From a320f7fb99cfc8ea52215a2acfecb0e44be76f74 Mon Sep 17 00:00:00 2001 From: Theodore Ni <3806110+tjni@users.noreply.github.com> Date: Fri, 20 Dec 2024 19:16:01 -0800 Subject: [PATCH] Simpler connection pool support. Instead of trying to accept library specific pool objects, make do with a Callable. We still wrap raw connections returned from SQLAlchemy in a context manager that calls close(). We use this like: engine = create_engine(...) checkpointer = PyMySQLSaver(engine.raw_connection) --- .../tests/__snapshots__/test_large_cases.ambr | 570 +----------------- .../tests/__snapshots__/test_pregel.ambr | 182 +----- langgraph-tests/tests/conftest.py | 71 +-- langgraph/checkpoint/mysql/_internal.py | 54 +- langgraph/checkpoint/mysql/shallow.py | 2 +- poetry.lock | 76 +-- tests/conftest.py | 7 +- tests/test_store.py | 30 +- tests/test_sync.py | 160 ++--- 9 files changed, 182 insertions(+), 970 deletions(-) diff --git a/langgraph-tests/tests/__snapshots__/test_large_cases.ambr b/langgraph-tests/tests/__snapshots__/test_large_cases.ambr index 48c3be7..f62a8ee 100644 --- a/langgraph-tests/tests/__snapshots__/test_large_cases.ambr +++ b/langgraph-tests/tests/__snapshots__/test_large_cases.ambr @@ -33,7 +33,7 @@ ''' # --- -# name: test_branch_then[pymysql_sqlalchemy_pool] +# name: test_branch_then[pymysql_pool] ''' graph TD; __start__ --> prepare; @@ -45,41 +45,7 @@ ''' # --- -# name: test_branch_then[pymysql_sqlalchemy_pool].1 - ''' - %%{init: {'flowchart': {'curve': 'linear'}}}%% - graph TD; - __start__([

__start__

]):::first - prepare(prepare) - tool_two_slow(tool_two_slow) - tool_two_fast(tool_two_fast) - finish(finish) - __end__([

__end__

]):::last - __start__ --> prepare; - finish --> __end__; - prepare -.-> tool_two_slow; - tool_two_slow --> finish; - prepare -.-> tool_two_fast; - tool_two_fast --> finish; - classDef default fill:#f2f0ff,line-height:1.2 - classDef first fill-opacity:0 - classDef last fill:#bfb6fc - - ''' -# --- -# name: test_branch_then[pymysql_callable] - ''' - graph TD; - __start__ --> prepare; - finish --> __end__; - prepare -.-> tool_two_slow; - tool_two_slow --> finish; - prepare -.-> tool_two_fast; - tool_two_fast --> finish; - - ''' -# --- -# name: test_branch_then[pymysql_callable].1 +# name: test_branch_then[pymysql_pool].1 ''' %%{init: {'flowchart': {'curve': 'linear'}}}%% graph TD; @@ -410,282 +376,7 @@ ''' # --- -# name: test_conditional_graph[pymysql_sqlalchemy_pool] - ''' - { - "nodes": [ - { - "id": "__start__", - "type": "schema", - "data": "__start__" - }, - { - "id": "agent", - "type": "runnable", - "data": { - "id": [ - "langchain", - "schema", - "runnable", - "RunnableAssign" - ], - "name": "agent" - } - }, - { - "id": "tools", - "type": "runnable", - "data": { - "id": [ - "langgraph", - "utils", - "runnable", - "RunnableCallable" - ], - "name": "tools" - }, - "metadata": { - "parents": {}, - "version": 2, - "variant": "b" - } - }, - { - "id": "__end__", - "type": "schema", - "data": "__end__" - } - ], - "edges": [ - { - "source": "__start__", - "target": "agent" - }, - { - "source": "tools", - "target": "agent" - }, - { - "source": "agent", - "target": "tools", - "data": "continue", - "conditional": true - }, - { - "source": "agent", - "target": "__end__", - "data": "exit", - "conditional": true - } - ] - } - ''' -# --- -# name: test_conditional_graph[pymysql_sqlalchemy_pool].1 - ''' - graph TD; - __start__ --> agent; - tools --> agent; - agent -.  continue  .-> tools; - agent -.  exit  .-> __end__; - - ''' -# --- -# name: test_conditional_graph[pymysql_sqlalchemy_pool].2 - ''' - %%{init: {'flowchart': {'curve': 'linear'}}}%% - graph TD; - __start__([

__start__

]):::first - agent(agent) - tools(tools
parents = {} - version = 2 - variant = b) - __end__([

__end__

]):::last - __start__ --> agent; - tools --> agent; - agent -.  continue  .-> tools; - agent -.  exit  .-> __end__; - classDef default fill:#f2f0ff,line-height:1.2 - classDef first fill-opacity:0 - classDef last fill:#bfb6fc - - ''' -# --- -# name: test_conditional_graph[pymysql_sqlalchemy_pool].3 - ''' - { - "nodes": [ - { - "id": "__start__", - "type": "schema", - "data": "__start__" - }, - { - "id": "agent", - "type": "runnable", - "data": { - "id": [ - "langchain", - "schema", - "runnable", - "RunnableAssign" - ], - "name": "agent" - } - }, - { - "id": "tools", - "type": "runnable", - "data": { - "id": [ - "langgraph", - "utils", - "runnable", - "RunnableCallable" - ], - "name": "tools" - }, - "metadata": { - "parents": {}, - "version": 2, - "variant": "b" - } - }, - { - "id": "__end__", - "type": "schema", - "data": "__end__" - } - ], - "edges": [ - { - "source": "__start__", - "target": "agent" - }, - { - "source": "tools", - "target": "agent" - }, - { - "source": "agent", - "target": "tools", - "data": "continue", - "conditional": true - }, - { - "source": "agent", - "target": "__end__", - "data": "exit", - "conditional": true - } - ] - } - ''' -# --- -# name: test_conditional_graph[pymysql_sqlalchemy_pool].4 - ''' - graph TD; - __start__ --> agent; - tools --> agent; - agent -.  continue  .-> tools; - agent -.  exit  .-> __end__; - - ''' -# --- -# name: test_conditional_graph[pymysql_sqlalchemy_pool].5 - dict({ - 'edges': list([ - dict({ - 'source': '__start__', - 'target': 'agent', - }), - dict({ - 'source': 'tools', - 'target': 'agent', - }), - dict({ - 'conditional': True, - 'data': 'continue', - 'source': 'agent', - 'target': 'tools', - }), - dict({ - 'conditional': True, - 'data': 'exit', - 'source': 'agent', - 'target': '__end__', - }), - ]), - 'nodes': list([ - dict({ - 'data': '__start__', - 'id': '__start__', - 'type': 'schema', - }), - dict({ - 'data': dict({ - 'id': list([ - 'langchain', - 'schema', - 'runnable', - 'RunnableAssign', - ]), - 'name': 'agent', - }), - 'id': 'agent', - 'metadata': dict({ - '__interrupt': 'after', - }), - 'type': 'runnable', - }), - dict({ - 'data': dict({ - 'id': list([ - 'langgraph', - 'utils', - 'runnable', - 'RunnableCallable', - ]), - 'name': 'tools', - }), - 'id': 'tools', - 'metadata': dict({ - 'parents': dict({ - }), - 'variant': 'b', - 'version': 2, - }), - 'type': 'runnable', - }), - dict({ - 'data': '__end__', - 'id': '__end__', - 'type': 'schema', - }), - ]), - }) -# --- -# name: test_conditional_graph[pymysql_sqlalchemy_pool].6 - ''' - %%{init: {'flowchart': {'curve': 'linear'}}}%% - graph TD; - __start__([

__start__

]):::first - agent(agent
__interrupt = after) - tools(tools
parents = {} - version = 2 - variant = b) - __end__([

