-
Notifications
You must be signed in to change notification settings - Fork 7
/
generation_matrix.py
91 lines (77 loc) · 2.61 KB
/
generation_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import tensorflow as tf
class Code:
def __init__(self):
self.num_edges = 0
# self.n = n
# self.k = k
def load_code(H_filename, G_filename):
# parity-check matrix; Tanner graph parameters
# H_filename = format('./LDPC_matrix/LDPC_576_432.alist')
# G_filename = format('./LDPC_matrix/LDPC_576_432.gmat')
with open(H_filename) as f:
# get n and m (n-k) from first line
n,m = [int(s) for s in f.readline().split(' ')]
k = n-m
#################################################################################################################
var_degrees = np.zeros(n).astype(np.int) # degree of each variable node
chk_degrees = np.zeros(m).astype(np.int) # degree of each check node
# initialize H
H = np.zeros([m,n]).astype(np.int)
max_var_degree, max_chk_degree = [int(s) for s in f.readline().split(' ')]
f.readline() # ignore two lines
f.readline()
# create H, sparse version of H, and edge index matrices
# (edge index matrices used to calculate source and destination nodes during belief propagation)
var_edges = [[] for _ in range(0,n)]
for i in range(0,n):
row_string = f.readline().split(' ')
var_edges[i] = [(int(s)-1) for s in row_string[:-1]]
var_degrees[i] = len(var_edges[i])
H[var_edges[i], i] = 1
chk_edges = [[] for _ in range(0,m)]
for i in range(0,m):
row_string = f.readline().split(' ')
chk_edges[i] = [(int(s)-1) for s in row_string[:-1]]
chk_degrees[i] = len(chk_edges[i])
# H = np.loadtxt(H_filename).astype(np.int)
# chk_degrees = np.sum(H, axis=1) # assume each check node has the sum degree
# var_degrees = np.sum(H, axis=0)
################################################################################################################
d = [[] for _ in range(0,n)]
edge = 0
for i in range(0,n):
for j in range(0,var_degrees[i]):
d[i].append(edge)
edge += 1
u = [[] for _ in range(0,m)]
edge = 0
for i in range(0,m):
for j in range(0,chk_degrees[i]):
v = chk_edges[i][j]
for e in range(0,var_degrees[v]):
if (i == var_edges[v][e]):
u[i].append(d[v][e])
num_edges = H.sum()
if G_filename == "":
G = []
else:
#if "BCH" in H_filename: # dear God please fix this
if "LDPC" in H_filename: # dear God please fix this
G = np.loadtxt(G_filename).astype(np.int)
G = G.transpose()
else:
P = np.loadtxt(G_filename,skiprows=2)
G = np.vstack([P.transpose(), np.eye(k)]).astype(np.int)
code = Code()
code.H = H
code.G = G
code.var_degrees = var_degrees
code.chk_degrees = chk_degrees
code.num_edges = num_edges
code.u = u
code.d = d
code.n = n
code.m = m
code.k = k
return code