forked from LFhase/CausalCOAT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopenai_utils.py
135 lines (118 loc) · 4.21 KB
/
openai_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from openai import OpenAI
import os
import time
class LLM_openai():
def __init__(self, logger):
self.client = OpenAI()
self.logger = logger
self.thread_id = None
def log(self, content):
self.logger.straight_write('conversation', content, mode='a')
def load_assistant(self, asst_id):
self.asst_id = asst_id
self.assistant = self.client.beta.assistants.retrieve(asst_id)
self.log(f'>> Loaded OpenAI assistant {self.asst_id}')
def delete_thread(self):
if self.thread_id is None:
return
response = self.client.beta.threads.delete(self.thread_id)
assert response.deleted
self.thread_id = None
def chat(self, content, system_instruct = None, model="gpt-4-1106-preview", **kwargs):
'''
Output:
- run_result
- responce
- files
'''
# init
self.delete_thread()
if system_instruct is None:
system_instruct = 'You are an excellently helpful AI assistant for analysis and abstraction on data.'
# chat
completions = self.client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_instruct},
{"role": "user", "content": content}
],
**kwargs
)
print(completions.id)
self.log( ('-' * 5) + f'{completions.id}' + ('-' * 10))
self.log('User: \n' + content)
# get responce
responce = completions.choices[0].message.content
self.log('ChatGPT: \n' + responce)
return responce
def chat_assistant(self, content, args, file_ids = []):
'''
Output:
- run_result
- responce
- files
'''
# init
self.delete_thread()
sleep_gap = args['sleep gap']
max_wait = args['max wait']
# new thread
thread = self.client.beta.threads.create(
messages=[
{
"role": "user",
"content": content,
"file_ids": file_ids
}
]
)
print(thread.id)
self.thread_id = thread.id
self.log( ('-' * 5) + f'{self.thread_id}' + ('-' * 10))
self.log('User: \n' + content)
# run
run_result = None
run = self.client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=self.assistant.id
)
print(run.id)
for i in range(max_wait//sleep_gap+1):
run = self.client.beta.threads.runs.retrieve(
thread_id=thread.id,
run_id=run.id
)
print(i * sleep_gap, run.status)
if not (run.status in ['in_progress', 'queued']):
print(run.status)
run_result = run.status # == 'completed'
break
if i >= max_wait//sleep_gap:
run = self.client.beta.threads.runs.cancel(
thread_id=thread.id,
run_id=run.id
)
run_result = 'time out'
break
time.sleep(sleep_gap)
if run_result != 'completed':
return run_result, None, None
# get responce
messages = self.client.beta.threads.messages.list(
thread_id=thread.id
)
num_responce = len(messages.data)
responces = []
files = []
for i in range(num_responce-2, -1, -1):
this_responce = messages.data[i].content[0].text.value
responces.append(this_responce)
for annotation in messages.data[i].content[0].text.annotations:
if hasattr(annotation, 'file_path'):
this_file_id = annotation.file_path.file_id
this_file_content = self.client.files.content(this_file_id).read().decode("utf-8")
files.append(this_file_content)
self.log('ChatGPT: \n' + '\n'.join(responces))
if len(files) > 0:
self.log('\n'.join(files))
return run_result, responces, files