__end__

]):::last - __start__ --> agent; - tools --> agent; - agent -.  continue  .-> tools; - agent -.  exit  .-> __end__; - classDef default fill:#f2f0ff,line-height:1.2 - classDef first fill-opacity:0 - classDef last fill:#bfb6fc - - ''' -# --- -# name: test_conditional_graph[pymysql_callable] +# name: test_conditional_graph[pymysql_pool] ''' { "nodes": [ @@ -756,7 +447,7 @@ } ''' # --- -# name: test_conditional_graph[pymysql_callable].1 +# name: test_conditional_graph[pymysql_pool].1 ''' graph TD; __start__ --> agent; @@ -766,7 +457,7 @@ ''' # --- -# name: test_conditional_graph[pymysql_callable].2 +# name: test_conditional_graph[pymysql_pool].2 ''' %%{init: {'flowchart': {'curve': 'linear'}}}%% graph TD; @@ -786,7 +477,7 @@ ''' # --- -# name: test_conditional_graph[pymysql_callable].3 +# name: test_conditional_graph[pymysql_pool].3 ''' { "nodes": [ @@ -857,7 +548,7 @@ } ''' # --- -# name: test_conditional_graph[pymysql_callable].4 +# name: test_conditional_graph[pymysql_pool].4 ''' graph TD; __start__ --> agent; @@ -867,7 +558,7 @@ ''' # --- -# name: test_conditional_graph[pymysql_callable].5 +# name: test_conditional_graph[pymysql_pool].5 dict({ 'edges': list([ dict({ @@ -940,7 +631,7 @@ ]), }) # --- -# name: test_conditional_graph[pymysql_callable].6 +# name: test_conditional_graph[pymysql_pool].6 ''' %%{init: {'flowchart': {'curve': 'linear'}}}%% graph TD; @@ -1317,95 +1008,13 @@ ''' # --- -# name: test_conditional_state_graph[pymysql_sqlalchemy_pool] - '{"$defs": {"AgentAction": {"description": "Represents a request to execute an action by an agent.\\n\\nThe action consists of the name of the tool to execute and the input to pass\\nto the tool. The log is used to pass along extra information about the action.", "properties": {"tool": {"title": "Tool", "type": "string"}, "tool_input": {"anyOf": [{"type": "string"}, {"type": "object"}], "title": "Tool Input"}, "log": {"title": "Log", "type": "string"}, "type": {"const": "AgentAction", "default": "AgentAction", "enum": ["AgentAction"], "title": "Type", "type": "string"}}, "required": ["tool", "tool_input", "log"], "title": "AgentAction", "type": "object"}, "AgentFinish": {"description": "Final return value of an ActionAgent.\\n\\nAgents return an AgentFinish when they have reached a stopping condition.", "properties": {"return_values": {"title": "Return Values", "type": "object"}, "log": {"title": "Log", "type": "string"}, "type": {"const": "AgentFinish", "default": "AgentFinish", "enum": ["AgentFinish"], "title": "Type", "type": "string"}}, "required": ["return_values", "log"], "title": "AgentFinish", "type": "object"}}, "properties": {"input": {"default": null, "title": "Input", "type": "string"}, "agent_outcome": {"anyOf": [{"$ref": "#/$defs/AgentAction"}, {"$ref": "#/$defs/AgentFinish"}, {"type": "null"}], "default": null, "title": "Agent Outcome"}, "intermediate_steps": {"default": null, "items": {"maxItems": 2, "minItems": 2, "prefixItems": [{"$ref": "#/$defs/AgentAction"}, {"type": "string"}], "type": "array"}, "title": "Intermediate Steps", "type": "array"}}, "title": "LangGraphInput", "type": "object"}' -# --- -# name: test_conditional_state_graph[pymysql_sqlalchemy_pool].1 - '{"$defs": {"AgentAction": {"description": "Represents a request to execute an action by an agent.\\n\\nThe action consists of the name of the tool to execute and the input to pass\\nto the tool. The log is used to pass along extra information about the action.", "properties": {"tool": {"title": "Tool", "type": "string"}, "tool_input": {"anyOf": [{"type": "string"}, {"type": "object"}], "title": "Tool Input"}, "log": {"title": "Log", "type": "string"}, "type": {"const": "AgentAction", "default": "AgentAction", "enum": ["AgentAction"], "title": "Type", "type": "string"}}, "required": ["tool", "tool_input", "log"], "title": "AgentAction", "type": "object"}, "AgentFinish": {"description": "Final return value of an ActionAgent.\\n\\nAgents return an AgentFinish when they have reached a stopping condition.", "properties": {"return_values": {"title": "Return Values", "type": "object"}, "log": {"title": "Log", "type": "string"}, "type": {"const": "AgentFinish", "default": "AgentFinish", "enum": ["AgentFinish"], "title": "Type", "type": "string"}}, "required": ["return_values", "log"], "title": "AgentFinish", "type": "object"}}, "properties": {"input": {"default": null, "title": "Input", "type": "string"}, "agent_outcome": {"anyOf": [{"$ref": "#/$defs/AgentAction"}, {"$ref": "#/$defs/AgentFinish"}, {"type": "null"}], "default": null, "title": "Agent Outcome"}, "intermediate_steps": {"default": null, "items": {"maxItems": 2, "minItems": 2, "prefixItems": [{"$ref": "#/$defs/AgentAction"}, {"type": "string"}], "type": "array"}, "title": "Intermediate Steps", "type": "array"}}, "title": "LangGraphOutput", "type": "object"}' -# --- -# name: test_conditional_state_graph[pymysql_sqlalchemy_pool].2 - ''' - { - "nodes": [ - { - "id": "__start__", - "type": "schema", - "data": "__start__" - }, - { - "id": "agent", - "type": "runnable", - "data": { - "id": [ - "langchain", - "schema", - "runnable", - "RunnableSequence" - ], - "name": "agent" - } - }, - { - "id": "tools", - "type": "runnable", - "data": { - "id": [ - "langgraph", - "utils", - "runnable", - "RunnableCallable" - ], - "name": "tools" - } - }, - { - "id": "__end__", - "type": "schema", - "data": "__end__" - } - ], - "edges": [ - { - "source": "__start__", - "target": "agent" - }, - { - "source": "tools", - "target": "agent" - }, - { - "source": "agent", - "target": "tools", - "data": "continue", - "conditional": true - }, - { - "source": "agent", - "target": "__end__", - "data": "exit", - "conditional": true - } - ] - } - ''' -# --- -# name: test_conditional_state_graph[pymysql_sqlalchemy_pool].3 - ''' - graph TD; - __start__ --> agent; - tools --> agent; - agent -.  continue  .-> tools; - agent -.  exit  .-> __end__; - - ''' -# --- -# name: test_conditional_state_graph[pymysql_callable] +# name: test_conditional_state_graph[pymysql_pool] '{"$defs": {"AgentAction": {"description": "Represents a request to execute an action by an agent.\\n\\nThe action consists of the name of the tool to execute and the input to pass\\nto the tool. The log is used to pass along extra information about the action.", "properties": {"tool": {"title": "Tool", "type": "string"}, "tool_input": {"anyOf": [{"type": "string"}, {"type": "object"}], "title": "Tool Input"}, "log": {"title": "Log", "type": "string"}, "type": {"const": "AgentAction", "default": "AgentAction", "enum": ["AgentAction"], "title": "Type", "type": "string"}}, "required": ["tool", "tool_input", "log"], "title": "AgentAction", "type": "object"}, "AgentFinish": {"description": "Final return value of an ActionAgent.\\n\\nAgents return an AgentFinish when they have reached a stopping condition.", "properties": {"return_values": {"title": "Return Values", "type": "object"}, "log": {"title": "Log", "type": "string"}, "type": {"const": "AgentFinish", "default": "AgentFinish", "enum": ["AgentFinish"], "title": "Type", "type": "string"}}, "required": ["return_values", "log"], "title": "AgentFinish", "type": "object"}}, "properties": {"input": {"default": null, "title": "Input", "type": "string"}, "agent_outcome": {"anyOf": [{"$ref": "#/$defs/AgentAction"}, {"$ref": "#/$defs/AgentFinish"}, {"type": "null"}], "default": null, "title": "Agent Outcome"}, "intermediate_steps": {"default": null, "items": {"maxItems": 2, "minItems": 2, "prefixItems": [{"$ref": "#/$defs/AgentAction"}, {"type": "string"}], "type": "array"}, "title": "Intermediate Steps", "type": "array"}}, "title": "LangGraphInput", "type": "object"}' # --- -# name: test_conditional_state_graph[pymysql_callable].1 +# name: test_conditional_state_graph[pymysql_pool].1 '{"$defs": {"AgentAction": {"description": "Represents a request to execute an action by an agent.\\n\\nThe action consists of the name of the tool to execute and the input to pass\\nto the tool. The log is used to pass along extra information about the action.", "properties": {"tool": {"title": "Tool", "type": "string"}, "tool_input": {"anyOf": [{"type": "string"}, {"type": "object"}], "title": "Tool Input"}, "log": {"title": "Log", "type": "string"}, "type": {"const": "AgentAction", "default": "AgentAction", "enum": ["AgentAction"], "title": "Type", "type": "string"}}, "required": ["tool", "tool_input", "log"], "title": "AgentAction", "type": "object"}, "AgentFinish": {"description": "Final return value of an ActionAgent.\\n\\nAgents return an AgentFinish when they have reached a stopping condition.", "properties": {"return_values": {"title": "Return Values", "type": "object"}, "log": {"title": "Log", "type": "string"}, "type": {"const": "AgentFinish", "default": "AgentFinish", "enum": ["AgentFinish"], "title": "Type", "type": "string"}}, "required": ["return_values", "log"], "title": "AgentFinish", "type": "object"}}, "properties": {"input": {"default": null, "title": "Input", "type": "string"}, "agent_outcome": {"anyOf": [{"$ref": "#/$defs/AgentAction"}, {"$ref": "#/$defs/AgentFinish"}, {"type": "null"}], "default": null, "title": "Agent Outcome"}, "intermediate_steps": {"default": null, "items": {"maxItems": 2, "minItems": 2, "prefixItems": [{"$ref": "#/$defs/AgentAction"}, {"type": "string"}], "type": "array"}, "title": "Intermediate Steps", "type": "array"}}, "title": "LangGraphOutput", "type": "object"}' # --- -# name: test_conditional_state_graph[pymysql_callable].2 +# name: test_conditional_state_graph[pymysql_pool].2 ''' { "nodes": [ @@ -1471,7 +1080,7 @@ } ''' # --- -# name: test_conditional_state_graph[pymysql_callable].3 +# name: test_conditional_state_graph[pymysql_pool].3 ''' graph TD; __start__ --> agent; @@ -1644,13 +1253,13 @@ ''' # --- -# name: test_message_graph[pymysql_sqlalchemy_pool] +# name: test_message_graph[pymysql_pool] '{"$defs": {"AIMessage": {"additionalProperties": true, "description": "Message from an AI.\\n\\nAIMessage is returned from a chat model as a response to a prompt.\\n\\nThis message represents the output of the model and consists of both\\nthe raw output as returned by the model together standardized fields\\n(e.g., tool calls, usage metadata) added by the LangChain framework.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ai", "default": "ai", "enum": ["ai"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}, "tool_calls": {"default": [], "items": {"$ref": "#/$defs/ToolCall"}, "title": "Tool Calls", "type": "array"}, "invalid_tool_calls": {"default": [], "items": {"$ref": "#/$defs/InvalidToolCall"}, "title": "Invalid Tool Calls", "type": "array"}, "usage_metadata": {"anyOf": [{"$ref": "#/$defs/UsageMetadata"}, {"type": "null"}], "default": null}}, "required": ["content"], "title": "AIMessage", "type": "object"}, "AIMessageChunk": {"additionalProperties": true, "description": "Message chunk from an AI.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "AIMessageChunk", "default": "AIMessageChunk", "enum": ["AIMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}, "tool_calls": {"default": [], "items": {"$ref": "#/$defs/ToolCall"}, "title": "Tool Calls", "type": "array"}, "invalid_tool_calls": {"default": [], "items": {"$ref": "#/$defs/InvalidToolCall"}, "title": "Invalid Tool Calls", "type": "array"}, "usage_metadata": {"anyOf": [{"$ref": "#/$defs/UsageMetadata"}, {"type": "null"}], "default": null}, "tool_call_chunks": {"default": [], "items": {"$ref": "#/$defs/ToolCallChunk"}, "title": "Tool Call Chunks", "type": "array"}}, "required": ["content"], "title": "AIMessageChunk", "type": "object"}, "ChatMessage": {"additionalProperties": true, "description": "Message that can be assigned an arbitrary speaker (i.e. role).", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "chat", "default": "chat", "enum": ["chat"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "role": {"title": "Role", "type": "string"}}, "required": ["content", "role"], "title": "ChatMessage", "type": "object"}, "ChatMessageChunk": {"additionalProperties": true, "description": "Chat Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ChatMessageChunk", "default": "ChatMessageChunk", "enum": ["ChatMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "role": {"title": "Role", "type": "string"}}, "required": ["content", "role"], "title": "ChatMessageChunk", "type": "object"}, "FunctionMessage": {"additionalProperties": true, "description": "Message for passing the result of executing a tool back to a model.\\n\\nFunctionMessage are an older version of the ToolMessage schema, and\\ndo not contain the tool_call_id field.\\n\\nThe tool_call_id field is used to associate the tool call request with the\\ntool call response. This is useful in situations where a chat model is able\\nto request multiple tool calls in parallel.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "function", "default": "function", "enum": ["function"], "title": "Type", "type": "string"}, "name": {"title": "Name", "type": "string"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content", "name"], "title": "FunctionMessage", "type": "object"}, "FunctionMessageChunk": {"additionalProperties": true, "description": "Function Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "FunctionMessageChunk", "default": "FunctionMessageChunk", "enum": ["FunctionMessageChunk"], "title": "Type", "type": "string"}, "name": {"title": "Name", "type": "string"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content", "name"], "title": "FunctionMessageChunk", "type": "object"}, "HumanMessage": {"additionalProperties": true, "description": "Message from a human.\\n\\nHumanMessages are messages that are passed in from a human to the model.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import HumanMessage, SystemMessage\\n\\n messages = [\\n SystemMessage(\\n content=\\"You are a helpful assistant! Your name is Bob.\\"\\n ),\\n HumanMessage(\\n content=\\"What is your name?\\"\\n )\\n ]\\n\\n # Instantiate a chat model and invoke it with the messages\\n model = ...\\n print(model.invoke(messages))", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "human", "default": "human", "enum": ["human"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}}, "required": ["content"], "title": "HumanMessage", "type": "object"}, "HumanMessageChunk": {"additionalProperties": true, "description": "Human Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "HumanMessageChunk", "default": "HumanMessageChunk", "enum": ["HumanMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}}, "required": ["content"], "title": "HumanMessageChunk", "type": "object"}, "InputTokenDetails": {"description": "Breakdown of input token counts.\\n\\nDoes *not* need to sum to full input token count. Does *not* need to have all keys.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"audio\\": 10,\\n \\"cache_creation\\": 200,\\n \\"cache_read\\": 100,\\n }\\n\\n.. versionadded:: 0.3.9", "properties": {"audio": {"title": "Audio", "type": "integer"}, "cache_creation": {"title": "Cache Creation", "type": "integer"}, "cache_read": {"title": "Cache Read", "type": "integer"}}, "title": "InputTokenDetails", "type": "object"}, "InvalidToolCall": {"description": "Allowance for errors made by LLM.\\n\\nHere we add an `error` key to surface errors made during generation\\n(e.g., invalid JSON arguments.)", "properties": {"name": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Name"}, "args": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Args"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "error": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Error"}, "type": {"const": "invalid_tool_call", "enum": ["invalid_tool_call"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id", "error"], "title": "InvalidToolCall", "type": "object"}, "OutputTokenDetails": {"description": "Breakdown of output token counts.\\n\\nDoes *not* need to sum to full output token count. Does *not* need to have all keys.