You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi I am new with tmle3, and I am trying to estimate the effect of coca crops (variable tertile coca) on the incidence of leishmaniasis (variable sir). Currently, I can estimate the average treatment effect, but I want to know if it is possible to estimate the conditional average treatment effect (CATE) by forest coverage (variable forest) and the confidence interval of the CATE with tmle3?
Note: I transform the continuous variables to sd units to facilitate the convergence of the models
Hi I am new with tmle3, and I am trying to estimate the effect of coca crops (variable tertile coca) on the incidence of leishmaniasis (variable sir). Currently, I can estimate the average treatment effect, but I want to know if it is possible to estimate the conditional average treatment effect (CATE) by forest coverage (variable forest) and the confidence interval of the CATE with tmle3?
Note: I transform the continuous variables to sd units to facilitate the convergence of the models
Here is my dataset and code
coca.csv
`library(data.table)
library(dplyr)
library(tmle3)
library(sl3)
library(MKdescr)
library(tidyr)
data_all <- read.csv("D:/coca.csv")
#z-score
z_sir <- zscore(data_all$sir, na.rm = TRUE)
z_sir <- as.data.frame(z_sir)
data_all <- cbind(data_all, z_sir)
z_misery <- zscore(data_all$misery, na.rm = TRUE)
z_misery <- as.data.frame(z_misery)
data_all <- cbind(data_all, z_misery)
z_forest <- zscore(data_all$forest, na.rm = TRUE)
z_forest <- as.data.frame(z_forest)
data_all <- cbind(data_all, z_forest)
z_mining <- zscore(data_all$mining, na.rm = TRUE)
z_mining <- as.data.frame(z_mining)
data_all <- cbind(data_all, z_mining)
z_fire <- zscore(data_all$fire, na.rm = TRUE)
z_fire <- as.data.frame(z_fire)
data_all <- cbind(data_all, z_fire)
z_deforest <- zscore(data_all$deforest, na.rm = TRUE)
z_deforest <- as.data.frame(z_deforest)
data_all <- cbind(data_all, z_deforest)
#dataset zomac
data_jd <- dplyr::select(data_all, z_sir, tertile_coca, zomac,
z_misery, z_forest, z_mining, z_fire, z_deforest)
data_jd <- data_jd %>% drop_na()
#nodes
node_list <- list(
W = c("zomac", "z_misery", "z_forest", "z_mining", "z_fire", "z_deforest"), #covariates
A = "tertile_coca", #exposure
Y = "z_sir") #outcome
#ate
ate_spec <- tmle_ATE(
treatment_level = 1,
control_level = 0)
#learners for continuous (outcome) and binomial variable (treatment)
rf_lrnr <- Lrnr_ranger$new(num.trees=1000)
hal_lrnr <- Lrnr_hal9001$new(max_degree = 3, n_folds = 3)
pols_lrnr <- Lrnr_polspline$new(cv=5)
Cgam_lrnr <- Lrnr_gam$new(family="Gamma") #for continuous variable (treatment)
Bgam_lrnr <- Lrnr_gam$new(family="binomial") #for binomial variable (treatment)
rfst_lrnr <- Lrnr_randomForest$new(ntree=1000)
xgb_lrnr <- Lrnr_xgboost$new(ntree=1000)
#define metalearners appropriate to data types
ls_metalearner <- make_learner(Lrnr_nnls)
sl_Y <- Lrnr_sl$new(
learners = list(rf_lrnr, hal_lrnr, pols_lrnr, Cgam_lrnr, rfst_lrnr, xgb_lrnr),
metalearner = ls_metalearner
)
sl_A <- Lrnr_sl$new(
learners = list(rf_lrnr, hal_lrnr, pols_lrnr, Bgam_lrnr, rfst_lrnr, xgb_lrnr),
metalearner = ls_metalearner
)
learner_list <- list(A = sl_A, Y = sl_Y)
#fit
tmle_fit <- tmle3(ate_spec, data_jd, node_list, learner_list)
print(tmle_fit)`
The text was updated successfully, but these errors were encountered: