.exit('--with_cached_mcdrop cannot be used together with --ensemble_main_name')
# task = 'test', 'study', 'benchmark'
if opt.task == 'test': # (default) test normally
test(cfg=opt.cfg,
data=opt.data,
weights=opt.weights,
batch_size=opt.batch_size,
imgsz=opt.img_size,
conf_thres=opt.conf_thres,
iou_thres=opt.iou_thres,
save_json=opt.save_json,
single_cls=opt.single_cls,
augment=opt.augment,
dropout_ids=opt.dropout_ids,
name=opt.name,
dropout_at_inference=opt.dropout_at_inference,
num_samples=opt.num_samples,
corruption_num=opt.corruption_num,
severity=opt.severity,
get_unknowns=opt.get_unknowns,
only_inference=opt.only_inference,
new_drop_rate=opt.new_drop_rate,
with_cached_mcdrop=opt.with_cached_mcdrop,
ensemble_main_name=opt.ensemble_main_name)
elif opt.task == 'benchmark': # mAPs at 256-640 at conf 0.5 and 0.7
y = []
for i in [128, 416, 640]: # img-size
for j in [0.6, 0.7, 0.9]: # iou-thres
for z in [0.001, 0.1]:
t = time.time()
r = test(opt.cfg, opt.data, opt.weights, opt.batch_size, i, z, j, opt.save_json)[0]
y.append(r + (time.time() - t,))
np.savetxt('benchmark.txt', y, fmt='%10.4g') # y = np.loadtxt('study.txt')