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"audio\\": 10,\\n \\"reasoning\\": 200,\\n }\\n\\n.. versionadded:: 0.3.9", "properties": {"audio": {"title": "Audio", "type": "integer"}, "reasoning": {"title": "Reasoning", "type": "integer"}}, "title": "OutputTokenDetails", "type": "object"}, "SystemMessage": {"additionalProperties": true, "description": "Message for priming AI behavior.\\n\\nThe system message is usually passed in as the first of a sequence\\nof input messages.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import HumanMessage, SystemMessage\\n\\n messages = [\\n SystemMessage(\\n content=\\"You are a helpful assistant! Your name is Bob.\\"\\n ),\\n HumanMessage(\\n content=\\"What is your name?\\"\\n )\\n ]\\n\\n # Define a chat model and invoke it with the messages\\n print(model.invoke(messages))", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "system", "default": "system", "enum": ["system"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content"], "title": "SystemMessage", "type": "object"}, "SystemMessageChunk": {"additionalProperties": true, "description": "System Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "SystemMessageChunk", "default": "SystemMessageChunk", "enum": ["SystemMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content"], "title": "SystemMessageChunk", "type": "object"}, "ToolCall": {"description": "Represents a request to call a tool.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"name\\": \\"foo\\",\\n \\"args\\": {\\"a\\": 1},\\n \\"id\\": \\"123\\"\\n }\\n\\n This represents a request to call the tool named \\"foo\\" with arguments {\\"a\\": 1}\\n and an identifier of \\"123\\".", "properties": {"name": {"title": "Name", "type": "string"}, "args": {"title": "Args", "type": "object"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "type": {"const": "tool_call", "enum": ["tool_call"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id"], "title": "ToolCall", "type": "object"}, "ToolCallChunk": {"description": "A chunk of a tool call (e.g., as part of a stream).\\n\\nWhen merging ToolCallChunks (e.g., via AIMessageChunk.__add__),\\nall string attributes are concatenated. Chunks are only merged if their\\nvalues of `index` are equal and not None.\\n\\nExample:\\n\\n.. code-block:: python\\n\\n left_chunks = [ToolCallChunk(name=\\"foo\\", args=\'{\\"a\\":\', index=0)]\\n right_chunks = [ToolCallChunk(name=None, args=\'1}\', index=0)]\\n\\n (\\n AIMessageChunk(content=\\"\\", tool_call_chunks=left_chunks)\\n + AIMessageChunk(content=\\"\\", tool_call_chunks=right_chunks)\\n ).tool_call_chunks == [ToolCallChunk(name=\'foo\', args=\'{\\"a\\":1}\', index=0)]", "properties": {"name": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Name"}, "args": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Args"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "index": {"anyOf": [{"type": "integer"}, {"type": "null"}], "title": "Index"}, "type": {"const": "tool_call_chunk", "enum": ["tool_call_chunk"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id", "index"], "title": "ToolCallChunk", "type": "object"}, "ToolMessage": {"additionalProperties": true, "description": "Message for passing the result of executing a tool back to a model.\\n\\nToolMessages contain the result of a tool invocation. Typically, the result\\nis encoded inside the `content` field.\\n\\nExample: A ToolMessage representing a result of 42 from a tool call with id\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import ToolMessage\\n\\n ToolMessage(content=\'42\', tool_call_id=\'call_Jja7J89XsjrOLA5r!MEOW!SL\')\\n\\n\\nExample: A ToolMessage where only part of the tool output is sent to the model\\n and the full output is passed in to artifact.\\n\\n .. versionadded:: 0.2.17\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import ToolMessage\\n\\n tool_output = {\\n \\"stdout\\": \\"From the graph we can see that the correlation between x and y is ...\\",\\n \\"stderr\\": None,\\n \\"artifacts\\": {\\"type\\": \\"image\\", \\"base64_data\\": \\"/9j/4gIcSU...\\"},\\n }\\n\\n ToolMessage(\\n content=tool_output[\\"stdout\\"],\\n artifact=tool_output,\\n tool_call_id=\'call_Jja7J89XsjrOLA5r!MEOW!SL\',\\n )\\n\\nThe tool_call_id field is used to associate the tool call request with the\\ntool call response. This is useful in situations where a chat model is able\\nto request multiple tool calls in parallel.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "tool", "default": "tool", "enum": ["tool"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "tool_call_id": {"title": "Tool Call Id", "type": "string"}, "artifact": {"default": null, "title": "Artifact"}, "status": {"default": "success", "enum": ["success", "error"], "title": "Status", "type": "string"}}, "required": ["content", "tool_call_id"], "title": "ToolMessage", "type": "object"}, "ToolMessageChunk": {"additionalProperties": true, "description": "Tool Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ToolMessageChunk", "default": "ToolMessageChunk", "enum": ["ToolMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "tool_call_id": {"title": "Tool Call Id", "type": "string"}, "artifact": {"default": null, "title": "Artifact"}, "status": {"default": "success", "enum": ["success", "error"], "title": "Status", "type": "string"}}, "required": ["content", "tool_call_id"], "title": "ToolMessageChunk", "type": "object"}, "UsageMetadata": {"description": "Usage metadata for a message, such as token counts.\\n\\nThis is a standard representation of token usage that is consistent across models.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"input_tokens\\": 350,\\n \\"output_tokens\\": 240,\\n \\"total_tokens\\": 590,\\n \\"input_token_details\\": {\\n \\"audio\\": 10,\\n \\"cache_creation\\": 200,\\n \\"cache_read\\": 100,\\n },\\n \\"output_token_details\\": {\\n \\"audio\\": 10,\\n \\"reasoning\\": 200,\\n }\\n }\\n\\n.. versionchanged:: 0.3.9\\n\\n Added ``input_token_details`` and ``output_token_details``.", "properties": {"input_tokens": {"title": "Input Tokens", "type": "integer"}, "output_tokens": {"title": "Output Tokens", "type": "integer"}, "total_tokens": {"title": "Total Tokens", "type": "integer"}, "input_token_details": {"$ref": "#/$defs/InputTokenDetails"}, "output_token_details": {"$ref": "#/$defs/OutputTokenDetails"}}, "required": ["input_tokens", "output_tokens", "total_tokens"], "title": "UsageMetadata", "type": "object"}}, "default": null, "items": {"oneOf": [{"$ref": "#/$defs/AIMessage"}, {"$ref": "#/$defs/HumanMessage"}, {"$ref": "#/$defs/ChatMessage"}, {"$ref": "#/$defs/SystemMessage"}, {"$ref": "#/$defs/FunctionMessage"}, {"$ref": "#/$defs/ToolMessage"}, {"$ref": "#/$defs/AIMessageChunk"}, {"$ref": "#/$defs/HumanMessageChunk"}, {"$ref": "#/$defs/ChatMessageChunk"}, {"$ref": "#/$defs/SystemMessageChunk"}, {"$ref": "#/$defs/FunctionMessageChunk"}, {"$ref": "#/$defs/ToolMessageChunk"}]}, "title": "LangGraphInput", "type": "array"}' # --- -# name: test_message_graph[pymysql_sqlalchemy_pool].1 +# name: test_message_graph[pymysql_pool].1 '{"$defs": {"AIMessage": {"additionalProperties": true, "description": "Message from an AI.\\n\\nAIMessage is returned from a chat model as a response to a prompt.\\n\\nThis message represents the output of the model and consists of both\\nthe raw output as returned by the model together standardized fields\\n(e.g., tool calls, usage metadata) added by the LangChain framework.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ai", "default": "ai", "enum": ["ai"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}, "tool_calls": {"default": [], "items": {"$ref": "#/$defs/ToolCall"}, "title": "Tool Calls", "type": "array"}, "invalid_tool_calls": {"default": [], "items": {"$ref": "#/$defs/InvalidToolCall"}, "title": "Invalid Tool Calls", "type": "array"}, "usage_metadata": {"anyOf": [{"$ref": "#/$defs/UsageMetadata"}, {"type": "null"}], "default": null}}, "required": ["content"], "title": "AIMessage", "type": "object"}, "AIMessageChunk": {"additionalProperties": true, "description": "Message chunk from an AI.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "AIMessageChunk", "default": "AIMessageChunk", "enum": ["AIMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}, "tool_calls": {"default": [], "items": {"$ref": "#/$defs/ToolCall"}, "title": "Tool Calls", "type": "array"}, "invalid_tool_calls": {"default": [], "items": {"$ref": "#/$defs/InvalidToolCall"}, "title": "Invalid Tool Calls", "type": "array"}, "usage_metadata": {"anyOf": [{"$ref": "#/$defs/UsageMetadata"}, {"type": "null"}], "default": null}, "tool_call_chunks": {"default": [], "items": {"$ref": "#/$defs/ToolCallChunk"}, "title": "Tool Call Chunks", "type": "array"}}, "required": ["content"], "title": "AIMessageChunk", "type": "object"}, "ChatMessage": {"additionalProperties": true, "description": "Message that can be assigned an arbitrary speaker (i.e. role).", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "chat", "default": "chat", "enum": ["chat"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "role": {"title": "Role", "type": "string"}}, "required": ["content", "role"], "title": "ChatMessage", "type": "object"}, "ChatMessageChunk": {"additionalProperties": true, "description": "Chat Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ChatMessageChunk", "default": "ChatMessageChunk", "enum": ["ChatMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "role": {"title": "Role", "type": "string"}}, "required": ["content", "role"], "title": "ChatMessageChunk", "type": "object"}, "FunctionMessage": {"additionalProperties": true, "description": "Message for passing the result of executing a tool back to a model.\\n\\nFunctionMessage are an older version of the ToolMessage schema, and\\ndo not contain the tool_call_id field.\\n\\nThe tool_call_id field is used to associate the tool call request with the\\ntool call response. This is useful in situations where a chat model is able\\nto request multiple tool calls in parallel.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "function", "default": "function", "enum": ["function"], "title": "Type", "type": "string"}, "name": {"title": "Name", "type": "string"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content", "name"], "title": "FunctionMessage", "type": "object"}, "FunctionMessageChunk": {"additionalProperties": true, "description": "Function Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "FunctionMessageChunk", "default": "FunctionMessageChunk", "enum": ["FunctionMessageChunk"], "title": "Type", "type": "string"}, "name": {"title": "Name", "type": "string"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content", "name"], "title": "FunctionMessageChunk", "type": "object"}, "HumanMessage": {"additionalProperties": true, "description": "Message from a human.\\n\\nHumanMessages are messages that are passed in from a human to the model.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import HumanMessage, SystemMessage\\n\\n messages = [\\n SystemMessage(\\n content=\\"You are a helpful assistant! Your name is Bob.\\"\\n ),\\n HumanMessage(\\n content=\\"What is your name?\\"\\n )\\n ]\\n\\n # Instantiate a chat model and invoke it with the messages\\n model = ...\\n print(model.invoke(messages))", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "human", "default": "human", "enum": ["human"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}}, "required": ["content"], "title": "HumanMessage", "type": "object"}, "HumanMessageChunk": {"additionalProperties": true, "description": "Human Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "HumanMessageChunk", "default": "HumanMessageChunk", "enum": ["HumanMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}}, "required": ["content"], "title": "HumanMessageChunk", "type": "object"}, "InputTokenDetails": {"description": "Breakdown of input token counts.\\n\\nDoes *not* need to sum to full input token count. Does *not* need to have all keys.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"audio\\": 10,\\n \\"cache_creation\\": 200,\\n \\"cache_read\\": 100,\\n }\\n\\n.. versionadded:: 0.3.9", "properties": {"audio": {"title": "Audio", "type": "integer"}, "cache_creation": {"title": "Cache Creation", "type": "integer"}, "cache_read": {"title": "Cache Read", "type": "integer"}}, "title": "InputTokenDetails", "type": "object"}, "InvalidToolCall": {"description": "Allowance for errors made by LLM.\\n\\nHere we add an `error` key to surface errors made during generation\\n(e.g., invalid JSON arguments.)", "properties": {"name": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Name"}, "args": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Args"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "error": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Error"}, "type": {"const": "invalid_tool_call", "enum": ["invalid_tool_call"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id", "error"], "title": "InvalidToolCall", "type": "object"}, "OutputTokenDetails": {"description": "Breakdown of output token counts.\\n\\nDoes *not* need to sum to full output token count. Does *not* need to have all keys.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"audio\\": 10,\\n \\"reasoning\\": 200,\\n }\\n\\n.. versionadded:: 0.3.9", "properties": {"audio": {"title": "Audio", "type": "integer"}, "reasoning": {"title": "Reasoning", "type": "integer"}}, "title": "OutputTokenDetails", "type": "object"}, "SystemMessage": {"additionalProperties": true, "description": "Message for priming AI behavior.\\n\\nThe system message is usually passed in as the first of a sequence\\nof input messages.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import HumanMessage, SystemMessage\\n\\n messages = [\\n SystemMessage(\\n content=\\"You are a helpful assistant! Your name is Bob.\\"\\n ),\\n HumanMessage(\\n content=\\"What is your name?\\"\\n )\\n ]\\n\\n # Define a chat model and invoke it with the messages\\n print(model.invoke(messages))", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "system", "default": "system", "enum": ["system"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content"], "title": "SystemMessage", "type": "object"}, "SystemMessageChunk": {"additionalProperties": true, "description": "System Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "SystemMessageChunk", "default": "SystemMessageChunk", "enum": ["SystemMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content"], "title": "SystemMessageChunk", "type": "object"}, "ToolCall": {"description": "Represents a request to call a tool.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"name\\": \\"foo\\",\\n \\"args\\": {\\"a\\": 1},\\n \\"id\\": \\"123\\"\\n }\\n\\n This represents a request to call the tool named \\"foo\\" with arguments {\\"a\\": 1}\\n and an identifier of \\"123\\".", "properties": {"name": {"title": "Name", "type": "string"}, "args": {"title": "Args", "type": "object"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "type": {"const": "tool_call", "enum": ["tool_call"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id"], "title": "ToolCall", "type": "object"}, "ToolCallChunk": {"description": "A chunk of a tool call (e.g., as part of a stream).\\n\\nWhen merging ToolCallChunks (e.g., via AIMessageChunk.__add__),\\nall string attributes are concatenated. Chunks are only merged if their\\nvalues of `index` are equal and not None.\\n\\nExample:\\n\\n.. code-block:: python\\n\\n left_chunks = [ToolCallChunk(name=\\"foo\\", args=\'{\\"a\\":\', index=0)]\\n right_chunks = [ToolCallChunk(name=None, args=\'1}\', index=0)]\\n\\n (\\n AIMessageChunk(content=\\"\\", tool_call_chunks=left_chunks)\\n + AIMessageChunk(content=\\"\\", tool_call_chunks=right_chunks)\\n ).tool_call_chunks == [ToolCallChunk(name=\'foo\', args=\'{\\"a\\":1}\', index=0)]", "properties": {"name": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Name"}, "args": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Args"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "index": {"anyOf": [{"type": "integer"}, {"type": "null"}], "title": "Index"}, "type": {"const": "tool_call_chunk", "enum": ["tool_call_chunk"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id", "index"], "title": "ToolCallChunk", "type": "object"}, "ToolMessage": {"additionalProperties": true, "description": "Message for passing the result of executing a tool back to a model.\\n\\nToolMessages contain the result of a tool invocation. Typically, the result\\nis encoded inside the `content` field.\\n\\nExample: A ToolMessage representing a result of 42 from a tool call with id\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import ToolMessage\\n\\n ToolMessage(content=\'42\', tool_call_id=\'call_Jja7J89XsjrOLA5r!MEOW!SL\')\\n\\n\\nExample: A ToolMessage where only part of the tool output is sent to the model\\n and the full output is passed in to artifact.\\n\\n .. versionadded:: 0.2.17\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import ToolMessage\\n\\n tool_output = {\\n \\"stdout\\": \\"From the graph we can see that the correlation between x and y is ...\\",\\n \\"stderr\\": None,\\n \\"artifacts\\": {\\"type\\": \\"image\\", \\"base64_data\\": \\"/9j/4gIcSU...\\"},\\n }\\n\\n ToolMessage(\\n content=tool_output[\\"stdout\\"],\\n artifact=tool_output,\\n tool_call_id=\'call_Jja7J89XsjrOLA5r!MEOW!SL\',\\n )\\n\\nThe tool_call_id field is used to associate the tool call request with the\\ntool call response. This is useful in situations where a chat model is able\\nto request multiple tool calls in parallel.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "tool", "default": "tool", "enum": ["tool"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "tool_call_id": {"title": "Tool Call Id", "type": "string"}, "artifact": {"default": null, "title": "Artifact"}, "status": {"default": "success", "enum": ["success", "error"], "title": "Status", "type": "string"}}, "required": ["content", "tool_call_id"], "title": "ToolMessage", "type": "object"}, "ToolMessageChunk": {"additionalProperties": true, "description": "Tool Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ToolMessageChunk", "default": "ToolMessageChunk", "enum": ["ToolMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "tool_call_id": {"title": "Tool Call Id", "type": "string"}, "artifact": {"default": null, "title": "Artifact"}, "status": {"default": "success", "enum": ["success", "error"], "title": "Status", "type": "string"}}, "required": ["content", "tool_call_id"], "title": "ToolMessageChunk", "type": "object"}, "UsageMetadata": {"description": "Usage metadata for a message, such as token counts.\\n\\nThis is a standard representation of token usage that is consistent across models.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"input_tokens\\": 350,\\n \\"output_tokens\\": 240,\\n \\"total_tokens\\": 590,\\n \\"input_token_details\\": {\\n \\"audio\\": 10,\\n \\"cache_creation\\": 200,\\n \\"cache_read\\": 100,\\n },\\n \\"output_token_details\\": {\\n \\"audio\\": 10,\\n \\"reasoning\\": 200,\\n }\\n }\\n\\n.. versionchanged:: 0.3.9\\n\\n Added ``input_token_details`` and ``output_token_details``.", "properties": {"input_tokens": {"title": "Input Tokens", "type": "integer"}, "output_tokens": {"title": "Output Tokens", "type": "integer"}, "total_tokens": {"title": "Total Tokens", "type": "integer"}, "input_token_details": {"$ref": "#/$defs/InputTokenDetails"}, "output_token_details": {"$ref": "#/$defs/OutputTokenDetails"}}, "required": ["input_tokens", "output_tokens", "total_tokens"], "title": "UsageMetadata", "type": "object"}}, "default": null, "items": {"oneOf": [{"$ref": "#/$defs/AIMessage"}, {"$ref": "#/$defs/HumanMessage"}, {"$ref": "#/$defs/ChatMessage"}, {"$ref": "#/$defs/SystemMessage"}, {"$ref": "#/$defs/FunctionMessage"}, {"$ref": "#/$defs/ToolMessage"}, {"$ref": "#/$defs/AIMessageChunk"}, {"$ref": "#/$defs/HumanMessageChunk"}, {"$ref": "#/$defs/ChatMessageChunk"}, {"$ref": "#/$defs/SystemMessageChunk"}, {"$ref": "#/$defs/FunctionMessageChunk"}, {"$ref": "#/$defs/ToolMessageChunk"}]}, "title": "LangGraphOutput", "type": "array"}' # --- -# name: test_message_graph[pymysql_sqlalchemy_pool].2 +# name: test_message_graph[pymysql_pool].2 ''' { "nodes": [ @@ -1715,88 +1324,7 @@ } ''' # --- -# name: test_message_graph[pymysql_sqlalchemy_pool].3 - ''' - graph TD; - __start__ --> agent; - tools --> agent; - agent -.  continue  .-> tools; - agent -.  end  .-> __end__; - - ''' -# --- -# name: test_message_graph[pymysql_callable] - '{"$defs": {"AIMessage": {"additionalProperties": true, "description": "Message from an AI.\\n\\nAIMessage is returned from a chat model as a response to a prompt.\\n\\nThis message represents the output of the model and consists of both\\nthe raw output as returned by the model together standardized fields\\n(e.g., tool calls, usage metadata) added by the LangChain framework.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ai", "default": "ai", "enum": ["ai"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}, "tool_calls": {"default": [], "items": {"$ref": "#/$defs/ToolCall"}, "title": "Tool Calls", "type": "array"}, "invalid_tool_calls": {"default": [], "items": {"$ref": "#/$defs/InvalidToolCall"}, "title": "Invalid Tool Calls", "type": "array"}, "usage_metadata": {"anyOf": [{"$ref": "#/$defs/UsageMetadata"}, {"type": "null"}], "default": null}}, "required": ["content"], "title": "AIMessage", "type": "object"}, "AIMessageChunk": {"additionalProperties": true, "description": "Message chunk from an AI.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "AIMessageChunk", "default": "AIMessageChunk", "enum": ["AIMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}, "tool_calls": {"default": [], "items": {"$ref": "#/$defs/ToolCall"}, "title": "Tool Calls", "type": "array"}, "invalid_tool_calls": {"default": [], "items": {"$ref": "#/$defs/InvalidToolCall"}, "title": "Invalid Tool Calls", "type": "array"}, "usage_metadata": {"anyOf": [{"$ref": "#/$defs/UsageMetadata"}, {"type": "null"}], "default": null}, "tool_call_chunks": {"default": [], "items": {"$ref": "#/$defs/ToolCallChunk"}, "title": "Tool Call Chunks", "type": "array"}}, "required": ["content"], "title": "AIMessageChunk", "type": "object"}, "ChatMessage": {"additionalProperties": true, "description": "Message that can be assigned an arbitrary speaker (i.e. role).", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "chat", "default": "chat", "enum": ["chat"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "role": {"title": "Role", "type": "string"}}, "required": ["content", "role"], "title": "ChatMessage", "type": "object"}, "ChatMessageChunk": {"additionalProperties": true, "description": "Chat Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ChatMessageChunk", "default": "ChatMessageChunk", "enum": ["ChatMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "role": {"title": "Role", "type": "string"}}, "required": ["content", "role"], "title": "ChatMessageChunk", "type": "object"}, "FunctionMessage": {"additionalProperties": true, "description": "Message for passing the result of executing a tool back to a model.\\n\\nFunctionMessage are an older version of the ToolMessage schema, and\\ndo not contain the tool_call_id field.\\n\\nThe tool_call_id field is used to associate the tool call request with the\\ntool call response. This is useful in situations where a chat model is able\\nto request multiple tool calls in parallel.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "function", "default": "function", "enum": ["function"], "title": "Type", "type": "string"}, "name": {"title": "Name", "type": "string"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content", "name"], "title": "FunctionMessage", "type": "object"}, "FunctionMessageChunk": {"additionalProperties": true, "description": "Function Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "FunctionMessageChunk", "default": "FunctionMessageChunk", "enum": ["FunctionMessageChunk"], "title": "Type", "type": "string"}, "name": {"title": "Name", "type": "string"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content", "name"], "title": "FunctionMessageChunk", "type": "object"}, "HumanMessage": {"additionalProperties": true, "description": "Message from a human.\\n\\nHumanMessages are messages that are passed in from a human to the model.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import HumanMessage, SystemMessage\\n\\n messages = [\\n SystemMessage(\\n content=\\"You are a helpful assistant! Your name is Bob.\\"\\n ),\\n HumanMessage(\\n content=\\"What is your name?\\"\\n )\\n ]\\n\\n # Instantiate a chat model and invoke it with the messages\\n model = ...\\n print(model.invoke(messages))", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "human", "default": "human", "enum": ["human"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}}, "required": ["content"], "title": "HumanMessage", "type": "object"}, "HumanMessageChunk": {"additionalProperties": true, "description": "Human Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "HumanMessageChunk", "default": "HumanMessageChunk", "enum": ["HumanMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}}, "required": ["content"], "title": "HumanMessageChunk", "type": "object"}, "InputTokenDetails": {"description": "Breakdown of input token counts.\\n\\nDoes *not* need to sum to full input token count. Does *not* need to have all keys.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"audio\\": 10,\\n \\"cache_creation\\": 200,\\n \\"cache_read\\": 100,\\n }\\n\\n.. versionadded:: 0.3.9", "properties": {"audio": {"title": "Audio", "type": "integer"}, "cache_creation": {"title": "Cache Creation", "type": "integer"}, "cache_read": {"title": "Cache Read", "type": "integer"}}, "title": "InputTokenDetails", "type": "object"}, "InvalidToolCall": {"description": "Allowance for errors made by LLM.\\n\\nHere we add an `error` key to surface errors made during generation\\n(e.g., invalid JSON arguments.)", "properties": {"name": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Name"}, "args": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Args"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "error": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Error"}, "type": {"const": "invalid_tool_call", "enum": ["invalid_tool_call"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id", "error"], "title": "InvalidToolCall", "type": "object"}, "OutputTokenDetails": {"description": "Breakdown of output token counts.\\n\\nDoes *not* need to sum to full output token count. Does *not* need to have all keys.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"audio\\": 10,\\n \\"reasoning\\": 200,\\n }\\n\\n.. versionadded:: 0.3.9", "properties": {"audio": {"title": "Audio", "type": "integer"}, "reasoning": {"title": "Reasoning", "type": "integer"}}, "title": "OutputTokenDetails", "type": "object"}, "SystemMessage": {"additionalProperties": true, "description": "Message for priming AI behavior.\\n\\nThe system message is usually passed in as the first of a sequence\\nof input messages.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import HumanMessage, SystemMessage\\n\\n messages = [\\n SystemMessage(\\n content=\\"You are a helpful assistant! Your name is Bob.\\"\\n ),\\n HumanMessage(\\n content=\\"What is your name?\\"\\n )\\n ]\\n\\n # Define a chat model and invoke it with the messages\\n print(model.invoke(messages))", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "system", "default": "system", "enum": ["system"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content"], "title": "SystemMessage", "type": "object"}, "SystemMessageChunk": {"additionalProperties": true, "description": "System Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "SystemMessageChunk", "default": "SystemMessageChunk", "enum": ["SystemMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content"], "title": "SystemMessageChunk", "type": "object"}, "ToolCall": {"description": "Represents a request to call a tool.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"name\\": \\"foo\\",\\n \\"args\\": {\\"a\\": 1},\\n \\"id\\": \\"123\\"\\n }\\n\\n This represents a request to call the tool named \\"foo\\" with arguments {\\"a\\": 1}\\n and an identifier of \\"123\\".", "properties": {"name": {"title": "Name", "type": "string"}, "args": {"title": "Args", "type": "object"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "type": {"const": "tool_call", "enum": ["tool_call"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id"], "title": "ToolCall", "type": "object"}, "ToolCallChunk": {"description": "A chunk of a tool call (e.g., as part of a stream).\\n\\nWhen merging ToolCallChunks (e.g., via AIMessageChunk.__add__),\\nall string attributes are concatenated. Chunks are only merged if their\\nvalues of `index` are equal and not None.\\n\\nExample:\\n\\n.. code-block:: python\\n\\n left_chunks = [ToolCallChunk(name=\\"foo\\", args=\'{\\"a\\":\', index=0)]\\n right_chunks = [ToolCallChunk(name=None, args=\'1}\', index=0)]\\n\\n (\\n AIMessageChunk(content=\\"\\", tool_call_chunks=left_chunks)\\n + AIMessageChunk(content=\\"\\", tool_call_chunks=right_chunks)\\n ).tool_call_chunks == [ToolCallChunk(name=\'foo\', args=\'{\\"a\\":1}\', index=0)]", "properties": {"name": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Name"}, "args": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Args"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "index": {"anyOf": [{"type": "integer"}, {"type": "null"}], "title": "Index"}, "type": {"const": "tool_call_chunk", "enum": ["tool_call_chunk"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id", "index"], "title": "ToolCallChunk", "type": "object"}, "ToolMessage": {"additionalProperties": true, "description": "Message for passing the result of executing a tool back to a model.\\n\\nToolMessages contain the result of a tool invocation. Typically, the result\\nis encoded inside the `content` field.\\n\\nExample: A ToolMessage representing a result of 42 from a tool call with id\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import ToolMessage\\n\\n ToolMessage(content=\'42\', tool_call_id=\'call_Jja7J89XsjrOLA5r!MEOW!SL\')\\n\\n\\nExample: A ToolMessage where only part of the tool output is sent to the model\\n and the full output is passed in to artifact.\\n\\n .. versionadded:: 0.2.17\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import ToolMessage\\n\\n tool_output = {\\n \\"stdout\\": \\"From the graph we can see that the correlation between x and y is ...\\",\\n \\"stderr\\": None,\\n \\"artifacts\\": {\\"type\\": \\"image\\", \\"base64_data\\": \\"/9j/4gIcSU...\\"},\\n }\\n\\n ToolMessage(\\n content=tool_output[\\"stdout\\"],\\n artifact=tool_output,\\n tool_call_id=\'call_Jja7J89XsjrOLA5r!MEOW!SL\',\\n )\\n\\nThe tool_call_id field is used to associate the tool call request with the\\ntool call response. This is useful in situations where a chat model is able\\nto request multiple tool calls in parallel.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "tool", "default": "tool", "enum": ["tool"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "tool_call_id": {"title": "Tool Call Id", "type": "string"}, "artifact": {"default": null, "title": "Artifact"}, "status": {"default": "success", "enum": ["success", "error"], "title": "Status", "type": "string"}}, "required": ["content", "tool_call_id"], "title": "ToolMessage", "type": "object"}, "ToolMessageChunk": {"additionalProperties": true, "description": "Tool Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ToolMessageChunk", "default": "ToolMessageChunk", "enum": ["ToolMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "tool_call_id": {"title": "Tool Call Id", "type": "string"}, "artifact": {"default": null, "title": "Artifact"}, "status": {"default": "success", "enum": ["success", "error"], "title": "Status", "type": "string"}}, "required": ["content", "tool_call_id"], "title": "ToolMessageChunk", "type": "object"}, "UsageMetadata": {"description": "Usage metadata for a message, such as token counts.\\n\\nThis is a standard representation of token usage that is consistent across models.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"input_tokens\\": 350,\\n \\"output_tokens\\": 240,\\n \\"total_tokens\\": 590,\\n \\"input_token_details\\": {\\n \\"audio\\": 10,\\n \\"cache_creation\\": 200,\\n \\"cache_read\\": 100,\\n },\\n \\"output_token_details\\": {\\n \\"audio\\": 10,\\n \\"reasoning\\": 200,\\n }\\n }\\n\\n.. versionchanged:: 0.3.9\\n\\n Added ``input_token_details`` and ``output_token_details``.", "properties": {"input_tokens": {"title": "Input Tokens", "type": "integer"}, "output_tokens": {"title": "Output Tokens", "type": "integer"}, "total_tokens": {"title": "Total Tokens", "type": "integer"}, "input_token_details": {"$ref": "#/$defs/InputTokenDetails"}, "output_token_details": {"$ref": "#/$defs/OutputTokenDetails"}}, "required": ["input_tokens", "output_tokens", "total_tokens"], "title": "UsageMetadata", "type": "object"}}, "default": null, "items": {"oneOf": [{"$ref": "#/$defs/AIMessage"}, {"$ref": "#/$defs/HumanMessage"}, {"$ref": "#/$defs/ChatMessage"}, {"$ref": "#/$defs/SystemMessage"}, {"$ref": "#/$defs/FunctionMessage"}, {"$ref": "#/$defs/ToolMessage"}, {"$ref": "#/$defs/AIMessageChunk"}, {"$ref": "#/$defs/HumanMessageChunk"}, {"$ref": "#/$defs/ChatMessageChunk"}, {"$ref": "#/$defs/SystemMessageChunk"}, {"$ref": "#/$defs/FunctionMessageChunk"}, {"$ref": "#/$defs/ToolMessageChunk"}]}, "title": "LangGraphInput", "type": "array"}' -# --- -# name: test_message_graph[pymysql_callable].1 - '{"$defs": {"AIMessage": {"additionalProperties": true, "description": "Message from an AI.\\n\\nAIMessage is returned from a chat model as a response to a prompt.\\n\\nThis message represents the output of the model and consists of both\\nthe raw output as returned by the model together standardized fields\\n(e.g., tool calls, usage metadata) added by the LangChain framework.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ai", "default": "ai", "enum": ["ai"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}, "tool_calls": {"default": [], "items": {"$ref": "#/$defs/ToolCall"}, "title": "Tool Calls", "type": "array"}, "invalid_tool_calls": {"default": [], "items": {"$ref": "#/$defs/InvalidToolCall"}, "title": "Invalid Tool Calls", "type": "array"}, "usage_metadata": {"anyOf": [{"$ref": "#/$defs/UsageMetadata"}, {"type": "null"}], "default": null}}, "required": ["content"], "title": "AIMessage", "type": "object"}, "AIMessageChunk": {"additionalProperties": true, "description": "Message chunk from an AI.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "AIMessageChunk", "default": "AIMessageChunk", "enum": ["AIMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}, "tool_calls": {"default": [], "items": {"$ref": "#/$defs/ToolCall"}, "title": "Tool Calls", "type": "array"}, "invalid_tool_calls": {"default": [], "items": {"$ref": "#/$defs/InvalidToolCall"}, "title": "Invalid Tool Calls", "type": "array"}, "usage_metadata": {"anyOf": [{"$ref": "#/$defs/UsageMetadata"}, {"type": "null"}], "default": null}, "tool_call_chunks": {"default": [], "items": {"$ref": "#/$defs/ToolCallChunk"}, "title": "Tool Call Chunks", "type": "array"}}, "required": ["content"], "title": "AIMessageChunk", "type": "object"}, "ChatMessage": {"additionalProperties": true, "description": "Message that can be assigned an arbitrary speaker (i.e. role).", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "chat", "default": "chat", "enum": ["chat"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "role": {"title": "Role", "type": "string"}}, "required": ["content", "role"], "title": "ChatMessage", "type": "object"}, "ChatMessageChunk": {"additionalProperties": true, "description": "Chat Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ChatMessageChunk", "default": "ChatMessageChunk", "enum": ["ChatMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "role": {"title": "Role", "type": "string"}}, "required": ["content", "role"], "title": "ChatMessageChunk", "type": "object"}, "FunctionMessage": {"additionalProperties": true, "description": "Message for passing the result of executing a tool back to a model.\\n\\nFunctionMessage are an older version of the ToolMessage schema, and\\ndo not contain the tool_call_id field.\\n\\nThe tool_call_id field is used to associate the tool call request with the\\ntool call response. This is useful in situations where a chat model is able\\nto request multiple tool calls in parallel.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "function", "default": "function", "enum": ["function"], "title": "Type", "type": "string"}, "name": {"title": "Name", "type": "string"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content", "name"], "title": "FunctionMessage", "type": "object"}, "FunctionMessageChunk": {"additionalProperties": true, "description": "Function Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "FunctionMessageChunk", "default": "FunctionMessageChunk", "enum": ["FunctionMessageChunk"], "title": "Type", "type": "string"}, "name": {"title": "Name", "type": "string"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content", "name"], "title": "FunctionMessageChunk", "type": "object"}, "HumanMessage": {"additionalProperties": true, "description": "Message from a human.\\n\\nHumanMessages are messages that are passed in from a human to the model.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import HumanMessage, SystemMessage\\n\\n messages = [\\n SystemMessage(\\n content=\\"You are a helpful assistant! Your name is Bob.\\"\\n ),\\n HumanMessage(\\n content=\\"What is your name?\\"\\n )\\n ]\\n\\n # Instantiate a chat model and invoke it with the messages\\n model = ...\\n print(model.invoke(messages))", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "human", "default": "human", "enum": ["human"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}}, "required": ["content"], "title": "HumanMessage", "type": "object"}, "HumanMessageChunk": {"additionalProperties": true, "description": "Human Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "HumanMessageChunk", "default": "HumanMessageChunk", "enum": ["HumanMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "example": {"default": false, "title": "Example", "type": "boolean"}}, "required": ["content"], "title": "HumanMessageChunk", "type": "object"}, "InputTokenDetails": {"description": "Breakdown of input token counts.\\n\\nDoes *not* need to sum to full input token count. Does *not* need to have all keys.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"audio\\": 10,\\n \\"cache_creation\\": 200,\\n \\"cache_read\\": 100,\\n }\\n\\n.. versionadded:: 0.3.9", "properties": {"audio": {"title": "Audio", "type": "integer"}, "cache_creation": {"title": "Cache Creation", "type": "integer"}, "cache_read": {"title": "Cache Read", "type": "integer"}}, "title": "InputTokenDetails", "type": "object"}, "InvalidToolCall": {"description": "Allowance for errors made by LLM.\\n\\nHere we add an `error` key to surface errors made during generation\\n(e.g., invalid JSON arguments.)", "properties": {"name": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Name"}, "args": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Args"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "error": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Error"}, "type": {"const": "invalid_tool_call", "enum": ["invalid_tool_call"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id", "error"], "title": "InvalidToolCall", "type": "object"}, "OutputTokenDetails": {"description": "Breakdown of output token counts.\\n\\nDoes *not* need to sum to full output token count. Does *not* need to have all keys.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"audio\\": 10,\\n \\"reasoning\\": 200,\\n }\\n\\n.. versionadded:: 0.3.9", "properties": {"audio": {"title": "Audio", "type": "integer"}, "reasoning": {"title": "Reasoning", "type": "integer"}}, "title": "OutputTokenDetails", "type": "object"}, "SystemMessage": {"additionalProperties": true, "description": "Message for priming AI behavior.\\n\\nThe system message is usually passed in as the first of a sequence\\nof input messages.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import HumanMessage, SystemMessage\\n\\n messages = [\\n SystemMessage(\\n content=\\"You are a helpful assistant! Your name is Bob.\\"\\n ),\\n HumanMessage(\\n content=\\"What is your name?\\"\\n )\\n ]\\n\\n # Define a chat model and invoke it with the messages\\n print(model.invoke(messages))", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "system", "default": "system", "enum": ["system"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content"], "title": "SystemMessage", "type": "object"}, "SystemMessageChunk": {"additionalProperties": true, "description": "System Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "SystemMessageChunk", "default": "SystemMessageChunk", "enum": ["SystemMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}}, "required": ["content"], "title": "SystemMessageChunk", "type": "object"}, "ToolCall": {"description": "Represents a request to call a tool.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"name\\": \\"foo\\",\\n \\"args\\": {\\"a\\": 1},\\n \\"id\\": \\"123\\"\\n }\\n\\n This represents a request to call the tool named \\"foo\\" with arguments {\\"a\\": 1}\\n and an identifier of \\"123\\".", "properties": {"name": {"title": "Name", "type": "string"}, "args": {"title": "Args", "type": "object"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "type": {"const": "tool_call", "enum": ["tool_call"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id"], "title": "ToolCall", "type": "object"}, "ToolCallChunk": {"description": "A chunk of a tool call (e.g., as part of a stream).\\n\\nWhen merging ToolCallChunks (e.g., via AIMessageChunk.__add__),\\nall string attributes are concatenated. Chunks are only merged if their\\nvalues of `index` are equal and not None.\\n\\nExample:\\n\\n.. code-block:: python\\n\\n left_chunks = [ToolCallChunk(name=\\"foo\\", args=\'{\\"a\\":\', index=0)]\\n right_chunks = [ToolCallChunk(name=None, args=\'1}\', index=0)]\\n\\n (\\n AIMessageChunk(content=\\"\\", tool_call_chunks=left_chunks)\\n + AIMessageChunk(content=\\"\\", tool_call_chunks=right_chunks)\\n ).tool_call_chunks == [ToolCallChunk(name=\'foo\', args=\'{\\"a\\":1}\', index=0)]", "properties": {"name": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Name"}, "args": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Args"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "title": "Id"}, "index": {"anyOf": [{"type": "integer"}, {"type": "null"}], "title": "Index"}, "type": {"const": "tool_call_chunk", "enum": ["tool_call_chunk"], "title": "Type", "type": "string"}}, "required": ["name", "args", "id", "index"], "title": "ToolCallChunk", "type": "object"}, "ToolMessage": {"additionalProperties": true, "description": "Message for passing the result of executing a tool back to a model.\\n\\nToolMessages contain the result of a tool invocation. Typically, the result\\nis encoded inside the `content` field.\\n\\nExample: A ToolMessage representing a result of 42 from a tool call with id\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import ToolMessage\\n\\n ToolMessage(content=\'42\', tool_call_id=\'call_Jja7J89XsjrOLA5r!MEOW!SL\')\\n\\n\\nExample: A ToolMessage where only part of the tool output is sent to the model\\n and the full output is passed in to artifact.\\n\\n .. versionadded:: 0.2.17\\n\\n .. code-block:: python\\n\\n from langchain_core.messages import ToolMessage\\n\\n tool_output = {\\n \\"stdout\\": \\"From the graph we can see that the correlation between x and y is ...\\",\\n \\"stderr\\": None,\\n \\"artifacts\\": {\\"type\\": \\"image\\", \\"base64_data\\": \\"/9j/4gIcSU...\\"},\\n }\\n\\n ToolMessage(\\n content=tool_output[\\"stdout\\"],\\n artifact=tool_output,\\n tool_call_id=\'call_Jja7J89XsjrOLA5r!MEOW!SL\',\\n )\\n\\nThe tool_call_id field is used to associate the tool call request with the\\ntool call response. This is useful in situations where a chat model is able\\nto request multiple tool calls in parallel.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "tool", "default": "tool", "enum": ["tool"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "tool_call_id": {"title": "Tool Call Id", "type": "string"}, "artifact": {"default": null, "title": "Artifact"}, "status": {"default": "success", "enum": ["success", "error"], "title": "Status", "type": "string"}}, "required": ["content", "tool_call_id"], "title": "ToolMessage", "type": "object"}, "ToolMessageChunk": {"additionalProperties": true, "description": "Tool Message chunk.", "properties": {"content": {"anyOf": [{"type": "string"}, {"items": {"anyOf": [{"type": "string"}, {"type": "object"}]}, "type": "array"}], "title": "Content"}, "additional_kwargs": {"title": "Additional Kwargs", "type": "object"}, "response_metadata": {"title": "Response Metadata", "type": "object"}, "type": {"const": "ToolMessageChunk", "default": "ToolMessageChunk", "enum": ["ToolMessageChunk"], "title": "Type", "type": "string"}, "name": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Name"}, "id": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Id"}, "tool_call_id": {"title": "Tool Call Id", "type": "string"}, "artifact": {"default": null, "title": "Artifact"}, "status": {"default": "success", "enum": ["success", "error"], "title": "Status", "type": "string"}}, "required": ["content", "tool_call_id"], "title": "ToolMessageChunk", "type": "object"}, "UsageMetadata": {"description": "Usage metadata for a message, such as token counts.\\n\\nThis is a standard representation of token usage that is consistent across models.\\n\\nExample:\\n\\n .. code-block:: python\\n\\n {\\n \\"input_tokens\\": 350,\\n \\"output_tokens\\": 240,\\n \\"total_tokens\\": 590,\\n \\"input_token_details\\": {\\n \\"audio\\": 10,\\n \\"cache_creation\\": 200,\\n \\"cache_read\\": 100,\\n },\\n \\"output_token_details\\": {\\n \\"audio\\": 10,\\n \\"reasoning\\": 200,\\n }\\n }\\n\\n.. versionchanged:: 0.3.9\\n\\n Added ``input_token_details`` and ``output_token_details``.", "properties": {"input_tokens": {"title": "Input Tokens", "type": "integer"}, "output_tokens": {"title": "Output Tokens", "type": "integer"}, "total_tokens": {"title": "Total Tokens", "type": "integer"}, "input_token_details": {"$ref": "#/$defs/InputTokenDetails"}, "output_token_details": {"$ref": "#/$defs/OutputTokenDetails"}}, "required": ["input_tokens", "output_tokens", "total_tokens"], "title": "UsageMetadata", "type": "object"}}, "default": null, "items": {"oneOf": [{"$ref": "#/$defs/AIMessage"}, {"$ref": "#/$defs/HumanMessage"}, {"$ref": "#/$defs/ChatMessage"}, {"$ref": "#/$defs/SystemMessage"}, {"$ref": "#/$defs/FunctionMessage"}, {"$ref": "#/$defs/ToolMessage"}, {"$ref": "#/$defs/AIMessageChunk"}, {"$ref": "#/$defs/HumanMessageChunk"}, {"$ref": "#/$defs/ChatMessageChunk"}, {"$ref": "#/$defs/SystemMessageChunk"}, {"$ref": "#/$defs/FunctionMessageChunk"}, {"$ref": "#/$defs/ToolMessageChunk"}]}, "title": "LangGraphOutput", "type": "array"}' -# --- -# name: test_message_graph[pymysql_callable].2 - ''' - { - "nodes": [ - { - "id": "__start__", - "type": "schema", - "data": "__start__" - }, - { - "id": "agent", - "type": "runnable", - "data": { - "id": [ - "tests", - "test_large_cases", - "FakeFuntionChatModel" - ], - "name": "agent" - } - }, - { - "id": "tools", - "type": "runnable", - "data": { - "id": [ - "langgraph", - "prebuilt", - "tool_node", - "ToolNode" - ], - "name": "tools" - } - }, - { - "id": "__end__", - "type": "schema", - "data": "__end__" - } - ], - "edges": [ - { - "source": "__start__", - "target": "agent" - }, - { - "source": "tools", - "target": "agent" - }, - { - "source": "agent", - "target": "tools", - "data": "continue", - "conditional": true - }, - { - "source": "agent", - "target": "__end__", - "data": "end", - "conditional": true - } - ] - } - ''' -# --- -# name: test_message_graph[pymysql_callable].3 +# name: test_message_graph[pymysql_pool].3 ''' graph TD; __start__ --> agent; @@ -1902,22 +1430,7 @@ ''' # --- -# name: test_send_react_interrupt_control[pymysql_sqlalchemy_pool] - ''' - %%{init: {'flowchart': {'curve': 'linear'}}}%% - graph TD; - __start__([

__start__

]):::first - agent(agent) - foo([foo]):::last - __start__ --> agent; - agent -.-> foo; - classDef default fill:#f2f0ff,line-height:1.2 - classDef first fill-opacity:0 - classDef last fill:#bfb6fc - - ''' -# --- -# name: test_send_react_interrupt_control[pymysql_callable] +# name: test_send_react_interrupt_control[pymysql_pool] ''' %%{init: {'flowchart': {'curve': 'linear'}}}%% graph TD; @@ -1965,25 +1478,7 @@ ''' # --- -# name: test_start_branch_then[pymysql_sqlalchemy_pool] - ''' - %%{init: {'flowchart': {'curve': 'linear'}}}%% - graph TD; - __start__([

__start__

]):::first - tool_two_slow(tool_two_slow) - tool_two_fast(tool_two_fast) - __end__([

__end__

]):::last - __start__ -.-> tool_two_slow; - tool_two_slow --> __end__; - __start__ -.-> tool_two_fast; - tool_two_fast --> __end__; - classDef default fill:#f2f0ff,line-height:1.2 - classDef first fill-opacity:0 - classDef last fill:#bfb6fc - - ''' -# --- -# name: test_start_branch_then[pymysql_callable] +# name: test_start_branch_then[pymysql_pool] ''' %%{init: {'flowchart': {'curve': 'linear'}}}%% graph TD; @@ -2044,32 +1539,7 @@ ''' # --- -# name: test_weather_subgraph[pymysql_sqlalchemy_pool] - ''' - %%{init: {'flowchart': {'curve': 'linear'}}}%% - graph TD; - __start__([

__start__

]):::first - router_node(router_node) - normal_llm_node(normal_llm_node) - weather_graph_model_node(model_node) - weather_graph_weather_node(weather_node
__interrupt = before) - __end__([

__end__

]):::last - __start__ --> router_node; - normal_llm_node --> __end__; - weather_graph_weather_node --> __end__; - router_node -.-> normal_llm_node; - router_node -.-> weather_graph_model_node; - router_node -.-> __end__; - subgraph weather_graph - weather_graph_model_node --> weather_graph_weather_node; - end - classDef default fill:#f2f0ff,line-height:1.2 - classDef first fill-opacity:0 - classDef last fill:#bfb6fc - - ''' -# --- -# name: test_weather_subgraph[pymysql_callable] +# name: test_weather_subgraph[pymysql_pool] ''' %%{init: {'flowchart': {'curve': 'linear'}}}%% graph TD; diff --git a/langgraph-tests/tests/__snapshots__/test_pregel.ambr b/langgraph-tests/tests/__snapshots__/test_pregel.ambr index 1b5e4ec..d4466d0 100644 --- a/langgraph-tests/tests/__snapshots__/test_pregel.ambr +++ b/langgraph-tests/tests/__snapshots__/test_pregel.ambr @@ -12,7 +12,7 @@ ''' # --- -# name: test_in_one_fan_out_state_graph_waiting_edge[pymysql_sqlalchemy_pool] +# name: test_in_one_fan_out_state_graph_waiting_edge[pymysql_pool] ''' graph TD; __start__ --> rewrite_query; @@ -38,19 +38,6 @@ ''' # --- -# name: test_in_one_fan_out_state_graph_waiting_edge[pymysql_callable] - ''' - graph TD; - __start__ --> rewrite_query; - analyzer_one --> retriever_one; - qa --> __end__; - retriever_one --> qa; - retriever_two --> qa; - rewrite_query --> analyzer_one; - rewrite_query --> retriever_two; - - ''' -# --- # name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql] ''' graph TD; @@ -121,77 +108,7 @@ 'type': 'object', }) # --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_sqlalchemy_pool] - ''' - graph TD; - __start__ --> rewrite_query; - analyzer_one --> retriever_one; - qa --> __end__; - retriever_one --> qa; - retriever_two --> qa; - rewrite_query --> analyzer_one; - rewrite_query -.-> retriever_two; - - ''' -# --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_sqlalchemy_pool].1 - dict({ - 'definitions': dict({ - 'InnerObject': dict({ - 'properties': dict({ - 'yo': dict({ - 'title': 'Yo', - 'type': 'integer', - }), - }), - 'required': list([ - 'yo', - ]), - 'title': 'InnerObject', - 'type': 'object', - }), - }), - 'properties': dict({ - 'inner': dict({ - '$ref': '#/definitions/InnerObject', - }), - 'query': dict({ - 'title': 'Query', - 'type': 'string', - }), - }), - 'required': list([ - 'query', - 'inner', - ]), - 'title': 'Input', - 'type': 'object', - }) -# --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_sqlalchemy_pool].2 - dict({ - 'properties': dict({ - 'answer': dict({ - 'title': 'Answer', - 'type': 'string', - }), - 'docs': dict({ - 'items': dict({ - 'type': 'string', - }), - 'title': 'Docs', - 'type': 'array', - }), - }), - 'required': list([ - 'answer', - 'docs', - ]), - 'title': 'Output', - 'type': 'object', - }) -# --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_callable] +# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_pool] ''' graph TD; __start__ --> rewrite_query; @@ -204,7 +121,7 @@ ''' # --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_callable].1 +# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_pool].1 dict({ 'definitions': dict({ 'InnerObject': dict({ @@ -238,7 +155,7 @@ 'type': 'object', }) # --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_callable].2 +# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic1[pymysql_pool].2 dict({ 'properties': dict({ 'answer': dict({ @@ -401,7 +318,7 @@ 'type': 'object', }) # --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_sqlalchemy_pool] +# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_pool] ''' graph TD; __start__ --> rewrite_query; @@ -414,7 +331,7 @@ ''' # --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_sqlalchemy_pool].1 +# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_pool].1 dict({ '$defs': dict({ 'InnerObject': dict({ @@ -448,77 +365,7 @@ 'type': 'object', }) # --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_sqlalchemy_pool].2 - dict({ - 'properties': dict({ - 'answer': dict({ - 'title': 'Answer', - 'type': 'string', - }), - 'docs': dict({ - 'items': dict({ - 'type': 'string', - }), - 'title': 'Docs', - 'type': 'array', - }), - }), - 'required': list([ - 'answer', - 'docs', - ]), - 'title': 'Output', - 'type': 'object', - }) -# --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_callable] - ''' - graph TD; - __start__ --> rewrite_query; - analyzer_one --> retriever_one; - qa --> __end__; - retriever_one --> qa; - retriever_two --> qa; - rewrite_query --> analyzer_one; - rewrite_query -.-> retriever_two; - - ''' -# --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_callable].1 - dict({ - '$defs': dict({ - 'InnerObject': dict({ - 'properties': dict({ - 'yo': dict({ - 'title': 'Yo', - 'type': 'integer', - }), - }), - 'required': list([ - 'yo', - ]), - 'title': 'InnerObject', - 'type': 'object', - }), - }), - 'properties': dict({ - 'inner': dict({ - '$ref': '#/$defs/InnerObject', - }), - 'query': dict({ - 'title': 'Query', - 'type': 'string', - }), - }), - 'required': list([ - 'query', - 'inner', - ]), - 'title': 'Input', - 'type': 'object', - }) -# --- -# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_callable].2 +# name: test_in_one_fan_out_state_graph_waiting_edge_custom_state_class_pydantic2[pymysql_pool].2 dict({ 'properties': dict({ 'answer': dict({ @@ -624,20 +471,7 @@ ''' # --- -# name: test_in_one_fan_out_state_graph_waiting_edge_via_branch[pymysql_sqlalchemy_pool] - ''' - graph TD; - __start__ --> rewrite_query; - analyzer_one --> retriever_one; - qa --> __end__; - retriever_one --> qa; - retriever_two --> qa; - rewrite_query --> analyzer_one; - rewrite_query -.-> retriever_two; - - ''' -# --- -# name: test_in_one_fan_out_state_graph_waiting_edge_via_branch[pymysql_callable] +# name: test_in_one_fan_out_state_graph_waiting_edge_via_branch[pymysql_pool] ''' graph TD; __start__ --> rewrite_query; diff --git a/langgraph-tests/tests/conftest.py b/langgraph-tests/tests/conftest.py index 5e995fc..4c2ceac 100644 --- a/langgraph-tests/tests/conftest.py +++ b/langgraph-tests/tests/conftest.py @@ -1,5 +1,5 @@ -from contextlib import asynccontextmanager, closing -from typing import AsyncIterator, Optional, cast +from contextlib import asynccontextmanager +from typing import AsyncIterator, Optional from uuid import UUID, uuid4 import aiomysql # type: ignore @@ -9,7 +9,7 @@ from langchain_core import __version__ as core_version from packaging import version from pytest_mock import MockerFixture -from sqlalchemy import Pool, create_pool_from_url +from sqlalchemy import Engine, create_engine from langgraph.checkpoint.base import BaseCheckpointSaver from langgraph.checkpoint.mysql.aio import AIOMySQLSaver, ShallowAIOMySQLSaver @@ -28,9 +28,9 @@ SHOULD_CHECK_SNAPSHOTS = IS_LANGCHAIN_CORE_030_OR_GREATER -def get_pymysql_sqlalchemy_pool(uri: str) -> Pool: +def get_pymysql_sqlalchemy_engine(uri: str) -> Engine: updated_uri = uri.replace("mysql://", "mysql+pymysql://") - return create_pool_from_url(updated_uri) + return create_engine(updated_uri) @pytest.fixture @@ -91,7 +91,7 @@ def checkpointer_pymysql_shallow(): @pytest.fixture(scope="function") -def checkpointer_pymysql_sqlalchemy_pool(): +def checkpointer_pymysql_pool(): database = f"test_{uuid4().hex[:16]}" # create unique db @@ -99,31 +99,8 @@ def checkpointer_pymysql_sqlalchemy_pool(): with conn.cursor() as cursor: cursor.execute(f"CREATE DATABASE {database}") try: - checkpointer = PyMySQLSaver(get_pymysql_sqlalchemy_pool(DEFAULT_MYSQL_URI + database)) - checkpointer.setup() - yield checkpointer - finally: - # drop unique db - with pymysql.connect(**PyMySQLSaver.parse_conn_string(DEFAULT_MYSQL_URI), autocommit=True) as conn: - with conn.cursor() as cursor: - cursor.execute(f"DROP DATABASE {database}") - - -@pytest.fixture(scope="function") -def checkpointer_pymysql_callable(): - database = f"test_{uuid4().hex[:16]}" - - # create unique db - with pymysql.connect(**PyMySQLSaver.parse_conn_string(DEFAULT_MYSQL_URI), autocommit=True) as conn: - with conn.cursor() as cursor: - cursor.execute(f"CREATE DATABASE {database}") - try: - pool = get_pymysql_sqlalchemy_pool(DEFAULT_MYSQL_URI + database) - - def callable() -> pymysql.Connection: - return cast(pymysql.Connection, closing(pool.connect())) - - checkpointer = PyMySQLSaver(callable) + pool = get_pymysql_sqlalchemy_engine(DEFAULT_MYSQL_URI + database) + checkpointer = PyMySQLSaver(pool.raw_connection) checkpointer.setup() yield checkpointer finally: @@ -255,27 +232,7 @@ def store_pymysql(): @pytest.fixture(scope="function") -def store_pymysql_sqlalchemy_pool(): - database = f"test_{uuid4().hex[:16]}" - - # create unique db - with pymysql.connect(**PyMySQLStore.parse_conn_string(DEFAULT_MYSQL_URI), autocommit=True) as conn: - with conn.cursor() as cursor: - cursor.execute(f"CREATE DATABASE {database}") - try: - # yield store - store = PyMySQLStore(get_pymysql_sqlalchemy_pool(DEFAULT_MYSQL_URI + database)) - store.setup() - yield store - finally: - # drop unique db - with pymysql.connect(**PyMySQLStore.parse_conn_string(DEFAULT_MYSQL_URI), autocommit=True) as conn: - with conn.cursor() as cursor: - cursor.execute(f"DROP DATABASE {database}") - - -@pytest.fixture(scope="function") -def store_pymysql_callable(): +def store_pymysql_pool(): database = f"test_{uuid4().hex[:16]}" # create unique db @@ -284,9 +241,8 @@ def store_pymysql_callable(): cursor.execute(f"CREATE DATABASE {database}") try: # yield store - pool = get_pymysql_sqlalchemy_pool(DEFAULT_MYSQL_URI + database) - callable = lambda: cast(pymysql.Connection, closing(pool.connect())) - store = PyMySQLStore(callable) + engine = get_pymysql_sqlalchemy_engine(DEFAULT_MYSQL_URI + database) + store = PyMySQLStore(engine.raw_connection) store.setup() yield store finally: @@ -386,8 +342,7 @@ async def awith_store(store_name: Optional[str]) -> AsyncIterator[BaseStore]: SHALLOW_CHECKPOINTERS_SYNC = ["pymysql_shallow"] REGULAR_CHECKPOINTERS_SYNC = [ "pymysql", - "pymysql_sqlalchemy_pool", - "pymysql_callable" + "pymysql_pool", ] ALL_CHECKPOINTERS_SYNC = [ *REGULAR_CHECKPOINTERS_SYNC, @@ -399,5 +354,5 @@ async def awith_store(store_name: Optional[str]) -> AsyncIterator[BaseStore]: *REGULAR_CHECKPOINTERS_ASYNC, *SHALLOW_CHECKPOINTERS_ASYNC, ] -ALL_STORES_SYNC = ["pymysql", "pymysql_sqlalchemy_pool", "pymysql_callable"] +ALL_STORES_SYNC = ["pymysql", "pymysql_pool"] ALL_STORES_ASYNC = ["aiomysql", "aiomysql_pool"] diff --git a/langgraph/checkpoint/mysql/_internal.py b/langgraph/checkpoint/mysql/_internal.py index e502bcf..e18d88f 100644 --- a/langgraph/checkpoint/mysql/_internal.py +++ b/langgraph/checkpoint/mysql/_internal.py @@ -1,11 +1,10 @@ """Shared utility functions for the MySQL checkpoint & storage classes.""" from collections.abc import Callable, Iterator -from contextlib import closing, contextmanager +from contextlib import AbstractContextManager, closing, contextmanager from typing import ( Any, ContextManager, - Generic, Mapping, Optional, Protocol, @@ -39,8 +38,8 @@ def fetchall(self) -> Sequence[dict[str, Any]]: ... R = TypeVar("R", bound=DictCursor) # cursor type -class Connection(ContextManager, Protocol): - """Protocol that a MySQL connection should implement.""" +class Connection(AbstractContextManager, Protocol): + """Protocol that a synchronous MySQL connection should implement.""" def begin(self) -> None: """Begin transaction.""" @@ -55,47 +54,30 @@ def rollback(self) -> None: ... -COut = TypeVar("COut", bound=Connection, covariant=True) # connection type C = TypeVar("C", bound=Connection) # connection type -class MySQLConnectionPool(Protocol, Generic[COut]): - """From mysql-connector-python package.""" - - def get_connection(self) -> COut: - """Gets a connection from the connection pool.""" - ... - - -class SQLAlchemyPoolProxiedConnection(Protocol): - def close(self) -> None: ... - - -class SQLAlchemyConnectionPool(Protocol): - """From sqlalchemy package.""" - - def connect(self) -> SQLAlchemyPoolProxiedConnection: - """Gets a connection from the connection pool.""" - ... - - -ConnectionFactory = Callable[[], C] -Conn = Union[C, ConnectionFactory[C], MySQLConnectionPool[C], SQLAlchemyConnectionPool] +ConnectionFactory = Callable[[], Any] +Conn = Union[C, ConnectionFactory] @contextmanager def get_connection(conn: Conn[C]) -> Iterator[C]: if hasattr(conn, "cursor"): yield cast(C, conn) - elif hasattr(conn, "get_connection"): - with cast(MySQLConnectionPool[C], conn).get_connection() as _conn: - yield _conn - elif hasattr(conn, "connect"): - proxy_conn = cast(SQLAlchemyConnectionPool, conn).connect() - with closing(proxy_conn) as _conn: - yield cast(C, _conn) elif callable(conn): - with conn() as _conn: + _conn = conn() + if isinstance(_conn, AbstractContextManager): + yield cast(C, _conn) + else: + with closing(_conn) as __conn: + yield __conn + # This is kept for backwards incompatibility and should be removed when we + # can make a breaking change in favor of just passing a Callable. + elif hasattr(conn, "connect"): + # sqlalchemy pool + factory: ConnectionFactory = getattr(conn, "connect") # noqa: B009 + with get_connection(factory) as _conn: yield _conn else: - raise TypeError(f"Invalid connection type: {type(conn)}") + raise TypeError(f"Invalid connection or pool type: {type(conn)}") diff --git a/langgraph/checkpoint/mysql/shallow.py b/langgraph/checkpoint/mysql/shallow.py index 84483ae..0e13d5b 100644 --- a/langgraph/checkpoint/mysql/shallow.py +++ b/langgraph/checkpoint/mysql/shallow.py @@ -199,7 +199,7 @@ def _cursor(self, *, pipeline: bool = False) -> Iterator[_internal.R]: Args: pipeline (bool): whether to use transaction context manager and handle concurrency """ - with _internal.get_connection(self.conn) as conn: + with _internal.get_connection(self.conn) as conn: # type: _internal.C if pipeline: with self.lock: conn.begin() diff --git a/poetry.lock b/poetry.lock index 878ef49..8ca8c4c 100644 --- a/poetry.lock +++ b/poetry.lock @@ -628,50 +628,56 @@ files = [ [[package]] name = "mypy" -version = "1.13.0" +version = "1.14.1" description = "Optional static typing for Python" optional = false python-versions = ">=3.8" groups = ["dev"] files = [ - {file = "mypy-1.13.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6607e0f1dd1fb7f0aca14d936d13fd19eba5e17e1cd2a14f808fa5f8f6d8f60a"}, - {file = "mypy-1.13.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8a21be69bd26fa81b1f80a61ee7ab05b076c674d9b18fb56239d72e21d9f4c80"}, - {file = "mypy-1.13.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7b2353a44d2179846a096e25691d54d59904559f4232519d420d64da6828a3a7"}, - {file = "mypy-1.13.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:0730d1c6a2739d4511dc4253f8274cdd140c55c32dfb0a4cf8b7a43f40abfa6f"}, - {file = "mypy-1.13.0-cp310-cp310-win_amd64.whl", hash = "sha256:c5fc54dbb712ff5e5a0fca797e6e0aa25726c7e72c6a5850cfd2adbc1eb0a372"}, - {file = "mypy-1.13.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:581665e6f3a8a9078f28d5502f4c334c0c8d802ef55ea0e7276a6e409bc0d82d"}, - {file = "mypy-1.13.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3ddb5b9bf82e05cc9a627e84707b528e5c7caaa1c55c69e175abb15a761cec2d"}, - {file = "mypy-1.13.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:20c7ee0bc0d5a9595c46f38beb04201f2620065a93755704e141fcac9f59db2b"}, - {file = "mypy-1.13.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3790ded76f0b34bc9c8ba4def8f919dd6a46db0f5a6610fb994fe8efdd447f73"}, - {file = "mypy-1.13.0-cp311-cp311-win_amd64.whl", hash = "sha256:51f869f4b6b538229c1d1bcc1dd7d119817206e2bc54e8e374b3dfa202defcca"}, - {file = "mypy-1.13.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:5c7051a3461ae84dfb5dd15eff5094640c61c5f22257c8b766794e6dd85e72d5"}, - {file = "mypy-1.13.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:39bb21c69a5d6342f4ce526e4584bc5c197fd20a60d14a8624d8743fffb9472e"}, - {file = "mypy-1.13.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:164f28cb9d6367439031f4c81e84d3ccaa1e19232d9d05d37cb0bd880d3f93c2"}, - {file = "mypy-1.13.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:a4c1bfcdbce96ff5d96fc9b08e3831acb30dc44ab02671eca5953eadad07d6d0"}, - {file = "mypy-1.13.0-cp312-cp312-win_amd64.whl", hash = "sha256:a0affb3a79a256b4183ba09811e3577c5163ed06685e4d4b46429a271ba174d2"}, - {file = "mypy-1.13.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:a7b44178c9760ce1a43f544e595d35ed61ac2c3de306599fa59b38a6048e1aa7"}, - {file = "mypy-1.13.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5d5092efb8516d08440e36626f0153b5006d4088c1d663d88bf79625af3d1d62"}, - {file = "mypy-1.13.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:de2904956dac40ced10931ac967ae63c5089bd498542194b436eb097a9f77bc8"}, - {file = "mypy-1.13.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:7bfd8836970d33c2105562650656b6846149374dc8ed77d98424b40b09340ba7"}, - {file = "mypy-1.13.0-cp313-cp313-win_amd64.whl", hash = "sha256:9f73dba9ec77acb86457a8fc04b5239822df0c14a082564737833d2963677dbc"}, - {file = "mypy-1.13.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:100fac22ce82925f676a734af0db922ecfea991e1d7ec0ceb1e115ebe501301a"}, - {file = "mypy-1.13.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7bcb0bb7f42a978bb323a7c88f1081d1b5dee77ca86f4100735a6f541299d8fb"}, - {file = "mypy-1.13.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bde31fc887c213e223bbfc34328070996061b0833b0a4cfec53745ed61f3519b"}, - {file = "mypy-1.13.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:07de989f89786f62b937851295ed62e51774722e5444a27cecca993fc3f9cd74"}, - {file = "mypy-1.13.0-cp38-cp38-win_amd64.whl", hash = "sha256:4bde84334fbe19bad704b3f5b78c4abd35ff1026f8ba72b29de70dda0916beb6"}, - {file = "mypy-1.13.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:0246bcb1b5de7f08f2826451abd947bf656945209b140d16ed317f65a17dc7dc"}, - {file = "mypy-1.13.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7f5b7deae912cf8b77e990b9280f170381fdfbddf61b4ef80927edd813163732"}, - {file = "mypy-1.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7029881ec6ffb8bc233a4fa364736789582c738217b133f1b55967115288a2bc"}, - {file = "mypy-1.13.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3e38b980e5681f28f033f3be86b099a247b13c491f14bb8b1e1e134d23bb599d"}, - {file = "mypy-1.13.0-cp39-cp39-win_amd64.whl", hash = "sha256:a6789be98a2017c912ae6ccb77ea553bbaf13d27605d2ca20a76dfbced631b24"}, - {file = "mypy-1.13.0-py3-none-any.whl", hash = "sha256:9c250883f9fd81d212e0952c92dbfcc96fc237f4b7c92f56ac81fd48460b3e5a"}, - {file = "mypy-1.13.0.tar.gz", hash = "sha256:0291a61b6fbf3e6673e3405cfcc0e7650bebc7939659fdca2702958038bd835e"}, + {file = "mypy-1.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:52686e37cf13d559f668aa398dd7ddf1f92c5d613e4f8cb262be2fb4fedb0fcb"}, + {file = "mypy-1.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1fb545ca340537d4b45d3eecdb3def05e913299ca72c290326be19b3804b39c0"}, + {file = "mypy-1.14.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:90716d8b2d1f4cd503309788e51366f07c56635a3309b0f6a32547eaaa36a64d"}, + {file = "mypy-1.14.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2ae753f5c9fef278bcf12e1a564351764f2a6da579d4a81347e1d5a15819997b"}, + {file = "mypy-1.14.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:e0fe0f5feaafcb04505bcf439e991c6d8f1bf8b15f12b05feeed96e9e7bf1427"}, + {file = "mypy-1.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:7d54bd85b925e501c555a3227f3ec0cfc54ee8b6930bd6141ec872d1c572f81f"}, + {file = "mypy-1.14.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f995e511de847791c3b11ed90084a7a0aafdc074ab88c5a9711622fe4751138c"}, + {file = "mypy-1.14.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d64169ec3b8461311f8ce2fd2eb5d33e2d0f2c7b49116259c51d0d96edee48d1"}, + {file = "mypy-1.14.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ba24549de7b89b6381b91fbc068d798192b1b5201987070319889e93038967a8"}, + {file = "mypy-1.14.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:183cf0a45457d28ff9d758730cd0210419ac27d4d3f285beda038c9083363b1f"}, + {file = "mypy-1.14.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f2a0ecc86378f45347f586e4163d1769dd81c5a223d577fe351f26b179e148b1"}, + {file = "mypy-1.14.1-cp311-cp311-win_amd64.whl", hash = "sha256:ad3301ebebec9e8ee7135d8e3109ca76c23752bac1e717bc84cd3836b4bf3eae"}, + {file = "mypy-1.14.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:30ff5ef8519bbc2e18b3b54521ec319513a26f1bba19a7582e7b1f58a6e69f14"}, + {file = "mypy-1.14.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cb9f255c18052343c70234907e2e532bc7e55a62565d64536dbc7706a20b78b9"}, + {file = "mypy-1.14.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8b4e3413e0bddea671012b063e27591b953d653209e7a4fa5e48759cda77ca11"}, + {file = "mypy-1.14.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:553c293b1fbdebb6c3c4030589dab9fafb6dfa768995a453d8a5d3b23784af2e"}, + {file = "mypy-1.14.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:fad79bfe3b65fe6a1efaed97b445c3d37f7be9fdc348bdb2d7cac75579607c89"}, + {file = "mypy-1.14.1-cp312-cp312-win_amd64.whl", hash = "sha256:8fa2220e54d2946e94ab6dbb3ba0a992795bd68b16dc852db33028df2b00191b"}, + {file = "mypy-1.14.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:92c3ed5afb06c3a8e188cb5da4984cab9ec9a77ba956ee419c68a388b4595255"}, + {file = "mypy-1.14.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:dbec574648b3e25f43d23577309b16534431db4ddc09fda50841f1e34e64ed34"}, + {file = "mypy-1.14.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8c6d94b16d62eb3e947281aa7347d78236688e21081f11de976376cf010eb31a"}, + {file = "mypy-1.14.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d4b19b03fdf54f3c5b2fa474c56b4c13c9dbfb9a2db4370ede7ec11a2c5927d9"}, + {file = "mypy-1.14.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:0c911fde686394753fff899c409fd4e16e9b294c24bfd5e1ea4675deae1ac6fd"}, + {file = "mypy-1.14.1-cp313-cp313-win_amd64.whl", hash = "sha256:8b21525cb51671219f5307be85f7e646a153e5acc656e5cebf64bfa076c50107"}, + {file = "mypy-1.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7084fb8f1128c76cd9cf68fe5971b37072598e7c31b2f9f95586b65c741a9d31"}, + {file = "mypy-1.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8f845a00b4f420f693f870eaee5f3e2692fa84cc8514496114649cfa8fd5e2c6"}, + {file = "mypy-1.14.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:44bf464499f0e3a2d14d58b54674dee25c031703b2ffc35064bd0df2e0fac319"}, + {file = "mypy-1.14.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c99f27732c0b7dc847adb21c9d47ce57eb48fa33a17bc6d7d5c5e9f9e7ae5bac"}, + {file = "mypy-1.14.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:bce23c7377b43602baa0bd22ea3265c49b9ff0b76eb315d6c34721af4cdf1d9b"}, + {file = "mypy-1.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:8edc07eeade7ebc771ff9cf6b211b9a7d93687ff892150cb5692e4f4272b0837"}, + {file = "mypy-1.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:3888a1816d69f7ab92092f785a462944b3ca16d7c470d564165fe703b0970c35"}, + {file = "mypy-1.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:46c756a444117c43ee984bd055db99e498bc613a70bbbc120272bd13ca579fbc"}, + {file = "mypy-1.14.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:27fc248022907e72abfd8e22ab1f10e903915ff69961174784a3900a8cba9ad9"}, + {file = "mypy-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:499d6a72fb7e5de92218db961f1a66d5f11783f9ae549d214617edab5d4dbdbb"}, + {file = "mypy-1.14.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:57961db9795eb566dc1d1b4e9139ebc4c6b0cb6e7254ecde69d1552bf7613f60"}, + {file = "mypy-1.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:07ba89fdcc9451f2ebb02853deb6aaaa3d2239a236669a63ab3801bbf923ef5c"}, + {file = "mypy-1.14.1-py3-none-any.whl", hash = "sha256:b66a60cc4073aeb8ae00057f9c1f64d49e90f918fbcef9a977eb121da8b8f1d1"}, + {file = "mypy-1.14.1.tar.gz", hash = "sha256:7ec88144fe9b510e8475ec2f5f251992690fcf89ccb4500b214b4226abcd32d6"}, ] [package.dependencies] -mypy-extensions = ">=1.0.0" +mypy_extensions = ">=1.0.0" tomli = {version = ">=1.1.0", markers = "python_version < \"3.11\""} -typing-extensions = ">=4.6.0" +typing_extensions = ">=4.6.0" [package.extras] dmypy = ["psutil (>=4.0)"] diff --git a/tests/conftest.py b/tests/conftest.py index 18a7351..2fe1d29 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -5,7 +5,7 @@ import pymysql import pymysql.constants.ER import pytest -from sqlalchemy import Pool, create_pool_from_url +from sqlalchemy import Engine, Pool, create_engine, create_pool_from_url DEFAULT_BASE_URI = "mysql://mysql:mysql@localhost:5441/" DEFAULT_URI = DEFAULT_BASE_URI + "mysql" @@ -44,6 +44,11 @@ async def clear_test_db(conn: aiomysql.Connection) -> None: raise +def get_pymysql_sqlalchemy_engine(uri: str) -> Engine: + updated_uri = uri.replace("mysql://", "mysql+pymysql://") + return create_engine(updated_uri) + + def get_pymysql_sqlalchemy_pool(uri: str) -> Pool: updated_uri = uri.replace("mysql://", "mysql+pymysql://") return create_pool_from_url(updated_uri) diff --git a/tests/test_store.py b/tests/test_store.py index 4d60ece..1733957 100644 --- a/tests/test_store.py +++ b/tests/test_store.py @@ -2,8 +2,6 @@ import re import time -from contextlib import closing -from typing import cast from uuid import uuid4 import pymysql @@ -18,10 +16,21 @@ SearchOp, ) from langgraph.store.mysql import PyMySQLStore -from tests.conftest import DEFAULT_BASE_URI, DEFAULT_URI, get_pymysql_sqlalchemy_pool +from tests.conftest import ( + DEFAULT_BASE_URI, + DEFAULT_URI, + get_pymysql_sqlalchemy_engine, + get_pymysql_sqlalchemy_pool, +) + +STORES = [ + "default", + "sqlalchemy_engine", + "sqlalchemy_pool", +] -@pytest.fixture(scope="function", params=["default", "sqlalchemy_pool", "callable"]) +@pytest.fixture(scope="function", params=STORES) def store(request) -> PyMySQLStore: database = f"test_{uuid4().hex[:16]}" @@ -35,15 +44,12 @@ def store(request) -> PyMySQLStore: with PyMySQLStore.from_conn_string(DEFAULT_BASE_URI + database) as store: store.setup() - if request.param == "sqlalchemy_pool": - yield PyMySQLStore(get_pymysql_sqlalchemy_pool(DEFAULT_BASE_URI + database)) - elif request.param == "callable": + if request.param == "sqlalchemy_engine": + engine = get_pymysql_sqlalchemy_engine(DEFAULT_BASE_URI + database) + yield PyMySQLStore(engine.raw_connection) + elif request.param == "sqlalchemy_pool": pool = get_pymysql_sqlalchemy_pool(DEFAULT_BASE_URI + database) - - def callable() -> pymysql.Connection: - return cast(pymysql.Connection, closing(pool.connect())) - - yield PyMySQLStore(callable) + yield PyMySQLStore(pool.connect) else: # default with PyMySQLStore.from_conn_string(DEFAULT_BASE_URI + database) as store: yield store diff --git a/tests/test_sync.py b/tests/test_sync.py index 05afab2..8c29a31 100644 --- a/tests/test_sync.py +++ b/tests/test_sync.py @@ -1,8 +1,8 @@ import re from collections.abc import Iterator -from contextlib import closing, contextmanager +from contextlib import contextmanager from copy import deepcopy -from typing import Any, Union, cast +from typing import Any, Union from uuid import uuid4 import pymysql @@ -18,13 +18,24 @@ ) from langgraph.checkpoint.mysql.pymysql import PyMySQLSaver, ShallowPyMySQLSaver from langgraph.checkpoint.serde.types import TASKS -from tests.conftest import DEFAULT_BASE_URI, get_pymysql_sqlalchemy_pool +from tests.conftest import ( + DEFAULT_BASE_URI, + get_pymysql_sqlalchemy_engine, + get_pymysql_sqlalchemy_pool, +) + +SAVERS = [ + "base", + "shallow", + "sqlalchemy_engine", + "sqlalchemy_pool", +] @contextmanager -def _sqlalchemy_pool_saver() -> Iterator[PyMySQLSaver]: - """Fixture for pool mode testing.""" +def _database() -> Iterator[str]: database = f"test_{uuid4().hex[:16]}" + # create unique db with pymysql.connect( **PyMySQLSaver.parse_conn_string(DEFAULT_BASE_URI), autocommit=True @@ -32,12 +43,7 @@ def _sqlalchemy_pool_saver() -> Iterator[PyMySQLSaver]: with conn.cursor() as cursor: cursor.execute(f"CREATE DATABASE {database}") try: - # yield checkpointer - checkpointer = PyMySQLSaver( - get_pymysql_sqlalchemy_pool(DEFAULT_BASE_URI + database) - ) - checkpointer.setup() - yield checkpointer + yield database finally: # drop unique db with pymysql.connect( @@ -48,98 +54,59 @@ def _sqlalchemy_pool_saver() -> Iterator[PyMySQLSaver]: @contextmanager -def _callable_saver() -> Iterator[PyMySQLSaver]: - """Fixture for pool mode testing.""" - database = f"test_{uuid4().hex[:16]}" - # create unique db - with pymysql.connect( - **PyMySQLSaver.parse_conn_string(DEFAULT_BASE_URI), autocommit=True - ) as conn: - with conn.cursor() as cursor: - cursor.execute(f"CREATE DATABASE {database}") - try: - # yield checkpointer - pool = get_pymysql_sqlalchemy_pool(DEFAULT_BASE_URI + database) +def _base_saver() -> Iterator[PyMySQLSaver]: + with _database() as database: + with PyMySQLSaver.from_conn_string(DEFAULT_BASE_URI + database) as checkpointer: + yield checkpointer - def callable() -> pymysql.Connection: - return cast(pymysql.Connection, closing(pool.connect())) - checkpointer = PyMySQLSaver(callable) - checkpointer.setup() - yield checkpointer - finally: - # drop unique db - with pymysql.connect( - **PyMySQLSaver.parse_conn_string(DEFAULT_BASE_URI), autocommit=True - ) as conn: - with conn.cursor() as cursor: - cursor.execute(f"DROP DATABASE {database}") +@contextmanager +def _sqlalchemy_engine_saver() -> Iterator[PyMySQLSaver]: + with _database() as database: + engine = get_pymysql_sqlalchemy_engine(DEFAULT_BASE_URI + database) + try: + yield PyMySQLSaver(engine.raw_connection) + finally: + engine.dispose() @contextmanager -def _base_saver() -> Iterator[PyMySQLSaver]: - """Fixture for regular connection mode testing.""" - database = f"test_{uuid4().hex[:16]}" - # create unique db - with pymysql.connect( - **PyMySQLSaver.parse_conn_string(DEFAULT_BASE_URI), autocommit=True - ) as conn: - with conn.cursor() as cursor: - cursor.execute(f"CREATE DATABASE {database}") - try: - # yield checkpointer - with PyMySQLSaver.from_conn_string(DEFAULT_BASE_URI + database) as checkpointer: - checkpointer.setup() - yield checkpointer - finally: - # drop unique db - with pymysql.connect( - **PyMySQLSaver.parse_conn_string(DEFAULT_BASE_URI), autocommit=True - ) as conn: - with conn.cursor() as cursor: - cursor.execute(f"DROP DATABASE {database}") +def _sqlalchemy_pool_saver() -> Iterator[PyMySQLSaver]: + with _database() as database: + pool = get_pymysql_sqlalchemy_pool(DEFAULT_BASE_URI + database) + try: + yield PyMySQLSaver(pool.connect) + finally: + pool.dispose() @contextmanager def _shallow_saver() -> Iterator[ShallowPyMySQLSaver]: """Fixture for regular connection mode testing with a shallow checkpointer.""" - database = f"test_{uuid4().hex[:16]}" - # create unique db - with pymysql.connect( - **PyMySQLSaver.parse_conn_string(DEFAULT_BASE_URI), autocommit=True - ) as conn: - with conn.cursor() as cursor: - cursor.execute(f"CREATE DATABASE {database}") - try: + with _database() as database: # yield checkpointer with ShallowPyMySQLSaver.from_conn_string( DEFAULT_BASE_URI + database ) as checkpointer: - checkpointer.setup() yield checkpointer - finally: - # drop unique db - with pymysql.connect( - **PyMySQLSaver.parse_conn_string(DEFAULT_BASE_URI), autocommit=True - ) as conn: - with conn.cursor() as cursor: - cursor.execute(f"DROP DATABASE {database}") @contextmanager def _saver(name: str) -> Iterator[Union[PyMySQLSaver, ShallowPyMySQLSaver]]: if name == "base": - with _base_saver() as saver: - yield saver - if name == "shallow": - with _shallow_saver() as saver: - yield saver + factory = _base_saver + elif name == "shallow": + factory = _shallow_saver # type: ignore + elif name == "sqlalchemy_engine": + factory = _sqlalchemy_engine_saver elif name == "sqlalchemy_pool": - with _sqlalchemy_pool_saver() as saver: - yield saver - elif name == "callable": - with _callable_saver() as saver: - yield saver + factory = _sqlalchemy_pool_saver + else: + raise ValueError(f"Unknown saver name: {name}") + + with factory() as saver: + saver.setup() + yield saver @pytest.fixture @@ -193,9 +160,7 @@ def test_data() -> dict[str, Any]: } -@pytest.mark.parametrize( - "saver_name", ["base", "sqlalchemy_pool", "callable", "shallow"] -) +@pytest.mark.parametrize("saver_name", SAVERS) def test_search(saver_name: str, test_data: dict[str, Any]) -> None: with _saver(saver_name) as saver: configs = test_data["configs"] @@ -216,6 +181,7 @@ def test_search(saver_name: str, test_data: dict[str, Any]) -> None: query_4 = {"source": "update", "step": 1} # no match search_results_1 = list(saver.list(None, filter=query_1)) + assert len(search_results_1) == 1 assert search_results_1[0].metadata == metadata[0] @@ -238,9 +204,7 @@ def test_search(saver_name: str, test_data: dict[str, Any]) -> None: } == {"", "inner"} -@pytest.mark.parametrize( - "saver_name", ["base", "sqlalchemy_pool", "callable", "shallow"] -) +@pytest.mark.parametrize("saver_name", SAVERS) def test_null_chars(saver_name: str, test_data: dict[str, Any]) -> None: with _saver(saver_name) as saver: config = saver.put( @@ -256,9 +220,7 @@ def test_null_chars(saver_name: str, test_data: dict[str, Any]) -> None: ) -@pytest.mark.parametrize( - "saver_name", ["base", "sqlalchemy_pool", "callable", "shallow"] -) +@pytest.mark.parametrize("saver_name", SAVERS) def test_write_and_read_pending_writes_and_sends( saver_name: str, test_data: dict[str, Any] ) -> None: @@ -288,9 +250,7 @@ def test_write_and_read_pending_writes_and_sends( assert result.checkpoint["pending_sends"] == ["w3v"] -@pytest.mark.parametrize( - "saver_name", ["base", "sqlalchemy_pool", "callable", "shallow"] -) +@pytest.mark.parametrize("saver_name", SAVERS) @pytest.mark.parametrize( "channel_values", [ @@ -325,9 +285,7 @@ def test_write_and_read_channel_values( assert result.checkpoint["channel_values"] == channel_values -@pytest.mark.parametrize( - "saver_name", ["base", "sqlalchemy_pool", "callable", "shallow"] -) +@pytest.mark.parametrize("saver_name", SAVERS) def test_write_and_read_pending_writes(saver_name: str) -> None: with _saver(saver_name) as saver: config: RunnableConfig = { @@ -358,9 +316,7 @@ def test_write_and_read_pending_writes(saver_name: str) -> None: ] -@pytest.mark.parametrize( - "saver_name", ["base", "sqlalchemy_pool", "callable", "shallow"] -) +@pytest.mark.parametrize("saver_name", SAVERS) def test_write_with_different_checkpoint_ns_inserts(saver_name: str) -> None: with _saver(saver_name) as saver: config1: RunnableConfig = { @@ -383,9 +339,7 @@ def test_write_with_different_checkpoint_ns_inserts(saver_name: str) -> None: assert len(results) == 2 -@pytest.mark.parametrize( - "saver_name", ["base", "sqlalchemy_pool", "callable", "shallow"] -) +@pytest.mark.parametrize("saver_name", SAVERS) def test_write_with_same_checkpoint_ns_updates(saver_name: str) -> None: with _saver(saver_name) as saver: config: RunnableConfig = {